First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / sparc / kernel / smp_32.c
blob132d81fb26162657b0391a11e56e23fce9bf604d
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
8 #include <asm/head.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
36 #include "irq.h"
38 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
39 unsigned char boot_cpu_id = 0;
40 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
44 /* The only guaranteed locking primitive available on all Sparc
45 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
46 * places the current byte at the effective address into dest_reg and
47 * places 0xff there afterwards. Pretty lame locking primitive
48 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
49 * instruction which is much better...
52 void __cpuinit smp_store_cpu_info(int id)
54 int cpu_node;
56 cpu_data(id).udelay_val = loops_per_jiffy;
58 cpu_find_by_mid(id, &cpu_node);
59 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60 "clock-frequency", 0);
61 cpu_data(id).prom_node = cpu_node;
62 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
64 if (cpu_data(id).mid < 0)
65 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
68 void __init smp_cpus_done(unsigned int max_cpus)
70 extern void smp4m_smp_done(void);
71 extern void smp4d_smp_done(void);
72 unsigned long bogosum = 0;
73 int cpu, num = 0;
75 for_each_online_cpu(cpu) {
76 num++;
77 bogosum += cpu_data(cpu).udelay_val;
80 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
81 num, bogosum/(500000/HZ),
82 (bogosum/(5000/HZ))%100);
84 switch(sparc_cpu_model) {
85 case sun4:
86 printk("SUN4\n");
87 BUG();
88 break;
89 case sun4c:
90 printk("SUN4C\n");
91 BUG();
92 break;
93 case sun4m:
94 smp4m_smp_done();
95 break;
96 case sun4d:
97 smp4d_smp_done();
98 break;
99 case sun4e:
100 printk("SUN4E\n");
101 BUG();
102 break;
103 case sun4u:
104 printk("SUN4U\n");
105 BUG();
106 break;
107 default:
108 printk("UNKNOWN!\n");
109 BUG();
110 break;
114 void cpu_panic(void)
116 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
117 panic("SMP bolixed\n");
120 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
122 void smp_send_reschedule(int cpu)
124 /* See sparc64 */
127 void smp_send_stop(void)
131 void smp_flush_cache_all(void)
133 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
134 local_flush_cache_all();
137 void smp_flush_tlb_all(void)
139 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
140 local_flush_tlb_all();
143 void smp_flush_cache_mm(struct mm_struct *mm)
145 if(mm->context != NO_CONTEXT) {
146 cpumask_t cpu_mask = *mm_cpumask(mm);
147 cpu_clear(smp_processor_id(), cpu_mask);
148 if (!cpus_empty(cpu_mask))
149 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
150 local_flush_cache_mm(mm);
154 void smp_flush_tlb_mm(struct mm_struct *mm)
156 if(mm->context != NO_CONTEXT) {
157 cpumask_t cpu_mask = *mm_cpumask(mm);
158 cpu_clear(smp_processor_id(), cpu_mask);
159 if (!cpus_empty(cpu_mask)) {
160 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
161 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
162 cpumask_copy(mm_cpumask(mm),
163 cpumask_of(smp_processor_id()));
165 local_flush_tlb_mm(mm);
169 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
170 unsigned long end)
172 struct mm_struct *mm = vma->vm_mm;
174 if (mm->context != NO_CONTEXT) {
175 cpumask_t cpu_mask = *mm_cpumask(mm);
176 cpu_clear(smp_processor_id(), cpu_mask);
177 if (!cpus_empty(cpu_mask))
178 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
179 local_flush_cache_range(vma, start, end);
183 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
184 unsigned long end)
186 struct mm_struct *mm = vma->vm_mm;
188 if (mm->context != NO_CONTEXT) {
189 cpumask_t cpu_mask = *mm_cpumask(mm);
190 cpu_clear(smp_processor_id(), cpu_mask);
191 if (!cpus_empty(cpu_mask))
192 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
193 local_flush_tlb_range(vma, start, end);
197 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
199 struct mm_struct *mm = vma->vm_mm;
201 if(mm->context != NO_CONTEXT) {
202 cpumask_t cpu_mask = *mm_cpumask(mm);
203 cpu_clear(smp_processor_id(), cpu_mask);
204 if (!cpus_empty(cpu_mask))
205 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
206 local_flush_cache_page(vma, page);
210 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
212 struct mm_struct *mm = vma->vm_mm;
214 if(mm->context != NO_CONTEXT) {
215 cpumask_t cpu_mask = *mm_cpumask(mm);
216 cpu_clear(smp_processor_id(), cpu_mask);
217 if (!cpus_empty(cpu_mask))
218 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
219 local_flush_tlb_page(vma, page);
223 void smp_reschedule_irq(void)
225 set_need_resched();
228 void smp_flush_page_to_ram(unsigned long page)
230 /* Current theory is that those who call this are the one's
231 * who have just dirtied their cache with the pages contents
232 * in kernel space, therefore we only run this on local cpu.
234 * XXX This experiment failed, research further... -DaveM
236 #if 1
237 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
238 #endif
239 local_flush_page_to_ram(page);
242 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
244 cpumask_t cpu_mask = *mm_cpumask(mm);
245 cpu_clear(smp_processor_id(), cpu_mask);
246 if (!cpus_empty(cpu_mask))
247 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
248 local_flush_sig_insns(mm, insn_addr);
251 extern unsigned int lvl14_resolution;
253 /* /proc/profile writes can call this, don't __init it please. */
254 static DEFINE_SPINLOCK(prof_setup_lock);
256 int setup_profiling_timer(unsigned int multiplier)
258 int i;
259 unsigned long flags;
261 /* Prevent level14 ticker IRQ flooding. */
262 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
263 return -EINVAL;
265 spin_lock_irqsave(&prof_setup_lock, flags);
266 for_each_possible_cpu(i) {
267 load_profile_irq(i, lvl14_resolution / multiplier);
268 prof_multiplier(i) = multiplier;
270 spin_unlock_irqrestore(&prof_setup_lock, flags);
272 return 0;
275 void __init smp_prepare_cpus(unsigned int max_cpus)
277 extern void __init smp4m_boot_cpus(void);
278 extern void __init smp4d_boot_cpus(void);
279 int i, cpuid, extra;
281 printk("Entering SMP Mode...\n");
283 extra = 0;
284 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
285 if (cpuid >= NR_CPUS)
286 extra++;
288 /* i = number of cpus */
289 if (extra && max_cpus > i - extra)
290 printk("Warning: NR_CPUS is too low to start all cpus\n");
292 smp_store_cpu_info(boot_cpu_id);
294 switch(sparc_cpu_model) {
295 case sun4:
296 printk("SUN4\n");
297 BUG();
298 break;
299 case sun4c:
300 printk("SUN4C\n");
301 BUG();
302 break;
303 case sun4m:
304 smp4m_boot_cpus();
305 break;
306 case sun4d:
307 smp4d_boot_cpus();
308 break;
309 case sun4e:
310 printk("SUN4E\n");
311 BUG();
312 break;
313 case sun4u:
314 printk("SUN4U\n");
315 BUG();
316 break;
317 default:
318 printk("UNKNOWN!\n");
319 BUG();
320 break;
324 /* Set this up early so that things like the scheduler can init
325 * properly. We use the same cpu mask for both the present and
326 * possible cpu map.
328 void __init smp_setup_cpu_possible_map(void)
330 int instance, mid;
332 instance = 0;
333 while (!cpu_find_by_instance(instance, NULL, &mid)) {
334 if (mid < NR_CPUS) {
335 set_cpu_possible(mid, true);
336 set_cpu_present(mid, true);
338 instance++;
342 void __init smp_prepare_boot_cpu(void)
344 int cpuid = hard_smp_processor_id();
346 if (cpuid >= NR_CPUS) {
347 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
348 prom_halt();
350 if (cpuid != 0)
351 printk("boot cpu id != 0, this could work but is untested\n");
353 current_thread_info()->cpu = cpuid;
354 set_cpu_online(cpuid, true);
355 set_cpu_possible(cpuid, true);
358 int __cpuinit __cpu_up(unsigned int cpu)
360 extern int __cpuinit smp4m_boot_one_cpu(int);
361 extern int __cpuinit smp4d_boot_one_cpu(int);
362 int ret=0;
364 switch(sparc_cpu_model) {
365 case sun4:
366 printk("SUN4\n");
367 BUG();
368 break;
369 case sun4c:
370 printk("SUN4C\n");
371 BUG();
372 break;
373 case sun4m:
374 ret = smp4m_boot_one_cpu(cpu);
375 break;
376 case sun4d:
377 ret = smp4d_boot_one_cpu(cpu);
378 break;
379 case sun4e:
380 printk("SUN4E\n");
381 BUG();
382 break;
383 case sun4u:
384 printk("SUN4U\n");
385 BUG();
386 break;
387 default:
388 printk("UNKNOWN!\n");
389 BUG();
390 break;
393 if (!ret) {
394 cpu_set(cpu, smp_commenced_mask);
395 while (!cpu_online(cpu))
396 mb();
398 return ret;
401 void smp_bogo(struct seq_file *m)
403 int i;
405 for_each_online_cpu(i) {
406 seq_printf(m,
407 "Cpu%dBogo\t: %lu.%02lu\n",
409 cpu_data(i).udelay_val/(500000/HZ),
410 (cpu_data(i).udelay_val/(5000/HZ))%100);
414 void smp_info(struct seq_file *m)
416 int i;
418 seq_printf(m, "State:\n");
419 for_each_online_cpu(i)
420 seq_printf(m, "CPU%d\t\t: online\n", i);