First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / x86 / include / asm / system.h
blobf08f973748922b26a2417ed70db47fec2b54b009
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22 struct task_struct *next);
23 struct tss_struct;
24 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
25 struct tss_struct *tss);
27 #ifdef CONFIG_X86_32
29 #ifdef CONFIG_CC_STACKPROTECTOR
30 #define __switch_canary \
31 "movl %P[task_canary](%[next]), %%ebx\n\t" \
32 "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
33 #define __switch_canary_oparam \
34 , [stack_canary] "=m" (per_cpu_var(stack_canary.canary))
35 #define __switch_canary_iparam \
36 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
37 #else /* CC_STACKPROTECTOR */
38 #define __switch_canary
39 #define __switch_canary_oparam
40 #define __switch_canary_iparam
41 #endif /* CC_STACKPROTECTOR */
44 * Saving eflags is important. It switches not only IOPL between tasks,
45 * it also protects other tasks from NT leaking through sysenter etc.
47 #define switch_to(prev, next, last) \
48 do { \
49 /* \
50 * Context-switching clobbers all registers, so we clobber \
51 * them explicitly, via unused output variables. \
52 * (EAX and EBP is not listed because EBP is saved/restored \
53 * explicitly for wchan access and EAX is the return value of \
54 * __switch_to()) \
55 */ \
56 unsigned long ebx, ecx, edx, esi, edi; \
58 asm volatile("pushfl\n\t" /* save flags */ \
59 "pushl %%ebp\n\t" /* save EBP */ \
60 "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
61 "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
62 "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
63 "pushl %[next_ip]\n\t" /* restore EIP */ \
64 __switch_canary \
65 "jmp __switch_to\n" /* regparm call */ \
66 "1:\t" \
67 "popl %%ebp\n\t" /* restore EBP */ \
68 "popfl\n" /* restore flags */ \
70 /* output parameters */ \
71 : [prev_sp] "=m" (prev->thread.sp), \
72 [prev_ip] "=m" (prev->thread.ip), \
73 "=a" (last), \
75 /* clobbered output registers: */ \
76 "=b" (ebx), "=c" (ecx), "=d" (edx), \
77 "=S" (esi), "=D" (edi) \
79 __switch_canary_oparam \
81 /* input parameters: */ \
82 : [next_sp] "m" (next->thread.sp), \
83 [next_ip] "m" (next->thread.ip), \
85 /* regparm parameters for __switch_to(): */ \
86 [prev] "a" (prev), \
87 [next] "d" (next) \
89 __switch_canary_iparam \
91 : /* reloaded segment registers */ \
92 "memory"); \
93 } while (0)
96 * disable hlt during certain critical i/o operations
98 #define HAVE_DISABLE_HLT
99 #else
100 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
101 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
103 /* frame pointer must be last for get_wchan */
104 #define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
105 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
107 #define __EXTRA_CLOBBER \
108 , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
109 "r12", "r13", "r14", "r15"
111 #ifdef CONFIG_CC_STACKPROTECTOR
112 #define __switch_canary \
113 "movq %P[task_canary](%%rsi),%%r8\n\t" \
114 "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
115 #define __switch_canary_oparam \
116 , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
117 #define __switch_canary_iparam \
118 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
119 #else /* CC_STACKPROTECTOR */
120 #define __switch_canary
121 #define __switch_canary_oparam
122 #define __switch_canary_iparam
123 #endif /* CC_STACKPROTECTOR */
125 /* Save restore flags to clear handle leaking NT */
126 #define switch_to(prev, next, last) \
127 asm volatile(SAVE_CONTEXT \
128 "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
129 "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
130 "call __switch_to\n\t" \
131 ".globl thread_return\n" \
132 "thread_return:\n\t" \
133 "movq "__percpu_arg([current_task])",%%rsi\n\t" \
134 __switch_canary \
135 "movq %P[thread_info](%%rsi),%%r8\n\t" \
136 "movq %%rax,%%rdi\n\t" \
137 "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
138 "jnz ret_from_fork\n\t" \
139 RESTORE_CONTEXT \
140 : "=a" (last) \
141 __switch_canary_oparam \
142 : [next] "S" (next), [prev] "D" (prev), \
143 [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
144 [ti_flags] "i" (offsetof(struct thread_info, flags)), \
145 [_tif_fork] "i" (_TIF_FORK), \
146 [thread_info] "i" (offsetof(struct task_struct, stack)), \
147 [current_task] "m" (per_cpu_var(current_task)) \
148 __switch_canary_iparam \
149 : "memory", "cc" __EXTRA_CLOBBER)
150 #endif
152 #ifdef __KERNEL__
154 extern void native_load_gs_index(unsigned);
157 * Load a segment. Fall back on loading the zero
158 * segment if something goes wrong..
160 #define loadsegment(seg, value) \
161 asm volatile("\n" \
162 "1:\t" \
163 "movl %k0,%%" #seg "\n" \
164 "2:\n" \
165 ".section .fixup,\"ax\"\n" \
166 "3:\t" \
167 "movl %k1, %%" #seg "\n\t" \
168 "jmp 2b\n" \
169 ".previous\n" \
170 _ASM_EXTABLE(1b,3b) \
171 : :"r" (value), "r" (0) : "memory")
175 * Save a segment register away
177 #define savesegment(seg, value) \
178 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
181 * x86_32 user gs accessors.
183 #ifdef CONFIG_X86_32
184 #ifdef CONFIG_X86_32_LAZY_GS
185 #define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
186 #define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
187 #define task_user_gs(tsk) ((tsk)->thread.gs)
188 #define lazy_save_gs(v) savesegment(gs, (v))
189 #define lazy_load_gs(v) loadsegment(gs, (v))
190 #else /* X86_32_LAZY_GS */
191 #define get_user_gs(regs) (u16)((regs)->gs)
192 #define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
193 #define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
194 #define lazy_save_gs(v) do { } while (0)
195 #define lazy_load_gs(v) do { } while (0)
196 #endif /* X86_32_LAZY_GS */
197 #endif /* X86_32 */
199 static inline unsigned long get_limit(unsigned long segment)
201 unsigned long __limit;
202 asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
203 return __limit + 1;
206 static inline void native_clts(void)
208 asm volatile("clts");
212 * Volatile isn't enough to prevent the compiler from reordering the
213 * read/write functions for the control registers and messing everything up.
214 * A memory clobber would solve the problem, but would prevent reordering of
215 * all loads stores around it, which can hurt performance. Solution is to
216 * use a variable and mimic reads and writes to it to enforce serialization
218 static unsigned long __force_order;
220 static inline unsigned long native_read_cr0(void)
222 unsigned long val;
223 asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
224 return val;
227 static inline void native_write_cr0(unsigned long val)
229 asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
232 static inline unsigned long native_read_cr2(void)
234 unsigned long val;
235 asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
236 return val;
239 static inline void native_write_cr2(unsigned long val)
241 asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
244 static inline unsigned long native_read_cr3(void)
246 unsigned long val;
247 asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
248 return val;
251 static inline void native_write_cr3(unsigned long val)
253 asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
256 static inline unsigned long native_read_cr4(void)
258 unsigned long val;
259 asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
260 return val;
263 static inline unsigned long native_read_cr4_safe(void)
265 unsigned long val;
266 /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
267 * exists, so it will never fail. */
268 #ifdef CONFIG_X86_32
269 asm volatile("1: mov %%cr4, %0\n"
270 "2:\n"
271 _ASM_EXTABLE(1b, 2b)
272 : "=r" (val), "=m" (__force_order) : "0" (0));
273 #else
274 val = native_read_cr4();
275 #endif
276 return val;
279 static inline void native_write_cr4(unsigned long val)
281 asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
284 #ifdef CONFIG_X86_64
285 static inline unsigned long native_read_cr8(void)
287 unsigned long cr8;
288 asm volatile("movq %%cr8,%0" : "=r" (cr8));
289 return cr8;
292 static inline void native_write_cr8(unsigned long val)
294 asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
296 #endif
298 static inline void native_wbinvd(void)
300 asm volatile("wbinvd": : :"memory");
303 #ifdef CONFIG_PARAVIRT
304 #include <asm/paravirt.h>
305 #else
306 #define read_cr0() (native_read_cr0())
307 #define write_cr0(x) (native_write_cr0(x))
308 #define read_cr2() (native_read_cr2())
309 #define write_cr2(x) (native_write_cr2(x))
310 #define read_cr3() (native_read_cr3())
311 #define write_cr3(x) (native_write_cr3(x))
312 #define read_cr4() (native_read_cr4())
313 #define read_cr4_safe() (native_read_cr4_safe())
314 #define write_cr4(x) (native_write_cr4(x))
315 #define wbinvd() (native_wbinvd())
316 #ifdef CONFIG_X86_64
317 #define read_cr8() (native_read_cr8())
318 #define write_cr8(x) (native_write_cr8(x))
319 #define load_gs_index native_load_gs_index
320 #endif
322 /* Clear the 'TS' bit */
323 #define clts() (native_clts())
325 #endif/* CONFIG_PARAVIRT */
327 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
329 #endif /* __KERNEL__ */
331 static inline void clflush(volatile void *__p)
333 asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
336 #define nop() asm volatile ("nop")
338 void disable_hlt(void);
339 void enable_hlt(void);
341 void cpu_idle_wait(void);
343 extern unsigned long arch_align_stack(unsigned long sp);
344 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
346 void default_idle(void);
348 void stop_this_cpu(void *dummy);
351 * Force strict CPU ordering.
352 * And yes, this is required on UP too when we're talking
353 * to devices.
355 #ifdef CONFIG_X86_32
357 * Some non-Intel clones support out of order store. wmb() ceases to be a
358 * nop for these.
360 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
361 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
362 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
363 #else
364 #define mb() asm volatile("mfence":::"memory")
365 #define rmb() asm volatile("lfence":::"memory")
366 #define wmb() asm volatile("sfence" ::: "memory")
367 #endif
370 * read_barrier_depends - Flush all pending reads that subsequents reads
371 * depend on.
373 * No data-dependent reads from memory-like regions are ever reordered
374 * over this barrier. All reads preceding this primitive are guaranteed
375 * to access memory (but not necessarily other CPUs' caches) before any
376 * reads following this primitive that depend on the data return by
377 * any of the preceding reads. This primitive is much lighter weight than
378 * rmb() on most CPUs, and is never heavier weight than is
379 * rmb().
381 * These ordering constraints are respected by both the local CPU
382 * and the compiler.
384 * Ordering is not guaranteed by anything other than these primitives,
385 * not even by data dependencies. See the documentation for
386 * memory_barrier() for examples and URLs to more information.
388 * For example, the following code would force ordering (the initial
389 * value of "a" is zero, "b" is one, and "p" is "&a"):
391 * <programlisting>
392 * CPU 0 CPU 1
394 * b = 2;
395 * memory_barrier();
396 * p = &b; q = p;
397 * read_barrier_depends();
398 * d = *q;
399 * </programlisting>
401 * because the read of "*q" depends on the read of "p" and these
402 * two reads are separated by a read_barrier_depends(). However,
403 * the following code, with the same initial values for "a" and "b":
405 * <programlisting>
406 * CPU 0 CPU 1
408 * a = 2;
409 * memory_barrier();
410 * b = 3; y = b;
411 * read_barrier_depends();
412 * x = a;
413 * </programlisting>
415 * does not enforce ordering, since there is no data dependency between
416 * the read of "a" and the read of "b". Therefore, on some CPUs, such
417 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
418 * in cases like this where there are no data dependencies.
421 #define read_barrier_depends() do { } while (0)
423 #ifdef CONFIG_SMP
424 #define smp_mb() mb()
425 #ifdef CONFIG_X86_PPRO_FENCE
426 # define smp_rmb() rmb()
427 #else
428 # define smp_rmb() barrier()
429 #endif
430 #ifdef CONFIG_X86_OOSTORE
431 # define smp_wmb() wmb()
432 #else
433 # define smp_wmb() barrier()
434 #endif
435 #define smp_read_barrier_depends() read_barrier_depends()
436 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
437 #else
438 #define smp_mb() barrier()
439 #define smp_rmb() barrier()
440 #define smp_wmb() barrier()
441 #define smp_read_barrier_depends() do { } while (0)
442 #define set_mb(var, value) do { var = value; barrier(); } while (0)
443 #endif
446 * Stop RDTSC speculation. This is needed when you need to use RDTSC
447 * (or get_cycles or vread that possibly accesses the TSC) in a defined
448 * code region.
450 * (Could use an alternative three way for this if there was one.)
452 static inline void rdtsc_barrier(void)
454 alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
455 alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
458 #endif /* _ASM_X86_SYSTEM_H */