1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <linux/topology.h>
22 #include <linux/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
31 #include <linux/numa.h>
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask
;
46 cpumask_var_t cpu_callout_mask
;
47 cpumask_var_t cpu_callin_mask
;
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask
;
52 /* correctly size the local cpu masks */
53 void __init
setup_cpu_local_masks(void)
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
61 static void __cpuinit
default_init(struct cpuinfo_x86
*c
)
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c
->cpuid_level
== -1) {
69 /* No cpuid. It must be an ancient CPU */
71 strcpy(c
->x86_model_id
, "486");
73 strcpy(c
->x86_model_id
, "386");
78 static const struct cpu_dev __cpuinitconst default_cpu
= {
79 .c_init
= default_init
,
80 .c_vendor
= "Unknown",
81 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
84 static const struct cpu_dev
*this_cpu __cpuinitdata
= &default_cpu
;
86 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
96 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
113 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
115 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
117 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
119 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
121 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
127 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
133 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
138 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
140 static int __init
x86_xsave_setup(char *s
)
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
145 __setup("noxsave", x86_xsave_setup
);
148 static int cachesize_override __cpuinitdata
= -1;
149 static int disable_x86_serial_nr __cpuinitdata
= 1;
151 static int __init
cachesize_setup(char *str
)
153 get_option(&str
, &cachesize_override
);
156 __setup("cachesize=", cachesize_setup
);
158 static int __init
x86_fxsr_setup(char *s
)
160 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
161 setup_clear_cpu_cap(X86_FEATURE_XMM
);
164 __setup("nofxsr", x86_fxsr_setup
);
166 static int __init
x86_sep_setup(char *s
)
168 setup_clear_cpu_cap(X86_FEATURE_SEP
);
171 __setup("nosep", x86_sep_setup
);
173 /* Standard macro to see if a specific flag is changeable */
174 static inline int flag_is_changeable_p(u32 flag
)
179 * Cyrix and IDT cpus allow disabling of CPUID
180 * so the code below may return different results
181 * when it is executed before and after enabling
182 * the CPUID. Add "volatile" to not allow gcc to
183 * optimize the subsequent calls to this function.
185 asm volatile ("pushfl \n\t"
196 : "=&r" (f1
), "=&r" (f2
)
199 return ((f1
^f2
) & flag
) != 0;
202 /* Probe for the CPUID instruction */
203 static int __cpuinit
have_cpuid_p(void)
205 return flag_is_changeable_p(X86_EFLAGS_ID
);
208 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
210 unsigned long lo
, hi
;
212 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
215 /* Disable processor serial number: */
217 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
219 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
221 printk(KERN_NOTICE
"CPU serial number disabled.\n");
222 clear_cpu_cap(c
, X86_FEATURE_PN
);
224 /* Disabling the serial number may affect the cpuid level */
225 c
->cpuid_level
= cpuid_eax(0);
228 static int __init
x86_serial_nr_setup(char *s
)
230 disable_x86_serial_nr
= 0;
233 __setup("serialnumber", x86_serial_nr_setup
);
235 static inline int flag_is_changeable_p(u32 flag
)
239 /* Probe for the CPUID instruction */
240 static inline int have_cpuid_p(void)
244 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
250 * Some CPU features depend on higher CPUID levels, which may not always
251 * be available due to CPUID level capping or broken virtualization
252 * software. Add those features to this table to auto-disable them.
254 struct cpuid_dependent_feature
{
259 static const struct cpuid_dependent_feature __cpuinitconst
260 cpuid_dependent_features
[] = {
261 { X86_FEATURE_MWAIT
, 0x00000005 },
262 { X86_FEATURE_DCA
, 0x00000009 },
263 { X86_FEATURE_XSAVE
, 0x0000000d },
267 static void __cpuinit
filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
269 const struct cpuid_dependent_feature
*df
;
271 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
273 if (!cpu_has(c
, df
->feature
))
276 * Note: cpuid_level is set to -1 if unavailable, but
277 * extended_extended_level is set to 0 if unavailable
278 * and the legitimate extended levels are all negative
279 * when signed; hence the weird messing around with
282 if (!((s32
)df
->level
< 0 ?
283 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
284 (s32
)df
->level
> (s32
)c
->cpuid_level
))
287 clear_cpu_cap(c
, df
->feature
);
292 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
293 x86_cap_flags
[df
->feature
], df
->level
);
298 * Naming convention should be: <Name> [(<Codename>)]
299 * This table only is used unless init_<vendor>() below doesn't set it;
300 * in particular, if CPUID levels 0x80000002..4 are supported, this
304 /* Look up CPU names by table lookup. */
305 static const char *__cpuinit
table_lookup_model(struct cpuinfo_x86
*c
)
307 const struct cpu_model_info
*info
;
309 if (c
->x86_model
>= 16)
310 return NULL
; /* Range check */
315 info
= this_cpu
->c_models
;
317 while (info
&& info
->family
) {
318 if (info
->family
== c
->x86
)
319 return info
->model_names
[c
->x86_model
];
322 return NULL
; /* Not found */
325 __u32 cpu_caps_cleared
[NCAPINTS
] __cpuinitdata
;
326 __u32 cpu_caps_set
[NCAPINTS
] __cpuinitdata
;
328 void load_percpu_segment(int cpu
)
331 loadsegment(fs
, __KERNEL_PERCPU
);
334 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
336 load_stack_canary_segment();
340 * Current gdt points %fs at the "master" per-cpu area: after this,
341 * it's on the real one.
343 void switch_to_new_gdt(int cpu
)
345 struct desc_ptr gdt_descr
;
347 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
348 gdt_descr
.size
= GDT_SIZE
- 1;
349 load_gdt(&gdt_descr
);
350 /* Reload the per-cpu base */
352 load_percpu_segment(cpu
);
355 static const struct cpu_dev
*__cpuinitdata cpu_devs
[X86_VENDOR_NUM
] = {};
357 static void __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
362 if (c
->extended_cpuid_level
< 0x80000004)
365 v
= (unsigned int *)c
->x86_model_id
;
366 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
367 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
368 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
369 c
->x86_model_id
[48] = 0;
372 * Intel chips right-justify this string for some dumb reason;
373 * undo that brain damage:
375 p
= q
= &c
->x86_model_id
[0];
381 while (q
<= &c
->x86_model_id
[48])
382 *q
++ = '\0'; /* Zero-pad the rest */
386 void __cpuinit
display_cacheinfo(struct cpuinfo_x86
*c
)
388 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
390 n
= c
->extended_cpuid_level
;
392 if (n
>= 0x80000005) {
393 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
394 printk(KERN_INFO
"CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
395 edx
>>24, edx
&0xFF, ecx
>>24, ecx
&0xFF);
396 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
398 /* On K8 L1 TLB is inclusive, so don't count it */
403 if (n
< 0x80000006) /* Some chips just has a large L1. */
406 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
410 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
412 /* do processor-specific cache resizing */
413 if (this_cpu
->c_size_cache
)
414 l2size
= this_cpu
->c_size_cache(c
, l2size
);
416 /* Allow user to override all this if necessary. */
417 if (cachesize_override
!= -1)
418 l2size
= cachesize_override
;
421 return; /* Again, no L2 cache is possible */
424 c
->x86_cache_size
= l2size
;
426 printk(KERN_INFO
"CPU: L2 Cache: %dK (%d bytes/line)\n",
430 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
433 u32 eax
, ebx
, ecx
, edx
;
434 int index_msb
, core_bits
;
436 if (!cpu_has(c
, X86_FEATURE_HT
))
439 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
442 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
445 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
447 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
449 if (smp_num_siblings
== 1) {
450 printk(KERN_INFO
"CPU: Hyper-Threading is disabled\n");
454 if (smp_num_siblings
<= 1)
457 if (smp_num_siblings
> nr_cpu_ids
) {
458 pr_warning("CPU: Unsupported number of siblings %d",
460 smp_num_siblings
= 1;
464 index_msb
= get_count_order(smp_num_siblings
);
465 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
467 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
469 index_msb
= get_count_order(smp_num_siblings
);
471 core_bits
= get_count_order(c
->x86_max_cores
);
473 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
474 ((1 << core_bits
) - 1);
477 if ((c
->x86_max_cores
* smp_num_siblings
) > 1) {
478 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
480 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
486 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
488 char *v
= c
->x86_vendor_id
;
491 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
495 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
496 (cpu_devs
[i
]->c_ident
[1] &&
497 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
499 this_cpu
= cpu_devs
[i
];
500 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
506 "CPU: vendor_id '%s' unknown, using generic init.\n" \
507 "CPU: Your system may be unstable.\n", v
);
509 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
510 this_cpu
= &default_cpu
;
513 void __cpuinit
cpu_detect(struct cpuinfo_x86
*c
)
515 /* Get vendor name */
516 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
517 (unsigned int *)&c
->x86_vendor_id
[0],
518 (unsigned int *)&c
->x86_vendor_id
[8],
519 (unsigned int *)&c
->x86_vendor_id
[4]);
522 /* Intel-defined flags: level 0x00000001 */
523 if (c
->cpuid_level
>= 0x00000001) {
524 u32 junk
, tfms
, cap0
, misc
;
526 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
527 c
->x86
= (tfms
>> 8) & 0xf;
528 c
->x86_model
= (tfms
>> 4) & 0xf;
529 c
->x86_mask
= tfms
& 0xf;
532 c
->x86
+= (tfms
>> 20) & 0xff;
534 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
536 if (cap0
& (1<<19)) {
537 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
538 c
->x86_cache_alignment
= c
->x86_clflush_size
;
543 static void __cpuinit
get_cpu_cap(struct cpuinfo_x86
*c
)
548 /* Intel-defined flags: level 0x00000001 */
549 if (c
->cpuid_level
>= 0x00000001) {
550 u32 capability
, excap
;
552 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
553 c
->x86_capability
[0] = capability
;
554 c
->x86_capability
[4] = excap
;
557 /* AMD-defined flags: level 0x80000001 */
558 xlvl
= cpuid_eax(0x80000000);
559 c
->extended_cpuid_level
= xlvl
;
561 if ((xlvl
& 0xffff0000) == 0x80000000) {
562 if (xlvl
>= 0x80000001) {
563 c
->x86_capability
[1] = cpuid_edx(0x80000001);
564 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
568 if (c
->extended_cpuid_level
>= 0x80000008) {
569 u32 eax
= cpuid_eax(0x80000008);
571 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
572 c
->x86_phys_bits
= eax
& 0xff;
575 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
576 c
->x86_phys_bits
= 36;
579 if (c
->extended_cpuid_level
>= 0x80000007)
580 c
->x86_power
= cpuid_edx(0x80000007);
584 static void __cpuinit
identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
590 * First of all, decide if this is a 486 or higher
591 * It's a 486 if we can modify the AC flag
593 if (flag_is_changeable_p(X86_EFLAGS_AC
))
598 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
599 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
600 c
->x86_vendor_id
[0] = 0;
601 cpu_devs
[i
]->c_identify(c
);
602 if (c
->x86_vendor_id
[0]) {
611 * Do minimum CPU detection early.
612 * Fields really needed: vendor, cpuid_level, family, model, mask,
614 * The others are not touched to avoid unwanted side effects.
616 * WARNING: this function is only called on the BP. Don't add code here
617 * that is supposed to run on all CPUs.
619 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
622 c
->x86_clflush_size
= 64;
623 c
->x86_phys_bits
= 36;
624 c
->x86_virt_bits
= 48;
626 c
->x86_clflush_size
= 32;
627 c
->x86_phys_bits
= 32;
628 c
->x86_virt_bits
= 32;
630 c
->x86_cache_alignment
= c
->x86_clflush_size
;
632 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
633 c
->extended_cpuid_level
= 0;
636 identify_cpu_without_cpuid(c
);
638 /* cyrix could have cpuid enabled via c_identify()*/
648 if (this_cpu
->c_early_init
)
649 this_cpu
->c_early_init(c
);
652 c
->cpu_index
= boot_cpu_id
;
654 filter_cpuid_features(c
, false);
657 void __init
early_cpu_init(void)
659 const struct cpu_dev
*const *cdev
;
662 printk(KERN_INFO
"KERNEL supported cpus:\n");
663 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
664 const struct cpu_dev
*cpudev
= *cdev
;
667 if (count
>= X86_VENDOR_NUM
)
669 cpu_devs
[count
] = cpudev
;
672 for (j
= 0; j
< 2; j
++) {
673 if (!cpudev
->c_ident
[j
])
675 printk(KERN_INFO
" %s %s\n", cpudev
->c_vendor
,
680 early_identify_cpu(&boot_cpu_data
);
684 * The NOPL instruction is supposed to exist on all CPUs with
685 * family >= 6; unfortunately, that's not true in practice because
686 * of early VIA chips and (more importantly) broken virtualizers that
687 * are not easy to detect. In the latter case it doesn't even *fail*
688 * reliably, so probing for it doesn't even work. Disable it completely
689 * unless we can find a reliable way to detect all the broken cases.
691 static void __cpuinit
detect_nopl(struct cpuinfo_x86
*c
)
693 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
696 static void __cpuinit
generic_identify(struct cpuinfo_x86
*c
)
698 c
->extended_cpuid_level
= 0;
701 identify_cpu_without_cpuid(c
);
703 /* cyrix could have cpuid enabled via c_identify()*/
713 if (c
->cpuid_level
>= 0x00000001) {
714 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
716 # ifdef CONFIG_X86_HT
717 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
719 c
->apicid
= c
->initial_apicid
;
724 c
->phys_proc_id
= c
->initial_apicid
;
728 get_model_name(c
); /* Default name */
730 init_scattered_cpuid_features(c
);
735 * This does the hard work of actually picking apart the CPU stuff...
737 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
741 c
->loops_per_jiffy
= loops_per_jiffy
;
742 c
->x86_cache_size
= -1;
743 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
744 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
745 c
->x86_vendor_id
[0] = '\0'; /* Unset */
746 c
->x86_model_id
[0] = '\0'; /* Unset */
747 c
->x86_max_cores
= 1;
748 c
->x86_coreid_bits
= 0;
750 c
->x86_clflush_size
= 64;
751 c
->x86_phys_bits
= 36;
752 c
->x86_virt_bits
= 48;
754 c
->cpuid_level
= -1; /* CPUID not detected */
755 c
->x86_clflush_size
= 32;
756 c
->x86_phys_bits
= 32;
757 c
->x86_virt_bits
= 32;
759 c
->x86_cache_alignment
= c
->x86_clflush_size
;
760 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
764 if (this_cpu
->c_identify
)
765 this_cpu
->c_identify(c
);
767 /* Clear/Set all flags overriden by options, after probe */
768 for (i
= 0; i
< NCAPINTS
; i
++) {
769 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
770 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
774 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
778 * Vendor-specific initialization. In this section we
779 * canonicalize the feature flags, meaning if there are
780 * features a certain CPU supports which CPUID doesn't
781 * tell us, CPUID claiming incorrect flags, or other bugs,
782 * we handle them here.
784 * At the end of this section, c->x86_capability better
785 * indicate the features this CPU genuinely supports!
787 if (this_cpu
->c_init
)
790 /* Disable the PN if appropriate */
791 squash_the_stupid_serial_number(c
);
794 * The vendor-specific functions might have changed features.
795 * Now we do "generic changes."
798 /* Filter out anything that depends on CPUID levels we don't have */
799 filter_cpuid_features(c
, true);
801 /* If the model name is still unset, do table lookup. */
802 if (!c
->x86_model_id
[0]) {
804 p
= table_lookup_model(c
);
806 strcpy(c
->x86_model_id
, p
);
809 sprintf(c
->x86_model_id
, "%02x/%02x",
810 c
->x86
, c
->x86_model
);
820 * Clear/Set all flags overriden by options, need do it
821 * before following smp all cpus cap AND.
823 for (i
= 0; i
< NCAPINTS
; i
++) {
824 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
825 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
829 * On SMP, boot_cpu_data holds the common feature set between
830 * all CPUs; so make sure that we indicate which features are
831 * common between the CPUs. The first time this routine gets
832 * executed, c == &boot_cpu_data.
834 if (c
!= &boot_cpu_data
) {
835 /* AND the already accumulated flags with these */
836 for (i
= 0; i
< NCAPINTS
; i
++)
837 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
840 #ifdef CONFIG_X86_MCE
841 /* Init Machine Check Exception if available. */
845 select_idle_routine(c
);
847 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
848 numa_add_cpu(smp_processor_id());
853 static void vgetcpu_set_mode(void)
855 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
856 vgetcpu_mode
= VGETCPU_RDTSCP
;
858 vgetcpu_mode
= VGETCPU_LSL
;
862 void __init
identify_boot_cpu(void)
864 identify_cpu(&boot_cpu_data
);
872 init_hw_perf_events();
875 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
877 BUG_ON(c
== &boot_cpu_data
);
890 static const struct msr_range msr_range_array
[] __cpuinitconst
= {
891 { 0x00000000, 0x00000418},
892 { 0xc0000000, 0xc000040b},
893 { 0xc0010000, 0xc0010142},
894 { 0xc0011000, 0xc001103b},
897 static void __cpuinit
print_cpu_msr(void)
899 unsigned index_min
, index_max
;
904 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
905 index_min
= msr_range_array
[i
].min
;
906 index_max
= msr_range_array
[i
].max
;
908 for (index
= index_min
; index
< index_max
; index
++) {
909 if (rdmsrl_amd_safe(index
, &val
))
911 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
916 static int show_msr __cpuinitdata
;
918 static __init
int setup_show_msr(char *arg
)
922 get_option(&arg
, &num
);
928 __setup("show_msr=", setup_show_msr
);
930 static __init
int setup_noclflush(char *arg
)
932 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
935 __setup("noclflush", setup_noclflush
);
937 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
939 const char *vendor
= NULL
;
941 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
942 vendor
= this_cpu
->c_vendor
;
944 if (c
->cpuid_level
>= 0)
945 vendor
= c
->x86_vendor_id
;
948 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
949 printk(KERN_CONT
"%s ", vendor
);
951 if (c
->x86_model_id
[0])
952 printk(KERN_CONT
"%s", c
->x86_model_id
);
954 printk(KERN_CONT
"%d86", c
->x86
);
956 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
957 printk(KERN_CONT
" stepping %02x\n", c
->x86_mask
);
959 printk(KERN_CONT
"\n");
962 if (c
->cpu_index
< show_msr
)
970 static __init
int setup_disablecpuid(char *arg
)
974 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
975 setup_clear_cpu_cap(bit
);
981 __setup("clearcpuid=", setup_disablecpuid
);
984 struct desc_ptr idt_descr
= { NR_VECTORS
* 16 - 1, (unsigned long) idt_table
};
986 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
987 irq_stack_union
) __aligned(PAGE_SIZE
);
990 * The following four percpu variables are hot. Align current_task to
991 * cacheline size such that all four fall in the same cacheline.
993 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
995 EXPORT_PER_CPU_SYMBOL(current_task
);
997 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
998 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
999 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
1001 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1002 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
1004 DEFINE_PER_CPU(unsigned int, irq_count
) = -1;
1007 * Special IST stacks which the CPU switches to when it calls
1008 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1009 * limit), all of them are 4K, except the debug stack which
1012 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
1013 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1014 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1017 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1018 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
]);
1020 /* May not be marked __init: used by software suspend */
1021 void syscall_init(void)
1024 * LSTAR and STAR live in a bit strange symbiosis.
1025 * They both write to the same internal register. STAR allows to
1026 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1028 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
1029 wrmsrl(MSR_LSTAR
, system_call
);
1030 wrmsrl(MSR_CSTAR
, ignore_sysret
);
1032 #ifdef CONFIG_IA32_EMULATION
1033 syscall32_cpu_init();
1036 /* Flags to clear on syscall */
1037 wrmsrl(MSR_SYSCALL_MASK
,
1038 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|X86_EFLAGS_IOPL
);
1041 unsigned long kernel_eflags
;
1044 * Copies of the original ist values from the tss are only accessed during
1045 * debugging, no special alignment required.
1047 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1049 #else /* CONFIG_X86_64 */
1051 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1052 EXPORT_PER_CPU_SYMBOL(current_task
);
1054 #ifdef CONFIG_CC_STACKPROTECTOR
1055 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1058 /* Make sure %fs and %gs are initialized properly in idle threads */
1059 struct pt_regs
* __cpuinit
idle_regs(struct pt_regs
*regs
)
1061 memset(regs
, 0, sizeof(struct pt_regs
));
1062 regs
->fs
= __KERNEL_PERCPU
;
1063 regs
->gs
= __KERNEL_STACK_CANARY
;
1067 #endif /* CONFIG_X86_64 */
1070 * Clear all 6 debug registers:
1072 static void clear_all_debug_regs(void)
1076 for (i
= 0; i
< 8; i
++) {
1077 /* Ignore db4, db5 */
1078 if ((i
== 4) || (i
== 5))
1086 * cpu_init() initializes state that is per-CPU. Some data is already
1087 * initialized (naturally) in the bootstrap process, such as the GDT
1088 * and IDT. We reload them nevertheless, this function acts as a
1089 * 'CPU state barrier', nothing should get across.
1090 * A lot of state is already set up in PDA init for 64 bit
1092 #ifdef CONFIG_X86_64
1094 void __cpuinit
cpu_init(void)
1096 struct orig_ist
*orig_ist
;
1097 struct task_struct
*me
;
1098 struct tss_struct
*t
;
1103 cpu
= stack_smp_processor_id();
1104 t
= &per_cpu(init_tss
, cpu
);
1105 orig_ist
= &per_cpu(orig_ist
, cpu
);
1108 if (cpu
!= 0 && percpu_read(node_number
) == 0 &&
1109 cpu_to_node(cpu
) != NUMA_NO_NODE
)
1110 percpu_write(node_number
, cpu_to_node(cpu
));
1115 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1116 panic("CPU#%d already initialized!\n", cpu
);
1118 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1120 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1123 * Initialize the per-CPU GDT with the boot GDT,
1124 * and set up the GDT descriptor:
1127 switch_to_new_gdt(cpu
);
1130 load_idt((const struct desc_ptr
*)&idt_descr
);
1132 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1135 wrmsrl(MSR_FS_BASE
, 0);
1136 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1144 * set up and load the per-CPU TSS
1146 if (!orig_ist
->ist
[0]) {
1147 char *estacks
= per_cpu(exception_stacks
, cpu
);
1149 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1150 estacks
+= exception_stack_sizes
[v
];
1151 orig_ist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1152 (unsigned long)estacks
;
1156 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1159 * <= is required because the CPU will access up to
1160 * 8 bits beyond the end of the IO permission bitmap.
1162 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1163 t
->io_bitmap
[i
] = ~0UL;
1165 atomic_inc(&init_mm
.mm_count
);
1166 me
->active_mm
= &init_mm
;
1168 enter_lazy_tlb(&init_mm
, me
);
1170 load_sp0(t
, ¤t
->thread
);
1171 set_tss_desc(cpu
, t
);
1173 load_LDT(&init_mm
.context
);
1177 * If the kgdb is connected no debug regs should be altered. This
1178 * is only applicable when KGDB and a KGDB I/O module are built
1179 * into the kernel and you are using early debugging with
1180 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1182 if (kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
)
1183 arch_kgdb_ops
.correct_hw_break();
1186 clear_all_debug_regs();
1190 raw_local_save_flags(kernel_eflags
);
1198 void __cpuinit
cpu_init(void)
1200 int cpu
= smp_processor_id();
1201 struct task_struct
*curr
= current
;
1202 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1203 struct thread_struct
*thread
= &curr
->thread
;
1205 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1206 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1211 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1213 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1214 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1216 load_idt(&idt_descr
);
1217 switch_to_new_gdt(cpu
);
1220 * Set up and load the per-CPU TSS and LDT
1222 atomic_inc(&init_mm
.mm_count
);
1223 curr
->active_mm
= &init_mm
;
1225 enter_lazy_tlb(&init_mm
, curr
);
1227 load_sp0(t
, thread
);
1228 set_tss_desc(cpu
, t
);
1230 load_LDT(&init_mm
.context
);
1232 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1234 #ifdef CONFIG_DOUBLEFAULT
1235 /* Set up doublefault TSS pointer in the GDT */
1236 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1239 clear_all_debug_regs();
1242 * Force FPU initialization:
1245 current_thread_info()->status
= TS_XSAVE
;
1247 current_thread_info()->status
= 0;
1249 mxcsr_feature_mask_init();
1252 * Boot processor to setup the FP and extended state context info.
1254 if (smp_processor_id() == boot_cpu_id
)
1255 init_thread_xstate();