2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
11 * For licencing details see kernel-base/COPYING
14 #include <linux/perf_event.h>
15 #include <linux/capability.h>
16 #include <linux/notifier.h>
17 #include <linux/hardirq.h>
18 #include <linux/kprobes.h>
19 #include <linux/module.h>
20 #include <linux/kdebug.h>
21 #include <linux/sched.h>
22 #include <linux/uaccess.h>
23 #include <linux/highmem.h>
24 #include <linux/cpu.h>
27 #include <asm/stacktrace.h>
30 static u64 perf_event_mask __read_mostly
;
32 /* The maximal number of PEBS events: */
33 #define MAX_PEBS_EVENTS 4
35 /* The size of a BTS record in bytes: */
36 #define BTS_RECORD_SIZE 24
38 /* The size of a per-cpu BTS buffer in bytes: */
39 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
41 /* The BTS overflow threshold in bytes from the end of the buffer: */
42 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
46 * Bits in the debugctlmsr controlling branch tracing.
48 #define X86_DEBUGCTL_TR (1 << 6)
49 #define X86_DEBUGCTL_BTS (1 << 7)
50 #define X86_DEBUGCTL_BTINT (1 << 8)
51 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
52 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55 * A debug store configuration.
57 * We only support architectures that use 64bit fields.
62 u64 bts_absolute_maximum
;
63 u64 bts_interrupt_threshold
;
66 u64 pebs_absolute_maximum
;
67 u64 pebs_interrupt_threshold
;
68 u64 pebs_event_reset
[MAX_PEBS_EVENTS
];
71 struct cpu_hw_events
{
72 struct perf_event
*events
[X86_PMC_IDX_MAX
];
73 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
74 unsigned long active_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
75 unsigned long interrupts
;
77 struct debug_store
*ds
;
81 * struct x86_pmu - generic x86 pmu
86 int (*handle_irq
)(struct pt_regs
*);
87 void (*disable_all
)(void);
88 void (*enable_all
)(void);
89 void (*enable
)(struct hw_perf_event
*, int);
90 void (*disable
)(struct hw_perf_event
*, int);
93 u64 (*event_map
)(int);
94 u64 (*raw_event
)(u64
);
103 void (*enable_bts
)(u64 config
);
104 void (*disable_bts
)(void);
107 static struct x86_pmu x86_pmu __read_mostly
;
109 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
114 * Not sure about some of these
116 static const u64 p6_perfmon_event_map
[] =
118 [PERF_COUNT_HW_CPU_CYCLES
] = 0x0079,
119 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
120 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x0f2e,
121 [PERF_COUNT_HW_CACHE_MISSES
] = 0x012e,
122 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
123 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
124 [PERF_COUNT_HW_BUS_CYCLES
] = 0x0062,
127 static u64
p6_pmu_event_map(int hw_event
)
129 return p6_perfmon_event_map
[hw_event
];
133 * Event setting that is specified not to count anything.
134 * We use this to effectively disable a counter.
136 * L2_RQSTS with 0 MESI unit mask.
138 #define P6_NOP_EVENT 0x0000002EULL
140 static u64
p6_pmu_raw_event(u64 hw_event
)
142 #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
143 #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
144 #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
145 #define P6_EVNTSEL_INV_MASK 0x00800000ULL
146 #define P6_EVNTSEL_REG_MASK 0xFF000000ULL
148 #define P6_EVNTSEL_MASK \
149 (P6_EVNTSEL_EVENT_MASK | \
150 P6_EVNTSEL_UNIT_MASK | \
151 P6_EVNTSEL_EDGE_MASK | \
152 P6_EVNTSEL_INV_MASK | \
155 return hw_event
& P6_EVNTSEL_MASK
;
160 * Intel PerfMon v3. Used on Core2 and later.
162 static const u64 intel_perfmon_event_map
[] =
164 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
165 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
166 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
167 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
168 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
169 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
170 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
173 static u64
intel_pmu_event_map(int hw_event
)
175 return intel_perfmon_event_map
[hw_event
];
179 * Generalized hw caching related hw_event table, filled
180 * in on a per model basis. A value of 0 means
181 * 'not supported', -1 means 'hw_event makes no sense on
182 * this CPU', any other value means the raw hw_event
186 #define C(x) PERF_COUNT_HW_CACHE_##x
188 static u64 __read_mostly hw_cache_event_ids
189 [PERF_COUNT_HW_CACHE_MAX
]
190 [PERF_COUNT_HW_CACHE_OP_MAX
]
191 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
193 static const u64 nehalem_hw_cache_event_ids
194 [PERF_COUNT_HW_CACHE_MAX
]
195 [PERF_COUNT_HW_CACHE_OP_MAX
]
196 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
200 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
201 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
204 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
205 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
207 [ C(OP_PREFETCH
) ] = {
208 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
209 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
214 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
215 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
218 [ C(RESULT_ACCESS
) ] = -1,
219 [ C(RESULT_MISS
) ] = -1,
221 [ C(OP_PREFETCH
) ] = {
222 [ C(RESULT_ACCESS
) ] = 0x0,
223 [ C(RESULT_MISS
) ] = 0x0,
228 [ C(RESULT_ACCESS
) ] = 0x0324, /* L2_RQSTS.LOADS */
229 [ C(RESULT_MISS
) ] = 0x0224, /* L2_RQSTS.LD_MISS */
232 [ C(RESULT_ACCESS
) ] = 0x0c24, /* L2_RQSTS.RFOS */
233 [ C(RESULT_MISS
) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
235 [ C(OP_PREFETCH
) ] = {
236 [ C(RESULT_ACCESS
) ] = 0x4f2e, /* LLC Reference */
237 [ C(RESULT_MISS
) ] = 0x412e, /* LLC Misses */
242 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
243 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
246 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
247 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
249 [ C(OP_PREFETCH
) ] = {
250 [ C(RESULT_ACCESS
) ] = 0x0,
251 [ C(RESULT_MISS
) ] = 0x0,
256 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
257 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
260 [ C(RESULT_ACCESS
) ] = -1,
261 [ C(RESULT_MISS
) ] = -1,
263 [ C(OP_PREFETCH
) ] = {
264 [ C(RESULT_ACCESS
) ] = -1,
265 [ C(RESULT_MISS
) ] = -1,
270 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
271 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
274 [ C(RESULT_ACCESS
) ] = -1,
275 [ C(RESULT_MISS
) ] = -1,
277 [ C(OP_PREFETCH
) ] = {
278 [ C(RESULT_ACCESS
) ] = -1,
279 [ C(RESULT_MISS
) ] = -1,
284 static const u64 core2_hw_cache_event_ids
285 [PERF_COUNT_HW_CACHE_MAX
]
286 [PERF_COUNT_HW_CACHE_OP_MAX
]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
291 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
292 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
295 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
296 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
298 [ C(OP_PREFETCH
) ] = {
299 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
300 [ C(RESULT_MISS
) ] = 0,
305 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
306 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
309 [ C(RESULT_ACCESS
) ] = -1,
310 [ C(RESULT_MISS
) ] = -1,
312 [ C(OP_PREFETCH
) ] = {
313 [ C(RESULT_ACCESS
) ] = 0,
314 [ C(RESULT_MISS
) ] = 0,
319 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
320 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
323 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
324 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
326 [ C(OP_PREFETCH
) ] = {
327 [ C(RESULT_ACCESS
) ] = 0,
328 [ C(RESULT_MISS
) ] = 0,
333 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
337 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
340 [ C(OP_PREFETCH
) ] = {
341 [ C(RESULT_ACCESS
) ] = 0,
342 [ C(RESULT_MISS
) ] = 0,
347 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
348 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
351 [ C(RESULT_ACCESS
) ] = -1,
352 [ C(RESULT_MISS
) ] = -1,
354 [ C(OP_PREFETCH
) ] = {
355 [ C(RESULT_ACCESS
) ] = -1,
356 [ C(RESULT_MISS
) ] = -1,
361 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
362 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
365 [ C(RESULT_ACCESS
) ] = -1,
366 [ C(RESULT_MISS
) ] = -1,
368 [ C(OP_PREFETCH
) ] = {
369 [ C(RESULT_ACCESS
) ] = -1,
370 [ C(RESULT_MISS
) ] = -1,
375 static const u64 atom_hw_cache_event_ids
376 [PERF_COUNT_HW_CACHE_MAX
]
377 [PERF_COUNT_HW_CACHE_OP_MAX
]
378 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
382 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
383 [ C(RESULT_MISS
) ] = 0,
386 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
387 [ C(RESULT_MISS
) ] = 0,
389 [ C(OP_PREFETCH
) ] = {
390 [ C(RESULT_ACCESS
) ] = 0x0,
391 [ C(RESULT_MISS
) ] = 0,
396 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
397 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
400 [ C(RESULT_ACCESS
) ] = -1,
401 [ C(RESULT_MISS
) ] = -1,
403 [ C(OP_PREFETCH
) ] = {
404 [ C(RESULT_ACCESS
) ] = 0,
405 [ C(RESULT_MISS
) ] = 0,
410 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
411 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
414 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
415 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
417 [ C(OP_PREFETCH
) ] = {
418 [ C(RESULT_ACCESS
) ] = 0,
419 [ C(RESULT_MISS
) ] = 0,
424 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
425 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
428 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
429 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
431 [ C(OP_PREFETCH
) ] = {
432 [ C(RESULT_ACCESS
) ] = 0,
433 [ C(RESULT_MISS
) ] = 0,
438 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
439 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
442 [ C(RESULT_ACCESS
) ] = -1,
443 [ C(RESULT_MISS
) ] = -1,
445 [ C(OP_PREFETCH
) ] = {
446 [ C(RESULT_ACCESS
) ] = -1,
447 [ C(RESULT_MISS
) ] = -1,
452 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
453 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
456 [ C(RESULT_ACCESS
) ] = -1,
457 [ C(RESULT_MISS
) ] = -1,
459 [ C(OP_PREFETCH
) ] = {
460 [ C(RESULT_ACCESS
) ] = -1,
461 [ C(RESULT_MISS
) ] = -1,
466 static u64
intel_pmu_raw_event(u64 hw_event
)
468 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
469 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
470 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
471 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
472 #define CORE_EVNTSEL_REG_MASK 0xFF000000ULL
474 #define CORE_EVNTSEL_MASK \
475 (CORE_EVNTSEL_EVENT_MASK | \
476 CORE_EVNTSEL_UNIT_MASK | \
477 CORE_EVNTSEL_EDGE_MASK | \
478 CORE_EVNTSEL_INV_MASK | \
479 CORE_EVNTSEL_REG_MASK)
481 return hw_event
& CORE_EVNTSEL_MASK
;
484 static const u64 amd_hw_cache_event_ids
485 [PERF_COUNT_HW_CACHE_MAX
]
486 [PERF_COUNT_HW_CACHE_OP_MAX
]
487 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
491 [ C(RESULT_ACCESS
) ] = 0x0040, /* Data Cache Accesses */
492 [ C(RESULT_MISS
) ] = 0x0041, /* Data Cache Misses */
495 [ C(RESULT_ACCESS
) ] = 0x0142, /* Data Cache Refills :system */
496 [ C(RESULT_MISS
) ] = 0,
498 [ C(OP_PREFETCH
) ] = {
499 [ C(RESULT_ACCESS
) ] = 0x0267, /* Data Prefetcher :attempts */
500 [ C(RESULT_MISS
) ] = 0x0167, /* Data Prefetcher :cancelled */
505 [ C(RESULT_ACCESS
) ] = 0x0080, /* Instruction cache fetches */
506 [ C(RESULT_MISS
) ] = 0x0081, /* Instruction cache misses */
509 [ C(RESULT_ACCESS
) ] = -1,
510 [ C(RESULT_MISS
) ] = -1,
512 [ C(OP_PREFETCH
) ] = {
513 [ C(RESULT_ACCESS
) ] = 0x014B, /* Prefetch Instructions :Load */
514 [ C(RESULT_MISS
) ] = 0,
519 [ C(RESULT_ACCESS
) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
520 [ C(RESULT_MISS
) ] = 0x037E, /* L2 Cache Misses : IC+DC */
523 [ C(RESULT_ACCESS
) ] = 0x017F, /* L2 Fill/Writeback */
524 [ C(RESULT_MISS
) ] = 0,
526 [ C(OP_PREFETCH
) ] = {
527 [ C(RESULT_ACCESS
) ] = 0,
528 [ C(RESULT_MISS
) ] = 0,
533 [ C(RESULT_ACCESS
) ] = 0x0040, /* Data Cache Accesses */
534 [ C(RESULT_MISS
) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
537 [ C(RESULT_ACCESS
) ] = 0,
538 [ C(RESULT_MISS
) ] = 0,
540 [ C(OP_PREFETCH
) ] = {
541 [ C(RESULT_ACCESS
) ] = 0,
542 [ C(RESULT_MISS
) ] = 0,
547 [ C(RESULT_ACCESS
) ] = 0x0080, /* Instruction fecthes */
548 [ C(RESULT_MISS
) ] = 0x0085, /* Instr. fetch ITLB misses */
551 [ C(RESULT_ACCESS
) ] = -1,
552 [ C(RESULT_MISS
) ] = -1,
554 [ C(OP_PREFETCH
) ] = {
555 [ C(RESULT_ACCESS
) ] = -1,
556 [ C(RESULT_MISS
) ] = -1,
561 [ C(RESULT_ACCESS
) ] = 0x00c2, /* Retired Branch Instr. */
562 [ C(RESULT_MISS
) ] = 0x00c3, /* Retired Mispredicted BI */
565 [ C(RESULT_ACCESS
) ] = -1,
566 [ C(RESULT_MISS
) ] = -1,
568 [ C(OP_PREFETCH
) ] = {
569 [ C(RESULT_ACCESS
) ] = -1,
570 [ C(RESULT_MISS
) ] = -1,
576 * AMD Performance Monitor K7 and later.
578 static const u64 amd_perfmon_event_map
[] =
580 [PERF_COUNT_HW_CPU_CYCLES
] = 0x0076,
581 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
582 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x0080,
583 [PERF_COUNT_HW_CACHE_MISSES
] = 0x0081,
584 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
585 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
588 static u64
amd_pmu_event_map(int hw_event
)
590 return amd_perfmon_event_map
[hw_event
];
593 static u64
amd_pmu_raw_event(u64 hw_event
)
595 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
596 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
597 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
598 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
599 #define K7_EVNTSEL_REG_MASK 0x0FF000000ULL
601 #define K7_EVNTSEL_MASK \
602 (K7_EVNTSEL_EVENT_MASK | \
603 K7_EVNTSEL_UNIT_MASK | \
604 K7_EVNTSEL_EDGE_MASK | \
605 K7_EVNTSEL_INV_MASK | \
608 return hw_event
& K7_EVNTSEL_MASK
;
612 * Propagate event elapsed time into the generic event.
613 * Can only be executed on the CPU where the event is active.
614 * Returns the delta events processed.
617 x86_perf_event_update(struct perf_event
*event
,
618 struct hw_perf_event
*hwc
, int idx
)
620 int shift
= 64 - x86_pmu
.event_bits
;
621 u64 prev_raw_count
, new_raw_count
;
624 if (idx
== X86_PMC_IDX_FIXED_BTS
)
628 * Careful: an NMI might modify the previous event value.
630 * Our tactic to handle this is to first atomically read and
631 * exchange a new raw count - then add that new-prev delta
632 * count to the generic event atomically:
635 prev_raw_count
= atomic64_read(&hwc
->prev_count
);
636 rdmsrl(hwc
->event_base
+ idx
, new_raw_count
);
638 if (atomic64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
639 new_raw_count
) != prev_raw_count
)
643 * Now we have the new raw value and have updated the prev
644 * timestamp already. We can now calculate the elapsed delta
645 * (event-)time and add that to the generic event.
647 * Careful, not all hw sign-extends above the physical width
650 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
653 atomic64_add(delta
, &event
->count
);
654 atomic64_sub(delta
, &hwc
->period_left
);
656 return new_raw_count
;
659 static atomic_t active_events
;
660 static DEFINE_MUTEX(pmc_reserve_mutex
);
662 static bool reserve_pmc_hardware(void)
664 #ifdef CONFIG_X86_LOCAL_APIC
667 if (nmi_watchdog
== NMI_LOCAL_APIC
)
668 disable_lapic_nmi_watchdog();
670 for (i
= 0; i
< x86_pmu
.num_events
; i
++) {
671 if (!reserve_perfctr_nmi(x86_pmu
.perfctr
+ i
))
675 for (i
= 0; i
< x86_pmu
.num_events
; i
++) {
676 if (!reserve_evntsel_nmi(x86_pmu
.eventsel
+ i
))
683 #ifdef CONFIG_X86_LOCAL_APIC
685 for (i
--; i
>= 0; i
--)
686 release_evntsel_nmi(x86_pmu
.eventsel
+ i
);
688 i
= x86_pmu
.num_events
;
691 for (i
--; i
>= 0; i
--)
692 release_perfctr_nmi(x86_pmu
.perfctr
+ i
);
694 if (nmi_watchdog
== NMI_LOCAL_APIC
)
695 enable_lapic_nmi_watchdog();
701 static void release_pmc_hardware(void)
703 #ifdef CONFIG_X86_LOCAL_APIC
706 for (i
= 0; i
< x86_pmu
.num_events
; i
++) {
707 release_perfctr_nmi(x86_pmu
.perfctr
+ i
);
708 release_evntsel_nmi(x86_pmu
.eventsel
+ i
);
711 if (nmi_watchdog
== NMI_LOCAL_APIC
)
712 enable_lapic_nmi_watchdog();
716 static inline bool bts_available(void)
718 return x86_pmu
.enable_bts
!= NULL
;
721 static inline void init_debug_store_on_cpu(int cpu
)
723 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
728 wrmsr_on_cpu(cpu
, MSR_IA32_DS_AREA
,
729 (u32
)((u64
)(unsigned long)ds
),
730 (u32
)((u64
)(unsigned long)ds
>> 32));
733 static inline void fini_debug_store_on_cpu(int cpu
)
735 if (!per_cpu(cpu_hw_events
, cpu
).ds
)
738 wrmsr_on_cpu(cpu
, MSR_IA32_DS_AREA
, 0, 0);
741 static void release_bts_hardware(void)
745 if (!bts_available())
750 for_each_online_cpu(cpu
)
751 fini_debug_store_on_cpu(cpu
);
753 for_each_possible_cpu(cpu
) {
754 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
759 per_cpu(cpu_hw_events
, cpu
).ds
= NULL
;
761 kfree((void *)(unsigned long)ds
->bts_buffer_base
);
768 static int reserve_bts_hardware(void)
772 if (!bts_available())
777 for_each_possible_cpu(cpu
) {
778 struct debug_store
*ds
;
782 buffer
= kzalloc(BTS_BUFFER_SIZE
, GFP_KERNEL
);
783 if (unlikely(!buffer
))
786 ds
= kzalloc(sizeof(*ds
), GFP_KERNEL
);
792 ds
->bts_buffer_base
= (u64
)(unsigned long)buffer
;
793 ds
->bts_index
= ds
->bts_buffer_base
;
794 ds
->bts_absolute_maximum
=
795 ds
->bts_buffer_base
+ BTS_BUFFER_SIZE
;
796 ds
->bts_interrupt_threshold
=
797 ds
->bts_absolute_maximum
- BTS_OVFL_TH
;
799 per_cpu(cpu_hw_events
, cpu
).ds
= ds
;
804 release_bts_hardware();
806 for_each_online_cpu(cpu
)
807 init_debug_store_on_cpu(cpu
);
815 static void hw_perf_event_destroy(struct perf_event
*event
)
817 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
818 release_pmc_hardware();
819 release_bts_hardware();
820 mutex_unlock(&pmc_reserve_mutex
);
824 static inline int x86_pmu_initialized(void)
826 return x86_pmu
.handle_irq
!= NULL
;
830 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event_attr
*attr
)
832 unsigned int cache_type
, cache_op
, cache_result
;
835 config
= attr
->config
;
837 cache_type
= (config
>> 0) & 0xff;
838 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
841 cache_op
= (config
>> 8) & 0xff;
842 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
845 cache_result
= (config
>> 16) & 0xff;
846 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
849 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
862 static void intel_pmu_enable_bts(u64 config
)
864 unsigned long debugctlmsr
;
866 debugctlmsr
= get_debugctlmsr();
868 debugctlmsr
|= X86_DEBUGCTL_TR
;
869 debugctlmsr
|= X86_DEBUGCTL_BTS
;
870 debugctlmsr
|= X86_DEBUGCTL_BTINT
;
872 if (!(config
& ARCH_PERFMON_EVENTSEL_OS
))
873 debugctlmsr
|= X86_DEBUGCTL_BTS_OFF_OS
;
875 if (!(config
& ARCH_PERFMON_EVENTSEL_USR
))
876 debugctlmsr
|= X86_DEBUGCTL_BTS_OFF_USR
;
878 update_debugctlmsr(debugctlmsr
);
881 static void intel_pmu_disable_bts(void)
883 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
884 unsigned long debugctlmsr
;
889 debugctlmsr
= get_debugctlmsr();
892 ~(X86_DEBUGCTL_TR
| X86_DEBUGCTL_BTS
| X86_DEBUGCTL_BTINT
|
893 X86_DEBUGCTL_BTS_OFF_OS
| X86_DEBUGCTL_BTS_OFF_USR
);
895 update_debugctlmsr(debugctlmsr
);
899 * Setup the hardware configuration for a given attr_type
901 static int __hw_perf_event_init(struct perf_event
*event
)
903 struct perf_event_attr
*attr
= &event
->attr
;
904 struct hw_perf_event
*hwc
= &event
->hw
;
908 if (!x86_pmu_initialized())
912 if (!atomic_inc_not_zero(&active_events
)) {
913 mutex_lock(&pmc_reserve_mutex
);
914 if (atomic_read(&active_events
) == 0) {
915 if (!reserve_pmc_hardware())
918 err
= reserve_bts_hardware();
921 atomic_inc(&active_events
);
922 mutex_unlock(&pmc_reserve_mutex
);
927 event
->destroy
= hw_perf_event_destroy
;
931 * (keep 'enabled' bit clear for now)
933 hwc
->config
= ARCH_PERFMON_EVENTSEL_INT
;
936 * Count user and OS events unless requested not to.
938 if (!attr
->exclude_user
)
939 hwc
->config
|= ARCH_PERFMON_EVENTSEL_USR
;
940 if (!attr
->exclude_kernel
)
941 hwc
->config
|= ARCH_PERFMON_EVENTSEL_OS
;
943 if (!hwc
->sample_period
) {
944 hwc
->sample_period
= x86_pmu
.max_period
;
945 hwc
->last_period
= hwc
->sample_period
;
946 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
949 * If we have a PMU initialized but no APIC
950 * interrupts, we cannot sample hardware
951 * events (user-space has to fall back and
952 * sample via a hrtimer based software event):
959 * Raw hw_event type provide the config in the hw_event structure
961 if (attr
->type
== PERF_TYPE_RAW
) {
962 hwc
->config
|= x86_pmu
.raw_event(attr
->config
);
966 if (attr
->type
== PERF_TYPE_HW_CACHE
)
967 return set_ext_hw_attr(hwc
, attr
);
969 if (attr
->config
>= x86_pmu
.max_events
)
975 config
= x86_pmu
.event_map(attr
->config
);
986 if ((attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
) &&
987 (hwc
->sample_period
== 1)) {
988 /* BTS is not supported by this architecture. */
989 if (!bts_available())
992 /* BTS is currently only allowed for user-mode. */
993 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
997 hwc
->config
|= config
;
1002 static void p6_pmu_disable_all(void)
1004 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1013 /* p6 only has one enable register */
1014 rdmsrl(MSR_P6_EVNTSEL0
, val
);
1015 val
&= ~ARCH_PERFMON_EVENTSEL0_ENABLE
;
1016 wrmsrl(MSR_P6_EVNTSEL0
, val
);
1019 static void intel_pmu_disable_all(void)
1021 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1029 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1031 if (test_bit(X86_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
1032 intel_pmu_disable_bts();
1035 static void amd_pmu_disable_all(void)
1037 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1045 * ensure we write the disable before we start disabling the
1046 * events proper, so that amd_pmu_enable_event() does the
1051 for (idx
= 0; idx
< x86_pmu
.num_events
; idx
++) {
1054 if (!test_bit(idx
, cpuc
->active_mask
))
1056 rdmsrl(MSR_K7_EVNTSEL0
+ idx
, val
);
1057 if (!(val
& ARCH_PERFMON_EVENTSEL0_ENABLE
))
1059 val
&= ~ARCH_PERFMON_EVENTSEL0_ENABLE
;
1060 wrmsrl(MSR_K7_EVNTSEL0
+ idx
, val
);
1064 void hw_perf_disable(void)
1066 if (!x86_pmu_initialized())
1068 return x86_pmu
.disable_all();
1071 static void p6_pmu_enable_all(void)
1073 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1082 /* p6 only has one enable register */
1083 rdmsrl(MSR_P6_EVNTSEL0
, val
);
1084 val
|= ARCH_PERFMON_EVENTSEL0_ENABLE
;
1085 wrmsrl(MSR_P6_EVNTSEL0
, val
);
1088 static void intel_pmu_enable_all(void)
1090 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1098 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, x86_pmu
.intel_ctrl
);
1100 if (test_bit(X86_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
1101 struct perf_event
*event
=
1102 cpuc
->events
[X86_PMC_IDX_FIXED_BTS
];
1104 if (WARN_ON_ONCE(!event
))
1107 intel_pmu_enable_bts(event
->hw
.config
);
1111 static void amd_pmu_enable_all(void)
1113 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1122 for (idx
= 0; idx
< x86_pmu
.num_events
; idx
++) {
1123 struct perf_event
*event
= cpuc
->events
[idx
];
1126 if (!test_bit(idx
, cpuc
->active_mask
))
1129 val
= event
->hw
.config
;
1130 val
|= ARCH_PERFMON_EVENTSEL0_ENABLE
;
1131 wrmsrl(MSR_K7_EVNTSEL0
+ idx
, val
);
1135 void hw_perf_enable(void)
1137 if (!x86_pmu_initialized())
1139 x86_pmu
.enable_all();
1142 static inline u64
intel_pmu_get_status(void)
1146 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1151 static inline void intel_pmu_ack_status(u64 ack
)
1153 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
1156 static inline void x86_pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
1158 (void)checking_wrmsrl(hwc
->config_base
+ idx
,
1159 hwc
->config
| ARCH_PERFMON_EVENTSEL0_ENABLE
);
1162 static inline void x86_pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
1164 (void)checking_wrmsrl(hwc
->config_base
+ idx
, hwc
->config
);
1168 intel_pmu_disable_fixed(struct hw_perf_event
*hwc
, int __idx
)
1170 int idx
= __idx
- X86_PMC_IDX_FIXED
;
1173 mask
= 0xfULL
<< (idx
* 4);
1175 rdmsrl(hwc
->config_base
, ctrl_val
);
1177 (void)checking_wrmsrl(hwc
->config_base
, ctrl_val
);
1181 p6_pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
1183 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1184 u64 val
= P6_NOP_EVENT
;
1187 val
|= ARCH_PERFMON_EVENTSEL0_ENABLE
;
1189 (void)checking_wrmsrl(hwc
->config_base
+ idx
, val
);
1193 intel_pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
1195 if (unlikely(idx
== X86_PMC_IDX_FIXED_BTS
)) {
1196 intel_pmu_disable_bts();
1200 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
1201 intel_pmu_disable_fixed(hwc
, idx
);
1205 x86_pmu_disable_event(hwc
, idx
);
1209 amd_pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
1211 x86_pmu_disable_event(hwc
, idx
);
1214 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1217 * Set the next IRQ period, based on the hwc->period_left value.
1218 * To be called with the event disabled in hw:
1221 x86_perf_event_set_period(struct perf_event
*event
,
1222 struct hw_perf_event
*hwc
, int idx
)
1224 s64 left
= atomic64_read(&hwc
->period_left
);
1225 s64 period
= hwc
->sample_period
;
1228 if (idx
== X86_PMC_IDX_FIXED_BTS
)
1232 * If we are way outside a reasoable range then just skip forward:
1234 if (unlikely(left
<= -period
)) {
1236 atomic64_set(&hwc
->period_left
, left
);
1237 hwc
->last_period
= period
;
1241 if (unlikely(left
<= 0)) {
1243 atomic64_set(&hwc
->period_left
, left
);
1244 hwc
->last_period
= period
;
1248 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1250 if (unlikely(left
< 2))
1253 if (left
> x86_pmu
.max_period
)
1254 left
= x86_pmu
.max_period
;
1256 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1259 * The hw event starts counting from this event offset,
1260 * mark it to be able to extra future deltas:
1262 atomic64_set(&hwc
->prev_count
, (u64
)-left
);
1264 err
= checking_wrmsrl(hwc
->event_base
+ idx
,
1265 (u64
)(-left
) & x86_pmu
.event_mask
);
1267 perf_event_update_userpage(event
);
1273 intel_pmu_enable_fixed(struct hw_perf_event
*hwc
, int __idx
)
1275 int idx
= __idx
- X86_PMC_IDX_FIXED
;
1276 u64 ctrl_val
, bits
, mask
;
1280 * Enable IRQ generation (0x8),
1281 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1285 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
1287 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
1290 mask
= 0xfULL
<< (idx
* 4);
1292 rdmsrl(hwc
->config_base
, ctrl_val
);
1295 err
= checking_wrmsrl(hwc
->config_base
, ctrl_val
);
1298 static void p6_pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
1300 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1305 val
|= ARCH_PERFMON_EVENTSEL0_ENABLE
;
1307 (void)checking_wrmsrl(hwc
->config_base
+ idx
, val
);
1311 static void intel_pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
1313 if (unlikely(idx
== X86_PMC_IDX_FIXED_BTS
)) {
1314 if (!__get_cpu_var(cpu_hw_events
).enabled
)
1317 intel_pmu_enable_bts(hwc
->config
);
1321 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
1322 intel_pmu_enable_fixed(hwc
, idx
);
1326 x86_pmu_enable_event(hwc
, idx
);
1329 static void amd_pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
1331 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1334 x86_pmu_enable_event(hwc
, idx
);
1338 fixed_mode_idx(struct perf_event
*event
, struct hw_perf_event
*hwc
)
1340 unsigned int hw_event
;
1342 hw_event
= hwc
->config
& ARCH_PERFMON_EVENT_MASK
;
1344 if (unlikely((hw_event
==
1345 x86_pmu
.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS
)) &&
1346 (hwc
->sample_period
== 1)))
1347 return X86_PMC_IDX_FIXED_BTS
;
1349 if (!x86_pmu
.num_events_fixed
)
1352 if (unlikely(hw_event
== x86_pmu
.event_map(PERF_COUNT_HW_INSTRUCTIONS
)))
1353 return X86_PMC_IDX_FIXED_INSTRUCTIONS
;
1354 if (unlikely(hw_event
== x86_pmu
.event_map(PERF_COUNT_HW_CPU_CYCLES
)))
1355 return X86_PMC_IDX_FIXED_CPU_CYCLES
;
1356 if (unlikely(hw_event
== x86_pmu
.event_map(PERF_COUNT_HW_BUS_CYCLES
)))
1357 return X86_PMC_IDX_FIXED_BUS_CYCLES
;
1363 * Find a PMC slot for the freshly enabled / scheduled in event:
1365 static int x86_pmu_enable(struct perf_event
*event
)
1367 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1368 struct hw_perf_event
*hwc
= &event
->hw
;
1371 idx
= fixed_mode_idx(event
, hwc
);
1372 if (idx
== X86_PMC_IDX_FIXED_BTS
) {
1373 /* BTS is already occupied. */
1374 if (test_and_set_bit(idx
, cpuc
->used_mask
))
1377 hwc
->config_base
= 0;
1378 hwc
->event_base
= 0;
1380 } else if (idx
>= 0) {
1382 * Try to get the fixed event, if that is already taken
1383 * then try to get a generic event:
1385 if (test_and_set_bit(idx
, cpuc
->used_mask
))
1388 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
1390 * We set it so that event_base + idx in wrmsr/rdmsr maps to
1391 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1394 MSR_ARCH_PERFMON_FIXED_CTR0
- X86_PMC_IDX_FIXED
;
1398 /* Try to get the previous generic event again */
1399 if (test_and_set_bit(idx
, cpuc
->used_mask
)) {
1401 idx
= find_first_zero_bit(cpuc
->used_mask
,
1402 x86_pmu
.num_events
);
1403 if (idx
== x86_pmu
.num_events
)
1406 set_bit(idx
, cpuc
->used_mask
);
1409 hwc
->config_base
= x86_pmu
.eventsel
;
1410 hwc
->event_base
= x86_pmu
.perfctr
;
1413 perf_events_lapic_init();
1415 x86_pmu
.disable(hwc
, idx
);
1417 cpuc
->events
[idx
] = event
;
1418 set_bit(idx
, cpuc
->active_mask
);
1420 x86_perf_event_set_period(event
, hwc
, idx
);
1421 x86_pmu
.enable(hwc
, idx
);
1423 perf_event_update_userpage(event
);
1428 static void x86_pmu_unthrottle(struct perf_event
*event
)
1430 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1431 struct hw_perf_event
*hwc
= &event
->hw
;
1433 if (WARN_ON_ONCE(hwc
->idx
>= X86_PMC_IDX_MAX
||
1434 cpuc
->events
[hwc
->idx
] != event
))
1437 x86_pmu
.enable(hwc
, hwc
->idx
);
1440 void perf_event_print_debug(void)
1442 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1443 struct cpu_hw_events
*cpuc
;
1444 unsigned long flags
;
1447 if (!x86_pmu
.num_events
)
1450 local_irq_save(flags
);
1452 cpu
= smp_processor_id();
1453 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1455 if (x86_pmu
.version
>= 2) {
1456 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1457 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1458 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1459 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1462 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1463 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1464 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1465 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1467 pr_info("CPU#%d: used: %016llx\n", cpu
, *(u64
*)cpuc
->used_mask
);
1469 for (idx
= 0; idx
< x86_pmu
.num_events
; idx
++) {
1470 rdmsrl(x86_pmu
.eventsel
+ idx
, pmc_ctrl
);
1471 rdmsrl(x86_pmu
.perfctr
+ idx
, pmc_count
);
1473 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1475 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1476 cpu
, idx
, pmc_ctrl
);
1477 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1478 cpu
, idx
, pmc_count
);
1479 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1480 cpu
, idx
, prev_left
);
1482 for (idx
= 0; idx
< x86_pmu
.num_events_fixed
; idx
++) {
1483 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1485 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1486 cpu
, idx
, pmc_count
);
1488 local_irq_restore(flags
);
1491 static void intel_pmu_drain_bts_buffer(struct cpu_hw_events
*cpuc
)
1493 struct debug_store
*ds
= cpuc
->ds
;
1499 struct perf_event
*event
= cpuc
->events
[X86_PMC_IDX_FIXED_BTS
];
1500 struct bts_record
*at
, *top
;
1501 struct perf_output_handle handle
;
1502 struct perf_event_header header
;
1503 struct perf_sample_data data
;
1504 struct pt_regs regs
;
1512 at
= (struct bts_record
*)(unsigned long)ds
->bts_buffer_base
;
1513 top
= (struct bts_record
*)(unsigned long)ds
->bts_index
;
1518 ds
->bts_index
= ds
->bts_buffer_base
;
1521 data
.period
= event
->hw
.last_period
;
1526 * Prepare a generic sample, i.e. fill in the invariant fields.
1527 * We will overwrite the from and to address before we output
1530 perf_prepare_sample(&header
, &data
, event
, ®s
);
1532 if (perf_output_begin(&handle
, event
,
1533 header
.size
* (top
- at
), 1, 1))
1536 for (; at
< top
; at
++) {
1540 perf_output_sample(&handle
, &header
, &data
, event
);
1543 perf_output_end(&handle
);
1545 /* There's new data available. */
1546 event
->hw
.interrupts
++;
1547 event
->pending_kill
= POLL_IN
;
1550 static void x86_pmu_disable(struct perf_event
*event
)
1552 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1553 struct hw_perf_event
*hwc
= &event
->hw
;
1557 * Must be done before we disable, otherwise the nmi handler
1558 * could reenable again:
1560 clear_bit(idx
, cpuc
->active_mask
);
1561 x86_pmu
.disable(hwc
, idx
);
1564 * Make sure the cleared pointer becomes visible before we
1565 * (potentially) free the event:
1570 * Drain the remaining delta count out of a event
1571 * that we are disabling:
1573 x86_perf_event_update(event
, hwc
, idx
);
1575 /* Drain the remaining BTS records. */
1576 if (unlikely(idx
== X86_PMC_IDX_FIXED_BTS
))
1577 intel_pmu_drain_bts_buffer(cpuc
);
1579 cpuc
->events
[idx
] = NULL
;
1580 clear_bit(idx
, cpuc
->used_mask
);
1582 perf_event_update_userpage(event
);
1586 * Save and restart an expired event. Called by NMI contexts,
1587 * so it has to be careful about preempting normal event ops:
1589 static int intel_pmu_save_and_restart(struct perf_event
*event
)
1591 struct hw_perf_event
*hwc
= &event
->hw
;
1595 x86_perf_event_update(event
, hwc
, idx
);
1596 ret
= x86_perf_event_set_period(event
, hwc
, idx
);
1598 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
1599 intel_pmu_enable_event(hwc
, idx
);
1604 static void intel_pmu_reset(void)
1606 struct debug_store
*ds
= __get_cpu_var(cpu_hw_events
).ds
;
1607 unsigned long flags
;
1610 if (!x86_pmu
.num_events
)
1613 local_irq_save(flags
);
1615 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1617 for (idx
= 0; idx
< x86_pmu
.num_events
; idx
++) {
1618 checking_wrmsrl(x86_pmu
.eventsel
+ idx
, 0ull);
1619 checking_wrmsrl(x86_pmu
.perfctr
+ idx
, 0ull);
1621 for (idx
= 0; idx
< x86_pmu
.num_events_fixed
; idx
++) {
1622 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
1625 ds
->bts_index
= ds
->bts_buffer_base
;
1627 local_irq_restore(flags
);
1630 static int p6_pmu_handle_irq(struct pt_regs
*regs
)
1632 struct perf_sample_data data
;
1633 struct cpu_hw_events
*cpuc
;
1634 struct perf_event
*event
;
1635 struct hw_perf_event
*hwc
;
1636 int idx
, handled
= 0;
1641 cpuc
= &__get_cpu_var(cpu_hw_events
);
1643 for (idx
= 0; idx
< x86_pmu
.num_events
; idx
++) {
1644 if (!test_bit(idx
, cpuc
->active_mask
))
1647 event
= cpuc
->events
[idx
];
1650 val
= x86_perf_event_update(event
, hwc
, idx
);
1651 if (val
& (1ULL << (x86_pmu
.event_bits
- 1)))
1658 data
.period
= event
->hw
.last_period
;
1660 if (!x86_perf_event_set_period(event
, hwc
, idx
))
1663 if (perf_event_overflow(event
, 1, &data
, regs
))
1664 p6_pmu_disable_event(hwc
, idx
);
1668 inc_irq_stat(apic_perf_irqs
);
1674 * This handler is triggered by the local APIC, so the APIC IRQ handling
1677 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
1679 struct perf_sample_data data
;
1680 struct cpu_hw_events
*cpuc
;
1686 cpuc
= &__get_cpu_var(cpu_hw_events
);
1689 intel_pmu_drain_bts_buffer(cpuc
);
1690 status
= intel_pmu_get_status();
1698 if (++loops
> 100) {
1699 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1700 perf_event_print_debug();
1706 inc_irq_stat(apic_perf_irqs
);
1708 for_each_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
1709 struct perf_event
*event
= cpuc
->events
[bit
];
1711 clear_bit(bit
, (unsigned long *) &status
);
1712 if (!test_bit(bit
, cpuc
->active_mask
))
1715 if (!intel_pmu_save_and_restart(event
))
1718 data
.period
= event
->hw
.last_period
;
1720 if (perf_event_overflow(event
, 1, &data
, regs
))
1721 intel_pmu_disable_event(&event
->hw
, bit
);
1724 intel_pmu_ack_status(ack
);
1727 * Repeat if there is more work to be done:
1729 status
= intel_pmu_get_status();
1738 static int amd_pmu_handle_irq(struct pt_regs
*regs
)
1740 struct perf_sample_data data
;
1741 struct cpu_hw_events
*cpuc
;
1742 struct perf_event
*event
;
1743 struct hw_perf_event
*hwc
;
1744 int idx
, handled
= 0;
1749 cpuc
= &__get_cpu_var(cpu_hw_events
);
1751 for (idx
= 0; idx
< x86_pmu
.num_events
; idx
++) {
1752 if (!test_bit(idx
, cpuc
->active_mask
))
1755 event
= cpuc
->events
[idx
];
1758 val
= x86_perf_event_update(event
, hwc
, idx
);
1759 if (val
& (1ULL << (x86_pmu
.event_bits
- 1)))
1766 data
.period
= event
->hw
.last_period
;
1768 if (!x86_perf_event_set_period(event
, hwc
, idx
))
1771 if (perf_event_overflow(event
, 1, &data
, regs
))
1772 amd_pmu_disable_event(hwc
, idx
);
1776 inc_irq_stat(apic_perf_irqs
);
1781 void smp_perf_pending_interrupt(struct pt_regs
*regs
)
1785 inc_irq_stat(apic_pending_irqs
);
1786 perf_event_do_pending();
1790 void set_perf_event_pending(void)
1792 #ifdef CONFIG_X86_LOCAL_APIC
1793 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1796 apic
->send_IPI_self(LOCAL_PENDING_VECTOR
);
1800 void perf_events_lapic_init(void)
1802 #ifdef CONFIG_X86_LOCAL_APIC
1803 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1807 * Always use NMI for PMU
1809 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1813 static int __kprobes
1814 perf_event_nmi_handler(struct notifier_block
*self
,
1815 unsigned long cmd
, void *__args
)
1817 struct die_args
*args
= __args
;
1818 struct pt_regs
*regs
;
1820 if (!atomic_read(&active_events
))
1834 #ifdef CONFIG_X86_LOCAL_APIC
1835 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1838 * Can't rely on the handled return value to say it was our NMI, two
1839 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1841 * If the first NMI handles both, the latter will be empty and daze
1844 x86_pmu
.handle_irq(regs
);
1849 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1850 .notifier_call
= perf_event_nmi_handler
,
1855 static struct x86_pmu p6_pmu
= {
1857 .handle_irq
= p6_pmu_handle_irq
,
1858 .disable_all
= p6_pmu_disable_all
,
1859 .enable_all
= p6_pmu_enable_all
,
1860 .enable
= p6_pmu_enable_event
,
1861 .disable
= p6_pmu_disable_event
,
1862 .eventsel
= MSR_P6_EVNTSEL0
,
1863 .perfctr
= MSR_P6_PERFCTR0
,
1864 .event_map
= p6_pmu_event_map
,
1865 .raw_event
= p6_pmu_raw_event
,
1866 .max_events
= ARRAY_SIZE(p6_perfmon_event_map
),
1868 .max_period
= (1ULL << 31) - 1,
1872 * Events have 40 bits implemented. However they are designed such
1873 * that bits [32-39] are sign extensions of bit 31. As such the
1874 * effective width of a event for P6-like PMU is 32 bits only.
1876 * See IA-32 Intel Architecture Software developer manual Vol 3B
1879 .event_mask
= (1ULL << 32) - 1,
1882 static struct x86_pmu intel_pmu
= {
1884 .handle_irq
= intel_pmu_handle_irq
,
1885 .disable_all
= intel_pmu_disable_all
,
1886 .enable_all
= intel_pmu_enable_all
,
1887 .enable
= intel_pmu_enable_event
,
1888 .disable
= intel_pmu_disable_event
,
1889 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
1890 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
1891 .event_map
= intel_pmu_event_map
,
1892 .raw_event
= intel_pmu_raw_event
,
1893 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
1896 * Intel PMCs cannot be accessed sanely above 32 bit width,
1897 * so we install an artificial 1<<31 period regardless of
1898 * the generic event period:
1900 .max_period
= (1ULL << 31) - 1,
1901 .enable_bts
= intel_pmu_enable_bts
,
1902 .disable_bts
= intel_pmu_disable_bts
,
1905 static struct x86_pmu amd_pmu
= {
1907 .handle_irq
= amd_pmu_handle_irq
,
1908 .disable_all
= amd_pmu_disable_all
,
1909 .enable_all
= amd_pmu_enable_all
,
1910 .enable
= amd_pmu_enable_event
,
1911 .disable
= amd_pmu_disable_event
,
1912 .eventsel
= MSR_K7_EVNTSEL0
,
1913 .perfctr
= MSR_K7_PERFCTR0
,
1914 .event_map
= amd_pmu_event_map
,
1915 .raw_event
= amd_pmu_raw_event
,
1916 .max_events
= ARRAY_SIZE(amd_perfmon_event_map
),
1919 .event_mask
= (1ULL << 48) - 1,
1921 /* use highest bit to detect overflow */
1922 .max_period
= (1ULL << 47) - 1,
1925 static int p6_pmu_init(void)
1927 switch (boot_cpu_data
.x86_model
) {
1929 case 3: /* Pentium Pro */
1931 case 6: /* Pentium II */
1934 case 11: /* Pentium III */
1941 pr_cont("unsupported p6 CPU model %d ",
1942 boot_cpu_data
.x86_model
);
1948 if (!cpu_has_apic
) {
1949 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1950 pr_info("no hardware sampling interrupt available.\n");
1957 static int intel_pmu_init(void)
1959 union cpuid10_edx edx
;
1960 union cpuid10_eax eax
;
1961 unsigned int unused
;
1965 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
1966 /* check for P6 processor family */
1967 if (boot_cpu_data
.x86
== 6) {
1968 return p6_pmu_init();
1975 * Check whether the Architectural PerfMon supports
1976 * Branch Misses Retired hw_event or not.
1978 cpuid(10, &eax
.full
, &ebx
, &unused
, &edx
.full
);
1979 if (eax
.split
.mask_length
<= ARCH_PERFMON_BRANCH_MISSES_RETIRED
)
1982 version
= eax
.split
.version_id
;
1986 x86_pmu
= intel_pmu
;
1987 x86_pmu
.version
= version
;
1988 x86_pmu
.num_events
= eax
.split
.num_events
;
1989 x86_pmu
.event_bits
= eax
.split
.bit_width
;
1990 x86_pmu
.event_mask
= (1ULL << eax
.split
.bit_width
) - 1;
1993 * Quirk: v2 perfmon does not report fixed-purpose events, so
1994 * assume at least 3 events:
1996 x86_pmu
.num_events_fixed
= max((int)edx
.split
.num_events_fixed
, 3);
1999 * Install the hw-cache-events table:
2001 switch (boot_cpu_data
.x86_model
) {
2002 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2003 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2004 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2005 case 29: /* six-core 45 nm xeon "Dunnington" */
2006 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
2007 sizeof(hw_cache_event_ids
));
2009 pr_cont("Core2 events, ");
2013 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
2014 sizeof(hw_cache_event_ids
));
2016 pr_cont("Nehalem/Corei7 events, ");
2019 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
2020 sizeof(hw_cache_event_ids
));
2022 pr_cont("Atom events, ");
2028 static int amd_pmu_init(void)
2030 /* Performance-monitoring supported from K7 and later: */
2031 if (boot_cpu_data
.x86
< 6)
2036 /* Events are common for all AMDs */
2037 memcpy(hw_cache_event_ids
, amd_hw_cache_event_ids
,
2038 sizeof(hw_cache_event_ids
));
2043 void __init
init_hw_perf_events(void)
2047 pr_info("Performance Events: ");
2049 switch (boot_cpu_data
.x86_vendor
) {
2050 case X86_VENDOR_INTEL
:
2051 err
= intel_pmu_init();
2053 case X86_VENDOR_AMD
:
2054 err
= amd_pmu_init();
2060 pr_cont("no PMU driver, software events only.\n");
2064 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
2066 if (x86_pmu
.num_events
> X86_PMC_MAX_GENERIC
) {
2067 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
2068 x86_pmu
.num_events
, X86_PMC_MAX_GENERIC
);
2069 x86_pmu
.num_events
= X86_PMC_MAX_GENERIC
;
2071 perf_event_mask
= (1 << x86_pmu
.num_events
) - 1;
2072 perf_max_events
= x86_pmu
.num_events
;
2074 if (x86_pmu
.num_events_fixed
> X86_PMC_MAX_FIXED
) {
2075 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
2076 x86_pmu
.num_events_fixed
, X86_PMC_MAX_FIXED
);
2077 x86_pmu
.num_events_fixed
= X86_PMC_MAX_FIXED
;
2081 ((1LL << x86_pmu
.num_events_fixed
)-1) << X86_PMC_IDX_FIXED
;
2082 x86_pmu
.intel_ctrl
= perf_event_mask
;
2084 perf_events_lapic_init();
2085 register_die_notifier(&perf_event_nmi_notifier
);
2087 pr_info("... version: %d\n", x86_pmu
.version
);
2088 pr_info("... bit width: %d\n", x86_pmu
.event_bits
);
2089 pr_info("... generic registers: %d\n", x86_pmu
.num_events
);
2090 pr_info("... value mask: %016Lx\n", x86_pmu
.event_mask
);
2091 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
2092 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_events_fixed
);
2093 pr_info("... event mask: %016Lx\n", perf_event_mask
);
2096 static inline void x86_pmu_read(struct perf_event
*event
)
2098 x86_perf_event_update(event
, &event
->hw
, event
->hw
.idx
);
2101 static const struct pmu pmu
= {
2102 .enable
= x86_pmu_enable
,
2103 .disable
= x86_pmu_disable
,
2104 .read
= x86_pmu_read
,
2105 .unthrottle
= x86_pmu_unthrottle
,
2108 const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
2112 err
= __hw_perf_event_init(event
);
2115 event
->destroy(event
);
2116 return ERR_PTR(err
);
2127 void callchain_store(struct perf_callchain_entry
*entry
, u64 ip
)
2129 if (entry
->nr
< PERF_MAX_STACK_DEPTH
)
2130 entry
->ip
[entry
->nr
++] = ip
;
2133 static DEFINE_PER_CPU(struct perf_callchain_entry
, pmc_irq_entry
);
2134 static DEFINE_PER_CPU(struct perf_callchain_entry
, pmc_nmi_entry
);
2135 static DEFINE_PER_CPU(int, in_nmi_frame
);
2139 backtrace_warning_symbol(void *data
, char *msg
, unsigned long symbol
)
2141 /* Ignore warnings */
2144 static void backtrace_warning(void *data
, char *msg
)
2146 /* Ignore warnings */
2149 static int backtrace_stack(void *data
, char *name
)
2151 per_cpu(in_nmi_frame
, smp_processor_id()) =
2152 x86_is_stack_id(NMI_STACK
, name
);
2157 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
2159 struct perf_callchain_entry
*entry
= data
;
2161 if (per_cpu(in_nmi_frame
, smp_processor_id()))
2165 callchain_store(entry
, addr
);
2168 static const struct stacktrace_ops backtrace_ops
= {
2169 .warning
= backtrace_warning
,
2170 .warning_symbol
= backtrace_warning_symbol
,
2171 .stack
= backtrace_stack
,
2172 .address
= backtrace_address
,
2175 #include "../dumpstack.h"
2178 perf_callchain_kernel(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
2180 callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2181 callchain_store(entry
, regs
->ip
);
2183 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
2187 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
2189 static unsigned long
2190 copy_from_user_nmi(void *to
, const void __user
*from
, unsigned long n
)
2192 unsigned long offset
, addr
= (unsigned long)from
;
2193 int type
= in_nmi() ? KM_NMI
: KM_IRQ0
;
2194 unsigned long size
, len
= 0;
2200 ret
= __get_user_pages_fast(addr
, 1, 0, &page
);
2204 offset
= addr
& (PAGE_SIZE
- 1);
2205 size
= min(PAGE_SIZE
- offset
, n
- len
);
2207 map
= kmap_atomic(page
, type
);
2208 memcpy(to
, map
+offset
, size
);
2209 kunmap_atomic(map
, type
);
2221 static int copy_stack_frame(const void __user
*fp
, struct stack_frame
*frame
)
2223 unsigned long bytes
;
2225 bytes
= copy_from_user_nmi(frame
, fp
, sizeof(*frame
));
2227 return bytes
== sizeof(*frame
);
2231 perf_callchain_user(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
2233 struct stack_frame frame
;
2234 const void __user
*fp
;
2236 if (!user_mode(regs
))
2237 regs
= task_pt_regs(current
);
2239 fp
= (void __user
*)regs
->bp
;
2241 callchain_store(entry
, PERF_CONTEXT_USER
);
2242 callchain_store(entry
, regs
->ip
);
2244 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
2245 frame
.next_frame
= NULL
;
2246 frame
.return_address
= 0;
2248 if (!copy_stack_frame(fp
, &frame
))
2251 if ((unsigned long)fp
< regs
->sp
)
2254 callchain_store(entry
, frame
.return_address
);
2255 fp
= frame
.next_frame
;
2260 perf_do_callchain(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
2267 is_user
= user_mode(regs
);
2269 if (!current
|| current
->pid
== 0)
2272 if (is_user
&& current
->state
!= TASK_RUNNING
)
2276 perf_callchain_kernel(regs
, entry
);
2279 perf_callchain_user(regs
, entry
);
2282 struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2284 struct perf_callchain_entry
*entry
;
2287 entry
= &__get_cpu_var(pmc_nmi_entry
);
2289 entry
= &__get_cpu_var(pmc_irq_entry
);
2293 perf_do_callchain(regs
, entry
);
2298 void hw_perf_event_setup_online(int cpu
)
2300 init_debug_store_on_cpu(cpu
);