2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
13 #include <asm/mmu_context.h>
14 #include <asm/uv/uv.h>
15 #include <asm/uv/uv_mmrs.h>
16 #include <asm/uv/uv_hub.h>
17 #include <asm/uv/uv_bau.h>
21 #include <asm/irq_vectors.h>
23 static struct bau_control
**uv_bau_table_bases __read_mostly
;
24 static int uv_bau_retry_limit __read_mostly
;
26 /* position of pnode (which is nasid>>1): */
27 static int uv_nshift __read_mostly
;
28 /* base pnode in this partition */
29 static int uv_partition_base_pnode __read_mostly
;
31 static unsigned long uv_mmask __read_mostly
;
33 static DEFINE_PER_CPU(struct ptc_stats
, ptcstats
);
34 static DEFINE_PER_CPU(struct bau_control
, bau_control
);
37 * Determine the first node on a blade.
39 static int __init
blade_to_first_node(int blade
)
43 for_each_online_node(node
) {
44 b
= uv_node_to_blade_id(node
);
48 return -1; /* shouldn't happen */
52 * Determine the apicid of the first cpu on a blade.
54 static int __init
blade_to_first_apicid(int blade
)
58 for_each_present_cpu(cpu
)
59 if (blade
== uv_cpu_to_blade_id(cpu
))
60 return per_cpu(x86_cpu_to_apicid
, cpu
);
65 * Free a software acknowledge hardware resource by clearing its Pending
66 * bit. This will return a reply to the sender.
67 * If the message has timed out, a reply has already been sent by the
68 * hardware but the resource has not been released. In that case our
69 * clear of the Timeout bit (as well) will free the resource. No reply will
70 * be sent (the hardware will only do one reply per message).
72 static void uv_reply_to_message(int resource
,
73 struct bau_payload_queue_entry
*msg
,
74 struct bau_msg_status
*msp
)
78 dw
= (1 << (resource
+ UV_SW_ACK_NPENDING
)) | (1 << resource
);
80 msg
->sw_ack_vector
= 0;
82 msp
->seen_by
.bits
= 0;
83 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS
, dw
);
87 * Do all the things a cpu should do for a TLB shootdown message.
88 * Other cpu's may come here at the same time for this message.
90 static void uv_bau_process_message(struct bau_payload_queue_entry
*msg
,
91 int msg_slot
, int sw_ack_slot
)
93 unsigned long this_cpu_mask
;
94 struct bau_msg_status
*msp
;
97 msp
= __get_cpu_var(bau_control
).msg_statuses
+ msg_slot
;
98 cpu
= uv_blade_processor_id();
100 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
101 this_cpu_mask
= 1UL << cpu
;
102 if (msp
->seen_by
.bits
& this_cpu_mask
)
104 atomic_or_long(&msp
->seen_by
.bits
, this_cpu_mask
);
106 if (msg
->replied_to
== 1)
109 if (msg
->address
== TLB_FLUSH_ALL
) {
111 __get_cpu_var(ptcstats
).alltlb
++;
113 __flush_tlb_one(msg
->address
);
114 __get_cpu_var(ptcstats
).onetlb
++;
117 __get_cpu_var(ptcstats
).requestee
++;
119 atomic_inc_short(&msg
->acknowledge_count
);
120 if (msg
->number_of_cpus
== msg
->acknowledge_count
)
121 uv_reply_to_message(sw_ack_slot
, msg
, msp
);
125 * Examine the payload queue on one distribution node to see
126 * which messages have not been seen, and which cpu(s) have not seen them.
128 * Returns the number of cpu's that have not responded.
130 static int uv_examine_destination(struct bau_control
*bau_tablesp
, int sender
)
132 struct bau_payload_queue_entry
*msg
;
133 struct bau_msg_status
*msp
;
138 for (msg
= bau_tablesp
->va_queue_first
, i
= 0; i
< DEST_Q_SIZE
;
140 if ((msg
->sending_cpu
== sender
) && (!msg
->replied_to
)) {
141 msp
= bau_tablesp
->msg_statuses
+ i
;
143 "blade %d: address:%#lx %d of %d, not cpu(s): ",
144 i
, msg
->address
, msg
->acknowledge_count
,
145 msg
->number_of_cpus
);
146 for (j
= 0; j
< msg
->number_of_cpus
; j
++) {
147 if (!((1L << j
) & msp
->seen_by
.bits
)) {
159 * Examine the payload queue on all the distribution nodes to see
160 * which messages have not been seen, and which cpu(s) have not seen them.
162 * Returns the number of cpu's that have not responded.
164 static int uv_examine_destinations(struct bau_target_nodemask
*distribution
)
170 sender
= smp_processor_id();
171 for (i
= 0; i
< sizeof(struct bau_target_nodemask
) * BITSPERBYTE
; i
++) {
172 if (!bau_node_isset(i
, distribution
))
174 count
+= uv_examine_destination(uv_bau_table_bases
[i
], sender
);
180 * wait for completion of a broadcast message
182 * return COMPLETE, RETRY or GIVEUP
184 static int uv_wait_completion(struct bau_desc
*bau_desc
,
185 unsigned long mmr_offset
, int right_shift
)
188 long destination_timeouts
= 0;
189 long source_timeouts
= 0;
190 unsigned long descriptor_status
;
192 while ((descriptor_status
= (((unsigned long)
193 uv_read_local_mmr(mmr_offset
) >>
194 right_shift
) & UV_ACT_STATUS_MASK
)) !=
196 if (descriptor_status
== DESC_STATUS_SOURCE_TIMEOUT
) {
198 if (source_timeouts
> SOURCE_TIMEOUT_LIMIT
)
200 __get_cpu_var(ptcstats
).s_retry
++;
204 * spin here looking for progress at the destinations
206 if (descriptor_status
== DESC_STATUS_DESTINATION_TIMEOUT
) {
207 destination_timeouts
++;
208 if (destination_timeouts
> DESTINATION_TIMEOUT_LIMIT
) {
210 * returns number of cpus not responding
212 if (uv_examine_destinations
213 (&bau_desc
->distribution
) == 0) {
214 __get_cpu_var(ptcstats
).d_retry
++;
218 if (exams
>= uv_bau_retry_limit
) {
220 "uv_flush_tlb_others");
221 printk("giving up on cpu %d\n",
226 * delays can hang the simulator
229 destination_timeouts
= 0;
234 return FLUSH_COMPLETE
;
238 * uv_flush_send_and_wait
240 * Send a broadcast and wait for a broadcast message to complete.
242 * The flush_mask contains the cpus the broadcast was sent to.
244 * Returns NULL if all remote flushing was done. The mask is zeroed.
245 * Returns @flush_mask if some remote flushing remains to be done. The
246 * mask will have some bits still set.
248 const struct cpumask
*uv_flush_send_and_wait(int cpu
, int this_pnode
,
249 struct bau_desc
*bau_desc
,
250 struct cpumask
*flush_mask
)
252 int completion_status
= 0;
257 unsigned long mmr_offset
;
262 if (cpu
< UV_CPUS_PER_ACT_STATUS
) {
263 mmr_offset
= UVH_LB_BAU_SB_ACTIVATION_STATUS_0
;
264 right_shift
= cpu
* UV_ACT_STATUS_SIZE
;
266 mmr_offset
= UVH_LB_BAU_SB_ACTIVATION_STATUS_1
;
268 ((cpu
- UV_CPUS_PER_ACT_STATUS
) * UV_ACT_STATUS_SIZE
);
270 time1
= get_cycles();
273 index
= (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT
) |
275 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL
, index
);
276 completion_status
= uv_wait_completion(bau_desc
, mmr_offset
,
278 } while (completion_status
== FLUSH_RETRY
);
279 time2
= get_cycles();
280 __get_cpu_var(ptcstats
).sflush
+= (time2
- time1
);
282 __get_cpu_var(ptcstats
).retriesok
++;
284 if (completion_status
== FLUSH_GIVEUP
) {
286 * Cause the caller to do an IPI-style TLB shootdown on
287 * the cpu's, all of which are still in the mask.
289 __get_cpu_var(ptcstats
).ptc_i
++;
294 * Success, so clear the remote cpu's from the mask so we don't
295 * use the IPI method of shootdown on them.
297 for_each_cpu(bit
, flush_mask
) {
298 pnode
= uv_cpu_to_pnode(bit
);
299 if (pnode
== this_pnode
)
301 cpumask_clear_cpu(bit
, flush_mask
);
303 if (!cpumask_empty(flush_mask
))
308 static DEFINE_PER_CPU(cpumask_var_t
, uv_flush_tlb_mask
);
311 * uv_flush_tlb_others - globally purge translation cache of a virtual
312 * address or all TLB's
313 * @cpumask: mask of all cpu's in which the address is to be removed
314 * @mm: mm_struct containing virtual address range
315 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
316 * @cpu: the current cpu
318 * This is the entry point for initiating any UV global TLB shootdown.
320 * Purges the translation caches of all specified processors of the given
321 * virtual address, or purges all TLB's on specified processors.
323 * The caller has derived the cpumask from the mm_struct. This function
324 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
326 * The cpumask is converted into a nodemask of the nodes containing
329 * Note that this function should be called with preemption disabled.
331 * Returns NULL if all remote flushing was done.
332 * Returns pointer to cpumask if some remote flushing remains to be
333 * done. The returned pointer is valid till preemption is re-enabled.
335 const struct cpumask
*uv_flush_tlb_others(const struct cpumask
*cpumask
,
336 struct mm_struct
*mm
,
337 unsigned long va
, unsigned int cpu
)
339 struct cpumask
*flush_mask
= __get_cpu_var(uv_flush_tlb_mask
);
346 struct bau_desc
*bau_desc
;
348 cpumask_andnot(flush_mask
, cpumask
, cpumask_of(cpu
));
350 uv_cpu
= uv_blade_processor_id();
351 this_pnode
= uv_hub_info
->pnode
;
352 bau_desc
= __get_cpu_var(bau_control
).descriptor_base
;
353 bau_desc
+= UV_ITEMS_PER_DESCRIPTOR
* uv_cpu
;
355 bau_nodes_clear(&bau_desc
->distribution
, UV_DISTRIBUTION_SIZE
);
358 for_each_cpu(bit
, flush_mask
) {
359 pnode
= uv_cpu_to_pnode(bit
);
360 BUG_ON(pnode
> (UV_DISTRIBUTION_SIZE
- 1));
361 if (pnode
== this_pnode
) {
365 bau_node_set(pnode
- uv_partition_base_pnode
,
366 &bau_desc
->distribution
);
371 * no off_node flushing; return status for local node
378 __get_cpu_var(ptcstats
).requestor
++;
379 __get_cpu_var(ptcstats
).ntargeted
+= i
;
381 bau_desc
->payload
.address
= va
;
382 bau_desc
->payload
.sending_cpu
= cpu
;
384 return uv_flush_send_and_wait(uv_cpu
, this_pnode
, bau_desc
, flush_mask
);
388 * The BAU message interrupt comes here. (registered by set_intr_gate)
391 * We received a broadcast assist message.
393 * Interrupts may have been disabled; this interrupt could represent
394 * the receipt of several messages.
396 * All cores/threads on this node get this interrupt.
397 * The last one to see it does the s/w ack.
398 * (the resource will not be freed until noninterruptable cpus see this
399 * interrupt; hardware will timeout the s/w ack and reply ERROR)
401 void uv_bau_message_interrupt(struct pt_regs
*regs
)
403 struct bau_payload_queue_entry
*va_queue_first
;
404 struct bau_payload_queue_entry
*va_queue_last
;
405 struct bau_payload_queue_entry
*msg
;
406 struct pt_regs
*old_regs
= set_irq_regs(regs
);
413 unsigned long local_pnode
;
419 time1
= get_cycles();
421 local_pnode
= uv_blade_to_pnode(uv_numa_blade_id());
423 va_queue_first
= __get_cpu_var(bau_control
).va_queue_first
;
424 va_queue_last
= __get_cpu_var(bau_control
).va_queue_last
;
426 msg
= __get_cpu_var(bau_control
).bau_msg_head
;
427 while (msg
->sw_ack_vector
) {
429 fw
= msg
->sw_ack_vector
;
430 msg_slot
= msg
- va_queue_first
;
431 sw_ack_slot
= ffs(fw
) - 1;
433 uv_bau_process_message(msg
, msg_slot
, sw_ack_slot
);
436 if (msg
> va_queue_last
)
437 msg
= va_queue_first
;
438 __get_cpu_var(bau_control
).bau_msg_head
= msg
;
441 __get_cpu_var(ptcstats
).nomsg
++;
443 __get_cpu_var(ptcstats
).multmsg
++;
445 time2
= get_cycles();
446 __get_cpu_var(ptcstats
).dflush
+= (time2
- time1
);
449 set_irq_regs(old_regs
);
455 * Each target blade (i.e. blades that have cpu's) needs to have
456 * shootdown message timeouts enabled. The timeout does not cause
457 * an interrupt, but causes an error message to be returned to
460 static void uv_enable_timeouts(void)
465 unsigned long mmr_image
;
467 nblades
= uv_num_possible_blades();
469 for (blade
= 0; blade
< nblades
; blade
++) {
470 if (!uv_blade_nr_possible_cpus(blade
))
473 pnode
= uv_blade_to_pnode(blade
);
475 uv_read_global_mmr64(pnode
, UVH_LB_BAU_MISC_CONTROL
);
477 * Set the timeout period and then lock it in, in three
478 * steps; captures and locks in the period.
480 * To program the period, the SOFT_ACK_MODE must be off.
482 mmr_image
&= ~((unsigned long)1 <<
483 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT
);
484 uv_write_global_mmr64
485 (pnode
, UVH_LB_BAU_MISC_CONTROL
, mmr_image
);
487 * Set the 4-bit period.
489 mmr_image
&= ~((unsigned long)0xf <<
490 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT
);
491 mmr_image
|= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD
<<
492 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT
);
493 uv_write_global_mmr64
494 (pnode
, UVH_LB_BAU_MISC_CONTROL
, mmr_image
);
496 * Subsequent reversals of the timebase bit (3) cause an
497 * immediate timeout of one or all INTD resources as
498 * indicated in bits 2:0 (7 causes all of them to timeout).
500 mmr_image
|= ((unsigned long)1 <<
501 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT
);
502 uv_write_global_mmr64
503 (pnode
, UVH_LB_BAU_MISC_CONTROL
, mmr_image
);
507 static void *uv_ptc_seq_start(struct seq_file
*file
, loff_t
*offset
)
509 if (*offset
< num_possible_cpus())
514 static void *uv_ptc_seq_next(struct seq_file
*file
, void *data
, loff_t
*offset
)
517 if (*offset
< num_possible_cpus())
522 static void uv_ptc_seq_stop(struct seq_file
*file
, void *data
)
527 * Display the statistics thru /proc
528 * data points to the cpu number
530 static int uv_ptc_seq_show(struct seq_file
*file
, void *data
)
532 struct ptc_stats
*stat
;
535 cpu
= *(loff_t
*)data
;
539 "# cpu requestor requestee one all sretry dretry ptc_i ");
541 "sw_ack sflush dflush sok dnomsg dmult starget\n");
543 if (cpu
< num_possible_cpus() && cpu_online(cpu
)) {
544 stat
= &per_cpu(ptcstats
, cpu
);
545 seq_printf(file
, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
546 cpu
, stat
->requestor
,
547 stat
->requestee
, stat
->onetlb
, stat
->alltlb
,
548 stat
->s_retry
, stat
->d_retry
, stat
->ptc_i
);
549 seq_printf(file
, "%lx %ld %ld %ld %ld %ld %ld\n",
550 uv_read_global_mmr64(uv_cpu_to_pnode(cpu
),
551 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE
),
552 stat
->sflush
, stat
->dflush
,
553 stat
->retriesok
, stat
->nomsg
,
554 stat
->multmsg
, stat
->ntargeted
);
561 * 0: display meaning of the statistics
564 static ssize_t
uv_ptc_proc_write(struct file
*file
, const char __user
*user
,
565 size_t count
, loff_t
*data
)
570 if (count
== 0 || count
> sizeof(optstr
))
572 if (copy_from_user(optstr
, user
, count
))
574 optstr
[count
- 1] = '\0';
575 if (strict_strtoul(optstr
, 10, &newmode
) < 0) {
576 printk(KERN_DEBUG
"%s is invalid\n", optstr
);
581 printk(KERN_DEBUG
"# cpu: cpu number\n");
583 "requestor: times this cpu was the flush requestor\n");
585 "requestee: times this cpu was requested to flush its TLBs\n");
587 "one: times requested to flush a single address\n");
589 "all: times requested to flush all TLB's\n");
591 "sretry: number of retries of source-side timeouts\n");
593 "dretry: number of retries of destination-side timeouts\n");
595 "ptc_i: times UV fell through to IPI-style flushes\n");
597 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
599 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
601 "dflush_us: cycles spent in handling flush requests\n");
602 printk(KERN_DEBUG
"sok: successes on retry\n");
603 printk(KERN_DEBUG
"dnomsg: interrupts with no message\n");
605 "dmult: interrupts with multiple messages\n");
606 printk(KERN_DEBUG
"starget: nodes targeted\n");
608 uv_bau_retry_limit
= newmode
;
609 printk(KERN_DEBUG
"timeout retry limit:%d\n",
616 static const struct seq_operations uv_ptc_seq_ops
= {
617 .start
= uv_ptc_seq_start
,
618 .next
= uv_ptc_seq_next
,
619 .stop
= uv_ptc_seq_stop
,
620 .show
= uv_ptc_seq_show
623 static int uv_ptc_proc_open(struct inode
*inode
, struct file
*file
)
625 return seq_open(file
, &uv_ptc_seq_ops
);
628 static const struct file_operations proc_uv_ptc_operations
= {
629 .open
= uv_ptc_proc_open
,
631 .write
= uv_ptc_proc_write
,
633 .release
= seq_release
,
636 static int __init
uv_ptc_init(void)
638 struct proc_dir_entry
*proc_uv_ptc
;
643 proc_uv_ptc
= proc_create(UV_PTC_BASENAME
, 0444, NULL
,
644 &proc_uv_ptc_operations
);
646 printk(KERN_ERR
"unable to create %s proc entry\n",
654 * begin the initialization of the per-blade control structures
656 static struct bau_control
* __init
uv_table_bases_init(int blade
, int node
)
659 struct bau_msg_status
*msp
;
660 struct bau_control
*bau_tabp
;
663 kmalloc_node(sizeof(struct bau_control
), GFP_KERNEL
, node
);
666 bau_tabp
->msg_statuses
=
667 kmalloc_node(sizeof(struct bau_msg_status
) *
668 DEST_Q_SIZE
, GFP_KERNEL
, node
);
669 BUG_ON(!bau_tabp
->msg_statuses
);
671 for (i
= 0, msp
= bau_tabp
->msg_statuses
; i
< DEST_Q_SIZE
; i
++, msp
++)
672 bau_cpubits_clear(&msp
->seen_by
, (int)
673 uv_blade_nr_possible_cpus(blade
));
675 uv_bau_table_bases
[blade
] = bau_tabp
;
681 * finish the initialization of the per-blade control structures
684 uv_table_bases_finish(int blade
,
685 struct bau_control
*bau_tablesp
,
686 struct bau_desc
*adp
)
688 struct bau_control
*bcp
;
691 for_each_present_cpu(cpu
) {
692 if (blade
!= uv_cpu_to_blade_id(cpu
))
695 bcp
= (struct bau_control
*)&per_cpu(bau_control
, cpu
);
696 bcp
->bau_msg_head
= bau_tablesp
->va_queue_first
;
697 bcp
->va_queue_first
= bau_tablesp
->va_queue_first
;
698 bcp
->va_queue_last
= bau_tablesp
->va_queue_last
;
699 bcp
->msg_statuses
= bau_tablesp
->msg_statuses
;
700 bcp
->descriptor_base
= adp
;
705 * initialize the sending side's sending buffers
707 static struct bau_desc
* __init
708 uv_activation_descriptor_init(int node
, int pnode
)
714 struct bau_desc
*adp
;
715 struct bau_desc
*ad2
;
718 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
719 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
721 adp
= (struct bau_desc
*)kmalloc_node(sizeof(struct bau_desc
)*
722 UV_ADP_SIZE
*UV_ITEMS_PER_DESCRIPTOR
, GFP_KERNEL
, node
);
725 pa
= uv_gpa(adp
); /* need the real nasid*/
729 uv_write_global_mmr64(pnode
, UVH_LB_BAU_SB_DESCRIPTOR_BASE
,
730 (n
<< UV_DESC_BASE_PNODE_SHIFT
| m
));
733 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
734 * cpu even though we only use the first one; one descriptor can
735 * describe a broadcast to 256 nodes.
737 for (i
= 0, ad2
= adp
; i
< (UV_ADP_SIZE
*UV_ITEMS_PER_DESCRIPTOR
);
739 memset(ad2
, 0, sizeof(struct bau_desc
));
740 ad2
->header
.sw_ack_flag
= 1;
742 * base_dest_nodeid is the first node in the partition, so
743 * the bit map will indicate partition-relative node numbers.
744 * note that base_dest_nodeid is actually a nasid.
746 ad2
->header
.base_dest_nodeid
= uv_partition_base_pnode
<< 1;
747 ad2
->header
.dest_subnodeid
= 0x10; /* the LB */
748 ad2
->header
.command
= UV_NET_ENDPOINT_INTD
;
749 ad2
->header
.int_both
= 1;
751 * all others need to be set to zero:
752 * fairness chaining multilevel count replied_to
759 * initialize the destination side's receiving buffers
761 static struct bau_payload_queue_entry
* __init
762 uv_payload_queue_init(int node
, int pnode
, struct bau_control
*bau_tablesp
)
764 struct bau_payload_queue_entry
*pqp
;
769 pqp
= (struct bau_payload_queue_entry
*) kmalloc_node(
770 (DEST_Q_SIZE
+ 1) * sizeof(struct bau_payload_queue_entry
),
774 cp
= (char *)pqp
+ 31;
775 pqp
= (struct bau_payload_queue_entry
*)(((unsigned long)cp
>> 5) << 5);
776 bau_tablesp
->va_queue_first
= pqp
;
778 * need the pnode of where the memory was really allocated
781 pn
= pa
>> uv_nshift
;
782 uv_write_global_mmr64(pnode
,
783 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST
,
784 ((unsigned long)pn
<< UV_PAYLOADQ_PNODE_SHIFT
) |
785 uv_physnodeaddr(pqp
));
786 uv_write_global_mmr64(pnode
, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL
,
787 uv_physnodeaddr(pqp
));
788 bau_tablesp
->va_queue_last
= pqp
+ (DEST_Q_SIZE
- 1);
789 uv_write_global_mmr64(pnode
, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST
,
791 uv_physnodeaddr(bau_tablesp
->va_queue_last
));
792 memset(pqp
, 0, sizeof(struct bau_payload_queue_entry
) * DEST_Q_SIZE
);
798 * Initialization of each UV blade's structures
800 static int __init
uv_init_blade(int blade
)
805 unsigned long apicid
;
806 struct bau_desc
*adp
;
807 struct bau_payload_queue_entry
*pqp
;
808 struct bau_control
*bau_tablesp
;
810 node
= blade_to_first_node(blade
);
811 bau_tablesp
= uv_table_bases_init(blade
, node
);
812 pnode
= uv_blade_to_pnode(blade
);
813 adp
= uv_activation_descriptor_init(node
, pnode
);
814 pqp
= uv_payload_queue_init(node
, pnode
, bau_tablesp
);
815 uv_table_bases_finish(blade
, bau_tablesp
, adp
);
817 * the below initialization can't be in firmware because the
818 * messaging IRQ will be determined by the OS
820 apicid
= blade_to_first_apicid(blade
);
821 pa
= uv_read_global_mmr64(pnode
, UVH_BAU_DATA_CONFIG
);
822 if ((pa
& 0xff) != UV_BAU_MESSAGE
) {
823 uv_write_global_mmr64(pnode
, UVH_BAU_DATA_CONFIG
,
824 ((apicid
<< 32) | UV_BAU_MESSAGE
));
830 * Initialization of BAU-related structures
832 static int __init
uv_bau_init(void)
841 for_each_possible_cpu(cur_cpu
)
842 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask
, cur_cpu
),
843 GFP_KERNEL
, cpu_to_node(cur_cpu
));
845 uv_bau_retry_limit
= 1;
846 uv_nshift
= uv_hub_info
->n_val
;
847 uv_mmask
= (1UL << uv_hub_info
->n_val
) - 1;
848 nblades
= uv_num_possible_blades();
850 uv_bau_table_bases
= (struct bau_control
**)
851 kmalloc(nblades
* sizeof(struct bau_control
*), GFP_KERNEL
);
852 BUG_ON(!uv_bau_table_bases
);
854 uv_partition_base_pnode
= 0x7fffffff;
855 for (blade
= 0; blade
< nblades
; blade
++)
856 if (uv_blade_nr_possible_cpus(blade
) &&
857 (uv_blade_to_pnode(blade
) < uv_partition_base_pnode
))
858 uv_partition_base_pnode
= uv_blade_to_pnode(blade
);
859 for (blade
= 0; blade
< nblades
; blade
++)
860 if (uv_blade_nr_possible_cpus(blade
))
861 uv_init_blade(blade
);
863 alloc_intr_gate(UV_BAU_MESSAGE
, uv_bau_message_intr1
);
864 uv_enable_timeouts();
868 __initcall(uv_bau_init
);
869 __initcall(uv_ptc_init
);