First Support on Ginger and OMAP TI
[linux-ginger.git] / arch / x86 / kernel / uv_time.c
blob583f11d5c4803d0028ddeae63e4bad1aa3d03360
1 /*
2 * SGI RTC clock/timer routines.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
21 #include <linux/clockchips.h>
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/uv_hub.h>
25 #include <asm/uv/bios.h>
26 #include <asm/uv/uv.h>
27 #include <asm/apic.h>
28 #include <asm/cpu.h>
30 #define RTC_NAME "sgi_rtc"
32 static cycle_t uv_read_rtc(struct clocksource *cs);
33 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
34 static void uv_rtc_timer_setup(enum clock_event_mode,
35 struct clock_event_device *);
37 static struct clocksource clocksource_uv = {
38 .name = RTC_NAME,
39 .rating = 400,
40 .read = uv_read_rtc,
41 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42 .shift = 10,
43 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
46 static struct clock_event_device clock_event_device_uv = {
47 .name = RTC_NAME,
48 .features = CLOCK_EVT_FEAT_ONESHOT,
49 .shift = 20,
50 .rating = 400,
51 .irq = -1,
52 .set_next_event = uv_rtc_next_event,
53 .set_mode = uv_rtc_timer_setup,
54 .event_handler = NULL,
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head {
61 spinlock_t lock;
62 /* next cpu waiting for timer, local node relative: */
63 int next_cpu;
64 /* number of cpus on this node: */
65 int ncpus;
66 struct {
67 int lcpu; /* systemwide logical cpu number */
68 u64 expires; /* next timer expiration for this cpu */
69 } cpu[1];
73 * Access to uv_rtc_timer_head via blade id.
75 static struct uv_rtc_timer_head **blade_info __read_mostly;
77 static int uv_rtc_enable;
80 * Hardware interface routines
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
86 unsigned long apicid, val;
87 int pnode;
89 apicid = cpu_physical_id(cpu);
90 pnode = uv_apicid_to_pnode(apicid);
91 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
93 (GENERIC_INTERRUPT_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
95 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode)
101 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
102 UVH_EVENT_OCCURRED0_RTC1_MASK;
105 /* Setup interrupt and return non-zero if early expiration occurred. */
106 static int uv_setup_intr(int cpu, u64 expires)
108 u64 val;
109 int pnode = uv_cpu_to_pnode(cpu);
111 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
112 UVH_RTC1_INT_CONFIG_M_MASK);
113 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
115 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
116 UVH_EVENT_OCCURRED0_RTC1_MASK);
118 val = (GENERIC_INTERRUPT_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
119 ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
121 /* Set configuration */
122 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
123 /* Initialize comparator value */
124 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
126 return (expires < uv_read_rtc(NULL) && !uv_intr_pending(pnode));
130 * Per-cpu timer tracking routines
133 static __init void uv_rtc_deallocate_timers(void)
135 int bid;
137 for_each_possible_blade(bid) {
138 kfree(blade_info[bid]);
140 kfree(blade_info);
143 /* Allocate per-node list of cpu timer expiration times. */
144 static __init int uv_rtc_allocate_timers(void)
146 int cpu;
148 blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
149 if (!blade_info)
150 return -ENOMEM;
151 memset(blade_info, 0, uv_possible_blades * sizeof(void *));
153 for_each_present_cpu(cpu) {
154 int nid = cpu_to_node(cpu);
155 int bid = uv_cpu_to_blade_id(cpu);
156 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
157 struct uv_rtc_timer_head *head = blade_info[bid];
159 if (!head) {
160 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
161 (uv_blade_nr_possible_cpus(bid) *
162 2 * sizeof(u64)),
163 GFP_KERNEL, nid);
164 if (!head) {
165 uv_rtc_deallocate_timers();
166 return -ENOMEM;
168 spin_lock_init(&head->lock);
169 head->ncpus = uv_blade_nr_possible_cpus(bid);
170 head->next_cpu = -1;
171 blade_info[bid] = head;
174 head->cpu[bcpu].lcpu = cpu;
175 head->cpu[bcpu].expires = ULLONG_MAX;
178 return 0;
181 /* Find and set the next expiring timer. */
182 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
184 u64 lowest = ULLONG_MAX;
185 int c, bcpu = -1;
187 head->next_cpu = -1;
188 for (c = 0; c < head->ncpus; c++) {
189 u64 exp = head->cpu[c].expires;
190 if (exp < lowest) {
191 bcpu = c;
192 lowest = exp;
195 if (bcpu >= 0) {
196 head->next_cpu = bcpu;
197 c = head->cpu[bcpu].lcpu;
198 if (uv_setup_intr(c, lowest))
199 /* If we didn't set it up in time, trigger */
200 uv_rtc_send_IPI(c);
201 } else {
202 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
203 UVH_RTC1_INT_CONFIG_M_MASK);
208 * Set expiration time for current cpu.
210 * Returns 1 if we missed the expiration time.
212 static int uv_rtc_set_timer(int cpu, u64 expires)
214 int pnode = uv_cpu_to_pnode(cpu);
215 int bid = uv_cpu_to_blade_id(cpu);
216 struct uv_rtc_timer_head *head = blade_info[bid];
217 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
218 u64 *t = &head->cpu[bcpu].expires;
219 unsigned long flags;
220 int next_cpu;
222 spin_lock_irqsave(&head->lock, flags);
224 next_cpu = head->next_cpu;
225 *t = expires;
226 /* Will this one be next to go off? */
227 if (next_cpu < 0 || bcpu == next_cpu ||
228 expires < head->cpu[next_cpu].expires) {
229 head->next_cpu = bcpu;
230 if (uv_setup_intr(cpu, expires)) {
231 *t = ULLONG_MAX;
232 uv_rtc_find_next_timer(head, pnode);
233 spin_unlock_irqrestore(&head->lock, flags);
234 return 1;
238 spin_unlock_irqrestore(&head->lock, flags);
239 return 0;
243 * Unset expiration time for current cpu.
245 * Returns 1 if this timer was pending.
247 static int uv_rtc_unset_timer(int cpu)
249 int pnode = uv_cpu_to_pnode(cpu);
250 int bid = uv_cpu_to_blade_id(cpu);
251 struct uv_rtc_timer_head *head = blade_info[bid];
252 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
253 u64 *t = &head->cpu[bcpu].expires;
254 unsigned long flags;
255 int rc = 0;
257 spin_lock_irqsave(&head->lock, flags);
259 if (head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t)
260 rc = 1;
262 *t = ULLONG_MAX;
264 /* Was the hardware setup for this timer? */
265 if (head->next_cpu == bcpu)
266 uv_rtc_find_next_timer(head, pnode);
268 spin_unlock_irqrestore(&head->lock, flags);
270 return rc;
275 * Kernel interface routines.
279 * Read the RTC.
281 static cycle_t uv_read_rtc(struct clocksource *cs)
283 return (cycle_t)uv_read_local_mmr(UVH_RTC);
287 * Program the next event, relative to now
289 static int uv_rtc_next_event(unsigned long delta,
290 struct clock_event_device *ced)
292 int ced_cpu = cpumask_first(ced->cpumask);
294 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
298 * Setup the RTC timer in oneshot mode
300 static void uv_rtc_timer_setup(enum clock_event_mode mode,
301 struct clock_event_device *evt)
303 int ced_cpu = cpumask_first(evt->cpumask);
305 switch (mode) {
306 case CLOCK_EVT_MODE_PERIODIC:
307 case CLOCK_EVT_MODE_ONESHOT:
308 case CLOCK_EVT_MODE_RESUME:
309 /* Nothing to do here yet */
310 break;
311 case CLOCK_EVT_MODE_UNUSED:
312 case CLOCK_EVT_MODE_SHUTDOWN:
313 uv_rtc_unset_timer(ced_cpu);
314 break;
318 static void uv_rtc_interrupt(void)
320 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
321 int cpu = smp_processor_id();
323 if (!ced || !ced->event_handler)
324 return;
326 if (uv_rtc_unset_timer(cpu) != 1)
327 return;
329 ced->event_handler(ced);
332 static int __init uv_enable_rtc(char *str)
334 uv_rtc_enable = 1;
336 return 1;
338 __setup("uvrtc", uv_enable_rtc);
340 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
342 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
344 *ced = clock_event_device_uv;
345 ced->cpumask = cpumask_of(smp_processor_id());
346 clockevents_register_device(ced);
349 static __init int uv_rtc_setup_clock(void)
351 int rc;
353 if (!uv_rtc_enable || !is_uv_system() || generic_interrupt_extension)
354 return -ENODEV;
356 generic_interrupt_extension = uv_rtc_interrupt;
358 clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
359 clocksource_uv.shift);
361 rc = clocksource_register(&clocksource_uv);
362 if (rc) {
363 generic_interrupt_extension = NULL;
364 return rc;
367 /* Setup and register clockevents */
368 rc = uv_rtc_allocate_timers();
369 if (rc) {
370 clocksource_unregister(&clocksource_uv);
371 generic_interrupt_extension = NULL;
372 return rc;
375 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
376 NSEC_PER_SEC, clock_event_device_uv.shift);
378 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
379 sn_rtc_cycles_per_second;
381 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
382 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
384 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
385 if (rc) {
386 clocksource_unregister(&clocksource_uv);
387 generic_interrupt_extension = NULL;
388 uv_rtc_deallocate_timers();
391 return rc;
393 arch_initcall(uv_rtc_setup_clock);