2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
28 * The current flushing context - we pass it instead of 5 arguments:
37 unsigned force_split
: 1;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock
);
50 #define CPA_FLUSHTLB 1
52 #define CPA_PAGES_ARRAY 4
55 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
57 void update_page_count(int level
, unsigned long pages
)
61 /* Protect against CPA */
62 spin_lock_irqsave(&pgd_lock
, flags
);
63 direct_pages_count
[level
] += pages
;
64 spin_unlock_irqrestore(&pgd_lock
, flags
);
67 static void split_page_count(int level
)
69 direct_pages_count
[level
]--;
70 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
73 void arch_report_meminfo(struct seq_file
*m
)
75 seq_printf(m
, "DirectMap4k: %8lu kB\n",
76 direct_pages_count
[PG_LEVEL_4K
] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m
, "DirectMap2M: %8lu kB\n",
79 direct_pages_count
[PG_LEVEL_2M
] << 11);
81 seq_printf(m
, "DirectMap4M: %8lu kB\n",
82 direct_pages_count
[PG_LEVEL_2M
] << 12);
86 seq_printf(m
, "DirectMap1G: %8lu kB\n",
87 direct_pages_count
[PG_LEVEL_1G
] << 20);
91 static inline void split_page_count(int level
) { }
96 static inline unsigned long highmap_start_pfn(void)
98 return __pa(_text
) >> PAGE_SHIFT
;
101 static inline unsigned long highmap_end_pfn(void)
103 return __pa(roundup(_brk_end
, PMD_SIZE
)) >> PAGE_SHIFT
;
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
111 # define debug_pagealloc 0
115 within(unsigned long addr
, unsigned long start
, unsigned long end
)
117 return addr
>= start
&& addr
< end
;
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr: virtual start address
127 * @size: number of bytes to flush
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
132 void clflush_cache_range(void *vaddr
, unsigned int size
)
134 void *vend
= vaddr
+ size
- 1;
138 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
141 * Flush any possible final partial cacheline:
147 EXPORT_SYMBOL_GPL(clflush_cache_range
);
149 static void __cpa_flush_all(void *arg
)
151 unsigned long cache
= (unsigned long)arg
;
154 * Flush all to work around Errata in early athlons regarding
155 * large page flushing.
159 if (cache
&& boot_cpu_data
.x86
>= 4)
163 static void cpa_flush_all(unsigned long cache
)
165 BUG_ON(irqs_disabled());
167 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
170 static void __cpa_flush_range(void *arg
)
173 * We could optimize that further and do individual per page
174 * tlb invalidates for a low number of pages. Caveat: we must
175 * flush the high aliases on 64bit as well.
180 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
182 unsigned int i
, level
;
185 BUG_ON(irqs_disabled());
186 WARN_ON(PAGE_ALIGN(start
) != start
);
188 on_each_cpu(__cpa_flush_range
, NULL
, 1);
194 * We only need to flush on one CPU,
195 * clflush is a MESI-coherent instruction that
196 * will cause all other CPUs to flush the same
199 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
200 pte_t
*pte
= lookup_address(addr
, &level
);
203 * Only flush present addresses:
205 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
206 clflush_cache_range((void *) addr
, PAGE_SIZE
);
210 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
211 int in_flags
, struct page
**pages
)
213 unsigned int i
, level
;
214 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
216 BUG_ON(irqs_disabled());
218 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
220 if (!cache
|| do_wbinvd
)
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
229 for (i
= 0; i
< numpages
; i
++) {
233 if (in_flags
& CPA_PAGES_ARRAY
)
234 addr
= (unsigned long)page_address(pages
[i
]);
238 pte
= lookup_address(addr
, &level
);
241 * Only flush present addresses:
243 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
244 clflush_cache_range((void *)addr
, PAGE_SIZE
);
249 * Certain areas of memory on x86 require very specific protection flags,
250 * for example the BIOS area or kernel text. Callers don't always get this
251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
252 * checks and fixes these known static required protection bits.
254 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
257 pgprot_t forbidden
= __pgprot(0);
260 * The BIOS area between 640k and 1Mb needs to be executable for
261 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
263 if (within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
264 pgprot_val(forbidden
) |= _PAGE_NX
;
267 * The kernel text needs to be executable for obvious reasons
268 * Does not cover __inittext since that is gone later on. On
269 * 64bit we do not enforce !NX on the low mapping
271 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
272 pgprot_val(forbidden
) |= _PAGE_NX
;
275 * The .rodata section needs to be read-only. Using the pfn
276 * catches all aliases.
278 if (within(pfn
, __pa((unsigned long)__start_rodata
) >> PAGE_SHIFT
,
279 __pa((unsigned long)__end_rodata
) >> PAGE_SHIFT
))
280 pgprot_val(forbidden
) |= _PAGE_RW
;
282 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
288 * Lookup the page table entry for a virtual address. Return a pointer
289 * to the entry and the level of the mapping.
291 * Note: We return pud and pmd either when the entry is marked large
292 * or when the present bit is not set. Otherwise we would return a
293 * pointer to a nonexisting mapping.
295 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
297 pgd_t
*pgd
= pgd_offset_k(address
);
301 *level
= PG_LEVEL_NONE
;
306 pud
= pud_offset(pgd
, address
);
310 *level
= PG_LEVEL_1G
;
311 if (pud_large(*pud
) || !pud_present(*pud
))
314 pmd
= pmd_offset(pud
, address
);
318 *level
= PG_LEVEL_2M
;
319 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
322 *level
= PG_LEVEL_4K
;
324 return pte_offset_kernel(pmd
, address
);
326 EXPORT_SYMBOL_GPL(lookup_address
);
329 * Set the new pmd in all the pgds we know about:
331 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
334 set_pte_atomic(kpte
, pte
);
336 if (!SHARED_KERNEL_PMD
) {
339 list_for_each_entry(page
, &pgd_list
, lru
) {
344 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
345 pud
= pud_offset(pgd
, address
);
346 pmd
= pmd_offset(pud
, address
);
347 set_pte_atomic((pte_t
*)pmd
, pte
);
354 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
355 struct cpa_data
*cpa
)
357 unsigned long nextpage_addr
, numpages
, pmask
, psize
, flags
, addr
, pfn
;
358 pte_t new_pte
, old_pte
, *tmp
;
359 pgprot_t old_prot
, new_prot
;
363 if (cpa
->force_split
)
366 spin_lock_irqsave(&pgd_lock
, flags
);
368 * Check for races, another CPU might have split this page
371 tmp
= lookup_address(address
, &level
);
377 psize
= PMD_PAGE_SIZE
;
378 pmask
= PMD_PAGE_MASK
;
382 psize
= PUD_PAGE_SIZE
;
383 pmask
= PUD_PAGE_MASK
;
392 * Calculate the number of pages, which fit into this large
393 * page starting at address:
395 nextpage_addr
= (address
+ psize
) & pmask
;
396 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
397 if (numpages
< cpa
->numpages
)
398 cpa
->numpages
= numpages
;
401 * We are safe now. Check whether the new pgprot is the same:
404 old_prot
= new_prot
= pte_pgprot(old_pte
);
406 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
407 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
410 * old_pte points to the large page base address. So we need
411 * to add the offset of the virtual address:
413 pfn
= pte_pfn(old_pte
) + ((address
& (psize
- 1)) >> PAGE_SHIFT
);
416 new_prot
= static_protections(new_prot
, address
, pfn
);
419 * We need to check the full range, whether
420 * static_protection() requires a different pgprot for one of
421 * the pages in the range we try to preserve:
423 addr
= address
+ PAGE_SIZE
;
425 for (i
= 1; i
< cpa
->numpages
; i
++, addr
+= PAGE_SIZE
, pfn
++) {
426 pgprot_t chk_prot
= static_protections(new_prot
, addr
, pfn
);
428 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
433 * If there are no changes, return. maxpages has been updated
436 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
442 * We need to change the attributes. Check, whether we can
443 * change the large page in one go. We request a split, when
444 * the address is not aligned and the number of pages is
445 * smaller than the number of pages in the large page. Note
446 * that we limited the number of possible pages already to
447 * the number of pages in the large page.
449 if (address
== (nextpage_addr
- psize
) && cpa
->numpages
== numpages
) {
451 * The address is aligned and the number of pages
452 * covers the full page.
454 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
455 __set_pmd_pte(kpte
, address
, new_pte
);
456 cpa
->flags
|= CPA_FLUSHTLB
;
461 spin_unlock_irqrestore(&pgd_lock
, flags
);
466 static int split_large_page(pte_t
*kpte
, unsigned long address
)
468 unsigned long flags
, pfn
, pfninc
= 1;
469 unsigned int i
, level
;
474 if (!debug_pagealloc
)
475 spin_unlock(&cpa_lock
);
476 base
= alloc_pages(GFP_KERNEL
| __GFP_NOTRACK
, 0);
477 if (!debug_pagealloc
)
478 spin_lock(&cpa_lock
);
482 spin_lock_irqsave(&pgd_lock
, flags
);
484 * Check for races, another CPU might have split this page
487 tmp
= lookup_address(address
, &level
);
491 pbase
= (pte_t
*)page_address(base
);
492 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
493 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
495 * If we ever want to utilize the PAT bit, we need to
496 * update this function to make sure it's converted from
497 * bit 12 to bit 7 when we cross from the 2MB level to
500 WARN_ON_ONCE(pgprot_val(ref_prot
) & _PAGE_PAT_LARGE
);
503 if (level
== PG_LEVEL_1G
) {
504 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
505 pgprot_val(ref_prot
) |= _PAGE_PSE
;
510 * Get the target pfn from the original entry:
512 pfn
= pte_pfn(*kpte
);
513 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
514 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
516 if (address
>= (unsigned long)__va(0) &&
517 address
< (unsigned long)__va(max_low_pfn_mapped
<< PAGE_SHIFT
))
518 split_page_count(level
);
521 if (address
>= (unsigned long)__va(1UL<<32) &&
522 address
< (unsigned long)__va(max_pfn_mapped
<< PAGE_SHIFT
))
523 split_page_count(level
);
527 * Install the new, split up pagetable.
529 * We use the standard kernel pagetable protections for the new
530 * pagetable protections, the actual ptes set above control the
531 * primary protection behavior:
533 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
536 * Intel Atom errata AAH41 workaround.
538 * The real fix should be in hw or in a microcode update, but
539 * we also probabilistically try to reduce the window of having
540 * a large TLB mixed with 4K TLBs while instruction fetches are
549 * If we dropped out via the lookup_address check under
550 * pgd_lock then stick the page back into the pool:
554 spin_unlock_irqrestore(&pgd_lock
, flags
);
559 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
563 * Ignore all non primary paths.
569 * Ignore the NULL PTE for kernel identity mapping, as it is expected
571 * Also set numpages to '1' indicating that we processed cpa req for
572 * one virtual address page and its pfn. TBD: numpages can be set based
573 * on the initial value and the level returned by lookup_address().
575 if (within(vaddr
, PAGE_OFFSET
,
576 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
578 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
581 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
582 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
589 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
591 unsigned long address
;
594 pte_t
*kpte
, old_pte
;
596 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
597 struct page
*page
= cpa
->pages
[cpa
->curpage
];
598 if (unlikely(PageHighMem(page
)))
600 address
= (unsigned long)page_address(page
);
601 } else if (cpa
->flags
& CPA_ARRAY
)
602 address
= cpa
->vaddr
[cpa
->curpage
];
604 address
= *cpa
->vaddr
;
606 kpte
= lookup_address(address
, &level
);
608 return __cpa_process_fault(cpa
, address
, primary
);
611 if (!pte_val(old_pte
))
612 return __cpa_process_fault(cpa
, address
, primary
);
614 if (level
== PG_LEVEL_4K
) {
616 pgprot_t new_prot
= pte_pgprot(old_pte
);
617 unsigned long pfn
= pte_pfn(old_pte
);
619 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
620 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
622 new_prot
= static_protections(new_prot
, address
, pfn
);
625 * We need to keep the pfn from the existing PTE,
626 * after all we're only going to change it's attributes
627 * not the memory it points to
629 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
632 * Do we really change anything ?
634 if (pte_val(old_pte
) != pte_val(new_pte
)) {
635 set_pte_atomic(kpte
, new_pte
);
636 cpa
->flags
|= CPA_FLUSHTLB
;
643 * Check, whether we can keep the large page intact
644 * and just change the pte:
646 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
648 * When the range fits into the existing large page,
649 * return. cp->numpages and cpa->tlbflush have been updated in
656 * We have to split the large page:
658 err
= split_large_page(kpte
, address
);
661 * Do a global flush tlb after splitting the large page
662 * and before we do the actual change page attribute in the PTE.
664 * With out this, we violate the TLB application note, that says
665 * "The TLBs may contain both ordinary and large-page
666 * translations for a 4-KByte range of linear addresses. This
667 * may occur if software modifies the paging structures so that
668 * the page size used for the address range changes. If the two
669 * translations differ with respect to page frame or attributes
670 * (e.g., permissions), processor behavior is undefined and may
671 * be implementation-specific."
673 * We do this global tlb flush inside the cpa_lock, so that we
674 * don't allow any other cpu, with stale tlb entries change the
675 * page attribute in parallel, that also falls into the
676 * just split large page entry.
685 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
687 static int cpa_process_alias(struct cpa_data
*cpa
)
689 struct cpa_data alias_cpa
;
690 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
694 if (cpa
->pfn
>= max_pfn_mapped
)
698 if (cpa
->pfn
>= max_low_pfn_mapped
&& cpa
->pfn
< (1UL<<(32-PAGE_SHIFT
)))
702 * No need to redo, when the primary call touched the direct
705 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
706 struct page
*page
= cpa
->pages
[cpa
->curpage
];
707 if (unlikely(PageHighMem(page
)))
709 vaddr
= (unsigned long)page_address(page
);
710 } else if (cpa
->flags
& CPA_ARRAY
)
711 vaddr
= cpa
->vaddr
[cpa
->curpage
];
715 if (!(within(vaddr
, PAGE_OFFSET
,
716 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
719 alias_cpa
.vaddr
= &laddr
;
720 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
722 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
729 * If the primary call didn't touch the high mapping already
730 * and the physical address is inside the kernel map, we need
731 * to touch the high mapped kernel as well:
733 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
734 within(cpa
->pfn
, highmap_start_pfn(), highmap_end_pfn())) {
735 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
736 __START_KERNEL_map
- phys_base
;
738 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
739 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
742 * The high mapping range is imprecise, so ignore the
745 __change_page_attr_set_clr(&alias_cpa
, 0);
752 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
754 int ret
, numpages
= cpa
->numpages
;
758 * Store the remaining nr of pages for the large page
759 * preservation check.
761 cpa
->numpages
= numpages
;
762 /* for array changes, we can't use large page */
763 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
766 if (!debug_pagealloc
)
767 spin_lock(&cpa_lock
);
768 ret
= __change_page_attr(cpa
, checkalias
);
769 if (!debug_pagealloc
)
770 spin_unlock(&cpa_lock
);
775 ret
= cpa_process_alias(cpa
);
781 * Adjust the number of pages with the result of the
782 * CPA operation. Either a large page has been
783 * preserved or a single page update happened.
785 BUG_ON(cpa
->numpages
> numpages
);
786 numpages
-= cpa
->numpages
;
787 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
790 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
796 static inline int cache_attr(pgprot_t attr
)
798 return pgprot_val(attr
) &
799 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
802 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
803 pgprot_t mask_set
, pgprot_t mask_clr
,
804 int force_split
, int in_flag
,
808 int ret
, cache
, checkalias
;
809 unsigned long baddr
= 0;
812 * Check, if we are requested to change a not supported
815 mask_set
= canon_pgprot(mask_set
);
816 mask_clr
= canon_pgprot(mask_clr
);
817 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
820 /* Ensure we are PAGE_SIZE aligned */
821 if (in_flag
& CPA_ARRAY
) {
823 for (i
= 0; i
< numpages
; i
++) {
824 if (addr
[i
] & ~PAGE_MASK
) {
825 addr
[i
] &= PAGE_MASK
;
829 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
831 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
832 * No need to cehck in that case
834 if (*addr
& ~PAGE_MASK
) {
837 * People should not be passing in unaligned addresses:
842 * Save address for cache flush. *addr is modified in the call
843 * to __change_page_attr_set_clr() below.
848 /* Must avoid aliasing mappings in the highmem code */
855 cpa
.numpages
= numpages
;
856 cpa
.mask_set
= mask_set
;
857 cpa
.mask_clr
= mask_clr
;
860 cpa
.force_split
= force_split
;
862 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
863 cpa
.flags
|= in_flag
;
865 /* No alias checking for _NX bit modifications */
866 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
868 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
871 * Check whether we really changed something:
873 if (!(cpa
.flags
& CPA_FLUSHTLB
))
877 * No need to flush, when we did not set any of the caching
880 cache
= cache_attr(mask_set
);
883 * On success we use clflush, when the CPU supports it to
884 * avoid the wbindv. If the CPU does not support it and in the
885 * error case we fall back to cpa_flush_all (which uses
888 if (!ret
&& cpu_has_clflush
) {
889 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
890 cpa_flush_array(addr
, numpages
, cache
,
893 cpa_flush_range(baddr
, numpages
, cache
);
895 cpa_flush_all(cache
);
901 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
902 pgprot_t mask
, int array
)
904 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
905 (array
? CPA_ARRAY
: 0), NULL
);
908 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
909 pgprot_t mask
, int array
)
911 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
912 (array
? CPA_ARRAY
: 0), NULL
);
915 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
918 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
919 CPA_PAGES_ARRAY
, pages
);
922 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
925 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
926 CPA_PAGES_ARRAY
, pages
);
929 int _set_memory_uc(unsigned long addr
, int numpages
)
932 * for now UC MINUS. see comments in ioremap_nocache()
934 return change_page_attr_set(&addr
, numpages
,
935 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
938 int set_memory_uc(unsigned long addr
, int numpages
)
943 * for now UC MINUS. see comments in ioremap_nocache()
945 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
946 _PAGE_CACHE_UC_MINUS
, NULL
);
950 ret
= _set_memory_uc(addr
, numpages
);
957 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
961 EXPORT_SYMBOL(set_memory_uc
);
963 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
969 * for now UC MINUS. see comments in ioremap_nocache()
971 for (i
= 0; i
< addrinarray
; i
++) {
972 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
973 _PAGE_CACHE_UC_MINUS
, NULL
);
978 ret
= change_page_attr_set(addr
, addrinarray
,
979 __pgprot(_PAGE_CACHE_UC_MINUS
), 1);
986 for (j
= 0; j
< i
; j
++)
987 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
991 EXPORT_SYMBOL(set_memory_array_uc
);
993 int _set_memory_wc(unsigned long addr
, int numpages
)
996 unsigned long addr_copy
= addr
;
998 ret
= change_page_attr_set(&addr
, numpages
,
999 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
1001 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1002 __pgprot(_PAGE_CACHE_WC
),
1003 __pgprot(_PAGE_CACHE_MASK
),
1009 int set_memory_wc(unsigned long addr
, int numpages
)
1014 return set_memory_uc(addr
, numpages
);
1016 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1017 _PAGE_CACHE_WC
, NULL
);
1021 ret
= _set_memory_wc(addr
, numpages
);
1028 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1032 EXPORT_SYMBOL(set_memory_wc
);
1034 int _set_memory_wb(unsigned long addr
, int numpages
)
1036 return change_page_attr_clear(&addr
, numpages
,
1037 __pgprot(_PAGE_CACHE_MASK
), 0);
1040 int set_memory_wb(unsigned long addr
, int numpages
)
1044 ret
= _set_memory_wb(addr
, numpages
);
1048 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1051 EXPORT_SYMBOL(set_memory_wb
);
1053 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1058 ret
= change_page_attr_clear(addr
, addrinarray
,
1059 __pgprot(_PAGE_CACHE_MASK
), 1);
1063 for (i
= 0; i
< addrinarray
; i
++)
1064 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1068 EXPORT_SYMBOL(set_memory_array_wb
);
1070 int set_memory_x(unsigned long addr
, int numpages
)
1072 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1074 EXPORT_SYMBOL(set_memory_x
);
1076 int set_memory_nx(unsigned long addr
, int numpages
)
1078 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1080 EXPORT_SYMBOL(set_memory_nx
);
1082 int set_memory_ro(unsigned long addr
, int numpages
)
1084 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1086 EXPORT_SYMBOL_GPL(set_memory_ro
);
1088 int set_memory_rw(unsigned long addr
, int numpages
)
1090 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1092 EXPORT_SYMBOL_GPL(set_memory_rw
);
1094 int set_memory_np(unsigned long addr
, int numpages
)
1096 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1099 int set_memory_4k(unsigned long addr
, int numpages
)
1101 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1102 __pgprot(0), 1, 0, NULL
);
1105 int set_pages_uc(struct page
*page
, int numpages
)
1107 unsigned long addr
= (unsigned long)page_address(page
);
1109 return set_memory_uc(addr
, numpages
);
1111 EXPORT_SYMBOL(set_pages_uc
);
1113 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1115 unsigned long start
;
1120 for (i
= 0; i
< addrinarray
; i
++) {
1121 if (PageHighMem(pages
[i
]))
1123 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1124 end
= start
+ PAGE_SIZE
;
1125 if (reserve_memtype(start
, end
, _PAGE_CACHE_UC_MINUS
, NULL
))
1129 if (cpa_set_pages_array(pages
, addrinarray
,
1130 __pgprot(_PAGE_CACHE_UC_MINUS
)) == 0) {
1131 return 0; /* Success */
1135 for (i
= 0; i
< free_idx
; i
++) {
1136 if (PageHighMem(pages
[i
]))
1138 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1139 end
= start
+ PAGE_SIZE
;
1140 free_memtype(start
, end
);
1144 EXPORT_SYMBOL(set_pages_array_uc
);
1146 int set_pages_wb(struct page
*page
, int numpages
)
1148 unsigned long addr
= (unsigned long)page_address(page
);
1150 return set_memory_wb(addr
, numpages
);
1152 EXPORT_SYMBOL(set_pages_wb
);
1154 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1157 unsigned long start
;
1161 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1162 __pgprot(_PAGE_CACHE_MASK
));
1166 for (i
= 0; i
< addrinarray
; i
++) {
1167 if (PageHighMem(pages
[i
]))
1169 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1170 end
= start
+ PAGE_SIZE
;
1171 free_memtype(start
, end
);
1176 EXPORT_SYMBOL(set_pages_array_wb
);
1178 int set_pages_x(struct page
*page
, int numpages
)
1180 unsigned long addr
= (unsigned long)page_address(page
);
1182 return set_memory_x(addr
, numpages
);
1184 EXPORT_SYMBOL(set_pages_x
);
1186 int set_pages_nx(struct page
*page
, int numpages
)
1188 unsigned long addr
= (unsigned long)page_address(page
);
1190 return set_memory_nx(addr
, numpages
);
1192 EXPORT_SYMBOL(set_pages_nx
);
1194 int set_pages_ro(struct page
*page
, int numpages
)
1196 unsigned long addr
= (unsigned long)page_address(page
);
1198 return set_memory_ro(addr
, numpages
);
1201 int set_pages_rw(struct page
*page
, int numpages
)
1203 unsigned long addr
= (unsigned long)page_address(page
);
1205 return set_memory_rw(addr
, numpages
);
1208 #ifdef CONFIG_DEBUG_PAGEALLOC
1210 static int __set_pages_p(struct page
*page
, int numpages
)
1212 unsigned long tempaddr
= (unsigned long) page_address(page
);
1213 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1214 .numpages
= numpages
,
1215 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1216 .mask_clr
= __pgprot(0),
1220 * No alias checking needed for setting present flag. otherwise,
1221 * we may need to break large pages for 64-bit kernel text
1222 * mappings (this adds to complexity if we want to do this from
1223 * atomic context especially). Let's keep it simple!
1225 return __change_page_attr_set_clr(&cpa
, 0);
1228 static int __set_pages_np(struct page
*page
, int numpages
)
1230 unsigned long tempaddr
= (unsigned long) page_address(page
);
1231 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1232 .numpages
= numpages
,
1233 .mask_set
= __pgprot(0),
1234 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1238 * No alias checking needed for setting not present flag. otherwise,
1239 * we may need to break large pages for 64-bit kernel text
1240 * mappings (this adds to complexity if we want to do this from
1241 * atomic context especially). Let's keep it simple!
1243 return __change_page_attr_set_clr(&cpa
, 0);
1246 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1248 if (PageHighMem(page
))
1251 debug_check_no_locks_freed(page_address(page
),
1252 numpages
* PAGE_SIZE
);
1256 * If page allocator is not up yet then do not call c_p_a():
1258 if (!debug_pagealloc_enabled
)
1262 * The return value is ignored as the calls cannot fail.
1263 * Large pages for identity mappings are not used at boot time
1264 * and hence no memory allocations during large page split.
1267 __set_pages_p(page
, numpages
);
1269 __set_pages_np(page
, numpages
);
1272 * We should perform an IPI and flush all tlbs,
1273 * but that can deadlock->flush only current cpu:
1278 #ifdef CONFIG_HIBERNATION
1280 bool kernel_page_present(struct page
*page
)
1285 if (PageHighMem(page
))
1288 pte
= lookup_address((unsigned long)page_address(page
), &level
);
1289 return (pte_val(*pte
) & _PAGE_PRESENT
);
1292 #endif /* CONFIG_HIBERNATION */
1294 #endif /* CONFIG_DEBUG_PAGEALLOC */
1297 * The testcases use internal knowledge of the implementation that shouldn't
1298 * be exposed to the rest of the kernel. Include these directly here.
1300 #ifdef CONFIG_CPA_DEBUG
1301 #include "pageattr-test.c"