2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
32 #include "intel_drv.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
42 static void intel_update_watermarks(struct drm_device
*dev
);
43 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
);
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t
;
69 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
71 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
72 int, int, intel_clock_t
*);
73 bool (* find_reduced_pll
)(const intel_limit_t
*, struct drm_crtc
*,
74 int, int, intel_clock_t
*);
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
88 #define I8XX_M2_MAX 16
90 #define I8XX_P_MAX 128
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define IGD_VCO_MIN 1700000
106 #define IGD_VCO_MAX 3500000
109 /* IGD's Ncounter is a ring counter */
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
115 #define IGD_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* IGD M1 is reserved, and must be 0 */
124 #define IGD_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define IGD_P_LVDS_MIN 7
130 #define IGD_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
241 #define IGDNG_DOT_MIN 25000
242 #define IGDNG_DOT_MAX 350000
243 #define IGDNG_VCO_MIN 1760000
244 #define IGDNG_VCO_MAX 3510000
245 #define IGDNG_N_MIN 1
246 #define IGDNG_N_MAX 5
247 #define IGDNG_M_MIN 79
248 #define IGDNG_M_MAX 118
249 #define IGDNG_M1_MIN 12
250 #define IGDNG_M1_MAX 23
251 #define IGDNG_M2_MIN 5
252 #define IGDNG_M2_MAX 9
253 #define IGDNG_P_SDVO_DAC_MIN 5
254 #define IGDNG_P_SDVO_DAC_MAX 80
255 #define IGDNG_P_LVDS_MIN 28
256 #define IGDNG_P_LVDS_MAX 112
257 #define IGDNG_P1_MIN 1
258 #define IGDNG_P1_MAX 8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
263 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
266 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
267 int target
, int refclk
, intel_clock_t
*best_clock
);
269 intel_find_best_reduced_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
270 int target
, int refclk
, intel_clock_t
*best_clock
);
272 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
273 int target
, int refclk
, intel_clock_t
*best_clock
);
275 intel_igdng_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
276 int target
, int refclk
, intel_clock_t
*best_clock
);
279 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
280 int target
, int refclk
, intel_clock_t
*best_clock
);
282 intel_find_pll_igdng_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
283 int target
, int refclk
, intel_clock_t
*best_clock
);
285 static const intel_limit_t intel_limits_i8xx_dvo
= {
286 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
287 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
288 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
289 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
290 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
291 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
292 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
293 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
294 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
295 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
296 .find_pll
= intel_find_best_PLL
,
297 .find_reduced_pll
= intel_find_best_reduced_PLL
,
300 static const intel_limit_t intel_limits_i8xx_lvds
= {
301 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
302 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
303 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
304 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
305 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
306 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
307 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
308 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
309 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
310 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
311 .find_pll
= intel_find_best_PLL
,
312 .find_reduced_pll
= intel_find_best_reduced_PLL
,
315 static const intel_limit_t intel_limits_i9xx_sdvo
= {
316 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
317 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
318 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
319 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
320 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
321 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
322 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
323 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
324 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
325 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
326 .find_pll
= intel_find_best_PLL
,
327 .find_reduced_pll
= intel_find_best_reduced_PLL
,
330 static const intel_limit_t intel_limits_i9xx_lvds
= {
331 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
332 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
333 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
334 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
335 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
336 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
337 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
338 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
342 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
343 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
344 .find_pll
= intel_find_best_PLL
,
345 .find_reduced_pll
= intel_find_best_reduced_PLL
,
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo
= {
350 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
351 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
352 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
353 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
354 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
355 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
356 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
357 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
358 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
359 .p2_slow
= G4X_P2_SDVO_SLOW
,
360 .p2_fast
= G4X_P2_SDVO_FAST
362 .find_pll
= intel_g4x_find_best_PLL
,
363 .find_reduced_pll
= intel_g4x_find_best_PLL
,
366 static const intel_limit_t intel_limits_g4x_hdmi
= {
367 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
368 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
369 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
370 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
371 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
372 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
373 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
374 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
375 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
376 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
377 .p2_fast
= G4X_P2_HDMI_DAC_FAST
379 .find_pll
= intel_g4x_find_best_PLL
,
380 .find_reduced_pll
= intel_g4x_find_best_PLL
,
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
384 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
385 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
386 .vco
= { .min
= G4X_VCO_MIN
,
387 .max
= G4X_VCO_MAX
},
388 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
389 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
390 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
391 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
392 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
393 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
394 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
395 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
396 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
397 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
398 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
399 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
400 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
401 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
402 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
404 .find_pll
= intel_g4x_find_best_PLL
,
405 .find_reduced_pll
= intel_g4x_find_best_PLL
,
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
409 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
410 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
411 .vco
= { .min
= G4X_VCO_MIN
,
412 .max
= G4X_VCO_MAX
},
413 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
414 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
415 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
416 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
417 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
418 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
419 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
420 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
421 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
422 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
423 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
424 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
425 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
426 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
427 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
429 .find_pll
= intel_g4x_find_best_PLL
,
430 .find_reduced_pll
= intel_g4x_find_best_PLL
,
433 static const intel_limit_t intel_limits_g4x_display_port
= {
434 .dot
= { .min
= G4X_DOT_DISPLAY_PORT_MIN
,
435 .max
= G4X_DOT_DISPLAY_PORT_MAX
},
436 .vco
= { .min
= G4X_VCO_MIN
,
438 .n
= { .min
= G4X_N_DISPLAY_PORT_MIN
,
439 .max
= G4X_N_DISPLAY_PORT_MAX
},
440 .m
= { .min
= G4X_M_DISPLAY_PORT_MIN
,
441 .max
= G4X_M_DISPLAY_PORT_MAX
},
442 .m1
= { .min
= G4X_M1_DISPLAY_PORT_MIN
,
443 .max
= G4X_M1_DISPLAY_PORT_MAX
},
444 .m2
= { .min
= G4X_M2_DISPLAY_PORT_MIN
,
445 .max
= G4X_M2_DISPLAY_PORT_MAX
},
446 .p
= { .min
= G4X_P_DISPLAY_PORT_MIN
,
447 .max
= G4X_P_DISPLAY_PORT_MAX
},
448 .p1
= { .min
= G4X_P1_DISPLAY_PORT_MIN
,
449 .max
= G4X_P1_DISPLAY_PORT_MAX
},
450 .p2
= { .dot_limit
= G4X_P2_DISPLAY_PORT_LIMIT
,
451 .p2_slow
= G4X_P2_DISPLAY_PORT_SLOW
,
452 .p2_fast
= G4X_P2_DISPLAY_PORT_FAST
},
453 .find_pll
= intel_find_pll_g4x_dp
,
456 static const intel_limit_t intel_limits_igd_sdvo
= {
457 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
458 .vco
= { .min
= IGD_VCO_MIN
, .max
= IGD_VCO_MAX
},
459 .n
= { .min
= IGD_N_MIN
, .max
= IGD_N_MAX
},
460 .m
= { .min
= IGD_M_MIN
, .max
= IGD_M_MAX
},
461 .m1
= { .min
= IGD_M1_MIN
, .max
= IGD_M1_MAX
},
462 .m2
= { .min
= IGD_M2_MIN
, .max
= IGD_M2_MAX
},
463 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
464 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
465 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
466 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
467 .find_pll
= intel_find_best_PLL
,
468 .find_reduced_pll
= intel_find_best_reduced_PLL
,
471 static const intel_limit_t intel_limits_igd_lvds
= {
472 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
473 .vco
= { .min
= IGD_VCO_MIN
, .max
= IGD_VCO_MAX
},
474 .n
= { .min
= IGD_N_MIN
, .max
= IGD_N_MAX
},
475 .m
= { .min
= IGD_M_MIN
, .max
= IGD_M_MAX
},
476 .m1
= { .min
= IGD_M1_MIN
, .max
= IGD_M1_MAX
},
477 .m2
= { .min
= IGD_M2_MIN
, .max
= IGD_M2_MAX
},
478 .p
= { .min
= IGD_P_LVDS_MIN
, .max
= IGD_P_LVDS_MAX
},
479 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
480 /* IGD only supports single-channel mode. */
481 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
482 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
483 .find_pll
= intel_find_best_PLL
,
484 .find_reduced_pll
= intel_find_best_reduced_PLL
,
487 static const intel_limit_t intel_limits_igdng_sdvo
= {
488 .dot
= { .min
= IGDNG_DOT_MIN
, .max
= IGDNG_DOT_MAX
},
489 .vco
= { .min
= IGDNG_VCO_MIN
, .max
= IGDNG_VCO_MAX
},
490 .n
= { .min
= IGDNG_N_MIN
, .max
= IGDNG_N_MAX
},
491 .m
= { .min
= IGDNG_M_MIN
, .max
= IGDNG_M_MAX
},
492 .m1
= { .min
= IGDNG_M1_MIN
, .max
= IGDNG_M1_MAX
},
493 .m2
= { .min
= IGDNG_M2_MIN
, .max
= IGDNG_M2_MAX
},
494 .p
= { .min
= IGDNG_P_SDVO_DAC_MIN
, .max
= IGDNG_P_SDVO_DAC_MAX
},
495 .p1
= { .min
= IGDNG_P1_MIN
, .max
= IGDNG_P1_MAX
},
496 .p2
= { .dot_limit
= IGDNG_P2_DOT_LIMIT
,
497 .p2_slow
= IGDNG_P2_SDVO_DAC_SLOW
,
498 .p2_fast
= IGDNG_P2_SDVO_DAC_FAST
},
499 .find_pll
= intel_igdng_find_best_PLL
,
502 static const intel_limit_t intel_limits_igdng_lvds
= {
503 .dot
= { .min
= IGDNG_DOT_MIN
, .max
= IGDNG_DOT_MAX
},
504 .vco
= { .min
= IGDNG_VCO_MIN
, .max
= IGDNG_VCO_MAX
},
505 .n
= { .min
= IGDNG_N_MIN
, .max
= IGDNG_N_MAX
},
506 .m
= { .min
= IGDNG_M_MIN
, .max
= IGDNG_M_MAX
},
507 .m1
= { .min
= IGDNG_M1_MIN
, .max
= IGDNG_M1_MAX
},
508 .m2
= { .min
= IGDNG_M2_MIN
, .max
= IGDNG_M2_MAX
},
509 .p
= { .min
= IGDNG_P_LVDS_MIN
, .max
= IGDNG_P_LVDS_MAX
},
510 .p1
= { .min
= IGDNG_P1_MIN
, .max
= IGDNG_P1_MAX
},
511 .p2
= { .dot_limit
= IGDNG_P2_DOT_LIMIT
,
512 .p2_slow
= IGDNG_P2_LVDS_SLOW
,
513 .p2_fast
= IGDNG_P2_LVDS_FAST
},
514 .find_pll
= intel_igdng_find_best_PLL
,
517 static const intel_limit_t
*intel_igdng_limit(struct drm_crtc
*crtc
)
519 const intel_limit_t
*limit
;
520 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
521 limit
= &intel_limits_igdng_lvds
;
523 limit
= &intel_limits_igdng_sdvo
;
528 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
530 struct drm_device
*dev
= crtc
->dev
;
531 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
532 const intel_limit_t
*limit
;
534 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
535 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
537 /* LVDS with dual channel */
538 limit
= &intel_limits_g4x_dual_channel_lvds
;
540 /* LVDS with dual channel */
541 limit
= &intel_limits_g4x_single_channel_lvds
;
542 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
543 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
544 limit
= &intel_limits_g4x_hdmi
;
545 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
546 limit
= &intel_limits_g4x_sdvo
;
547 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
548 limit
= &intel_limits_g4x_display_port
;
549 } else /* The option is for other outputs */
550 limit
= &intel_limits_i9xx_sdvo
;
555 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
557 struct drm_device
*dev
= crtc
->dev
;
558 const intel_limit_t
*limit
;
561 limit
= intel_igdng_limit(crtc
);
562 else if (IS_G4X(dev
)) {
563 limit
= intel_g4x_limit(crtc
);
564 } else if (IS_I9XX(dev
) && !IS_IGD(dev
)) {
565 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
566 limit
= &intel_limits_i9xx_lvds
;
568 limit
= &intel_limits_i9xx_sdvo
;
569 } else if (IS_IGD(dev
)) {
570 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
571 limit
= &intel_limits_igd_lvds
;
573 limit
= &intel_limits_igd_sdvo
;
575 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
576 limit
= &intel_limits_i8xx_lvds
;
578 limit
= &intel_limits_i8xx_dvo
;
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk
, intel_clock_t
*clock
)
586 clock
->m
= clock
->m2
+ 2;
587 clock
->p
= clock
->p1
* clock
->p2
;
588 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
589 clock
->dot
= clock
->vco
/ clock
->p
;
592 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
595 igd_clock(refclk
, clock
);
598 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
599 clock
->p
= clock
->p1
* clock
->p2
;
600 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
601 clock
->dot
= clock
->vco
/ clock
->p
;
605 * Returns whether any output on the specified pipe is of the specified type
607 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
)
609 struct drm_device
*dev
= crtc
->dev
;
610 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
611 struct drm_connector
*l_entry
;
613 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
614 if (l_entry
->encoder
&&
615 l_entry
->encoder
->crtc
== crtc
) {
616 struct intel_output
*intel_output
= to_intel_output(l_entry
);
617 if (intel_output
->type
== type
)
624 struct drm_connector
*
625 intel_pipe_get_output (struct drm_crtc
*crtc
)
627 struct drm_device
*dev
= crtc
->dev
;
628 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
629 struct drm_connector
*l_entry
, *ret
= NULL
;
631 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
632 if (l_entry
->encoder
&&
633 l_entry
->encoder
->crtc
== crtc
) {
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
647 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
649 const intel_limit_t
*limit
= intel_limit (crtc
);
650 struct drm_device
*dev
= crtc
->dev
;
652 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
655 INTELPllInvalid ("p out of range\n");
656 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock
->m1
<= clock
->m2
&& !IS_IGD(dev
))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
663 INTELPllInvalid ("m out of range\n");
664 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
665 INTELPllInvalid ("n out of range\n");
666 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
671 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
672 INTELPllInvalid ("dot out of range\n");
678 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
679 int target
, int refclk
, intel_clock_t
*best_clock
)
682 struct drm_device
*dev
= crtc
->dev
;
683 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
687 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
688 (I915_READ(LVDS
)) != 0) {
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
695 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
697 clock
.p2
= limit
->p2
.p2_fast
;
699 clock
.p2
= limit
->p2
.p2_slow
;
701 if (target
< limit
->p2
.dot_limit
)
702 clock
.p2
= limit
->p2
.p2_slow
;
704 clock
.p2
= limit
->p2
.p2_fast
;
707 memset (best_clock
, 0, sizeof (*best_clock
));
709 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
710 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
712 for (clock
.m2
= limit
->m2
.min
;
713 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
714 /* m1 is always 0 in IGD */
715 if (clock
.m2
>= clock
.m1
&& !IS_IGD(dev
))
717 for (clock
.n
= limit
->n
.min
;
718 clock
.n
<= limit
->n
.max
; clock
.n
++) {
721 intel_clock(dev
, refclk
, &clock
);
723 if (!intel_PLL_is_valid(crtc
, &clock
))
726 this_err
= abs(clock
.dot
- target
);
727 if (this_err
< err
) {
736 return (err
!= target
);
741 intel_find_best_reduced_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
742 int target
, int refclk
, intel_clock_t
*best_clock
)
745 struct drm_device
*dev
= crtc
->dev
;
750 memcpy(&clock
, best_clock
, sizeof(intel_clock_t
));
752 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
; clock
.m1
++) {
753 for (clock
.m2
= limit
->m2
.min
; clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
754 /* m1 is always 0 in IGD */
755 if (clock
.m2
>= clock
.m1
&& !IS_IGD(dev
))
757 for (clock
.n
= limit
->n
.min
; clock
.n
<= limit
->n
.max
;
761 intel_clock(dev
, refclk
, &clock
);
763 if (!intel_PLL_is_valid(crtc
, &clock
))
766 this_err
= abs(clock
.dot
- target
);
767 if (this_err
< err
) {
780 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
781 int target
, int refclk
, intel_clock_t
*best_clock
)
783 struct drm_device
*dev
= crtc
->dev
;
784 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
788 /* approximately equals target * 0.00488 */
789 int err_most
= (target
>> 8) + (target
>> 10);
792 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
793 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
795 clock
.p2
= limit
->p2
.p2_fast
;
797 clock
.p2
= limit
->p2
.p2_slow
;
799 if (target
< limit
->p2
.dot_limit
)
800 clock
.p2
= limit
->p2
.p2_slow
;
802 clock
.p2
= limit
->p2
.p2_fast
;
805 memset(best_clock
, 0, sizeof(*best_clock
));
806 max_n
= limit
->n
.max
;
807 /* based on hardware requriment prefer smaller n to precision */
808 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
809 /* based on hardware requirment prefere larger m1,m2 */
810 for (clock
.m1
= limit
->m1
.max
;
811 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
812 for (clock
.m2
= limit
->m2
.max
;
813 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
814 for (clock
.p1
= limit
->p1
.max
;
815 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
818 intel_clock(dev
, refclk
, &clock
);
819 if (!intel_PLL_is_valid(crtc
, &clock
))
821 this_err
= abs(clock
.dot
- target
) ;
822 if (this_err
< err_most
) {
836 intel_find_pll_igdng_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
837 int target
, int refclk
, intel_clock_t
*best_clock
)
839 struct drm_device
*dev
= crtc
->dev
;
841 if (target
< 200000) {
854 intel_clock(dev
, refclk
, &clock
);
855 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
860 intel_igdng_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
861 int target
, int refclk
, intel_clock_t
*best_clock
)
863 struct drm_device
*dev
= crtc
->dev
;
864 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
871 /* eDP has only 2 clock choice, no n/m/p setting */
875 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
))
876 return intel_find_pll_igdng_dp(limit
, crtc
, target
,
879 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
880 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
882 clock
.p2
= limit
->p2
.p2_fast
;
884 clock
.p2
= limit
->p2
.p2_slow
;
886 if (target
< limit
->p2
.dot_limit
)
887 clock
.p2
= limit
->p2
.p2_slow
;
889 clock
.p2
= limit
->p2
.p2_fast
;
892 memset(best_clock
, 0, sizeof(*best_clock
));
893 max_n
= limit
->n
.max
;
894 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
895 /* based on hardware requriment prefer smaller n to precision */
896 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
897 /* based on hardware requirment prefere larger m1,m2 */
898 for (clock
.m1
= limit
->m1
.max
;
899 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
900 for (clock
.m2
= limit
->m2
.max
;
901 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
904 intel_clock(dev
, refclk
, &clock
);
905 if (!intel_PLL_is_valid(crtc
, &clock
))
907 this_err
= abs((10000 - (target
*10000/clock
.dot
)));
908 if (this_err
< err_most
) {
913 /* found on first matching */
924 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
926 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
927 int target
, int refclk
, intel_clock_t
*best_clock
)
930 if (target
< 200000) {
943 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
944 clock
.p
= (clock
.p1
* clock
.p2
);
945 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
946 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
951 intel_wait_for_vblank(struct drm_device
*dev
)
953 /* Wait for 20ms, i.e. one cycle at 50hz. */
957 /* Parameters have changed, update FBC info */
958 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
960 struct drm_device
*dev
= crtc
->dev
;
961 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
962 struct drm_framebuffer
*fb
= crtc
->fb
;
963 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
964 struct drm_i915_gem_object
*obj_priv
= intel_fb
->obj
->driver_private
;
965 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
967 u32 fbc_ctl
, fbc_ctl2
;
969 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
971 if (fb
->pitch
< dev_priv
->cfb_pitch
)
972 dev_priv
->cfb_pitch
= fb
->pitch
;
974 /* FBC_CTL wants 64B units */
975 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
976 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
977 dev_priv
->cfb_plane
= intel_crtc
->plane
;
978 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
981 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
982 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
985 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| plane
;
986 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
987 fbc_ctl2
|= FBC_CTL_CPU_FENCE
;
988 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
989 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
992 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
993 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
994 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
995 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
996 fbc_ctl
|= dev_priv
->cfb_fence
;
997 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
999 DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1000 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1003 void i8xx_disable_fbc(struct drm_device
*dev
)
1005 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1008 if (!I915_HAS_FBC(dev
))
1011 /* Disable compression */
1012 fbc_ctl
= I915_READ(FBC_CONTROL
);
1013 fbc_ctl
&= ~FBC_CTL_EN
;
1014 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1016 /* Wait for compressing bit to clear */
1017 while (I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
)
1020 intel_wait_for_vblank(dev
);
1022 DRM_DEBUG("disabled FBC\n");
1025 static bool i8xx_fbc_enabled(struct drm_crtc
*crtc
)
1027 struct drm_device
*dev
= crtc
->dev
;
1028 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1030 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1033 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1035 struct drm_device
*dev
= crtc
->dev
;
1036 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1037 struct drm_framebuffer
*fb
= crtc
->fb
;
1038 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1039 struct drm_i915_gem_object
*obj_priv
= intel_fb
->obj
->driver_private
;
1040 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1041 int plane
= (intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
:
1043 unsigned long stall_watermark
= 200;
1046 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1047 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1048 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1050 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1051 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1052 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1053 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1055 I915_WRITE(DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1058 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1059 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1060 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1061 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1062 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1065 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1067 DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc
->plane
);
1070 void g4x_disable_fbc(struct drm_device
*dev
)
1072 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1075 /* Disable compression */
1076 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1077 dpfc_ctl
&= ~DPFC_CTL_EN
;
1078 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1079 intel_wait_for_vblank(dev
);
1081 DRM_DEBUG("disabled FBC\n");
1084 static bool g4x_fbc_enabled(struct drm_crtc
*crtc
)
1086 struct drm_device
*dev
= crtc
->dev
;
1087 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1089 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1093 * intel_update_fbc - enable/disable FBC as needed
1094 * @crtc: CRTC to point the compressor at
1095 * @mode: mode in use
1097 * Set up the framebuffer compression hardware at mode set time. We
1098 * enable it if possible:
1099 * - plane A only (on pre-965)
1100 * - no pixel mulitply/line duplication
1101 * - no alpha buffer discard
1103 * - framebuffer <= 2048 in width, 1536 in height
1105 * We can't assume that any compression will take place (worst case),
1106 * so the compressed buffer has to be the same size as the uncompressed
1107 * one. It also must reside (along with the line length buffer) in
1110 * We need to enable/disable FBC on a global basis.
1112 static void intel_update_fbc(struct drm_crtc
*crtc
,
1113 struct drm_display_mode
*mode
)
1115 struct drm_device
*dev
= crtc
->dev
;
1116 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1117 struct drm_framebuffer
*fb
= crtc
->fb
;
1118 struct intel_framebuffer
*intel_fb
;
1119 struct drm_i915_gem_object
*obj_priv
;
1120 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1121 int plane
= intel_crtc
->plane
;
1123 if (!i915_powersave
)
1126 if (!dev_priv
->display
.fbc_enabled
||
1127 !dev_priv
->display
.enable_fbc
||
1128 !dev_priv
->display
.disable_fbc
)
1134 intel_fb
= to_intel_framebuffer(fb
);
1135 obj_priv
= intel_fb
->obj
->driver_private
;
1138 * If FBC is already on, we just have to verify that we can
1139 * keep it that way...
1140 * Need to disable if:
1141 * - changing FBC params (stride, fence, mode)
1142 * - new fb is too large to fit in compressed buffer
1143 * - going to an unsupported config (interlace, pixel multiply, etc.)
1145 if (intel_fb
->obj
->size
> dev_priv
->cfb_size
) {
1146 DRM_DEBUG("framebuffer too large, disabling compression\n");
1149 if ((mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ||
1150 (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1151 DRM_DEBUG("mode incompatible with compression, disabling\n");
1154 if ((mode
->hdisplay
> 2048) ||
1155 (mode
->vdisplay
> 1536)) {
1156 DRM_DEBUG("mode too large for compression, disabling\n");
1159 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && plane
!= 0) {
1160 DRM_DEBUG("plane not 0, disabling compression\n");
1163 if (obj_priv
->tiling_mode
!= I915_TILING_X
) {
1164 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1168 if (dev_priv
->display
.fbc_enabled(crtc
)) {
1169 /* We can re-enable it in this case, but need to update pitch */
1170 if (fb
->pitch
> dev_priv
->cfb_pitch
)
1171 dev_priv
->display
.disable_fbc(dev
);
1172 if (obj_priv
->fence_reg
!= dev_priv
->cfb_fence
)
1173 dev_priv
->display
.disable_fbc(dev
);
1174 if (plane
!= dev_priv
->cfb_plane
)
1175 dev_priv
->display
.disable_fbc(dev
);
1178 if (!dev_priv
->display
.fbc_enabled(crtc
)) {
1179 /* Now try to turn it back on if possible */
1180 dev_priv
->display
.enable_fbc(crtc
, 500);
1186 DRM_DEBUG("unsupported config, disabling FBC\n");
1187 /* Multiple disables should be harmless */
1188 if (dev_priv
->display
.fbc_enabled(crtc
))
1189 dev_priv
->display
.disable_fbc(dev
);
1193 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1194 struct drm_framebuffer
*old_fb
)
1196 struct drm_device
*dev
= crtc
->dev
;
1197 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1198 struct drm_i915_master_private
*master_priv
;
1199 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1200 struct intel_framebuffer
*intel_fb
;
1201 struct drm_i915_gem_object
*obj_priv
;
1202 struct drm_gem_object
*obj
;
1203 int pipe
= intel_crtc
->pipe
;
1204 int plane
= intel_crtc
->plane
;
1205 unsigned long Start
, Offset
;
1206 int dspbase
= (plane
== 0 ? DSPAADDR
: DSPBADDR
);
1207 int dspsurf
= (plane
== 0 ? DSPASURF
: DSPBSURF
);
1208 int dspstride
= (plane
== 0) ? DSPASTRIDE
: DSPBSTRIDE
;
1209 int dsptileoff
= (plane
== 0 ? DSPATILEOFF
: DSPBTILEOFF
);
1210 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1211 u32 dspcntr
, alignment
;
1216 DRM_DEBUG("No FB bound\n");
1225 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1229 intel_fb
= to_intel_framebuffer(crtc
->fb
);
1230 obj
= intel_fb
->obj
;
1231 obj_priv
= obj
->driver_private
;
1233 switch (obj_priv
->tiling_mode
) {
1234 case I915_TILING_NONE
:
1235 alignment
= 64 * 1024;
1238 /* pin() will align the object as required by fence */
1242 /* FIXME: Is this true? */
1243 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1249 mutex_lock(&dev
->struct_mutex
);
1250 ret
= i915_gem_object_pin(obj
, alignment
);
1252 mutex_unlock(&dev
->struct_mutex
);
1256 ret
= i915_gem_object_set_to_gtt_domain(obj
, 1);
1258 i915_gem_object_unpin(obj
);
1259 mutex_unlock(&dev
->struct_mutex
);
1263 /* Pre-i965 needs to install a fence for tiled scan-out */
1264 if (!IS_I965G(dev
) &&
1265 obj_priv
->fence_reg
== I915_FENCE_REG_NONE
&&
1266 obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1267 ret
= i915_gem_object_get_fence_reg(obj
);
1269 i915_gem_object_unpin(obj
);
1270 mutex_unlock(&dev
->struct_mutex
);
1275 dspcntr
= I915_READ(dspcntr_reg
);
1276 /* Mask out pixel format bits in case we change it */
1277 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1278 switch (crtc
->fb
->bits_per_pixel
) {
1280 dspcntr
|= DISPPLANE_8BPP
;
1283 if (crtc
->fb
->depth
== 15)
1284 dspcntr
|= DISPPLANE_15_16BPP
;
1286 dspcntr
|= DISPPLANE_16BPP
;
1290 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1293 DRM_ERROR("Unknown color depth\n");
1294 i915_gem_object_unpin(obj
);
1295 mutex_unlock(&dev
->struct_mutex
);
1298 if (IS_I965G(dev
)) {
1299 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1300 dspcntr
|= DISPPLANE_TILED
;
1302 dspcntr
&= ~DISPPLANE_TILED
;
1307 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1309 I915_WRITE(dspcntr_reg
, dspcntr
);
1311 Start
= obj_priv
->gtt_offset
;
1312 Offset
= y
* crtc
->fb
->pitch
+ x
* (crtc
->fb
->bits_per_pixel
/ 8);
1314 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start
, Offset
, x
, y
);
1315 I915_WRITE(dspstride
, crtc
->fb
->pitch
);
1316 if (IS_I965G(dev
)) {
1317 I915_WRITE(dspbase
, Offset
);
1319 I915_WRITE(dspsurf
, Start
);
1321 I915_WRITE(dsptileoff
, (y
<< 16) | x
);
1323 I915_WRITE(dspbase
, Start
+ Offset
);
1327 if ((IS_I965G(dev
) || plane
== 0))
1328 intel_update_fbc(crtc
, &crtc
->mode
);
1330 intel_wait_for_vblank(dev
);
1333 intel_fb
= to_intel_framebuffer(old_fb
);
1334 obj_priv
= intel_fb
->obj
->driver_private
;
1335 i915_gem_object_unpin(intel_fb
->obj
);
1337 intel_increase_pllclock(crtc
, true);
1339 mutex_unlock(&dev
->struct_mutex
);
1341 if (!dev
->primary
->master
)
1344 master_priv
= dev
->primary
->master
->driver_priv
;
1345 if (!master_priv
->sarea_priv
)
1349 master_priv
->sarea_priv
->pipeB_x
= x
;
1350 master_priv
->sarea_priv
->pipeB_y
= y
;
1352 master_priv
->sarea_priv
->pipeA_x
= x
;
1353 master_priv
->sarea_priv
->pipeA_y
= y
;
1359 /* Disable the VGA plane that we never use */
1360 static void i915_disable_vga (struct drm_device
*dev
)
1362 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1367 vga_reg
= CPU_VGACNTRL
;
1371 if (I915_READ(vga_reg
) & VGA_DISP_DISABLE
)
1374 I915_WRITE8(VGA_SR_INDEX
, 1);
1375 sr1
= I915_READ8(VGA_SR_DATA
);
1376 I915_WRITE8(VGA_SR_DATA
, sr1
| (1 << 5));
1379 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
1382 static void igdng_disable_pll_edp (struct drm_crtc
*crtc
)
1384 struct drm_device
*dev
= crtc
->dev
;
1385 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1389 dpa_ctl
= I915_READ(DP_A
);
1390 dpa_ctl
&= ~DP_PLL_ENABLE
;
1391 I915_WRITE(DP_A
, dpa_ctl
);
1394 static void igdng_enable_pll_edp (struct drm_crtc
*crtc
)
1396 struct drm_device
*dev
= crtc
->dev
;
1397 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1400 dpa_ctl
= I915_READ(DP_A
);
1401 dpa_ctl
|= DP_PLL_ENABLE
;
1402 I915_WRITE(DP_A
, dpa_ctl
);
1407 static void igdng_set_pll_edp (struct drm_crtc
*crtc
, int clock
)
1409 struct drm_device
*dev
= crtc
->dev
;
1410 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1413 DRM_DEBUG("eDP PLL enable for clock %d\n", clock
);
1414 dpa_ctl
= I915_READ(DP_A
);
1415 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
1417 if (clock
< 200000) {
1419 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
1420 /* workaround for 160Mhz:
1421 1) program 0x4600c bits 15:0 = 0x8124
1422 2) program 0x46010 bit 0 = 1
1423 3) program 0x46034 bit 24 = 1
1424 4) program 0x64000 bit 14 = 1
1426 temp
= I915_READ(0x4600c);
1428 I915_WRITE(0x4600c, temp
| 0x8124);
1430 temp
= I915_READ(0x46010);
1431 I915_WRITE(0x46010, temp
| 1);
1433 temp
= I915_READ(0x46034);
1434 I915_WRITE(0x46034, temp
| (1 << 24));
1436 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
1438 I915_WRITE(DP_A
, dpa_ctl
);
1443 static void igdng_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1445 struct drm_device
*dev
= crtc
->dev
;
1446 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1447 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1448 int pipe
= intel_crtc
->pipe
;
1449 int plane
= intel_crtc
->plane
;
1450 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
1451 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1452 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1453 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1454 int fdi_tx_reg
= (pipe
== 0) ? FDI_TXA_CTL
: FDI_TXB_CTL
;
1455 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
1456 int fdi_rx_iir_reg
= (pipe
== 0) ? FDI_RXA_IIR
: FDI_RXB_IIR
;
1457 int fdi_rx_imr_reg
= (pipe
== 0) ? FDI_RXA_IMR
: FDI_RXB_IMR
;
1458 int transconf_reg
= (pipe
== 0) ? TRANSACONF
: TRANSBCONF
;
1459 int pf_ctl_reg
= (pipe
== 0) ? PFA_CTL_1
: PFB_CTL_1
;
1460 int pf_win_size
= (pipe
== 0) ? PFA_WIN_SZ
: PFB_WIN_SZ
;
1461 int pf_win_pos
= (pipe
== 0) ? PFA_WIN_POS
: PFB_WIN_POS
;
1462 int cpu_htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
1463 int cpu_hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
1464 int cpu_hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
1465 int cpu_vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
1466 int cpu_vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
1467 int cpu_vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
1468 int trans_htot_reg
= (pipe
== 0) ? TRANS_HTOTAL_A
: TRANS_HTOTAL_B
;
1469 int trans_hblank_reg
= (pipe
== 0) ? TRANS_HBLANK_A
: TRANS_HBLANK_B
;
1470 int trans_hsync_reg
= (pipe
== 0) ? TRANS_HSYNC_A
: TRANS_HSYNC_B
;
1471 int trans_vtot_reg
= (pipe
== 0) ? TRANS_VTOTAL_A
: TRANS_VTOTAL_B
;
1472 int trans_vblank_reg
= (pipe
== 0) ? TRANS_VBLANK_A
: TRANS_VBLANK_B
;
1473 int trans_vsync_reg
= (pipe
== 0) ? TRANS_VSYNC_A
: TRANS_VSYNC_B
;
1475 int tries
= 5, j
, n
;
1477 /* XXX: When our outputs are all unaware of DPMS modes other than off
1478 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1481 case DRM_MODE_DPMS_ON
:
1482 case DRM_MODE_DPMS_STANDBY
:
1483 case DRM_MODE_DPMS_SUSPEND
:
1484 DRM_DEBUG("crtc %d dpms on\n", pipe
);
1486 /* enable eDP PLL */
1487 igdng_enable_pll_edp(crtc
);
1489 /* enable PCH DPLL */
1490 temp
= I915_READ(pch_dpll_reg
);
1491 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1492 I915_WRITE(pch_dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1493 I915_READ(pch_dpll_reg
);
1496 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1497 temp
= I915_READ(fdi_rx_reg
);
1498 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
|
1500 FDI_DP_PORT_WIDTH_X4
); /* default 4 lanes */
1501 I915_READ(fdi_rx_reg
);
1504 /* Enable CPU FDI TX PLL, always on for IGDNG */
1505 temp
= I915_READ(fdi_tx_reg
);
1506 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
1507 I915_WRITE(fdi_tx_reg
, temp
| FDI_TX_PLL_ENABLE
);
1508 I915_READ(fdi_tx_reg
);
1513 /* Enable panel fitting for LVDS */
1514 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1515 temp
= I915_READ(pf_ctl_reg
);
1516 I915_WRITE(pf_ctl_reg
, temp
| PF_ENABLE
);
1518 /* currently full aspect */
1519 I915_WRITE(pf_win_pos
, 0);
1521 I915_WRITE(pf_win_size
,
1522 (dev_priv
->panel_fixed_mode
->hdisplay
<< 16) |
1523 (dev_priv
->panel_fixed_mode
->vdisplay
));
1526 /* Enable CPU pipe */
1527 temp
= I915_READ(pipeconf_reg
);
1528 if ((temp
& PIPEACONF_ENABLE
) == 0) {
1529 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1530 I915_READ(pipeconf_reg
);
1534 /* configure and enable CPU plane */
1535 temp
= I915_READ(dspcntr_reg
);
1536 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1537 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1538 /* Flush the plane changes */
1539 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1543 /* enable CPU FDI TX and PCH FDI RX */
1544 temp
= I915_READ(fdi_tx_reg
);
1545 temp
|= FDI_TX_ENABLE
;
1546 temp
|= FDI_DP_PORT_WIDTH_X4
; /* default */
1547 temp
&= ~FDI_LINK_TRAIN_NONE
;
1548 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1549 I915_WRITE(fdi_tx_reg
, temp
);
1550 I915_READ(fdi_tx_reg
);
1552 temp
= I915_READ(fdi_rx_reg
);
1553 temp
&= ~FDI_LINK_TRAIN_NONE
;
1554 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1555 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_ENABLE
);
1556 I915_READ(fdi_rx_reg
);
1561 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1563 temp
= I915_READ(fdi_rx_imr_reg
);
1564 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1565 temp
&= ~FDI_RX_BIT_LOCK
;
1566 I915_WRITE(fdi_rx_imr_reg
, temp
);
1567 I915_READ(fdi_rx_imr_reg
);
1570 temp
= I915_READ(fdi_rx_iir_reg
);
1571 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp
);
1573 if ((temp
& FDI_RX_BIT_LOCK
) == 0) {
1574 for (j
= 0; j
< tries
; j
++) {
1575 temp
= I915_READ(fdi_rx_iir_reg
);
1576 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp
);
1577 if (temp
& FDI_RX_BIT_LOCK
)
1582 I915_WRITE(fdi_rx_iir_reg
,
1583 temp
| FDI_RX_BIT_LOCK
);
1585 DRM_DEBUG("train 1 fail\n");
1587 I915_WRITE(fdi_rx_iir_reg
,
1588 temp
| FDI_RX_BIT_LOCK
);
1589 DRM_DEBUG("train 1 ok 2!\n");
1591 temp
= I915_READ(fdi_tx_reg
);
1592 temp
&= ~FDI_LINK_TRAIN_NONE
;
1593 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1594 I915_WRITE(fdi_tx_reg
, temp
);
1596 temp
= I915_READ(fdi_rx_reg
);
1597 temp
&= ~FDI_LINK_TRAIN_NONE
;
1598 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1599 I915_WRITE(fdi_rx_reg
, temp
);
1603 temp
= I915_READ(fdi_rx_iir_reg
);
1604 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp
);
1606 if ((temp
& FDI_RX_SYMBOL_LOCK
) == 0) {
1607 for (j
= 0; j
< tries
; j
++) {
1608 temp
= I915_READ(fdi_rx_iir_reg
);
1609 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp
);
1610 if (temp
& FDI_RX_SYMBOL_LOCK
)
1615 I915_WRITE(fdi_rx_iir_reg
,
1616 temp
| FDI_RX_SYMBOL_LOCK
);
1617 DRM_DEBUG("train 2 ok 1!\n");
1619 DRM_DEBUG("train 2 fail\n");
1621 I915_WRITE(fdi_rx_iir_reg
,
1622 temp
| FDI_RX_SYMBOL_LOCK
);
1623 DRM_DEBUG("train 2 ok 2!\n");
1625 DRM_DEBUG("train done\n");
1627 /* set transcoder timing */
1628 I915_WRITE(trans_htot_reg
, I915_READ(cpu_htot_reg
));
1629 I915_WRITE(trans_hblank_reg
, I915_READ(cpu_hblank_reg
));
1630 I915_WRITE(trans_hsync_reg
, I915_READ(cpu_hsync_reg
));
1632 I915_WRITE(trans_vtot_reg
, I915_READ(cpu_vtot_reg
));
1633 I915_WRITE(trans_vblank_reg
, I915_READ(cpu_vblank_reg
));
1634 I915_WRITE(trans_vsync_reg
, I915_READ(cpu_vsync_reg
));
1636 /* enable PCH transcoder */
1637 temp
= I915_READ(transconf_reg
);
1638 I915_WRITE(transconf_reg
, temp
| TRANS_ENABLE
);
1639 I915_READ(transconf_reg
);
1641 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) == 0)
1646 temp
= I915_READ(fdi_tx_reg
);
1647 temp
&= ~FDI_LINK_TRAIN_NONE
;
1648 I915_WRITE(fdi_tx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1649 FDI_TX_ENHANCE_FRAME_ENABLE
);
1650 I915_READ(fdi_tx_reg
);
1652 temp
= I915_READ(fdi_rx_reg
);
1653 temp
&= ~FDI_LINK_TRAIN_NONE
;
1654 I915_WRITE(fdi_rx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1655 FDI_RX_ENHANCE_FRAME_ENABLE
);
1656 I915_READ(fdi_rx_reg
);
1658 /* wait one idle pattern time */
1663 intel_crtc_load_lut(crtc
);
1666 case DRM_MODE_DPMS_OFF
:
1667 DRM_DEBUG("crtc %d dpms off\n", pipe
);
1669 i915_disable_vga(dev
);
1671 /* Disable display plane */
1672 temp
= I915_READ(dspcntr_reg
);
1673 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
1674 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
1675 /* Flush the plane changes */
1676 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1677 I915_READ(dspbase_reg
);
1680 /* disable cpu pipe, disable after all planes disabled */
1681 temp
= I915_READ(pipeconf_reg
);
1682 if ((temp
& PIPEACONF_ENABLE
) != 0) {
1683 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
1684 I915_READ(pipeconf_reg
);
1686 /* wait for cpu pipe off, pipe state */
1687 while ((I915_READ(pipeconf_reg
) & I965_PIPECONF_ACTIVE
) != 0) {
1693 DRM_DEBUG("pipe %d off delay\n", pipe
);
1698 DRM_DEBUG("crtc %d is disabled\n", pipe
);
1701 igdng_disable_pll_edp(crtc
);
1704 /* disable CPU FDI tx and PCH FDI rx */
1705 temp
= I915_READ(fdi_tx_reg
);
1706 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_ENABLE
);
1707 I915_READ(fdi_tx_reg
);
1709 temp
= I915_READ(fdi_rx_reg
);
1710 I915_WRITE(fdi_rx_reg
, temp
& ~FDI_RX_ENABLE
);
1711 I915_READ(fdi_rx_reg
);
1715 /* still set train pattern 1 */
1716 temp
= I915_READ(fdi_tx_reg
);
1717 temp
&= ~FDI_LINK_TRAIN_NONE
;
1718 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1719 I915_WRITE(fdi_tx_reg
, temp
);
1721 temp
= I915_READ(fdi_rx_reg
);
1722 temp
&= ~FDI_LINK_TRAIN_NONE
;
1723 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1724 I915_WRITE(fdi_rx_reg
, temp
);
1728 /* disable PCH transcoder */
1729 temp
= I915_READ(transconf_reg
);
1730 if ((temp
& TRANS_ENABLE
) != 0) {
1731 I915_WRITE(transconf_reg
, temp
& ~TRANS_ENABLE
);
1732 I915_READ(transconf_reg
);
1734 /* wait for PCH transcoder off, transcoder state */
1735 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) != 0) {
1741 DRM_DEBUG("transcoder %d off delay\n", pipe
);
1747 /* disable PCH DPLL */
1748 temp
= I915_READ(pch_dpll_reg
);
1749 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
1750 I915_WRITE(pch_dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
1751 I915_READ(pch_dpll_reg
);
1754 temp
= I915_READ(fdi_rx_reg
);
1755 if ((temp
& FDI_RX_PLL_ENABLE
) != 0) {
1756 temp
&= ~FDI_SEL_PCDCLK
;
1757 temp
&= ~FDI_RX_PLL_ENABLE
;
1758 I915_WRITE(fdi_rx_reg
, temp
);
1759 I915_READ(fdi_rx_reg
);
1762 /* Disable CPU FDI TX PLL */
1763 temp
= I915_READ(fdi_tx_reg
);
1764 if ((temp
& FDI_TX_PLL_ENABLE
) != 0) {
1765 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_PLL_ENABLE
);
1766 I915_READ(fdi_tx_reg
);
1771 temp
= I915_READ(pf_ctl_reg
);
1772 if ((temp
& PF_ENABLE
) != 0) {
1773 I915_WRITE(pf_ctl_reg
, temp
& ~PF_ENABLE
);
1774 I915_READ(pf_ctl_reg
);
1776 I915_WRITE(pf_win_size
, 0);
1778 /* Wait for the clocks to turn off. */
1784 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1786 struct drm_device
*dev
= crtc
->dev
;
1787 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1788 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1789 int pipe
= intel_crtc
->pipe
;
1790 int plane
= intel_crtc
->plane
;
1791 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
1792 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1793 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1794 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1797 /* XXX: When our outputs are all unaware of DPMS modes other than off
1798 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1801 case DRM_MODE_DPMS_ON
:
1802 case DRM_MODE_DPMS_STANDBY
:
1803 case DRM_MODE_DPMS_SUSPEND
:
1804 /* Enable the DPLL */
1805 temp
= I915_READ(dpll_reg
);
1806 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1807 I915_WRITE(dpll_reg
, temp
);
1808 I915_READ(dpll_reg
);
1809 /* Wait for the clocks to stabilize. */
1811 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1812 I915_READ(dpll_reg
);
1813 /* Wait for the clocks to stabilize. */
1815 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1816 I915_READ(dpll_reg
);
1817 /* Wait for the clocks to stabilize. */
1821 /* Enable the pipe */
1822 temp
= I915_READ(pipeconf_reg
);
1823 if ((temp
& PIPEACONF_ENABLE
) == 0)
1824 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1826 /* Enable the plane */
1827 temp
= I915_READ(dspcntr_reg
);
1828 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1829 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1830 /* Flush the plane changes */
1831 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1834 intel_crtc_load_lut(crtc
);
1836 if ((IS_I965G(dev
) || plane
== 0))
1837 intel_update_fbc(crtc
, &crtc
->mode
);
1839 /* Give the overlay scaler a chance to enable if it's on this pipe */
1840 //intel_crtc_dpms_video(crtc, true); TODO
1841 intel_update_watermarks(dev
);
1843 case DRM_MODE_DPMS_OFF
:
1844 intel_update_watermarks(dev
);
1845 /* Give the overlay scaler a chance to disable if it's on this pipe */
1846 //intel_crtc_dpms_video(crtc, FALSE); TODO
1848 if (dev_priv
->cfb_plane
== plane
&&
1849 dev_priv
->display
.disable_fbc
)
1850 dev_priv
->display
.disable_fbc(dev
);
1852 /* Disable the VGA plane that we never use */
1853 i915_disable_vga(dev
);
1855 /* Disable display plane */
1856 temp
= I915_READ(dspcntr_reg
);
1857 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
1858 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
1859 /* Flush the plane changes */
1860 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1861 I915_READ(dspbase_reg
);
1864 if (!IS_I9XX(dev
)) {
1865 /* Wait for vblank for the disable to take effect */
1866 intel_wait_for_vblank(dev
);
1869 /* Next, disable display pipes */
1870 temp
= I915_READ(pipeconf_reg
);
1871 if ((temp
& PIPEACONF_ENABLE
) != 0) {
1872 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
1873 I915_READ(pipeconf_reg
);
1876 /* Wait for vblank for the disable to take effect. */
1877 intel_wait_for_vblank(dev
);
1879 temp
= I915_READ(dpll_reg
);
1880 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
1881 I915_WRITE(dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
1882 I915_READ(dpll_reg
);
1885 /* Wait for the clocks to turn off. */
1892 * Sets the power management mode of the pipe and plane.
1894 * This code should probably grow support for turning the cursor off and back
1895 * on appropriately at the same time as we're turning the pipe off/on.
1897 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1899 struct drm_device
*dev
= crtc
->dev
;
1900 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1901 struct drm_i915_master_private
*master_priv
;
1902 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1903 int pipe
= intel_crtc
->pipe
;
1906 dev_priv
->display
.dpms(crtc
, mode
);
1908 intel_crtc
->dpms_mode
= mode
;
1910 if (!dev
->primary
->master
)
1913 master_priv
= dev
->primary
->master
->driver_priv
;
1914 if (!master_priv
->sarea_priv
)
1917 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
1921 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
1922 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
1925 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
1926 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
1929 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
1934 static void intel_crtc_prepare (struct drm_crtc
*crtc
)
1936 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
1937 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
1940 static void intel_crtc_commit (struct drm_crtc
*crtc
)
1942 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
1943 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
1946 void intel_encoder_prepare (struct drm_encoder
*encoder
)
1948 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
1949 /* lvds has its own version of prepare see intel_lvds_prepare */
1950 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
1953 void intel_encoder_commit (struct drm_encoder
*encoder
)
1955 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
1956 /* lvds has its own version of commit see intel_lvds_commit */
1957 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
1960 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
1961 struct drm_display_mode
*mode
,
1962 struct drm_display_mode
*adjusted_mode
)
1964 struct drm_device
*dev
= crtc
->dev
;
1965 if (IS_IGDNG(dev
)) {
1966 /* FDI link clock is fixed at 2.7G */
1967 if (mode
->clock
* 3 > 27000 * 4)
1968 return MODE_CLOCK_HIGH
;
1973 static int i945_get_display_clock_speed(struct drm_device
*dev
)
1978 static int i915_get_display_clock_speed(struct drm_device
*dev
)
1983 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
1988 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
1992 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
1994 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
1997 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
1998 case GC_DISPLAY_CLOCK_333_MHZ
:
2001 case GC_DISPLAY_CLOCK_190_200_MHZ
:
2007 static int i865_get_display_clock_speed(struct drm_device
*dev
)
2012 static int i855_get_display_clock_speed(struct drm_device
*dev
)
2015 /* Assume that the hardware is in the high speed state. This
2016 * should be the default.
2018 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
2019 case GC_CLOCK_133_200
:
2020 case GC_CLOCK_100_200
:
2022 case GC_CLOCK_166_250
:
2024 case GC_CLOCK_100_133
:
2028 /* Shouldn't happen */
2032 static int i830_get_display_clock_speed(struct drm_device
*dev
)
2038 * Return the pipe currently connected to the panel fitter,
2039 * or -1 if the panel fitter is not present or not in use
2041 static int intel_panel_fitter_pipe (struct drm_device
*dev
)
2043 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2046 /* i830 doesn't have a panel fitter */
2050 pfit_control
= I915_READ(PFIT_CONTROL
);
2052 /* See if the panel fitter is in use */
2053 if ((pfit_control
& PFIT_ENABLE
) == 0)
2056 /* 965 can place panel fitter on either pipe */
2058 return (pfit_control
>> 29) & 0x3;
2060 /* older chips can only use pipe 1 */
2073 fdi_reduce_ratio(u32
*num
, u32
*den
)
2075 while (*num
> 0xffffff || *den
> 0xffffff) {
2081 #define DATA_N 0x800000
2082 #define LINK_N 0x80000
2085 igdng_compute_m_n(int bytes_per_pixel
, int nlanes
,
2086 int pixel_clock
, int link_clock
,
2087 struct fdi_m_n
*m_n
)
2091 m_n
->tu
= 64; /* default size */
2093 temp
= (u64
) DATA_N
* pixel_clock
;
2094 temp
= div_u64(temp
, link_clock
);
2095 m_n
->gmch_m
= div_u64(temp
* bytes_per_pixel
, nlanes
);
2096 m_n
->gmch_n
= DATA_N
;
2097 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
2099 temp
= (u64
) LINK_N
* pixel_clock
;
2100 m_n
->link_m
= div_u64(temp
, link_clock
);
2101 m_n
->link_n
= LINK_N
;
2102 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
2106 struct intel_watermark_params
{
2107 unsigned long fifo_size
;
2108 unsigned long max_wm
;
2109 unsigned long default_wm
;
2110 unsigned long guard_size
;
2111 unsigned long cacheline_size
;
2114 /* IGD has different values for various configs */
2115 static struct intel_watermark_params igd_display_wm
= {
2122 static struct intel_watermark_params igd_display_hplloff_wm
= {
2129 static struct intel_watermark_params igd_cursor_wm
= {
2133 IGD_CURSOR_GUARD_WM
,
2136 static struct intel_watermark_params igd_cursor_hplloff_wm
= {
2140 IGD_CURSOR_GUARD_WM
,
2143 static struct intel_watermark_params i945_wm_info
= {
2150 static struct intel_watermark_params i915_wm_info
= {
2157 static struct intel_watermark_params i855_wm_info
= {
2164 static struct intel_watermark_params i830_wm_info
= {
2173 * intel_calculate_wm - calculate watermark level
2174 * @clock_in_khz: pixel clock
2175 * @wm: chip FIFO params
2176 * @pixel_size: display pixel size
2177 * @latency_ns: memory latency for the platform
2179 * Calculate the watermark level (the level at which the display plane will
2180 * start fetching from memory again). Each chip has a different display
2181 * FIFO size and allocation, so the caller needs to figure that out and pass
2182 * in the correct intel_watermark_params structure.
2184 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2185 * on the pixel size. When it reaches the watermark level, it'll start
2186 * fetching FIFO line sized based chunks from memory until the FIFO fills
2187 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2188 * will occur, and a display engine hang could result.
2190 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
2191 struct intel_watermark_params
*wm
,
2193 unsigned long latency_ns
)
2195 long entries_required
, wm_size
;
2198 * Note: we need to make sure we don't overflow for various clock &
2200 * clocks go from a few thousand to several hundred thousand.
2201 * latency is usually a few thousand
2203 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
2205 entries_required
/= wm
->cacheline_size
;
2207 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required
);
2209 wm_size
= wm
->fifo_size
- (entries_required
+ wm
->guard_size
);
2211 DRM_DEBUG("FIFO watermark level: %d\n", wm_size
);
2213 /* Don't promote wm_size to unsigned... */
2214 if (wm_size
> (long)wm
->max_wm
)
2215 wm_size
= wm
->max_wm
;
2217 wm_size
= wm
->default_wm
;
2221 struct cxsr_latency
{
2223 unsigned long fsb_freq
;
2224 unsigned long mem_freq
;
2225 unsigned long display_sr
;
2226 unsigned long display_hpll_disable
;
2227 unsigned long cursor_sr
;
2228 unsigned long cursor_hpll_disable
;
2231 static struct cxsr_latency cxsr_latency_table
[] = {
2232 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2233 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2234 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2236 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2237 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2238 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2240 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2241 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2242 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2244 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2245 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2246 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2248 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2249 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2250 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2252 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2253 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2254 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2257 static struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
, int fsb
,
2261 struct cxsr_latency
*latency
;
2263 if (fsb
== 0 || mem
== 0)
2266 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
2267 latency
= &cxsr_latency_table
[i
];
2268 if (is_desktop
== latency
->is_desktop
&&
2269 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
2273 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2278 static void igd_disable_cxsr(struct drm_device
*dev
)
2280 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2283 /* deactivate cxsr */
2284 reg
= I915_READ(DSPFW3
);
2285 reg
&= ~(IGD_SELF_REFRESH_EN
);
2286 I915_WRITE(DSPFW3
, reg
);
2287 DRM_INFO("Big FIFO is disabled\n");
2290 static void igd_enable_cxsr(struct drm_device
*dev
, unsigned long clock
,
2293 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2296 struct cxsr_latency
*latency
;
2298 latency
= intel_get_cxsr_latency(IS_IGDG(dev
), dev_priv
->fsb_freq
,
2299 dev_priv
->mem_freq
);
2301 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2302 igd_disable_cxsr(dev
);
2307 wm
= intel_calculate_wm(clock
, &igd_display_wm
, pixel_size
,
2308 latency
->display_sr
);
2309 reg
= I915_READ(DSPFW1
);
2312 I915_WRITE(DSPFW1
, reg
);
2313 DRM_DEBUG("DSPFW1 register is %x\n", reg
);
2316 wm
= intel_calculate_wm(clock
, &igd_cursor_wm
, pixel_size
,
2317 latency
->cursor_sr
);
2318 reg
= I915_READ(DSPFW3
);
2319 reg
&= ~(0x3f << 24);
2320 reg
|= (wm
& 0x3f) << 24;
2321 I915_WRITE(DSPFW3
, reg
);
2323 /* Display HPLL off SR */
2324 wm
= intel_calculate_wm(clock
, &igd_display_hplloff_wm
,
2325 latency
->display_hpll_disable
, I915_FIFO_LINE_SIZE
);
2326 reg
= I915_READ(DSPFW3
);
2329 I915_WRITE(DSPFW3
, reg
);
2331 /* cursor HPLL off SR */
2332 wm
= intel_calculate_wm(clock
, &igd_cursor_hplloff_wm
, pixel_size
,
2333 latency
->cursor_hpll_disable
);
2334 reg
= I915_READ(DSPFW3
);
2335 reg
&= ~(0x3f << 16);
2336 reg
|= (wm
& 0x3f) << 16;
2337 I915_WRITE(DSPFW3
, reg
);
2338 DRM_DEBUG("DSPFW3 register is %x\n", reg
);
2341 reg
= I915_READ(DSPFW3
);
2342 reg
|= IGD_SELF_REFRESH_EN
;
2343 I915_WRITE(DSPFW3
, reg
);
2345 DRM_INFO("Big FIFO is enabled\n");
2351 * Latency for FIFO fetches is dependent on several factors:
2352 * - memory configuration (speed, channels)
2354 * - current MCH state
2355 * It can be fairly high in some situations, so here we assume a fairly
2356 * pessimal value. It's a tradeoff between extra memory fetches (if we
2357 * set this value too high, the FIFO will fetch frequently to stay full)
2358 * and power consumption (set it too low to save power and we might see
2359 * FIFO underruns and display "flicker").
2361 * A value of 5us seems to be a good balance; safe for very low end
2362 * platforms but not overly aggressive on lower latency configs.
2364 const static int latency_ns
= 5000;
2366 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
2368 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2369 uint32_t dsparb
= I915_READ(DSPARB
);
2373 size
= dsparb
& 0x7f;
2375 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) -
2378 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb
, plane
? "B" : "A",
2384 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
2386 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2387 uint32_t dsparb
= I915_READ(DSPARB
);
2391 size
= dsparb
& 0x1ff;
2393 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) -
2395 size
>>= 1; /* Convert to cachelines */
2397 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb
, plane
? "B" : "A",
2403 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
2405 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2406 uint32_t dsparb
= I915_READ(DSPARB
);
2409 size
= dsparb
& 0x7f;
2410 size
>>= 2; /* Convert to cachelines */
2412 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb
, plane
? "B" : "A",
2418 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
2420 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2421 uint32_t dsparb
= I915_READ(DSPARB
);
2424 size
= dsparb
& 0x7f;
2425 size
>>= 1; /* Convert to cachelines */
2427 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb
, plane
? "B" : "A",
2433 static void g4x_update_wm(struct drm_device
*dev
, int unused
, int unused2
,
2434 int unused3
, int unused4
)
2436 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2437 u32 fw_blc_self
= I915_READ(FW_BLC_SELF
);
2440 fw_blc_self
|= FW_BLC_SELF_EN
;
2442 fw_blc_self
&= ~FW_BLC_SELF_EN
;
2443 I915_WRITE(FW_BLC_SELF
, fw_blc_self
);
2446 static void i965_update_wm(struct drm_device
*dev
, int unused
, int unused2
,
2447 int unused3
, int unused4
)
2449 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2451 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2453 /* 965 has limitations... */
2454 I915_WRITE(DSPFW1
, (8 << 16) | (8 << 8) | (8 << 0));
2455 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
2458 static void i9xx_update_wm(struct drm_device
*dev
, int planea_clock
,
2459 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2461 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2464 int total_size
, cacheline_size
, cwm
, srwm
= 1;
2465 int planea_wm
, planeb_wm
;
2466 struct intel_watermark_params planea_params
, planeb_params
;
2467 unsigned long line_time_us
;
2468 int sr_clock
, sr_entries
= 0;
2470 /* Create copies of the base settings for each pipe */
2471 if (IS_I965GM(dev
) || IS_I945GM(dev
))
2472 planea_params
= planeb_params
= i945_wm_info
;
2473 else if (IS_I9XX(dev
))
2474 planea_params
= planeb_params
= i915_wm_info
;
2476 planea_params
= planeb_params
= i855_wm_info
;
2478 /* Grab a couple of global values before we overwrite them */
2479 total_size
= planea_params
.fifo_size
;
2480 cacheline_size
= planea_params
.cacheline_size
;
2482 /* Update per-plane FIFO sizes */
2483 planea_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2484 planeb_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
2486 planea_wm
= intel_calculate_wm(planea_clock
, &planea_params
,
2487 pixel_size
, latency_ns
);
2488 planeb_wm
= intel_calculate_wm(planeb_clock
, &planeb_params
,
2489 pixel_size
, latency_ns
);
2490 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2493 * Overlay gets an aggressive default since video jitter is bad.
2497 /* Calc sr entries for one plane configs */
2498 if (HAS_FW_BLC(dev
) && sr_hdisplay
&&
2499 (!planea_clock
|| !planeb_clock
)) {
2500 /* self-refresh has much higher latency */
2501 const static int sr_latency_ns
= 6000;
2503 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2504 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2506 /* Use ns/us then divide to preserve precision */
2507 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2508 pixel_size
* sr_hdisplay
) / 1000;
2509 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2510 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2511 srwm
= total_size
- sr_entries
;
2514 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
| (srwm
& 0x3f));
2517 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2518 planea_wm
, planeb_wm
, cwm
, srwm
);
2520 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
2521 fwater_hi
= (cwm
& 0x1f);
2523 /* Set request length to 8 cachelines per fetch */
2524 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
2525 fwater_hi
= fwater_hi
| (1 << 8);
2527 I915_WRITE(FW_BLC
, fwater_lo
);
2528 I915_WRITE(FW_BLC2
, fwater_hi
);
2531 static void i830_update_wm(struct drm_device
*dev
, int planea_clock
, int unused
,
2532 int unused2
, int pixel_size
)
2534 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2535 uint32_t fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
2538 i830_wm_info
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2540 planea_wm
= intel_calculate_wm(planea_clock
, &i830_wm_info
,
2541 pixel_size
, latency_ns
);
2542 fwater_lo
|= (3<<8) | planea_wm
;
2544 DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm
);
2546 I915_WRITE(FW_BLC
, fwater_lo
);
2550 * intel_update_watermarks - update FIFO watermark values based on current modes
2552 * Calculate watermark values for the various WM regs based on current mode
2553 * and plane configuration.
2555 * There are several cases to deal with here:
2556 * - normal (i.e. non-self-refresh)
2557 * - self-refresh (SR) mode
2558 * - lines are large relative to FIFO size (buffer can hold up to 2)
2559 * - lines are small relative to FIFO size (buffer can hold more than 2
2560 * lines), so need to account for TLB latency
2562 * The normal calculation is:
2563 * watermark = dotclock * bytes per pixel * latency
2564 * where latency is platform & configuration dependent (we assume pessimal
2567 * The SR calculation is:
2568 * watermark = (trunc(latency/line time)+1) * surface width *
2571 * line time = htotal / dotclock
2572 * and latency is assumed to be high, as above.
2574 * The final value programmed to the register should always be rounded up,
2575 * and include an extra 2 entries to account for clock crossings.
2577 * We don't use the sprite, so we can ignore that. And on Crestline we have
2578 * to set the non-SR watermarks to 8.
2580 static void intel_update_watermarks(struct drm_device
*dev
)
2582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2583 struct drm_crtc
*crtc
;
2584 struct intel_crtc
*intel_crtc
;
2585 int sr_hdisplay
= 0;
2586 unsigned long planea_clock
= 0, planeb_clock
= 0, sr_clock
= 0;
2587 int enabled
= 0, pixel_size
= 0;
2589 /* Get the clock config from both planes */
2590 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
2591 intel_crtc
= to_intel_crtc(crtc
);
2592 if (crtc
->enabled
) {
2594 if (intel_crtc
->plane
== 0) {
2595 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2596 intel_crtc
->pipe
, crtc
->mode
.clock
);
2597 planea_clock
= crtc
->mode
.clock
;
2599 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2600 intel_crtc
->pipe
, crtc
->mode
.clock
);
2601 planeb_clock
= crtc
->mode
.clock
;
2603 sr_hdisplay
= crtc
->mode
.hdisplay
;
2604 sr_clock
= crtc
->mode
.clock
;
2606 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
2608 pixel_size
= 4; /* by default */
2615 /* Single plane configs can enable self refresh */
2616 if (enabled
== 1 && IS_IGD(dev
))
2617 igd_enable_cxsr(dev
, sr_clock
, pixel_size
);
2618 else if (IS_IGD(dev
))
2619 igd_disable_cxsr(dev
);
2621 dev_priv
->display
.update_wm(dev
, planea_clock
, planeb_clock
,
2622 sr_hdisplay
, pixel_size
);
2625 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
2626 struct drm_display_mode
*mode
,
2627 struct drm_display_mode
*adjusted_mode
,
2629 struct drm_framebuffer
*old_fb
)
2631 struct drm_device
*dev
= crtc
->dev
;
2632 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2633 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2634 int pipe
= intel_crtc
->pipe
;
2635 int plane
= intel_crtc
->plane
;
2636 int fp_reg
= (pipe
== 0) ? FPA0
: FPB0
;
2637 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
2638 int dpll_md_reg
= (intel_crtc
->pipe
== 0) ? DPLL_A_MD
: DPLL_B_MD
;
2639 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
2640 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
2641 int htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
2642 int hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
2643 int hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
2644 int vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
2645 int vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
2646 int vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
2647 int dspsize_reg
= (plane
== 0) ? DSPASIZE
: DSPBSIZE
;
2648 int dsppos_reg
= (plane
== 0) ? DSPAPOS
: DSPBPOS
;
2649 int pipesrc_reg
= (pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
2650 int refclk
, num_outputs
= 0;
2651 intel_clock_t clock
, reduced_clock
;
2652 u32 dpll
= 0, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
2653 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
2654 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
2655 bool is_edp
= false;
2656 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2657 struct drm_connector
*connector
;
2658 const intel_limit_t
*limit
;
2660 struct fdi_m_n m_n
= {0};
2661 int data_m1_reg
= (pipe
== 0) ? PIPEA_DATA_M1
: PIPEB_DATA_M1
;
2662 int data_n1_reg
= (pipe
== 0) ? PIPEA_DATA_N1
: PIPEB_DATA_N1
;
2663 int link_m1_reg
= (pipe
== 0) ? PIPEA_LINK_M1
: PIPEB_LINK_M1
;
2664 int link_n1_reg
= (pipe
== 0) ? PIPEA_LINK_N1
: PIPEB_LINK_N1
;
2665 int pch_fp_reg
= (pipe
== 0) ? PCH_FPA0
: PCH_FPB0
;
2666 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
2667 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
2668 int lvds_reg
= LVDS
;
2670 int sdvo_pixel_multiply
;
2673 drm_vblank_pre_modeset(dev
, pipe
);
2675 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
2676 struct intel_output
*intel_output
= to_intel_output(connector
);
2678 if (!connector
->encoder
|| connector
->encoder
->crtc
!= crtc
)
2681 switch (intel_output
->type
) {
2682 case INTEL_OUTPUT_LVDS
:
2685 case INTEL_OUTPUT_SDVO
:
2686 case INTEL_OUTPUT_HDMI
:
2688 if (intel_output
->needs_tv_clock
)
2691 case INTEL_OUTPUT_DVO
:
2694 case INTEL_OUTPUT_TVOUT
:
2697 case INTEL_OUTPUT_ANALOG
:
2700 case INTEL_OUTPUT_DISPLAYPORT
:
2703 case INTEL_OUTPUT_EDP
:
2711 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2) {
2712 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
2713 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk
/ 1000);
2714 } else if (IS_I9XX(dev
)) {
2717 refclk
= 120000; /* 120Mhz refclk */
2724 * Returns a set of divisors for the desired target clock with the given
2725 * refclk, or FALSE. The returned values represent the clock equation:
2726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2728 limit
= intel_limit(crtc
);
2729 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
2731 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2732 drm_vblank_post_modeset(dev
, pipe
);
2736 if (limit
->find_reduced_pll
&& dev_priv
->lvds_downclock_avail
) {
2737 memcpy(&reduced_clock
, &clock
, sizeof(intel_clock_t
));
2738 has_reduced_clock
= limit
->find_reduced_pll(limit
, crtc
,
2739 (adjusted_mode
->clock
*3/4),
2744 /* SDVO TV has fixed PLL values depend on its clock range,
2745 this mirrors vbios setting. */
2746 if (is_sdvo
&& is_tv
) {
2747 if (adjusted_mode
->clock
>= 100000
2748 && adjusted_mode
->clock
< 140500) {
2754 } else if (adjusted_mode
->clock
>= 140500
2755 && adjusted_mode
->clock
<= 200000) {
2765 if (IS_IGDNG(dev
)) {
2767 /* eDP doesn't require FDI link, so just set DP M/N
2768 according to current link config */
2770 struct drm_connector
*edp
;
2771 target_clock
= mode
->clock
;
2772 edp
= intel_pipe_get_output(crtc
);
2773 intel_edp_link_config(to_intel_output(edp
),
2776 /* DP over FDI requires target mode clock
2777 instead of link clock */
2779 target_clock
= mode
->clock
;
2781 target_clock
= adjusted_mode
->clock
;
2785 igdng_compute_m_n(3, lane
, target_clock
,
2790 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
2791 if (has_reduced_clock
)
2792 fp2
= (1 << reduced_clock
.n
) << 16 |
2793 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
2795 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
2796 if (has_reduced_clock
)
2797 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
2802 dpll
= DPLL_VGA_MODE_DIS
;
2806 dpll
|= DPLLB_MODE_LVDS
;
2808 dpll
|= DPLLB_MODE_DAC_SERIAL
;
2810 dpll
|= DPLL_DVO_HIGH_SPEED
;
2811 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
2812 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
2813 dpll
|= (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
2814 else if (IS_IGDNG(dev
))
2815 dpll
|= (sdvo_pixel_multiply
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
2818 dpll
|= DPLL_DVO_HIGH_SPEED
;
2820 /* compute bitmask from p1 value */
2822 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD
;
2824 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
2827 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
2828 if (IS_G4X(dev
) && has_reduced_clock
)
2829 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
2833 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
2836 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
2839 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
2842 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
2845 if (IS_I965G(dev
) && !IS_IGDNG(dev
))
2846 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
2849 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
2852 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
2854 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
2856 dpll
|= PLL_P2_DIVIDE_BY_4
;
2860 if (is_sdvo
&& is_tv
)
2861 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
2863 /* XXX: just matching BIOS for now */
2864 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
2866 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2)
2867 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
2869 dpll
|= PLL_REF_INPUT_DREFCLK
;
2871 /* setup pipeconf */
2872 pipeconf
= I915_READ(pipeconf_reg
);
2874 /* Set up the display plane register */
2875 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
2877 /* IGDNG's plane is forced to pipe, bit 24 is to
2878 enable color space conversion */
2879 if (!IS_IGDNG(dev
)) {
2881 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
2883 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
2886 if (pipe
== 0 && !IS_I965G(dev
)) {
2887 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2890 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2894 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
2895 pipeconf
|= PIPEACONF_DOUBLE_WIDE
;
2897 pipeconf
&= ~PIPEACONF_DOUBLE_WIDE
;
2900 dspcntr
|= DISPLAY_PLANE_ENABLE
;
2901 pipeconf
|= PIPEACONF_ENABLE
;
2902 dpll
|= DPLL_VCO_ENABLE
;
2905 /* Disable the panel fitter if it was on our pipe */
2906 if (!IS_IGDNG(dev
) && intel_panel_fitter_pipe(dev
) == pipe
)
2907 I915_WRITE(PFIT_CONTROL
, 0);
2909 DRM_DEBUG("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
2910 drm_mode_debug_printmodeline(mode
);
2912 /* assign to IGDNG registers */
2913 if (IS_IGDNG(dev
)) {
2914 fp_reg
= pch_fp_reg
;
2915 dpll_reg
= pch_dpll_reg
;
2919 igdng_disable_pll_edp(crtc
);
2920 } else if ((dpll
& DPLL_VCO_ENABLE
)) {
2921 I915_WRITE(fp_reg
, fp
);
2922 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
2923 I915_READ(dpll_reg
);
2927 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2928 * This is an exception to the general rule that mode_set doesn't turn
2935 lvds_reg
= PCH_LVDS
;
2937 lvds
= I915_READ(lvds_reg
);
2938 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
| LVDS_PIPEB_SELECT
;
2939 /* Set the B0-B3 data pairs corresponding to whether we're going to
2940 * set the DPLLs for dual-channel mode or not.
2943 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
2945 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
2947 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2948 * appropriately here, but we need to look more thoroughly into how
2949 * panels behave in the two modes.
2952 I915_WRITE(lvds_reg
, lvds
);
2953 I915_READ(lvds_reg
);
2956 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
2959 I915_WRITE(fp_reg
, fp
);
2960 I915_WRITE(dpll_reg
, dpll
);
2961 I915_READ(dpll_reg
);
2962 /* Wait for the clocks to stabilize. */
2965 if (IS_I965G(dev
) && !IS_IGDNG(dev
)) {
2967 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
2968 I915_WRITE(dpll_md_reg
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) |
2969 ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
2971 I915_WRITE(dpll_md_reg
, 0);
2973 /* write it again -- the BIOS does, after all */
2974 I915_WRITE(dpll_reg
, dpll
);
2976 I915_READ(dpll_reg
);
2977 /* Wait for the clocks to stabilize. */
2981 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
2982 I915_WRITE(fp_reg
+ 4, fp2
);
2983 intel_crtc
->lowfreq_avail
= true;
2984 if (HAS_PIPE_CXSR(dev
)) {
2985 DRM_DEBUG("enabling CxSR downclocking\n");
2986 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
2989 I915_WRITE(fp_reg
+ 4, fp
);
2990 intel_crtc
->lowfreq_avail
= false;
2991 if (HAS_PIPE_CXSR(dev
)) {
2992 DRM_DEBUG("disabling CxSR downclocking\n");
2993 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
2997 I915_WRITE(htot_reg
, (adjusted_mode
->crtc_hdisplay
- 1) |
2998 ((adjusted_mode
->crtc_htotal
- 1) << 16));
2999 I915_WRITE(hblank_reg
, (adjusted_mode
->crtc_hblank_start
- 1) |
3000 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
3001 I915_WRITE(hsync_reg
, (adjusted_mode
->crtc_hsync_start
- 1) |
3002 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
3003 I915_WRITE(vtot_reg
, (adjusted_mode
->crtc_vdisplay
- 1) |
3004 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
3005 I915_WRITE(vblank_reg
, (adjusted_mode
->crtc_vblank_start
- 1) |
3006 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
3007 I915_WRITE(vsync_reg
, (adjusted_mode
->crtc_vsync_start
- 1) |
3008 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
3009 /* pipesrc and dspsize control the size that is scaled from, which should
3010 * always be the user's requested size.
3012 if (!IS_IGDNG(dev
)) {
3013 I915_WRITE(dspsize_reg
, ((mode
->vdisplay
- 1) << 16) |
3014 (mode
->hdisplay
- 1));
3015 I915_WRITE(dsppos_reg
, 0);
3017 I915_WRITE(pipesrc_reg
, ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
3019 if (IS_IGDNG(dev
)) {
3020 I915_WRITE(data_m1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
3021 I915_WRITE(data_n1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_n
);
3022 I915_WRITE(link_m1_reg
, m_n
.link_m
);
3023 I915_WRITE(link_n1_reg
, m_n
.link_n
);
3026 igdng_set_pll_edp(crtc
, adjusted_mode
->clock
);
3028 /* enable FDI RX PLL too */
3029 temp
= I915_READ(fdi_rx_reg
);
3030 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
);
3035 I915_WRITE(pipeconf_reg
, pipeconf
);
3036 I915_READ(pipeconf_reg
);
3038 intel_wait_for_vblank(dev
);
3040 if (IS_IGDNG(dev
)) {
3041 /* enable address swizzle for tiling buffer */
3042 temp
= I915_READ(DISP_ARB_CTL
);
3043 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
3046 I915_WRITE(dspcntr_reg
, dspcntr
);
3048 /* Flush the plane changes */
3049 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
3051 if ((IS_I965G(dev
) || plane
== 0))
3052 intel_update_fbc(crtc
, &crtc
->mode
);
3054 intel_update_watermarks(dev
);
3056 drm_vblank_post_modeset(dev
, pipe
);
3061 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3062 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
3064 struct drm_device
*dev
= crtc
->dev
;
3065 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3066 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3067 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
3070 /* The clocks have to be on to load the palette. */
3074 /* use legacy palette for IGDNG */
3076 palreg
= (intel_crtc
->pipe
== 0) ? LGC_PALETTE_A
:
3079 for (i
= 0; i
< 256; i
++) {
3080 I915_WRITE(palreg
+ 4 * i
,
3081 (intel_crtc
->lut_r
[i
] << 16) |
3082 (intel_crtc
->lut_g
[i
] << 8) |
3083 intel_crtc
->lut_b
[i
]);
3087 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
3088 struct drm_file
*file_priv
,
3090 uint32_t width
, uint32_t height
)
3092 struct drm_device
*dev
= crtc
->dev
;
3093 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3094 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3095 struct drm_gem_object
*bo
;
3096 struct drm_i915_gem_object
*obj_priv
;
3097 int pipe
= intel_crtc
->pipe
;
3098 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
3099 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
3100 uint32_t temp
= I915_READ(control
);
3106 /* if we want to turn off the cursor ignore width and height */
3108 DRM_DEBUG("cursor off\n");
3109 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3110 temp
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
3111 temp
|= CURSOR_MODE_DISABLE
;
3113 temp
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
3117 mutex_lock(&dev
->struct_mutex
);
3121 /* Currently we only support 64x64 cursors */
3122 if (width
!= 64 || height
!= 64) {
3123 DRM_ERROR("we currently only support 64x64 cursors\n");
3127 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
3131 obj_priv
= bo
->driver_private
;
3133 if (bo
->size
< width
* height
* 4) {
3134 DRM_ERROR("buffer is to small\n");
3139 /* we only need to pin inside GTT if cursor is non-phy */
3140 mutex_lock(&dev
->struct_mutex
);
3141 if (!dev_priv
->cursor_needs_physical
) {
3142 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
);
3144 DRM_ERROR("failed to pin cursor bo\n");
3147 addr
= obj_priv
->gtt_offset
;
3149 ret
= i915_gem_attach_phys_object(dev
, bo
, (pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
);
3151 DRM_ERROR("failed to attach phys object\n");
3154 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
3158 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
3160 /* Hooray for CUR*CNTR differences */
3161 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3162 temp
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
3163 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
3164 temp
|= (pipe
<< 28); /* Connect to correct pipe */
3166 temp
&= ~(CURSOR_FORMAT_MASK
);
3167 temp
|= CURSOR_ENABLE
;
3168 temp
|= CURSOR_FORMAT_ARGB
| CURSOR_GAMMA_ENABLE
;
3172 I915_WRITE(control
, temp
);
3173 I915_WRITE(base
, addr
);
3175 if (intel_crtc
->cursor_bo
) {
3176 if (dev_priv
->cursor_needs_physical
) {
3177 if (intel_crtc
->cursor_bo
!= bo
)
3178 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
3180 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
3181 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
3184 mutex_unlock(&dev
->struct_mutex
);
3186 intel_crtc
->cursor_addr
= addr
;
3187 intel_crtc
->cursor_bo
= bo
;
3191 mutex_lock(&dev
->struct_mutex
);
3193 drm_gem_object_unreference(bo
);
3194 mutex_unlock(&dev
->struct_mutex
);
3198 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
3200 struct drm_device
*dev
= crtc
->dev
;
3201 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3202 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3203 struct intel_framebuffer
*intel_fb
;
3204 int pipe
= intel_crtc
->pipe
;
3209 intel_fb
= to_intel_framebuffer(crtc
->fb
);
3210 intel_mark_busy(dev
, intel_fb
->obj
);
3214 temp
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
3218 temp
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
3222 temp
|= x
<< CURSOR_X_SHIFT
;
3223 temp
|= y
<< CURSOR_Y_SHIFT
;
3225 adder
= intel_crtc
->cursor_addr
;
3226 I915_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
3227 I915_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, adder
);
3232 /** Sets the color ramps on behalf of RandR */
3233 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
3234 u16 blue
, int regno
)
3236 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3238 intel_crtc
->lut_r
[regno
] = red
>> 8;
3239 intel_crtc
->lut_g
[regno
] = green
>> 8;
3240 intel_crtc
->lut_b
[regno
] = blue
>> 8;
3243 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3244 u16
*blue
, int regno
)
3246 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3248 *red
= intel_crtc
->lut_r
[regno
] << 8;
3249 *green
= intel_crtc
->lut_g
[regno
] << 8;
3250 *blue
= intel_crtc
->lut_b
[regno
] << 8;
3253 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3254 u16
*blue
, uint32_t size
)
3256 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3262 for (i
= 0; i
< 256; i
++) {
3263 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
3264 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
3265 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
3268 intel_crtc_load_lut(crtc
);
3272 * Get a pipe with a simple mode set on it for doing load-based monitor
3275 * It will be up to the load-detect code to adjust the pipe as appropriate for
3276 * its requirements. The pipe will be connected to no other outputs.
3278 * Currently this code will only succeed if there is a pipe with no outputs
3279 * configured for it. In the future, it could choose to temporarily disable
3280 * some outputs to free up a pipe for its use.
3282 * \return crtc, or NULL if no pipes are available.
3285 /* VESA 640x480x72Hz mode to set on the pipe */
3286 static struct drm_display_mode load_detect_mode
= {
3287 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
3288 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
3291 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_output
*intel_output
,
3292 struct drm_display_mode
*mode
,
3295 struct intel_crtc
*intel_crtc
;
3296 struct drm_crtc
*possible_crtc
;
3297 struct drm_crtc
*supported_crtc
=NULL
;
3298 struct drm_encoder
*encoder
= &intel_output
->enc
;
3299 struct drm_crtc
*crtc
= NULL
;
3300 struct drm_device
*dev
= encoder
->dev
;
3301 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3302 struct drm_crtc_helper_funcs
*crtc_funcs
;
3306 * Algorithm gets a little messy:
3307 * - if the connector already has an assigned crtc, use it (but make
3308 * sure it's on first)
3309 * - try to find the first unused crtc that can drive this connector,
3310 * and use that if we find one
3311 * - if there are no unused crtcs available, try to use the first
3312 * one we found that supports the connector
3315 /* See if we already have a CRTC for this connector */
3316 if (encoder
->crtc
) {
3317 crtc
= encoder
->crtc
;
3318 /* Make sure the crtc and connector are running */
3319 intel_crtc
= to_intel_crtc(crtc
);
3320 *dpms_mode
= intel_crtc
->dpms_mode
;
3321 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3322 crtc_funcs
= crtc
->helper_private
;
3323 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3324 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3329 /* Find an unused one (if possible) */
3330 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
3332 if (!(encoder
->possible_crtcs
& (1 << i
)))
3334 if (!possible_crtc
->enabled
) {
3335 crtc
= possible_crtc
;
3338 if (!supported_crtc
)
3339 supported_crtc
= possible_crtc
;
3343 * If we didn't find an unused CRTC, don't use any.
3349 encoder
->crtc
= crtc
;
3350 intel_output
->base
.encoder
= encoder
;
3351 intel_output
->load_detect_temp
= true;
3353 intel_crtc
= to_intel_crtc(crtc
);
3354 *dpms_mode
= intel_crtc
->dpms_mode
;
3356 if (!crtc
->enabled
) {
3358 mode
= &load_detect_mode
;
3359 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
3361 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3362 crtc_funcs
= crtc
->helper_private
;
3363 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3366 /* Add this connector to the crtc */
3367 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
3368 encoder_funcs
->commit(encoder
);
3370 /* let the connector get through one full cycle before testing */
3371 intel_wait_for_vblank(dev
);
3376 void intel_release_load_detect_pipe(struct intel_output
*intel_output
, int dpms_mode
)
3378 struct drm_encoder
*encoder
= &intel_output
->enc
;
3379 struct drm_device
*dev
= encoder
->dev
;
3380 struct drm_crtc
*crtc
= encoder
->crtc
;
3381 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3382 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3384 if (intel_output
->load_detect_temp
) {
3385 encoder
->crtc
= NULL
;
3386 intel_output
->base
.encoder
= NULL
;
3387 intel_output
->load_detect_temp
= false;
3388 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
3389 drm_helper_disable_unused_functions(dev
);
3392 /* Switch crtc and output back off if necessary */
3393 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
3394 if (encoder
->crtc
== crtc
)
3395 encoder_funcs
->dpms(encoder
, dpms_mode
);
3396 crtc_funcs
->dpms(crtc
, dpms_mode
);
3400 /* Returns the clock of the currently programmed mode of the given pipe. */
3401 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
3403 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3404 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3405 int pipe
= intel_crtc
->pipe
;
3406 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
3408 intel_clock_t clock
;
3410 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
3411 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
3413 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
3415 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
3417 clock
.n
= ffs((fp
& FP_N_IGD_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
3418 clock
.m2
= (fp
& FP_M2_IGD_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3420 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
3421 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3426 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_IGD
) >>
3427 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD
);
3429 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
3430 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3432 switch (dpll
& DPLL_MODE_MASK
) {
3433 case DPLLB_MODE_DAC_SERIAL
:
3434 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
3437 case DPLLB_MODE_LVDS
:
3438 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
3442 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3443 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
3447 /* XXX: Handle the 100Mhz refclk */
3448 intel_clock(dev
, 96000, &clock
);
3450 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
3453 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
3454 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3457 if ((dpll
& PLL_REF_INPUT_MASK
) ==
3458 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
3459 /* XXX: might not be 66MHz */
3460 intel_clock(dev
, 66000, &clock
);
3462 intel_clock(dev
, 48000, &clock
);
3464 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
3467 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
3468 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
3470 if (dpll
& PLL_P2_DIVIDE_BY_4
)
3475 intel_clock(dev
, 48000, &clock
);
3479 /* XXX: It would be nice to validate the clocks, but we can't reuse
3480 * i830PllIsValid() because it relies on the xf86_config connector
3481 * configuration being accurate, which it isn't necessarily.
3487 /** Returns the currently programmed mode of the given pipe. */
3488 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
3489 struct drm_crtc
*crtc
)
3491 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3492 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3493 int pipe
= intel_crtc
->pipe
;
3494 struct drm_display_mode
*mode
;
3495 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
3496 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
3497 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
3498 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
3500 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
3504 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
3505 mode
->hdisplay
= (htot
& 0xffff) + 1;
3506 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
3507 mode
->hsync_start
= (hsync
& 0xffff) + 1;
3508 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
3509 mode
->vdisplay
= (vtot
& 0xffff) + 1;
3510 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
3511 mode
->vsync_start
= (vsync
& 0xffff) + 1;
3512 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
3514 drm_mode_set_name(mode
);
3515 drm_mode_set_crtcinfo(mode
, 0);
3520 #define GPU_IDLE_TIMEOUT 500 /* ms */
3522 /* When this timer fires, we've been idle for awhile */
3523 static void intel_gpu_idle_timer(unsigned long arg
)
3525 struct drm_device
*dev
= (struct drm_device
*)arg
;
3526 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3528 DRM_DEBUG("idle timer fired, downclocking\n");
3530 dev_priv
->busy
= false;
3532 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3535 void intel_increase_renderclock(struct drm_device
*dev
, bool schedule
)
3537 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3542 if (!dev_priv
->render_reclock_avail
) {
3543 DRM_DEBUG("not reclocking render clock\n");
3547 /* Restore render clock frequency to original value */
3548 if (IS_G4X(dev
) || IS_I9XX(dev
))
3549 pci_write_config_word(dev
->pdev
, GCFGC
, dev_priv
->orig_clock
);
3550 else if (IS_I85X(dev
))
3551 pci_write_config_word(dev
->pdev
, HPLLCC
, dev_priv
->orig_clock
);
3552 DRM_DEBUG("increasing render clock frequency\n");
3554 /* Schedule downclock */
3556 mod_timer(&dev_priv
->idle_timer
, jiffies
+
3557 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
3560 void intel_decrease_renderclock(struct drm_device
*dev
)
3562 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3567 if (!dev_priv
->render_reclock_avail
) {
3568 DRM_DEBUG("not reclocking render clock\n");
3575 /* Adjust render clock... */
3576 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3578 /* Down to minimum... */
3579 gcfgc
&= ~GM45_GC_RENDER_CLOCK_MASK
;
3580 gcfgc
|= GM45_GC_RENDER_CLOCK_266_MHZ
;
3582 pci_write_config_word(dev
->pdev
, GCFGC
, gcfgc
);
3583 } else if (IS_I965G(dev
)) {
3586 /* Adjust render clock... */
3587 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3589 /* Down to minimum... */
3590 gcfgc
&= ~I965_GC_RENDER_CLOCK_MASK
;
3591 gcfgc
|= I965_GC_RENDER_CLOCK_267_MHZ
;
3593 pci_write_config_word(dev
->pdev
, GCFGC
, gcfgc
);
3594 } else if (IS_I945G(dev
) || IS_I945GM(dev
)) {
3597 /* Adjust render clock... */
3598 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3600 /* Down to minimum... */
3601 gcfgc
&= ~I945_GC_RENDER_CLOCK_MASK
;
3602 gcfgc
|= I945_GC_RENDER_CLOCK_166_MHZ
;
3604 pci_write_config_word(dev
->pdev
, GCFGC
, gcfgc
);
3605 } else if (IS_I915G(dev
)) {
3608 /* Adjust render clock... */
3609 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3611 /* Down to minimum... */
3612 gcfgc
&= ~I915_GC_RENDER_CLOCK_MASK
;
3613 gcfgc
|= I915_GC_RENDER_CLOCK_166_MHZ
;
3615 pci_write_config_word(dev
->pdev
, GCFGC
, gcfgc
);
3616 } else if (IS_I85X(dev
)) {
3619 /* Adjust render clock... */
3620 pci_read_config_word(dev
->pdev
, HPLLCC
, &hpllcc
);
3622 /* Up to maximum... */
3623 hpllcc
&= ~GC_CLOCK_CONTROL_MASK
;
3624 hpllcc
|= GC_CLOCK_133_200
;
3626 pci_write_config_word(dev
->pdev
, HPLLCC
, hpllcc
);
3628 DRM_DEBUG("decreasing render clock frequency\n");
3631 /* Note that no increase function is needed for this - increase_renderclock()
3632 * will also rewrite these bits
3634 void intel_decrease_displayclock(struct drm_device
*dev
)
3639 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_I915G(dev
) ||
3643 /* Adjust render clock... */
3644 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3646 /* Down to minimum... */
3650 pci_write_config_word(dev
->pdev
, GCFGC
, gcfgc
);
3654 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3656 static void intel_crtc_idle_timer(unsigned long arg
)
3658 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
3659 struct drm_crtc
*crtc
= &intel_crtc
->base
;
3660 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
3662 DRM_DEBUG("idle timer fired, downclocking\n");
3664 intel_crtc
->busy
= false;
3666 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3669 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
)
3671 struct drm_device
*dev
= crtc
->dev
;
3672 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3673 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3674 int pipe
= intel_crtc
->pipe
;
3675 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3676 int dpll
= I915_READ(dpll_reg
);
3681 if (!dev_priv
->lvds_downclock_avail
)
3684 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
3685 DRM_DEBUG("upclocking LVDS\n");
3687 /* Unlock panel regs */
3688 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3690 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
3691 I915_WRITE(dpll_reg
, dpll
);
3692 dpll
= I915_READ(dpll_reg
);
3693 intel_wait_for_vblank(dev
);
3694 dpll
= I915_READ(dpll_reg
);
3695 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
3696 DRM_DEBUG("failed to upclock LVDS!\n");
3698 /* ...and lock them again */
3699 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
3702 /* Schedule downclock */
3704 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
3705 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
3708 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
3710 struct drm_device
*dev
= crtc
->dev
;
3711 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3712 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3713 int pipe
= intel_crtc
->pipe
;
3714 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3715 int dpll
= I915_READ(dpll_reg
);
3720 if (!dev_priv
->lvds_downclock_avail
)
3724 * Since this is called by a timer, we should never get here in
3727 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
3728 DRM_DEBUG("downclocking LVDS\n");
3730 /* Unlock panel regs */
3731 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3733 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
3734 I915_WRITE(dpll_reg
, dpll
);
3735 dpll
= I915_READ(dpll_reg
);
3736 intel_wait_for_vblank(dev
);
3737 dpll
= I915_READ(dpll_reg
);
3738 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
3739 DRM_DEBUG("failed to downclock LVDS!\n");
3741 /* ...and lock them again */
3742 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
3748 * intel_idle_update - adjust clocks for idleness
3749 * @work: work struct
3751 * Either the GPU or display (or both) went idle. Check the busy status
3752 * here and adjust the CRTC and GPU clocks as necessary.
3754 static void intel_idle_update(struct work_struct
*work
)
3756 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
3758 struct drm_device
*dev
= dev_priv
->dev
;
3759 struct drm_crtc
*crtc
;
3760 struct intel_crtc
*intel_crtc
;
3762 if (!i915_powersave
)
3765 mutex_lock(&dev
->struct_mutex
);
3767 /* GPU isn't processing, downclock it. */
3768 if (!dev_priv
->busy
) {
3769 intel_decrease_renderclock(dev
);
3770 intel_decrease_displayclock(dev
);
3773 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3774 /* Skip inactive CRTCs */
3778 intel_crtc
= to_intel_crtc(crtc
);
3779 if (!intel_crtc
->busy
)
3780 intel_decrease_pllclock(crtc
);
3783 mutex_unlock(&dev
->struct_mutex
);
3787 * intel_mark_busy - mark the GPU and possibly the display busy
3789 * @obj: object we're operating on
3791 * Callers can use this function to indicate that the GPU is busy processing
3792 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3793 * buffer), we'll also mark the display as busy, so we know to increase its
3796 void intel_mark_busy(struct drm_device
*dev
, struct drm_gem_object
*obj
)
3798 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3799 struct drm_crtc
*crtc
= NULL
;
3800 struct intel_framebuffer
*intel_fb
;
3801 struct intel_crtc
*intel_crtc
;
3803 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
3806 dev_priv
->busy
= true;
3807 intel_increase_renderclock(dev
, true);
3809 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3813 intel_crtc
= to_intel_crtc(crtc
);
3814 intel_fb
= to_intel_framebuffer(crtc
->fb
);
3815 if (intel_fb
->obj
== obj
) {
3816 if (!intel_crtc
->busy
) {
3817 /* Non-busy -> busy, upclock */
3818 intel_increase_pllclock(crtc
, true);
3819 intel_crtc
->busy
= true;
3821 /* Busy -> busy, put off timer */
3822 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
3823 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
3829 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
3831 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3833 drm_crtc_cleanup(crtc
);
3837 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
3838 .dpms
= intel_crtc_dpms
,
3839 .mode_fixup
= intel_crtc_mode_fixup
,
3840 .mode_set
= intel_crtc_mode_set
,
3841 .mode_set_base
= intel_pipe_set_base
,
3842 .prepare
= intel_crtc_prepare
,
3843 .commit
= intel_crtc_commit
,
3844 .load_lut
= intel_crtc_load_lut
,
3847 static const struct drm_crtc_funcs intel_crtc_funcs
= {
3848 .cursor_set
= intel_crtc_cursor_set
,
3849 .cursor_move
= intel_crtc_cursor_move
,
3850 .gamma_set
= intel_crtc_gamma_set
,
3851 .set_config
= drm_crtc_helper_set_config
,
3852 .destroy
= intel_crtc_destroy
,
3856 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
3858 struct intel_crtc
*intel_crtc
;
3861 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
3862 if (intel_crtc
== NULL
)
3865 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
3867 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
3868 intel_crtc
->pipe
= pipe
;
3869 intel_crtc
->plane
= pipe
;
3870 for (i
= 0; i
< 256; i
++) {
3871 intel_crtc
->lut_r
[i
] = i
;
3872 intel_crtc
->lut_g
[i
] = i
;
3873 intel_crtc
->lut_b
[i
] = i
;
3876 /* Swap pipes & planes for FBC on pre-965 */
3877 intel_crtc
->pipe
= pipe
;
3878 intel_crtc
->plane
= pipe
;
3879 if (IS_MOBILE(dev
) && (IS_I9XX(dev
) && !IS_I965G(dev
))) {
3880 DRM_DEBUG("swapping pipes & planes for FBC\n");
3881 intel_crtc
->plane
= ((pipe
== 0) ? 1 : 0);
3884 intel_crtc
->cursor_addr
= 0;
3885 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_OFF
;
3886 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
3888 intel_crtc
->busy
= false;
3890 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
3891 (unsigned long)intel_crtc
);
3894 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
3895 struct drm_file
*file_priv
)
3897 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3898 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
3899 struct drm_mode_object
*drmmode_obj
;
3900 struct intel_crtc
*crtc
;
3903 DRM_ERROR("called with no initialization\n");
3907 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
3908 DRM_MODE_OBJECT_CRTC
);
3911 DRM_ERROR("no such CRTC id\n");
3915 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
3916 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
3921 struct drm_crtc
*intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
3923 struct drm_crtc
*crtc
= NULL
;
3925 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3926 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3927 if (intel_crtc
->pipe
== pipe
)
3933 static int intel_connector_clones(struct drm_device
*dev
, int type_mask
)
3936 struct drm_connector
*connector
;
3939 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
3940 struct intel_output
*intel_output
= to_intel_output(connector
);
3941 if (type_mask
& intel_output
->clone_mask
)
3942 index_mask
|= (1 << entry
);
3949 static void intel_setup_outputs(struct drm_device
*dev
)
3951 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3952 struct drm_connector
*connector
;
3954 intel_crt_init(dev
);
3956 /* Set up integrated LVDS */
3957 if (IS_MOBILE(dev
) && !IS_I830(dev
))
3958 intel_lvds_init(dev
);
3960 if (IS_IGDNG(dev
)) {
3963 if (IS_MOBILE(dev
) && (I915_READ(DP_A
) & DP_DETECTED
))
3964 intel_dp_init(dev
, DP_A
);
3966 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
3968 /* found = intel_sdvo_init(dev, HDMIB); */
3971 intel_hdmi_init(dev
, HDMIB
);
3972 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
3973 intel_dp_init(dev
, PCH_DP_B
);
3976 if (I915_READ(HDMIC
) & PORT_DETECTED
)
3977 intel_hdmi_init(dev
, HDMIC
);
3979 if (I915_READ(HDMID
) & PORT_DETECTED
)
3980 intel_hdmi_init(dev
, HDMID
);
3982 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
3983 intel_dp_init(dev
, PCH_DP_C
);
3985 if (I915_READ(PCH_DP_D
) & DP_DETECTED
)
3986 intel_dp_init(dev
, PCH_DP_D
);
3988 } else if (IS_I9XX(dev
)) {
3991 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
3992 found
= intel_sdvo_init(dev
, SDVOB
);
3993 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
))
3994 intel_hdmi_init(dev
, SDVOB
);
3996 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
))
3997 intel_dp_init(dev
, DP_B
);
4000 /* Before G4X SDVOC doesn't have its own detect register */
4002 if (I915_READ(SDVOB
) & SDVO_DETECTED
)
4003 found
= intel_sdvo_init(dev
, SDVOC
);
4005 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
4007 if (SUPPORTS_INTEGRATED_HDMI(dev
))
4008 intel_hdmi_init(dev
, SDVOC
);
4009 if (SUPPORTS_INTEGRATED_DP(dev
))
4010 intel_dp_init(dev
, DP_C
);
4013 if (SUPPORTS_INTEGRATED_DP(dev
) && (I915_READ(DP_D
) & DP_DETECTED
))
4014 intel_dp_init(dev
, DP_D
);
4016 intel_dvo_init(dev
);
4018 if (IS_I9XX(dev
) && IS_MOBILE(dev
) && !IS_IGDNG(dev
))
4021 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4022 struct intel_output
*intel_output
= to_intel_output(connector
);
4023 struct drm_encoder
*encoder
= &intel_output
->enc
;
4025 encoder
->possible_crtcs
= intel_output
->crtc_mask
;
4026 encoder
->possible_clones
= intel_connector_clones(dev
,
4027 intel_output
->clone_mask
);
4031 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
4033 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4034 struct drm_device
*dev
= fb
->dev
;
4037 intelfb_remove(dev
, fb
);
4039 drm_framebuffer_cleanup(fb
);
4040 mutex_lock(&dev
->struct_mutex
);
4041 drm_gem_object_unreference(intel_fb
->obj
);
4042 mutex_unlock(&dev
->struct_mutex
);
4047 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
4048 struct drm_file
*file_priv
,
4049 unsigned int *handle
)
4051 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4052 struct drm_gem_object
*object
= intel_fb
->obj
;
4054 return drm_gem_handle_create(file_priv
, object
, handle
);
4057 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
4058 .destroy
= intel_user_framebuffer_destroy
,
4059 .create_handle
= intel_user_framebuffer_create_handle
,
4062 int intel_framebuffer_create(struct drm_device
*dev
,
4063 struct drm_mode_fb_cmd
*mode_cmd
,
4064 struct drm_framebuffer
**fb
,
4065 struct drm_gem_object
*obj
)
4067 struct intel_framebuffer
*intel_fb
;
4070 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
4074 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
4076 DRM_ERROR("framebuffer init failed %d\n", ret
);
4080 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
4082 intel_fb
->obj
= obj
;
4084 *fb
= &intel_fb
->base
;
4090 static struct drm_framebuffer
*
4091 intel_user_framebuffer_create(struct drm_device
*dev
,
4092 struct drm_file
*filp
,
4093 struct drm_mode_fb_cmd
*mode_cmd
)
4095 struct drm_gem_object
*obj
;
4096 struct drm_framebuffer
*fb
;
4099 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
4103 ret
= intel_framebuffer_create(dev
, mode_cmd
, &fb
, obj
);
4105 mutex_lock(&dev
->struct_mutex
);
4106 drm_gem_object_unreference(obj
);
4107 mutex_unlock(&dev
->struct_mutex
);
4114 static const struct drm_mode_config_funcs intel_mode_funcs
= {
4115 .fb_create
= intel_user_framebuffer_create
,
4116 .fb_changed
= intelfb_probe
,
4119 void intel_init_clock_gating(struct drm_device
*dev
)
4121 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4124 * Disable clock gating reported to work incorrectly according to the
4125 * specs, but enable as much else as we can.
4128 uint32_t dspclk_gate
;
4129 I915_WRITE(RENCLK_GATE_D1
, 0);
4130 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
4131 GS_UNIT_CLOCK_GATE_DISABLE
|
4132 CL_UNIT_CLOCK_GATE_DISABLE
);
4133 I915_WRITE(RAMCLK_GATE_D
, 0);
4134 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
4135 OVRUNIT_CLOCK_GATE_DISABLE
|
4136 OVCUNIT_CLOCK_GATE_DISABLE
;
4138 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
4139 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
4140 } else if (IS_I965GM(dev
)) {
4141 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
4142 I915_WRITE(RENCLK_GATE_D2
, 0);
4143 I915_WRITE(DSPCLK_GATE_D
, 0);
4144 I915_WRITE(RAMCLK_GATE_D
, 0);
4145 I915_WRITE16(DEUC
, 0);
4146 } else if (IS_I965G(dev
)) {
4147 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
4148 I965_RCC_CLOCK_GATE_DISABLE
|
4149 I965_RCPB_CLOCK_GATE_DISABLE
|
4150 I965_ISC_CLOCK_GATE_DISABLE
|
4151 I965_FBC_CLOCK_GATE_DISABLE
);
4152 I915_WRITE(RENCLK_GATE_D2
, 0);
4153 } else if (IS_I9XX(dev
)) {
4154 u32 dstate
= I915_READ(D_STATE
);
4156 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
4157 DSTATE_DOT_CLOCK_GATING
;
4158 I915_WRITE(D_STATE
, dstate
);
4159 } else if (IS_I855(dev
) || IS_I865G(dev
)) {
4160 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
4161 } else if (IS_I830(dev
)) {
4162 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
4166 /* Set up chip specific display functions */
4167 static void intel_init_display(struct drm_device
*dev
)
4169 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4171 /* We always want a DPMS function */
4173 dev_priv
->display
.dpms
= igdng_crtc_dpms
;
4175 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
4177 /* Only mobile has FBC, leave pointers NULL for other chips */
4178 if (IS_MOBILE(dev
)) {
4180 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
4181 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
4182 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
4183 } else if (IS_I965GM(dev
) || IS_I945GM(dev
) || IS_I915GM(dev
)) {
4184 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
4185 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
4186 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
4188 /* 855GM needs testing */
4191 /* Returns the core display clock speed */
4193 dev_priv
->display
.get_display_clock_speed
=
4194 i945_get_display_clock_speed
;
4195 else if (IS_I915G(dev
))
4196 dev_priv
->display
.get_display_clock_speed
=
4197 i915_get_display_clock_speed
;
4198 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_IGDGM(dev
))
4199 dev_priv
->display
.get_display_clock_speed
=
4200 i9xx_misc_get_display_clock_speed
;
4201 else if (IS_I915GM(dev
))
4202 dev_priv
->display
.get_display_clock_speed
=
4203 i915gm_get_display_clock_speed
;
4204 else if (IS_I865G(dev
))
4205 dev_priv
->display
.get_display_clock_speed
=
4206 i865_get_display_clock_speed
;
4207 else if (IS_I855(dev
))
4208 dev_priv
->display
.get_display_clock_speed
=
4209 i855_get_display_clock_speed
;
4211 dev_priv
->display
.get_display_clock_speed
=
4212 i830_get_display_clock_speed
;
4214 /* For FIFO watermark updates */
4216 dev_priv
->display
.update_wm
= g4x_update_wm
;
4217 else if (IS_I965G(dev
))
4218 dev_priv
->display
.update_wm
= i965_update_wm
;
4219 else if (IS_I9XX(dev
) || IS_MOBILE(dev
)) {
4220 dev_priv
->display
.update_wm
= i9xx_update_wm
;
4221 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
4224 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
4225 else if (IS_845G(dev
))
4226 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
4228 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
4229 dev_priv
->display
.update_wm
= i830_update_wm
;
4233 void intel_modeset_init(struct drm_device
*dev
)
4235 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4239 drm_mode_config_init(dev
);
4241 dev
->mode_config
.min_width
= 0;
4242 dev
->mode_config
.min_height
= 0;
4244 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
4246 intel_init_display(dev
);
4248 if (IS_I965G(dev
)) {
4249 dev
->mode_config
.max_width
= 8192;
4250 dev
->mode_config
.max_height
= 8192;
4251 } else if (IS_I9XX(dev
)) {
4252 dev
->mode_config
.max_width
= 4096;
4253 dev
->mode_config
.max_height
= 4096;
4255 dev
->mode_config
.max_width
= 2048;
4256 dev
->mode_config
.max_height
= 2048;
4259 /* set memory base */
4261 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
4263 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
4265 if (IS_MOBILE(dev
) || IS_I9XX(dev
))
4269 DRM_DEBUG("%d display pipe%s available.\n",
4270 num_pipe
, num_pipe
> 1 ? "s" : "");
4273 pci_read_config_word(dev
->pdev
, HPLLCC
, &dev_priv
->orig_clock
);
4274 else if (IS_I9XX(dev
) || IS_G4X(dev
))
4275 pci_read_config_word(dev
->pdev
, GCFGC
, &dev_priv
->orig_clock
);
4277 for (i
= 0; i
< num_pipe
; i
++) {
4278 intel_crtc_init(dev
, i
);
4281 intel_setup_outputs(dev
);
4283 intel_init_clock_gating(dev
);
4285 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
4286 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
4287 (unsigned long)dev
);
4290 void intel_modeset_cleanup(struct drm_device
*dev
)
4292 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4293 struct drm_crtc
*crtc
;
4294 struct intel_crtc
*intel_crtc
;
4296 mutex_lock(&dev
->struct_mutex
);
4298 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4299 /* Skip inactive CRTCs */
4303 intel_crtc
= to_intel_crtc(crtc
);
4304 intel_increase_pllclock(crtc
, false);
4305 del_timer_sync(&intel_crtc
->idle_timer
);
4308 intel_increase_renderclock(dev
, false);
4309 del_timer_sync(&dev_priv
->idle_timer
);
4311 mutex_unlock(&dev
->struct_mutex
);
4313 if (dev_priv
->display
.disable_fbc
)
4314 dev_priv
->display
.disable_fbc(dev
);
4316 drm_mode_config_cleanup(dev
);
4320 /* current intel driver doesn't take advantage of encoders
4321 always give back the encoder for the connector
4323 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
4325 struct intel_output
*intel_output
= to_intel_output(connector
);
4327 return &intel_output
->enc
;
4331 * set vga decode state - true == enable VGA decode
4333 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
4335 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4338 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
4340 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
4342 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
4343 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);