First Support on Ginger and OMAP TI
[linux-ginger.git] / drivers / input / touchscreen / ucb1400_ts.c
blob095f84b1f56e33769a4513a9d635aa3b0100f7f3
1 /*
2 * Philips UCB1400 touchscreen driver
4 * Author: Nicolas Pitre
5 * Created: September 25, 2006
6 * Copyright: MontaVista Software, Inc.
8 * Spliting done by: Marek Vasut <marek.vasut@gmail.com>
9 * If something doesnt work and it worked before spliting, e-mail me,
10 * dont bother Nicolas please ;-)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
17 * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
18 * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/input.h>
26 #include <linux/device.h>
27 #include <linux/interrupt.h>
28 #include <linux/suspend.h>
29 #include <linux/slab.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <linux/ucb1400.h>
34 static int adcsync;
35 static int ts_delay = 55; /* us */
36 static int ts_delay_pressure; /* us */
38 /* Switch to interrupt mode. */
39 static inline void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
41 ucb1400_reg_write(ac97, UCB_TS_CR,
42 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
43 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
44 UCB_TS_CR_MODE_INT);
48 * Switch to pressure mode, and read pressure. We don't need to wait
49 * here, since both plates are being driven.
51 static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
53 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
54 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
55 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
56 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
57 udelay(ts_delay_pressure);
58 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
62 * Switch to X position mode and measure Y plate. We switch the plate
63 * configuration in pressure mode, then switch to position mode. This
64 * gives a faster response time. Even so, we need to wait about 55us
65 * for things to stabilise.
67 static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
69 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
70 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
71 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
72 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
73 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
74 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
75 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
76 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
77 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
79 udelay(ts_delay);
81 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
85 * Switch to Y position mode and measure X plate. We switch the plate
86 * configuration in pressure mode, then switch to position mode. This
87 * gives a faster response time. Even so, we need to wait about 55us
88 * for things to stabilise.
90 static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
92 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
93 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
94 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
95 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
96 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
97 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
98 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
99 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
100 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
102 udelay(ts_delay);
104 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
108 * Switch to X plate resistance mode. Set MX to ground, PX to
109 * supply. Measure current.
111 static inline unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
113 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
114 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
115 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
116 return ucb1400_adc_read(ucb->ac97, 0, adcsync);
120 * Switch to Y plate resistance mode. Set MY to ground, PY to
121 * supply. Measure current.
123 static inline unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
125 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
126 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
127 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
128 return ucb1400_adc_read(ucb->ac97, 0, adcsync);
131 static inline int ucb1400_ts_pen_up(struct snd_ac97 *ac97)
133 unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
135 return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
138 static inline void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
140 ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
141 ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
142 ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
145 static inline void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
147 ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
150 static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
152 input_report_abs(idev, ABS_X, x);
153 input_report_abs(idev, ABS_Y, y);
154 input_report_abs(idev, ABS_PRESSURE, pressure);
155 input_report_key(idev, BTN_TOUCH, 1);
156 input_sync(idev);
159 static void ucb1400_ts_event_release(struct input_dev *idev)
161 input_report_abs(idev, ABS_PRESSURE, 0);
162 input_report_key(idev, BTN_TOUCH, 0);
163 input_sync(idev);
166 static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
168 unsigned int isr;
170 isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
171 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
172 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
174 if (isr & UCB_IE_TSPX)
175 ucb1400_ts_irq_disable(ucb->ac97);
176 else
177 dev_dbg(&ucb->ts_idev->dev, "ucb1400: unexpected IE_STATUS = %#x\n", isr);
178 enable_irq(ucb->irq);
181 static int ucb1400_ts_thread(void *_ucb)
183 struct ucb1400_ts *ucb = _ucb;
184 struct task_struct *tsk = current;
185 int valid = 0;
186 struct sched_param param = { .sched_priority = 1 };
188 sched_setscheduler(tsk, SCHED_FIFO, &param);
190 set_freezable();
191 while (!kthread_should_stop()) {
192 unsigned int x, y, p;
193 long timeout;
195 ucb->ts_restart = 0;
197 if (ucb->irq_pending) {
198 ucb->irq_pending = 0;
199 ucb1400_handle_pending_irq(ucb);
202 ucb1400_adc_enable(ucb->ac97);
203 x = ucb1400_ts_read_xpos(ucb);
204 y = ucb1400_ts_read_ypos(ucb);
205 p = ucb1400_ts_read_pressure(ucb);
206 ucb1400_adc_disable(ucb->ac97);
208 /* Switch back to interrupt mode. */
209 ucb1400_ts_mode_int(ucb->ac97);
211 msleep(10);
213 if (ucb1400_ts_pen_up(ucb->ac97)) {
214 ucb1400_ts_irq_enable(ucb->ac97);
217 * If we spat out a valid sample set last time,
218 * spit out a "pen off" sample here.
220 if (valid) {
221 ucb1400_ts_event_release(ucb->ts_idev);
222 valid = 0;
225 timeout = MAX_SCHEDULE_TIMEOUT;
226 } else {
227 valid = 1;
228 ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
229 timeout = msecs_to_jiffies(10);
232 wait_event_freezable_timeout(ucb->ts_wait,
233 ucb->irq_pending || ucb->ts_restart ||
234 kthread_should_stop(), timeout);
237 /* Send the "pen off" if we are stopping with the pen still active */
238 if (valid)
239 ucb1400_ts_event_release(ucb->ts_idev);
241 ucb->ts_task = NULL;
242 return 0;
246 * A restriction with interrupts exists when using the ucb1400, as
247 * the codec read/write routines may sleep while waiting for codec
248 * access completion and uses semaphores for access control to the
249 * AC97 bus. A complete codec read cycle could take anywhere from
250 * 60 to 100uSec so we *definitely* don't want to spin inside the
251 * interrupt handler waiting for codec access. So, we handle the
252 * interrupt by scheduling a RT kernel thread to run in process
253 * context instead of interrupt context.
255 static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
257 struct ucb1400_ts *ucb = devid;
259 if (irqnr == ucb->irq) {
260 disable_irq_nosync(ucb->irq);
261 ucb->irq_pending = 1;
262 wake_up(&ucb->ts_wait);
263 return IRQ_HANDLED;
265 return IRQ_NONE;
268 static int ucb1400_ts_open(struct input_dev *idev)
270 struct ucb1400_ts *ucb = input_get_drvdata(idev);
271 int ret = 0;
273 BUG_ON(ucb->ts_task);
275 ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
276 if (IS_ERR(ucb->ts_task)) {
277 ret = PTR_ERR(ucb->ts_task);
278 ucb->ts_task = NULL;
281 return ret;
284 static void ucb1400_ts_close(struct input_dev *idev)
286 struct ucb1400_ts *ucb = input_get_drvdata(idev);
288 if (ucb->ts_task)
289 kthread_stop(ucb->ts_task);
291 ucb1400_ts_irq_disable(ucb->ac97);
292 ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
295 #ifndef NO_IRQ
296 #define NO_IRQ 0
297 #endif
300 * Try to probe our interrupt, rather than relying on lots of
301 * hard-coded machine dependencies.
303 static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
305 unsigned long mask, timeout;
307 mask = probe_irq_on();
309 /* Enable the ADC interrupt. */
310 ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
311 ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
312 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
313 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
315 /* Cause an ADC interrupt. */
316 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
317 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
319 /* Wait for the conversion to complete. */
320 timeout = jiffies + HZ/2;
321 while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
322 UCB_ADC_DAT_VALID)) {
323 cpu_relax();
324 if (time_after(jiffies, timeout)) {
325 printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
326 probe_irq_off(mask);
327 return -ENODEV;
330 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
332 /* Disable and clear interrupt. */
333 ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
334 ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
335 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
336 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
338 /* Read triggered interrupt. */
339 ucb->irq = probe_irq_off(mask);
340 if (ucb->irq < 0 || ucb->irq == NO_IRQ)
341 return -ENODEV;
343 return 0;
346 static int ucb1400_ts_probe(struct platform_device *dev)
348 int error, x_res, y_res;
349 u16 fcsr;
350 struct ucb1400_ts *ucb = dev->dev.platform_data;
352 ucb->ts_idev = input_allocate_device();
353 if (!ucb->ts_idev) {
354 error = -ENOMEM;
355 goto err;
358 error = ucb1400_ts_detect_irq(ucb);
359 if (error) {
360 printk(KERN_ERR "UCB1400: IRQ probe failed\n");
361 goto err_free_devs;
364 init_waitqueue_head(&ucb->ts_wait);
366 error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
367 "UCB1400", ucb);
368 if (error) {
369 printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
370 ucb->irq, error);
371 goto err_free_devs;
373 printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
375 input_set_drvdata(ucb->ts_idev, ucb);
377 ucb->ts_idev->dev.parent = &dev->dev;
378 ucb->ts_idev->name = "UCB1400 touchscreen interface";
379 ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
380 AC97_VENDOR_ID1);
381 ucb->ts_idev->id.product = ucb->id;
382 ucb->ts_idev->open = ucb1400_ts_open;
383 ucb->ts_idev->close = ucb1400_ts_close;
384 ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
385 ucb->ts_idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
388 * Enable ADC filter to prevent horrible jitter on Colibri.
389 * This also further reduces jitter on boards where ADCSYNC
390 * pin is connected.
392 fcsr = ucb1400_reg_read(ucb->ac97, UCB_FCSR);
393 ucb1400_reg_write(ucb->ac97, UCB_FCSR, fcsr | UCB_FCSR_AVE);
395 ucb1400_adc_enable(ucb->ac97);
396 x_res = ucb1400_ts_read_xres(ucb);
397 y_res = ucb1400_ts_read_yres(ucb);
398 ucb1400_adc_disable(ucb->ac97);
399 printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
401 input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
402 input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
403 input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
405 error = input_register_device(ucb->ts_idev);
406 if (error)
407 goto err_free_irq;
409 return 0;
411 err_free_irq:
412 free_irq(ucb->irq, ucb);
413 err_free_devs:
414 input_free_device(ucb->ts_idev);
415 err:
416 return error;
420 static int ucb1400_ts_remove(struct platform_device *dev)
422 struct ucb1400_ts *ucb = dev->dev.platform_data;
424 free_irq(ucb->irq, ucb);
425 input_unregister_device(ucb->ts_idev);
426 return 0;
429 #ifdef CONFIG_PM
430 static int ucb1400_ts_resume(struct platform_device *dev)
432 struct ucb1400_ts *ucb = dev->dev.platform_data;
434 if (ucb->ts_task) {
436 * Restart the TS thread to ensure the
437 * TS interrupt mode is set up again
438 * after sleep.
440 ucb->ts_restart = 1;
441 wake_up(&ucb->ts_wait);
443 return 0;
445 #else
446 #define ucb1400_ts_resume NULL
447 #endif
449 static struct platform_driver ucb1400_ts_driver = {
450 .probe = ucb1400_ts_probe,
451 .remove = ucb1400_ts_remove,
452 .resume = ucb1400_ts_resume,
453 .driver = {
454 .name = "ucb1400_ts",
458 static int __init ucb1400_ts_init(void)
460 return platform_driver_register(&ucb1400_ts_driver);
463 static void __exit ucb1400_ts_exit(void)
465 platform_driver_unregister(&ucb1400_ts_driver);
468 module_param(adcsync, bool, 0444);
469 MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
471 module_param(ts_delay, int, 0444);
472 MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
473 " position read. Default = 55us.");
475 module_param(ts_delay_pressure, int, 0444);
476 MODULE_PARM_DESC(ts_delay_pressure,
477 "delay between panel setup and pressure read."
478 " Default = 0us.");
480 module_init(ucb1400_ts_init);
481 module_exit(ucb1400_ts_exit);
483 MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
484 MODULE_LICENSE("GPL");