First Support on Ginger and OMAP TI
[linux-ginger.git] / drivers / media / video / gspca / sonixb.c
blobcf3af8de6e971ca2422ec38330a3b57081b8f69c
1 /*
2 * sonix sn9c102 (bayer) library
3 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
4 * Add Pas106 Stefano Mozzi (C) 2004
6 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 /* Some documentation on known sonixb registers:
25 Reg Use
26 0x10 high nibble red gain low nibble blue gain
27 0x11 low nibble green gain
28 0x12 hstart
29 0x13 vstart
30 0x15 hsize (hsize = register-value * 16)
31 0x16 vsize (vsize = register-value * 16)
32 0x17 bit 0 toggle compression quality (according to sn9c102 driver)
33 0x18 bit 7 enables compression, bit 4-5 set image down scaling:
34 00 scale 1, 01 scale 1/2, 10, scale 1/4
35 0x19 high-nibble is sensor clock divider, changes exposure on sensors which
36 use a clock generated by the bridge. Some sensors have their own clock.
37 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
38 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
39 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
40 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
43 #define MODULE_NAME "sonixb"
45 #include "gspca.h"
47 MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
48 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
49 MODULE_LICENSE("GPL");
51 /* specific webcam descriptor */
52 struct sd {
53 struct gspca_dev gspca_dev; /* !! must be the first item */
54 atomic_t avg_lum;
55 int prev_avg_lum;
57 unsigned char gain;
58 unsigned char exposure;
59 unsigned char brightness;
60 unsigned char autogain;
61 unsigned char autogain_ignore_frames;
62 unsigned char frames_to_drop;
63 unsigned char freq; /* light freq filter setting */
65 __u8 bridge; /* Type of bridge */
66 #define BRIDGE_101 0
67 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
68 #define BRIDGE_103 1
70 __u8 sensor; /* Type of image sensor chip */
71 #define SENSOR_HV7131R 0
72 #define SENSOR_OV6650 1
73 #define SENSOR_OV7630 2
74 #define SENSOR_PAS106 3
75 #define SENSOR_PAS202 4
76 #define SENSOR_TAS5110 5
77 #define SENSOR_TAS5130CXX 6
78 __u8 reg11;
81 typedef const __u8 sensor_init_t[8];
83 struct sensor_data {
84 const __u8 *bridge_init[2];
85 int bridge_init_size[2];
86 sensor_init_t *sensor_init;
87 int sensor_init_size;
88 sensor_init_t *sensor_bridge_init[2];
89 int sensor_bridge_init_size[2];
90 int flags;
91 unsigned ctrl_dis;
92 __u8 sensor_addr;
95 /* sensor_data flags */
96 #define F_GAIN 0x01 /* has gain */
97 #define F_SIF 0x02 /* sif or vga */
99 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
100 #define MODE_RAW 0x10 /* raw bayer mode */
101 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
103 /* ctrl_dis helper macros */
104 #define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << AUTOGAIN_IDX))
105 #define NO_FREQ (1 << FREQ_IDX)
106 #define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
108 #define COMP2 0x8f
109 #define COMP 0xc7 /* 0x87 //0x07 */
110 #define COMP1 0xc9 /* 0x89 //0x09 */
112 #define MCK_INIT 0x63
113 #define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/
115 #define SYS_CLK 0x04
117 #define SENS(bridge_1, bridge_3, sensor, sensor_1, \
118 sensor_3, _flags, _ctrl_dis, _sensor_addr) \
120 .bridge_init = { bridge_1, bridge_3 }, \
121 .bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
122 .sensor_init = sensor, \
123 .sensor_init_size = sizeof(sensor), \
124 .sensor_bridge_init = { sensor_1, sensor_3,}, \
125 .sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
126 .flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
129 /* We calculate the autogain at the end of the transfer of a frame, at this
130 moment a frame with the old settings is being transmitted, and a frame is
131 being captured with the old settings. So if we adjust the autogain we must
132 ignore atleast the 2 next frames for the new settings to come into effect
133 before doing any other adjustments */
134 #define AUTOGAIN_IGNORE_FRAMES 3
136 /* V4L2 controls supported by the driver */
137 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
138 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
139 static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
140 static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
141 static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
142 static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
143 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
144 static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
145 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
146 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
148 static struct ctrl sd_ctrls[] = {
149 #define BRIGHTNESS_IDX 0
152 .id = V4L2_CID_BRIGHTNESS,
153 .type = V4L2_CTRL_TYPE_INTEGER,
154 .name = "Brightness",
155 .minimum = 0,
156 .maximum = 255,
157 .step = 1,
158 #define BRIGHTNESS_DEF 127
159 .default_value = BRIGHTNESS_DEF,
161 .set = sd_setbrightness,
162 .get = sd_getbrightness,
164 #define GAIN_IDX 1
167 .id = V4L2_CID_GAIN,
168 .type = V4L2_CTRL_TYPE_INTEGER,
169 .name = "Gain",
170 .minimum = 0,
171 .maximum = 255,
172 .step = 1,
173 #define GAIN_DEF 127
174 #define GAIN_KNEE 200
175 .default_value = GAIN_DEF,
177 .set = sd_setgain,
178 .get = sd_getgain,
180 #define EXPOSURE_IDX 2
183 .id = V4L2_CID_EXPOSURE,
184 .type = V4L2_CTRL_TYPE_INTEGER,
185 .name = "Exposure",
186 #define EXPOSURE_DEF 16 /* 32 ms / 30 fps */
187 #define EXPOSURE_KNEE 50 /* 100 ms / 10 fps */
188 .minimum = 0,
189 .maximum = 255,
190 .step = 1,
191 .default_value = EXPOSURE_DEF,
192 .flags = 0,
194 .set = sd_setexposure,
195 .get = sd_getexposure,
197 #define AUTOGAIN_IDX 3
200 .id = V4L2_CID_AUTOGAIN,
201 .type = V4L2_CTRL_TYPE_BOOLEAN,
202 .name = "Automatic Gain (and Exposure)",
203 .minimum = 0,
204 .maximum = 1,
205 .step = 1,
206 #define AUTOGAIN_DEF 1
207 .default_value = AUTOGAIN_DEF,
208 .flags = 0,
210 .set = sd_setautogain,
211 .get = sd_getautogain,
213 #define FREQ_IDX 4
216 .id = V4L2_CID_POWER_LINE_FREQUENCY,
217 .type = V4L2_CTRL_TYPE_MENU,
218 .name = "Light frequency filter",
219 .minimum = 0,
220 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
221 .step = 1,
222 #define FREQ_DEF 1
223 .default_value = FREQ_DEF,
225 .set = sd_setfreq,
226 .get = sd_getfreq,
230 static const struct v4l2_pix_format vga_mode[] = {
231 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
232 .bytesperline = 160,
233 .sizeimage = 160 * 120,
234 .colorspace = V4L2_COLORSPACE_SRGB,
235 .priv = 2 | MODE_RAW},
236 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
237 .bytesperline = 160,
238 .sizeimage = 160 * 120 * 5 / 4,
239 .colorspace = V4L2_COLORSPACE_SRGB,
240 .priv = 2},
241 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
242 .bytesperline = 320,
243 .sizeimage = 320 * 240 * 5 / 4,
244 .colorspace = V4L2_COLORSPACE_SRGB,
245 .priv = 1},
246 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
247 .bytesperline = 640,
248 .sizeimage = 640 * 480 * 5 / 4,
249 .colorspace = V4L2_COLORSPACE_SRGB,
250 .priv = 0},
252 static const struct v4l2_pix_format sif_mode[] = {
253 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
254 .bytesperline = 160,
255 .sizeimage = 160 * 120,
256 .colorspace = V4L2_COLORSPACE_SRGB,
257 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
258 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
259 .bytesperline = 160,
260 .sizeimage = 160 * 120 * 5 / 4,
261 .colorspace = V4L2_COLORSPACE_SRGB,
262 .priv = 1 | MODE_REDUCED_SIF},
263 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
264 .bytesperline = 176,
265 .sizeimage = 176 * 144,
266 .colorspace = V4L2_COLORSPACE_SRGB,
267 .priv = 1 | MODE_RAW},
268 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
269 .bytesperline = 176,
270 .sizeimage = 176 * 144 * 5 / 4,
271 .colorspace = V4L2_COLORSPACE_SRGB,
272 .priv = 1},
273 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
274 .bytesperline = 320,
275 .sizeimage = 320 * 240 * 5 / 4,
276 .colorspace = V4L2_COLORSPACE_SRGB,
277 .priv = 0 | MODE_REDUCED_SIF},
278 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
279 .bytesperline = 352,
280 .sizeimage = 352 * 288 * 5 / 4,
281 .colorspace = V4L2_COLORSPACE_SRGB,
282 .priv = 0},
285 static const __u8 initHv7131[] = {
286 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
287 0x00, 0x00,
288 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
289 0x28, 0x1e, 0x60, 0x8a, 0x20,
290 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
292 static const __u8 hv7131_sensor_init[][8] = {
293 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
294 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
295 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
296 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
297 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
299 static const __u8 initOv6650[] = {
300 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
301 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
302 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
303 0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
305 static const __u8 ov6650_sensor_init[][8] =
307 /* Bright, contrast, etc are set througth SCBB interface.
308 * AVCAP on win2 do not send any data on this controls. */
309 /* Anyway, some registers appears to alter bright and constrat */
311 /* Reset sensor */
312 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
313 /* Set clock register 0x11 low nibble is clock divider */
314 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
315 /* Next some unknown stuff */
316 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
317 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
318 * THIS SET GREEN SCREEN
319 * (pixels could be innverted in decode kind of "brg",
320 * but blue wont be there. Avoid this data ... */
321 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
322 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
323 {0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
324 /* Enable rgb brightness control */
325 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
326 /* HDG: Note windows uses the line below, which sets both register 0x60
327 and 0x61 I believe these registers of the ov6650 are identical as
328 those of the ov7630, because if this is true the windows settings
329 add a bit additional red gain and a lot additional blue gain, which
330 matches my findings that the windows settings make blue much too
331 blue and red a little too red.
332 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
333 /* Some more unknown stuff */
334 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
335 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
338 static const __u8 initOv7630[] = {
339 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
340 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
341 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
342 0x28, 0x1e, /* H & V sizes r15 .. r16 */
343 0x68, COMP2, MCK_INIT1, /* r17 .. r19 */
344 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c /* r1a .. r1f */
346 static const __u8 initOv7630_3[] = {
347 0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80, /* r01 .. r08 */
348 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, /* r09 .. r10 */
349 0x00, 0x02, 0x01, 0x0a, /* r11 .. r14 */
350 0x28, 0x1e, /* H & V sizes r15 .. r16 */
351 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */
352 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00, /* r1a .. r20 */
353 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
354 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff /* r29 .. r30 */
356 static const __u8 ov7630_sensor_init[][8] = {
357 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
358 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
359 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
360 {0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
361 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
362 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
363 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
364 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
365 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
366 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
367 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
368 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
369 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
370 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
371 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
372 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
373 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
374 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
375 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
378 static const __u8 ov7630_sensor_init_3[][8] = {
379 {0xa0, 0x21, 0x13, 0x80, 0x00, 0x00, 0x00, 0x10},
382 static const __u8 initPas106[] = {
383 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
384 0x00, 0x00,
385 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
386 0x16, 0x12, 0x24, COMP1, MCK_INIT1,
387 0x18, 0x10, 0x02, 0x02, 0x09, 0x07
389 /* compression 0x86 mckinit1 0x2b */
390 static const __u8 pas106_sensor_init[][8] = {
391 /* Pixel Clock Divider 6 */
392 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
393 /* Frame Time MSB (also seen as 0x12) */
394 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
395 /* Frame Time LSB (also seen as 0x05) */
396 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
397 /* Shutter Time Line Offset (also seen as 0x6d) */
398 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
399 /* Shutter Time Pixel Offset (also seen as 0xb1) */
400 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
401 /* Black Level Subtract Sign (also seen 0x00) */
402 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
403 /* Black Level Subtract Level (also seen 0x01) */
404 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
405 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
406 /* Color Gain B Pixel 5 a */
407 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
408 /* Color Gain G1 Pixel 1 5 */
409 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
410 /* Color Gain G2 Pixel 1 0 5 */
411 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
412 /* Color Gain R Pixel 3 1 */
413 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
414 /* Color GainH Pixel */
415 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
416 /* Global Gain */
417 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
418 /* Contrast */
419 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
420 /* H&V synchro polarity */
421 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
422 /* ?default */
423 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
424 /* DAC scale */
425 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
426 /* ?default */
427 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
428 /* Validate Settings */
429 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
432 static const __u8 initPas202[] = {
433 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
434 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
436 0x28, 0x1e, 0x28, 0x89, 0x20,
437 0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
439 static const __u8 pas202_sensor_init[][8] = {
440 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10},
441 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
442 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
443 {0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x00, 0x32, 0x10},
444 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
445 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
446 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
447 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
448 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
449 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
450 {0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x10},
451 {0xb0, 0x40, 0x0e, 0x00, 0x3d, 0x00, 0x63, 0x10},
453 {0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
454 {0xa0, 0x40, 0x10, 0x08, 0x3d, 0x00, 0x63, 0x15},
455 {0xa0, 0x40, 0x02, 0x04, 0x3d, 0x00, 0x63, 0x16},
456 {0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
457 {0xb0, 0x40, 0x0e, 0x00, 0x31, 0x00, 0x63, 0x16},
458 {0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
459 {0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15},
460 {0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
463 static const __u8 initTas5110[] = {
464 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
465 0x00, 0x00,
466 0x00, 0x01, 0x00, 0x45, 0x09, 0x0a,
467 0x16, 0x12, 0x60, 0x86, 0x2b,
468 0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
470 static const __u8 tas5110_sensor_init[][8] = {
471 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
472 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
473 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
476 static const __u8 initTas5130[] = {
477 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
478 0x00, 0x00,
479 0x00, 0x01, 0x00, 0x68, 0x0c, 0x0a,
480 0x28, 0x1e, 0x60, COMP, MCK_INIT,
481 0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
483 static const __u8 tas5130_sensor_init[][8] = {
484 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
485 * shutter 0x47 short exposure? */
486 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
487 /* shutter 0x01 long exposure */
488 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
491 static struct sensor_data sensor_data[] = {
492 SENS(initHv7131, NULL, hv7131_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ, 0),
493 SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
494 SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
495 F_GAIN, 0, 0x21),
496 SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_SIF, NO_EXPO|NO_FREQ,
498 SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, 0,
499 NO_EXPO|NO_FREQ, 0),
500 SENS(initTas5110, NULL, tas5110_sensor_init, NULL, NULL, F_GAIN|F_SIF,
501 NO_BRIGHTNESS|NO_FREQ, 0),
502 SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
506 /* get one byte in gspca_dev->usb_buf */
507 static void reg_r(struct gspca_dev *gspca_dev,
508 __u16 value)
510 usb_control_msg(gspca_dev->dev,
511 usb_rcvctrlpipe(gspca_dev->dev, 0),
512 0, /* request */
513 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
514 value,
515 0, /* index */
516 gspca_dev->usb_buf, 1,
517 500);
520 static void reg_w(struct gspca_dev *gspca_dev,
521 __u16 value,
522 const __u8 *buffer,
523 int len)
525 #ifdef GSPCA_DEBUG
526 if (len > USB_BUF_SZ) {
527 PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
528 return;
530 #endif
531 memcpy(gspca_dev->usb_buf, buffer, len);
532 usb_control_msg(gspca_dev->dev,
533 usb_sndctrlpipe(gspca_dev->dev, 0),
534 0x08, /* request */
535 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
536 value,
537 0, /* index */
538 gspca_dev->usb_buf, len,
539 500);
542 static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
544 int retry = 60;
546 /* is i2c ready */
547 reg_w(gspca_dev, 0x08, buffer, 8);
548 while (retry--) {
549 msleep(10);
550 reg_r(gspca_dev, 0x08);
551 if (gspca_dev->usb_buf[0] & 0x04) {
552 if (gspca_dev->usb_buf[0] & 0x08)
553 return -1;
554 return 0;
557 return -1;
560 static void i2c_w_vector(struct gspca_dev *gspca_dev,
561 const __u8 buffer[][8], int len)
563 for (;;) {
564 reg_w(gspca_dev, 0x08, *buffer, 8);
565 len -= 8;
566 if (len <= 0)
567 break;
568 buffer++;
572 static void setbrightness(struct gspca_dev *gspca_dev)
574 struct sd *sd = (struct sd *) gspca_dev;
575 __u8 value;
577 switch (sd->sensor) {
578 case SENSOR_OV6650:
579 case SENSOR_OV7630: {
580 __u8 i2cOV[] =
581 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
583 /* change reg 0x06 */
584 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
585 i2cOV[3] = sd->brightness;
586 if (i2c_w(gspca_dev, i2cOV) < 0)
587 goto err;
588 break;
590 case SENSOR_PAS106: {
591 __u8 i2c1[] =
592 {0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14};
594 i2c1[3] = sd->brightness >> 3;
595 i2c1[2] = 0x0e;
596 if (i2c_w(gspca_dev, i2c1) < 0)
597 goto err;
598 i2c1[3] = 0x01;
599 i2c1[2] = 0x13;
600 if (i2c_w(gspca_dev, i2c1) < 0)
601 goto err;
602 break;
604 case SENSOR_PAS202: {
605 /* __u8 i2cpexpo1[] =
606 {0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x16}; */
607 __u8 i2cpexpo[] =
608 {0xb0, 0x40, 0x0e, 0x01, 0xab, 0x00, 0x63, 0x16};
609 __u8 i2cp202[] =
610 {0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15};
611 static __u8 i2cpdoit[] =
612 {0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16};
614 /* change reg 0x10 */
615 i2cpexpo[4] = 0xff - sd->brightness;
616 /* if(i2c_w(gspca_dev,i2cpexpo1) < 0)
617 goto err; */
618 /* if(i2c_w(gspca_dev,i2cpdoit) < 0)
619 goto err; */
620 if (i2c_w(gspca_dev, i2cpexpo) < 0)
621 goto err;
622 if (i2c_w(gspca_dev, i2cpdoit) < 0)
623 goto err;
624 i2cp202[3] = sd->brightness >> 3;
625 if (i2c_w(gspca_dev, i2cp202) < 0)
626 goto err;
627 if (i2c_w(gspca_dev, i2cpdoit) < 0)
628 goto err;
629 break;
631 case SENSOR_TAS5130CXX: {
632 __u8 i2c[] =
633 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
635 value = 0xff - sd->brightness;
636 i2c[4] = value;
637 PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
638 if (i2c_w(gspca_dev, i2c) < 0)
639 goto err;
640 break;
643 return;
644 err:
645 PDEBUG(D_ERR, "i2c error brightness");
648 static void setsensorgain(struct gspca_dev *gspca_dev)
650 struct sd *sd = (struct sd *) gspca_dev;
651 unsigned char gain = sd->gain;
653 switch (sd->sensor) {
655 case SENSOR_TAS5110: {
656 __u8 i2c[] =
657 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
659 i2c[4] = 255 - gain;
660 if (i2c_w(gspca_dev, i2c) < 0)
661 goto err;
662 break;
665 case SENSOR_OV6650:
666 gain >>= 1;
667 /* fall thru */
668 case SENSOR_OV7630: {
669 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
671 i2c[1] = sensor_data[sd->sensor].sensor_addr;
672 i2c[3] = gain >> 2;
673 if (i2c_w(gspca_dev, i2c) < 0)
674 goto err;
675 break;
678 return;
679 err:
680 PDEBUG(D_ERR, "i2c error gain");
683 static void setgain(struct gspca_dev *gspca_dev)
685 struct sd *sd = (struct sd *) gspca_dev;
686 __u8 gain;
687 __u8 rgb_value;
689 gain = sd->gain >> 4;
691 /* red and blue gain */
692 rgb_value = gain << 4 | gain;
693 reg_w(gspca_dev, 0x10, &rgb_value, 1);
694 /* green gain */
695 rgb_value = gain;
696 reg_w(gspca_dev, 0x11, &rgb_value, 1);
698 if (sensor_data[sd->sensor].flags & F_GAIN)
699 setsensorgain(gspca_dev);
702 static void setexposure(struct gspca_dev *gspca_dev)
704 struct sd *sd = (struct sd *) gspca_dev;
706 switch (sd->sensor) {
707 case SENSOR_TAS5110: {
708 __u8 reg;
710 /* register 19's high nibble contains the sn9c10x clock divider
711 The high nibble configures the no fps according to the
712 formula: 60 / high_nibble. With a maximum of 30 fps */
713 reg = 120 * sd->exposure / 1000;
714 if (reg < 2)
715 reg = 2;
716 else if (reg > 15)
717 reg = 15;
718 reg = (reg << 4) | 0x0b;
719 reg_w(gspca_dev, 0x19, &reg, 1);
720 break;
722 case SENSOR_OV6650:
723 case SENSOR_OV7630: {
724 /* The ov6650 / ov7630 have 2 registers which both influence
725 exposure, register 11, whose low nibble sets the nr off fps
726 according to: fps = 30 / (low_nibble + 1)
728 The fps configures the maximum exposure setting, but it is
729 possible to use less exposure then what the fps maximum
730 allows by setting register 10. register 10 configures the
731 actual exposure as quotient of the full exposure, with 0
732 being no exposure at all (not very usefull) and reg10_max
733 being max exposure possible at that framerate.
735 The code maps our 0 - 510 ms exposure ctrl to these 2
736 registers, trying to keep fps as high as possible.
738 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
739 int reg10, reg11, reg10_max;
741 /* ov6645 datasheet says reg10_max is 9a, but that uses
742 tline * 2 * reg10 as formula for calculating texpo, the
743 ov6650 probably uses the same formula as the 7730 which uses
744 tline * 4 * reg10, which explains why the reg10max we've
745 found experimentally for the ov6650 is exactly half that of
746 the ov6645. The ov7630 datasheet says the max is 0x41. */
747 if (sd->sensor == SENSOR_OV6650) {
748 reg10_max = 0x4d;
749 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
750 } else
751 reg10_max = 0x41;
753 reg11 = (60 * sd->exposure + 999) / 1000;
754 if (reg11 < 1)
755 reg11 = 1;
756 else if (reg11 > 16)
757 reg11 = 16;
759 /* In 640x480, if the reg11 has less than 3, the image is
760 unstable (not enough bandwidth). */
761 if (gspca_dev->width == 640 && reg11 < 3)
762 reg11 = 3;
764 /* frame exposure time in ms = 1000 * reg11 / 30 ->
765 reg10 = sd->exposure * 2 * reg10_max / (1000 * reg11 / 30) */
766 reg10 = (sd->exposure * 60 * reg10_max) / (1000 * reg11);
768 /* Don't allow this to get below 10 when using autogain, the
769 steps become very large (relatively) when below 10 causing
770 the image to oscilate from much too dark, to much too bright
771 and back again. */
772 if (sd->autogain && reg10 < 10)
773 reg10 = 10;
774 else if (reg10 > reg10_max)
775 reg10 = reg10_max;
777 /* Write reg 10 and reg11 low nibble */
778 i2c[1] = sensor_data[sd->sensor].sensor_addr;
779 i2c[3] = reg10;
780 i2c[4] |= reg11 - 1;
782 /* If register 11 didn't change, don't change it */
783 if (sd->reg11 == reg11 )
784 i2c[0] = 0xa0;
786 if (i2c_w(gspca_dev, i2c) == 0)
787 sd->reg11 = reg11;
788 else
789 PDEBUG(D_ERR, "i2c error exposure");
790 break;
795 static void setfreq(struct gspca_dev *gspca_dev)
797 struct sd *sd = (struct sd *) gspca_dev;
799 switch (sd->sensor) {
800 case SENSOR_OV6650:
801 case SENSOR_OV7630: {
802 /* Framerate adjust register for artificial light 50 hz flicker
803 compensation, for the ov6650 this is identical to ov6630
804 0x2b register, see ov6630 datasheet.
805 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
806 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
807 switch (sd->freq) {
808 default:
809 /* case 0: * no filter*/
810 /* case 2: * 60 hz */
811 i2c[3] = 0;
812 break;
813 case 1: /* 50 hz */
814 i2c[3] = (sd->sensor == SENSOR_OV6650)
815 ? 0x4f : 0x8a;
816 break;
818 i2c[1] = sensor_data[sd->sensor].sensor_addr;
819 if (i2c_w(gspca_dev, i2c) < 0)
820 PDEBUG(D_ERR, "i2c error setfreq");
821 break;
826 static void do_autogain(struct gspca_dev *gspca_dev)
828 int deadzone, desired_avg_lum;
829 struct sd *sd = (struct sd *) gspca_dev;
830 int avg_lum = atomic_read(&sd->avg_lum);
832 if (avg_lum == -1)
833 return;
835 /* SIF / VGA sensors have a different autoexposure area and thus
836 different avg_lum values for the same picture brightness */
837 if (sensor_data[sd->sensor].flags & F_SIF) {
838 deadzone = 1000;
839 desired_avg_lum = 7000;
840 } else {
841 deadzone = 3000;
842 desired_avg_lum = 23000;
845 if (sd->autogain_ignore_frames > 0)
846 sd->autogain_ignore_frames--;
847 else if (gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
848 sd->brightness * desired_avg_lum / 127,
849 deadzone, GAIN_KNEE, EXPOSURE_KNEE)) {
850 PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
851 (int)sd->gain, (int)sd->exposure);
852 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
856 /* this function is called at probe time */
857 static int sd_config(struct gspca_dev *gspca_dev,
858 const struct usb_device_id *id)
860 struct sd *sd = (struct sd *) gspca_dev;
861 struct cam *cam;
863 reg_r(gspca_dev, 0x00);
864 if (gspca_dev->usb_buf[0] != 0x10)
865 return -ENODEV;
867 /* copy the webcam info from the device id */
868 sd->sensor = id->driver_info >> 8;
869 sd->bridge = id->driver_info & 0xff;
870 gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
872 cam = &gspca_dev->cam;
873 if (!(sensor_data[sd->sensor].flags & F_SIF)) {
874 cam->cam_mode = vga_mode;
875 cam->nmodes = ARRAY_SIZE(vga_mode);
876 } else {
877 cam->cam_mode = sif_mode;
878 cam->nmodes = ARRAY_SIZE(sif_mode);
880 cam->npkt = 36; /* 36 packets per ISOC message */
882 sd->brightness = BRIGHTNESS_DEF;
883 sd->gain = GAIN_DEF;
884 sd->exposure = EXPOSURE_DEF;
885 if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
886 sd->autogain = 0; /* Disable do_autogain callback */
887 else
888 sd->autogain = AUTOGAIN_DEF;
889 sd->freq = FREQ_DEF;
891 return 0;
894 /* this function is called at probe and resume time */
895 static int sd_init(struct gspca_dev *gspca_dev)
897 const __u8 stop = 0x09; /* Disable stream turn of LED */
899 reg_w(gspca_dev, 0x01, &stop, 1);
901 return 0;
904 /* -- start the camera -- */
905 static int sd_start(struct gspca_dev *gspca_dev)
907 struct sd *sd = (struct sd *) gspca_dev;
908 struct cam *cam = &gspca_dev->cam;
909 int mode, l;
910 const __u8 *sn9c10x;
911 __u8 reg12_19[8];
913 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
914 sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
915 l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
916 memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
917 reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
918 /* Special cases where reg 17 and or 19 value depends on mode */
919 switch (sd->sensor) {
920 case SENSOR_PAS202:
921 reg12_19[5] = mode ? 0x24 : 0x20;
922 break;
923 case SENSOR_TAS5130CXX:
924 /* probably not mode specific at all most likely the upper
925 nibble of 0x19 is exposure (clock divider) just as with
926 the tas5110, we need someone to test this. */
927 reg12_19[7] = mode ? 0x23 : 0x43;
928 break;
930 /* Disable compression when the raw bayer format has been selected */
931 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
932 reg12_19[6] &= ~0x80;
934 /* Vga mode emulation on SIF sensor? */
935 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
936 reg12_19[0] += 16; /* 0x12: hstart adjust */
937 reg12_19[1] += 24; /* 0x13: vstart adjust */
938 reg12_19[3] = 320 / 16; /* 0x15: hsize */
939 reg12_19[4] = 240 / 16; /* 0x16: vsize */
942 /* reg 0x01 bit 2 video transfert on */
943 reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
944 /* reg 0x17 SensorClk enable inv Clk 0x60 */
945 reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
946 /* Set the registers from the template */
947 reg_w(gspca_dev, 0x01, sn9c10x, l);
949 /* Init the sensor */
950 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
951 sensor_data[sd->sensor].sensor_init_size);
952 if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
953 i2c_w_vector(gspca_dev,
954 sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
955 sensor_data[sd->sensor].sensor_bridge_init_size[
956 sd->bridge]);
958 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
959 reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
960 /* compression register */
961 reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
962 /* H_start */
963 reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
964 /* V_START */
965 reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
966 /* reset 0x17 SensorClk enable inv Clk 0x60 */
967 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
968 reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
969 /*MCKSIZE ->3 */ /*fixme: not ov7630*/
970 reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
971 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
972 reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
973 /* Enable video transfert */
974 reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
975 /* Compression */
976 reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
977 msleep(20);
979 sd->reg11 = -1;
981 setgain(gspca_dev);
982 setbrightness(gspca_dev);
983 setexposure(gspca_dev);
984 setfreq(gspca_dev);
986 sd->frames_to_drop = 0;
987 sd->autogain_ignore_frames = 0;
988 atomic_set(&sd->avg_lum, -1);
989 return 0;
992 static void sd_stopN(struct gspca_dev *gspca_dev)
994 sd_init(gspca_dev);
997 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
998 struct gspca_frame *frame, /* target */
999 unsigned char *data, /* isoc packet */
1000 int len) /* iso packet length */
1002 int i;
1003 struct sd *sd = (struct sd *) gspca_dev;
1004 struct cam *cam = &gspca_dev->cam;
1006 /* frames start with:
1007 * ff ff 00 c4 c4 96 synchro
1008 * 00 (unknown)
1009 * xx (frame sequence / size / compression)
1010 * (xx) (idem - extra byte for sn9c103)
1011 * ll mm brightness sum inside auto exposure
1012 * ll mm brightness sum outside auto exposure
1013 * (xx xx xx xx xx) audio values for snc103
1015 if (len > 6 && len < 24) {
1016 for (i = 0; i < len - 6; i++) {
1017 if (data[0 + i] == 0xff
1018 && data[1 + i] == 0xff
1019 && data[2 + i] == 0x00
1020 && data[3 + i] == 0xc4
1021 && data[4 + i] == 0xc4
1022 && data[5 + i] == 0x96) { /* start of frame */
1023 int lum = -1;
1024 int pkt_type = LAST_PACKET;
1025 int fr_h_sz = (sd->bridge == BRIDGE_103) ?
1026 18 : 12;
1028 if (len - i < fr_h_sz) {
1029 PDEBUG(D_STREAM, "packet too short to"
1030 " get avg brightness");
1031 } else if (sd->bridge == BRIDGE_103) {
1032 lum = data[i + 9] +
1033 (data[i + 10] << 8);
1034 } else {
1035 lum = data[i + 8] + (data[i + 9] << 8);
1037 /* When exposure changes midway a frame we
1038 get a lum of 0 in this case drop 2 frames
1039 as the frames directly after an exposure
1040 change have an unstable image. Sometimes lum
1041 *really* is 0 (cam used in low light with
1042 low exposure setting), so do not drop frames
1043 if the previous lum was 0 too. */
1044 if (lum == 0 && sd->prev_avg_lum != 0) {
1045 lum = -1;
1046 sd->frames_to_drop = 2;
1047 sd->prev_avg_lum = 0;
1048 } else
1049 sd->prev_avg_lum = lum;
1050 atomic_set(&sd->avg_lum, lum);
1052 if (sd->frames_to_drop) {
1053 sd->frames_to_drop--;
1054 pkt_type = DISCARD_PACKET;
1057 frame = gspca_frame_add(gspca_dev, pkt_type,
1058 frame, data, 0);
1059 data += i + fr_h_sz;
1060 len -= i + fr_h_sz;
1061 gspca_frame_add(gspca_dev, FIRST_PACKET,
1062 frame, data, len);
1063 return;
1068 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1069 /* In raw mode we sometimes get some garbage after the frame
1070 ignore this */
1071 int used = frame->data_end - frame->data;
1072 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1074 if (used + len > size)
1075 len = size - used;
1078 gspca_frame_add(gspca_dev, INTER_PACKET,
1079 frame, data, len);
1082 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
1084 struct sd *sd = (struct sd *) gspca_dev;
1086 sd->brightness = val;
1087 if (gspca_dev->streaming)
1088 setbrightness(gspca_dev);
1089 return 0;
1092 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
1094 struct sd *sd = (struct sd *) gspca_dev;
1096 *val = sd->brightness;
1097 return 0;
1100 static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
1102 struct sd *sd = (struct sd *) gspca_dev;
1104 sd->gain = val;
1105 if (gspca_dev->streaming)
1106 setgain(gspca_dev);
1107 return 0;
1110 static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1112 struct sd *sd = (struct sd *) gspca_dev;
1114 *val = sd->gain;
1115 return 0;
1118 static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
1120 struct sd *sd = (struct sd *) gspca_dev;
1122 sd->exposure = val;
1123 if (gspca_dev->streaming)
1124 setexposure(gspca_dev);
1125 return 0;
1128 static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
1130 struct sd *sd = (struct sd *) gspca_dev;
1132 *val = sd->exposure;
1133 return 0;
1136 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
1138 struct sd *sd = (struct sd *) gspca_dev;
1140 sd->autogain = val;
1141 /* when switching to autogain set defaults to make sure
1142 we are on a valid point of the autogain gain /
1143 exposure knee graph, and give this change time to
1144 take effect before doing autogain. */
1145 if (sd->autogain) {
1146 sd->exposure = EXPOSURE_DEF;
1147 sd->gain = GAIN_DEF;
1148 if (gspca_dev->streaming) {
1149 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1150 setexposure(gspca_dev);
1151 setgain(gspca_dev);
1155 return 0;
1158 static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1160 struct sd *sd = (struct sd *) gspca_dev;
1162 *val = sd->autogain;
1163 return 0;
1166 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
1168 struct sd *sd = (struct sd *) gspca_dev;
1170 sd->freq = val;
1171 if (gspca_dev->streaming)
1172 setfreq(gspca_dev);
1173 return 0;
1176 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
1178 struct sd *sd = (struct sd *) gspca_dev;
1180 *val = sd->freq;
1181 return 0;
1184 static int sd_querymenu(struct gspca_dev *gspca_dev,
1185 struct v4l2_querymenu *menu)
1187 switch (menu->id) {
1188 case V4L2_CID_POWER_LINE_FREQUENCY:
1189 switch (menu->index) {
1190 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
1191 strcpy((char *) menu->name, "NoFliker");
1192 return 0;
1193 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
1194 strcpy((char *) menu->name, "50 Hz");
1195 return 0;
1196 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
1197 strcpy((char *) menu->name, "60 Hz");
1198 return 0;
1200 break;
1202 return -EINVAL;
1205 /* sub-driver description */
1206 static const struct sd_desc sd_desc = {
1207 .name = MODULE_NAME,
1208 .ctrls = sd_ctrls,
1209 .nctrls = ARRAY_SIZE(sd_ctrls),
1210 .config = sd_config,
1211 .init = sd_init,
1212 .start = sd_start,
1213 .stopN = sd_stopN,
1214 .pkt_scan = sd_pkt_scan,
1215 .querymenu = sd_querymenu,
1216 .dq_callback = do_autogain,
1219 /* -- module initialisation -- */
1220 #define SB(sensor, bridge) \
1221 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1224 static __devinitdata struct usb_device_id device_table[] = {
1225 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110, 102)}, /* TAS5110C1B */
1226 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110, 101)}, /* TAS5110C1B */
1227 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1228 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110, 101)}, /* TAS5110D */
1229 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1230 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1231 #endif
1232 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1233 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1234 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1235 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1236 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1237 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1238 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1239 #endif
1240 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1241 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1242 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1243 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1244 #endif
1245 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1246 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1247 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1248 #endif
1249 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1252 MODULE_DEVICE_TABLE(usb, device_table);
1254 /* -- device connect -- */
1255 static int sd_probe(struct usb_interface *intf,
1256 const struct usb_device_id *id)
1258 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1259 THIS_MODULE);
1262 static struct usb_driver sd_driver = {
1263 .name = MODULE_NAME,
1264 .id_table = device_table,
1265 .probe = sd_probe,
1266 .disconnect = gspca_disconnect,
1267 #ifdef CONFIG_PM
1268 .suspend = gspca_suspend,
1269 .resume = gspca_resume,
1270 #endif
1273 /* -- module insert / remove -- */
1274 static int __init sd_mod_init(void)
1276 int ret;
1277 ret = usb_register(&sd_driver);
1278 if (ret < 0)
1279 return ret;
1280 PDEBUG(D_PROBE, "registered");
1281 return 0;
1283 static void __exit sd_mod_exit(void)
1285 usb_deregister(&sd_driver);
1286 PDEBUG(D_PROBE, "deregistered");
1289 module_init(sd_mod_init);
1290 module_exit(sd_mod_exit);