First Support on Ginger and OMAP TI
[linux-ginger.git] / drivers / mtd / nand / mxc_nand.c
blob65b26d5a5c0d391cf72559f6d6f38eadb7b089a1
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
37 #define DRIVER_NAME "mxc_nand"
39 /* Addresses for NFC registers */
40 #define NFC_BUF_SIZE 0xE00
41 #define NFC_BUF_ADDR 0xE04
42 #define NFC_FLASH_ADDR 0xE06
43 #define NFC_FLASH_CMD 0xE08
44 #define NFC_CONFIG 0xE0A
45 #define NFC_ECC_STATUS_RESULT 0xE0C
46 #define NFC_RSLTMAIN_AREA 0xE0E
47 #define NFC_RSLTSPARE_AREA 0xE10
48 #define NFC_WRPROT 0xE12
49 #define NFC_UNLOCKSTART_BLKADDR 0xE14
50 #define NFC_UNLOCKEND_BLKADDR 0xE16
51 #define NFC_NF_WRPRST 0xE18
52 #define NFC_CONFIG1 0xE1A
53 #define NFC_CONFIG2 0xE1C
55 /* Addresses for NFC RAM BUFFER Main area 0 */
56 #define MAIN_AREA0 0x000
57 #define MAIN_AREA1 0x200
58 #define MAIN_AREA2 0x400
59 #define MAIN_AREA3 0x600
61 /* Addresses for NFC SPARE BUFFER Spare area 0 */
62 #define SPARE_AREA0 0x800
63 #define SPARE_AREA1 0x810
64 #define SPARE_AREA2 0x820
65 #define SPARE_AREA3 0x830
67 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68 * for Command operation */
69 #define NFC_CMD 0x1
71 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72 * for Address operation */
73 #define NFC_ADDR 0x2
75 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76 * for Input operation */
77 #define NFC_INPUT 0x4
79 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80 * for Data Output operation */
81 #define NFC_OUTPUT 0x8
83 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84 * for Read ID operation */
85 #define NFC_ID 0x10
87 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88 * for Read Status operation */
89 #define NFC_STATUS 0x20
91 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92 * Status operation */
93 #define NFC_INT 0x8000
95 #define NFC_SP_EN (1 << 2)
96 #define NFC_ECC_EN (1 << 3)
97 #define NFC_INT_MSK (1 << 4)
98 #define NFC_BIG (1 << 5)
99 #define NFC_RST (1 << 6)
100 #define NFC_CE (1 << 7)
101 #define NFC_ONE_CYCLE (1 << 8)
103 struct mxc_nand_host {
104 struct mtd_info mtd;
105 struct nand_chip nand;
106 struct mtd_partition *parts;
107 struct device *dev;
109 void __iomem *regs;
110 int spare_only;
111 int status_request;
112 int pagesize_2k;
113 uint16_t col_addr;
114 struct clk *clk;
115 int clk_act;
116 int irq;
118 wait_queue_head_t irq_waitq;
121 /* Define delays in microsec for NAND device operations */
122 #define TROP_US_DELAY 2000
123 /* Macros to get byte and bit positions of ECC */
124 #define COLPOS(x) ((x) >> 3)
125 #define BITPOS(x) ((x) & 0xf)
127 /* Define single bit Error positions in Main & Spare area */
128 #define MAIN_SINGLEBIT_ERROR 0x4
129 #define SPARE_SINGLEBIT_ERROR 0x1
131 /* OOB placement block for use with hardware ecc generation */
132 static struct nand_ecclayout nand_hw_eccoob_8 = {
133 .eccbytes = 5,
134 .eccpos = {6, 7, 8, 9, 10},
135 .oobfree = {{0, 5}, {11, 5}, }
138 static struct nand_ecclayout nand_hw_eccoob_16 = {
139 .eccbytes = 5,
140 .eccpos = {6, 7, 8, 9, 10},
141 .oobfree = {{0, 5}, {11, 5}, }
144 static struct nand_ecclayout nand_hw_eccoob_64 = {
145 .eccbytes = 20,
146 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
147 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
148 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
151 #ifdef CONFIG_MTD_PARTITIONS
152 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
153 #endif
155 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
157 struct mxc_nand_host *host = dev_id;
159 uint16_t tmp;
161 tmp = readw(host->regs + NFC_CONFIG1);
162 tmp |= NFC_INT_MSK; /* Disable interrupt */
163 writew(tmp, host->regs + NFC_CONFIG1);
165 wake_up(&host->irq_waitq);
167 return IRQ_HANDLED;
170 /* This function polls the NANDFC to wait for the basic operation to
171 * complete by checking the INT bit of config2 register.
173 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
174 uint16_t param, int useirq)
176 uint32_t tmp;
178 if (useirq) {
179 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
181 tmp = readw(host->regs + NFC_CONFIG1);
182 tmp &= ~NFC_INT_MSK; /* Enable interrupt */
183 writew(tmp, host->regs + NFC_CONFIG1);
185 wait_event(host->irq_waitq,
186 readw(host->regs + NFC_CONFIG2) & NFC_INT);
188 tmp = readw(host->regs + NFC_CONFIG2);
189 tmp &= ~NFC_INT;
190 writew(tmp, host->regs + NFC_CONFIG2);
192 } else {
193 while (max_retries-- > 0) {
194 if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
195 tmp = readw(host->regs + NFC_CONFIG2);
196 tmp &= ~NFC_INT;
197 writew(tmp, host->regs + NFC_CONFIG2);
198 break;
200 udelay(1);
202 if (max_retries < 0)
203 DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
204 __func__, param);
208 /* This function issues the specified command to the NAND device and
209 * waits for completion. */
210 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
212 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
214 writew(cmd, host->regs + NFC_FLASH_CMD);
215 writew(NFC_CMD, host->regs + NFC_CONFIG2);
217 /* Wait for operation to complete */
218 wait_op_done(host, TROP_US_DELAY, cmd, useirq);
221 /* This function sends an address (or partial address) to the
222 * NAND device. The address is used to select the source/destination for
223 * a NAND command. */
224 static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
226 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
228 writew(addr, host->regs + NFC_FLASH_ADDR);
229 writew(NFC_ADDR, host->regs + NFC_CONFIG2);
231 /* Wait for operation to complete */
232 wait_op_done(host, TROP_US_DELAY, addr, islast);
235 /* This function requests the NANDFC to initate the transfer
236 * of data currently in the NANDFC RAM buffer to the NAND device. */
237 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
238 int spare_only)
240 DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
242 /* NANDFC buffer 0 is used for page read/write */
243 writew(buf_id, host->regs + NFC_BUF_ADDR);
245 /* Configure spare or page+spare access */
246 if (!host->pagesize_2k) {
247 uint16_t config1 = readw(host->regs + NFC_CONFIG1);
248 if (spare_only)
249 config1 |= NFC_SP_EN;
250 else
251 config1 &= ~(NFC_SP_EN);
252 writew(config1, host->regs + NFC_CONFIG1);
255 writew(NFC_INPUT, host->regs + NFC_CONFIG2);
257 /* Wait for operation to complete */
258 wait_op_done(host, TROP_US_DELAY, spare_only, true);
261 /* Requests NANDFC to initated the transfer of data from the
262 * NAND device into in the NANDFC ram buffer. */
263 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
264 int spare_only)
266 DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
268 /* NANDFC buffer 0 is used for page read/write */
269 writew(buf_id, host->regs + NFC_BUF_ADDR);
271 /* Configure spare or page+spare access */
272 if (!host->pagesize_2k) {
273 uint32_t config1 = readw(host->regs + NFC_CONFIG1);
274 if (spare_only)
275 config1 |= NFC_SP_EN;
276 else
277 config1 &= ~NFC_SP_EN;
278 writew(config1, host->regs + NFC_CONFIG1);
281 writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
283 /* Wait for operation to complete */
284 wait_op_done(host, TROP_US_DELAY, spare_only, true);
287 /* Request the NANDFC to perform a read of the NAND device ID. */
288 static void send_read_id(struct mxc_nand_host *host)
290 struct nand_chip *this = &host->nand;
291 uint16_t tmp;
293 /* NANDFC buffer 0 is used for device ID output */
294 writew(0x0, host->regs + NFC_BUF_ADDR);
296 /* Read ID into main buffer */
297 tmp = readw(host->regs + NFC_CONFIG1);
298 tmp &= ~NFC_SP_EN;
299 writew(tmp, host->regs + NFC_CONFIG1);
301 writew(NFC_ID, host->regs + NFC_CONFIG2);
303 /* Wait for operation to complete */
304 wait_op_done(host, TROP_US_DELAY, 0, true);
306 if (this->options & NAND_BUSWIDTH_16) {
307 void __iomem *main_buf = host->regs + MAIN_AREA0;
308 /* compress the ID info */
309 writeb(readb(main_buf + 2), main_buf + 1);
310 writeb(readb(main_buf + 4), main_buf + 2);
311 writeb(readb(main_buf + 6), main_buf + 3);
312 writeb(readb(main_buf + 8), main_buf + 4);
313 writeb(readb(main_buf + 10), main_buf + 5);
317 /* This function requests the NANDFC to perform a read of the
318 * NAND device status and returns the current status. */
319 static uint16_t get_dev_status(struct mxc_nand_host *host)
321 void __iomem *main_buf = host->regs + MAIN_AREA1;
322 uint32_t store;
323 uint16_t ret, tmp;
324 /* Issue status request to NAND device */
326 /* store the main area1 first word, later do recovery */
327 store = readl(main_buf);
328 /* NANDFC buffer 1 is used for device status to prevent
329 * corruption of read/write buffer on status requests. */
330 writew(1, host->regs + NFC_BUF_ADDR);
332 /* Read status into main buffer */
333 tmp = readw(host->regs + NFC_CONFIG1);
334 tmp &= ~NFC_SP_EN;
335 writew(tmp, host->regs + NFC_CONFIG1);
337 writew(NFC_STATUS, host->regs + NFC_CONFIG2);
339 /* Wait for operation to complete */
340 wait_op_done(host, TROP_US_DELAY, 0, true);
342 /* Status is placed in first word of main buffer */
343 /* get status, then recovery area 1 data */
344 ret = readw(main_buf);
345 writel(store, main_buf);
347 return ret;
350 /* This functions is used by upper layer to checks if device is ready */
351 static int mxc_nand_dev_ready(struct mtd_info *mtd)
354 * NFC handles R/B internally. Therefore, this function
355 * always returns status as ready.
357 return 1;
360 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
363 * If HW ECC is enabled, we turn it on during init. There is
364 * no need to enable again here.
368 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
369 u_char *read_ecc, u_char *calc_ecc)
371 struct nand_chip *nand_chip = mtd->priv;
372 struct mxc_nand_host *host = nand_chip->priv;
375 * 1-Bit errors are automatically corrected in HW. No need for
376 * additional correction. 2-Bit errors cannot be corrected by
377 * HW ECC, so we need to return failure
379 uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
381 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
382 DEBUG(MTD_DEBUG_LEVEL0,
383 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
384 return -1;
387 return 0;
390 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
391 u_char *ecc_code)
393 return 0;
396 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
398 struct nand_chip *nand_chip = mtd->priv;
399 struct mxc_nand_host *host = nand_chip->priv;
400 uint8_t ret = 0;
401 uint16_t col, rd_word;
402 uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
403 uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
405 /* Check for status request */
406 if (host->status_request)
407 return get_dev_status(host) & 0xFF;
409 /* Get column for 16-bit access */
410 col = host->col_addr >> 1;
412 /* If we are accessing the spare region */
413 if (host->spare_only)
414 rd_word = readw(&spare_buf[col]);
415 else
416 rd_word = readw(&main_buf[col]);
418 /* Pick upper/lower byte of word from RAM buffer */
419 if (host->col_addr & 0x1)
420 ret = (rd_word >> 8) & 0xFF;
421 else
422 ret = rd_word & 0xFF;
424 /* Update saved column address */
425 host->col_addr++;
427 return ret;
430 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
432 struct nand_chip *nand_chip = mtd->priv;
433 struct mxc_nand_host *host = nand_chip->priv;
434 uint16_t col, rd_word, ret;
435 uint16_t __iomem *p;
437 DEBUG(MTD_DEBUG_LEVEL3,
438 "mxc_nand_read_word(col = %d)\n", host->col_addr);
440 col = host->col_addr;
441 /* Adjust saved column address */
442 if (col < mtd->writesize && host->spare_only)
443 col += mtd->writesize;
445 if (col < mtd->writesize)
446 p = (host->regs + MAIN_AREA0) + (col >> 1);
447 else
448 p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
450 if (col & 1) {
451 rd_word = readw(p);
452 ret = (rd_word >> 8) & 0xff;
453 rd_word = readw(&p[1]);
454 ret |= (rd_word << 8) & 0xff00;
456 } else
457 ret = readw(p);
459 /* Update saved column address */
460 host->col_addr = col + 2;
462 return ret;
465 /* Write data of length len to buffer buf. The data to be
466 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
467 * Operation by the NFC, the data is written to NAND Flash */
468 static void mxc_nand_write_buf(struct mtd_info *mtd,
469 const u_char *buf, int len)
471 struct nand_chip *nand_chip = mtd->priv;
472 struct mxc_nand_host *host = nand_chip->priv;
473 int n, col, i = 0;
475 DEBUG(MTD_DEBUG_LEVEL3,
476 "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
477 len);
479 col = host->col_addr;
481 /* Adjust saved column address */
482 if (col < mtd->writesize && host->spare_only)
483 col += mtd->writesize;
485 n = mtd->writesize + mtd->oobsize - col;
486 n = min(len, n);
488 DEBUG(MTD_DEBUG_LEVEL3,
489 "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
491 while (n) {
492 void __iomem *p;
494 if (col < mtd->writesize)
495 p = host->regs + MAIN_AREA0 + (col & ~3);
496 else
497 p = host->regs + SPARE_AREA0 -
498 mtd->writesize + (col & ~3);
500 DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
501 __LINE__, p);
503 if (((col | (int)&buf[i]) & 3) || n < 16) {
504 uint32_t data = 0;
506 if (col & 3 || n < 4)
507 data = readl(p);
509 switch (col & 3) {
510 case 0:
511 if (n) {
512 data = (data & 0xffffff00) |
513 (buf[i++] << 0);
514 n--;
515 col++;
517 case 1:
518 if (n) {
519 data = (data & 0xffff00ff) |
520 (buf[i++] << 8);
521 n--;
522 col++;
524 case 2:
525 if (n) {
526 data = (data & 0xff00ffff) |
527 (buf[i++] << 16);
528 n--;
529 col++;
531 case 3:
532 if (n) {
533 data = (data & 0x00ffffff) |
534 (buf[i++] << 24);
535 n--;
536 col++;
540 writel(data, p);
541 } else {
542 int m = mtd->writesize - col;
544 if (col >= mtd->writesize)
545 m += mtd->oobsize;
547 m = min(n, m) & ~3;
549 DEBUG(MTD_DEBUG_LEVEL3,
550 "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
551 __func__, __LINE__, n, m, i, col);
553 memcpy(p, &buf[i], m);
554 col += m;
555 i += m;
556 n -= m;
559 /* Update saved column address */
560 host->col_addr = col;
563 /* Read the data buffer from the NAND Flash. To read the data from NAND
564 * Flash first the data output cycle is initiated by the NFC, which copies
565 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
567 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
569 struct nand_chip *nand_chip = mtd->priv;
570 struct mxc_nand_host *host = nand_chip->priv;
571 int n, col, i = 0;
573 DEBUG(MTD_DEBUG_LEVEL3,
574 "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
576 col = host->col_addr;
578 /* Adjust saved column address */
579 if (col < mtd->writesize && host->spare_only)
580 col += mtd->writesize;
582 n = mtd->writesize + mtd->oobsize - col;
583 n = min(len, n);
585 while (n) {
586 void __iomem *p;
588 if (col < mtd->writesize)
589 p = host->regs + MAIN_AREA0 + (col & ~3);
590 else
591 p = host->regs + SPARE_AREA0 -
592 mtd->writesize + (col & ~3);
594 if (((col | (int)&buf[i]) & 3) || n < 16) {
595 uint32_t data;
597 data = readl(p);
598 switch (col & 3) {
599 case 0:
600 if (n) {
601 buf[i++] = (uint8_t) (data);
602 n--;
603 col++;
605 case 1:
606 if (n) {
607 buf[i++] = (uint8_t) (data >> 8);
608 n--;
609 col++;
611 case 2:
612 if (n) {
613 buf[i++] = (uint8_t) (data >> 16);
614 n--;
615 col++;
617 case 3:
618 if (n) {
619 buf[i++] = (uint8_t) (data >> 24);
620 n--;
621 col++;
624 } else {
625 int m = mtd->writesize - col;
627 if (col >= mtd->writesize)
628 m += mtd->oobsize;
630 m = min(n, m) & ~3;
631 memcpy(&buf[i], p, m);
632 col += m;
633 i += m;
634 n -= m;
637 /* Update saved column address */
638 host->col_addr = col;
642 /* Used by the upper layer to verify the data in NAND Flash
643 * with the data in the buf. */
644 static int mxc_nand_verify_buf(struct mtd_info *mtd,
645 const u_char *buf, int len)
647 return -EFAULT;
650 /* This function is used by upper layer for select and
651 * deselect of the NAND chip */
652 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
654 struct nand_chip *nand_chip = mtd->priv;
655 struct mxc_nand_host *host = nand_chip->priv;
657 #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
658 if (chip > 0) {
659 DEBUG(MTD_DEBUG_LEVEL0,
660 "ERROR: Illegal chip select (chip = %d)\n", chip);
661 return;
664 if (chip == -1) {
665 writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
666 host->regs + NFC_CONFIG1);
667 return;
670 writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
671 host->regs + NFC_CONFIG1);
672 #endif
674 switch (chip) {
675 case -1:
676 /* Disable the NFC clock */
677 if (host->clk_act) {
678 clk_disable(host->clk);
679 host->clk_act = 0;
681 break;
682 case 0:
683 /* Enable the NFC clock */
684 if (!host->clk_act) {
685 clk_enable(host->clk);
686 host->clk_act = 1;
688 break;
690 default:
691 break;
695 /* Used by the upper layer to write command to NAND Flash for
696 * different operations to be carried out on NAND Flash */
697 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
698 int column, int page_addr)
700 struct nand_chip *nand_chip = mtd->priv;
701 struct mxc_nand_host *host = nand_chip->priv;
702 int useirq = true;
704 DEBUG(MTD_DEBUG_LEVEL3,
705 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
706 command, column, page_addr);
708 /* Reset command state information */
709 host->status_request = false;
711 /* Command pre-processing step */
712 switch (command) {
714 case NAND_CMD_STATUS:
715 host->col_addr = 0;
716 host->status_request = true;
717 break;
719 case NAND_CMD_READ0:
720 host->col_addr = column;
721 host->spare_only = false;
722 useirq = false;
723 break;
725 case NAND_CMD_READOOB:
726 host->col_addr = column;
727 host->spare_only = true;
728 useirq = false;
729 if (host->pagesize_2k)
730 command = NAND_CMD_READ0; /* only READ0 is valid */
731 break;
733 case NAND_CMD_SEQIN:
734 if (column >= mtd->writesize) {
736 * FIXME: before send SEQIN command for write OOB,
737 * We must read one page out.
738 * For K9F1GXX has no READ1 command to set current HW
739 * pointer to spare area, we must write the whole page
740 * including OOB together.
742 if (host->pagesize_2k)
743 /* call ourself to read a page */
744 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
745 page_addr);
747 host->col_addr = column - mtd->writesize;
748 host->spare_only = true;
750 /* Set program pointer to spare region */
751 if (!host->pagesize_2k)
752 send_cmd(host, NAND_CMD_READOOB, false);
753 } else {
754 host->spare_only = false;
755 host->col_addr = column;
757 /* Set program pointer to page start */
758 if (!host->pagesize_2k)
759 send_cmd(host, NAND_CMD_READ0, false);
761 useirq = false;
762 break;
764 case NAND_CMD_PAGEPROG:
765 send_prog_page(host, 0, host->spare_only);
767 if (host->pagesize_2k) {
768 /* data in 4 areas datas */
769 send_prog_page(host, 1, host->spare_only);
770 send_prog_page(host, 2, host->spare_only);
771 send_prog_page(host, 3, host->spare_only);
774 break;
776 case NAND_CMD_ERASE1:
777 useirq = false;
778 break;
781 /* Write out the command to the device. */
782 send_cmd(host, command, useirq);
784 /* Write out column address, if necessary */
785 if (column != -1) {
787 * MXC NANDFC can only perform full page+spare or
788 * spare-only read/write. When the upper layers
789 * layers perform a read/write buf operation,
790 * we will used the saved column adress to index into
791 * the full page.
793 send_addr(host, 0, page_addr == -1);
794 if (host->pagesize_2k)
795 /* another col addr cycle for 2k page */
796 send_addr(host, 0, false);
799 /* Write out page address, if necessary */
800 if (page_addr != -1) {
801 /* paddr_0 - p_addr_7 */
802 send_addr(host, (page_addr & 0xff), false);
804 if (host->pagesize_2k) {
805 if (mtd->size >= 0x10000000) {
806 /* paddr_8 - paddr_15 */
807 send_addr(host, (page_addr >> 8) & 0xff, false);
808 send_addr(host, (page_addr >> 16) & 0xff, true);
809 } else
810 /* paddr_8 - paddr_15 */
811 send_addr(host, (page_addr >> 8) & 0xff, true);
812 } else {
813 /* One more address cycle for higher density devices */
814 if (mtd->size >= 0x4000000) {
815 /* paddr_8 - paddr_15 */
816 send_addr(host, (page_addr >> 8) & 0xff, false);
817 send_addr(host, (page_addr >> 16) & 0xff, true);
818 } else
819 /* paddr_8 - paddr_15 */
820 send_addr(host, (page_addr >> 8) & 0xff, true);
824 /* Command post-processing step */
825 switch (command) {
827 case NAND_CMD_RESET:
828 break;
830 case NAND_CMD_READOOB:
831 case NAND_CMD_READ0:
832 if (host->pagesize_2k) {
833 /* send read confirm command */
834 send_cmd(host, NAND_CMD_READSTART, true);
835 /* read for each AREA */
836 send_read_page(host, 0, host->spare_only);
837 send_read_page(host, 1, host->spare_only);
838 send_read_page(host, 2, host->spare_only);
839 send_read_page(host, 3, host->spare_only);
840 } else
841 send_read_page(host, 0, host->spare_only);
842 break;
844 case NAND_CMD_READID:
845 host->col_addr = 0;
846 send_read_id(host);
847 break;
849 case NAND_CMD_PAGEPROG:
850 break;
852 case NAND_CMD_STATUS:
853 break;
855 case NAND_CMD_ERASE2:
856 break;
860 /* Define some generic bad / good block scan pattern which are used
861 * while scanning a device for factory marked good / bad blocks. */
862 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
864 static struct nand_bbt_descr smallpage_memorybased = {
865 .options = NAND_BBT_SCAN2NDPAGE,
866 .offs = 5,
867 .len = 1,
868 .pattern = scan_ff_pattern
871 static int __init mxcnd_probe(struct platform_device *pdev)
873 struct nand_chip *this;
874 struct mtd_info *mtd;
875 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
876 struct mxc_nand_host *host;
877 struct resource *res;
878 uint16_t tmp;
879 int err = 0, nr_parts = 0;
881 /* Allocate memory for MTD device structure and private data */
882 host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
883 if (!host)
884 return -ENOMEM;
886 host->dev = &pdev->dev;
887 /* structures must be linked */
888 this = &host->nand;
889 mtd = &host->mtd;
890 mtd->priv = this;
891 mtd->owner = THIS_MODULE;
892 mtd->dev.parent = &pdev->dev;
893 mtd->name = "mxc_nand";
895 /* 50 us command delay time */
896 this->chip_delay = 5;
898 this->priv = host;
899 this->dev_ready = mxc_nand_dev_ready;
900 this->cmdfunc = mxc_nand_command;
901 this->select_chip = mxc_nand_select_chip;
902 this->read_byte = mxc_nand_read_byte;
903 this->read_word = mxc_nand_read_word;
904 this->write_buf = mxc_nand_write_buf;
905 this->read_buf = mxc_nand_read_buf;
906 this->verify_buf = mxc_nand_verify_buf;
908 host->clk = clk_get(&pdev->dev, "nfc");
909 if (IS_ERR(host->clk)) {
910 err = PTR_ERR(host->clk);
911 goto eclk;
914 clk_enable(host->clk);
915 host->clk_act = 1;
917 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
918 if (!res) {
919 err = -ENODEV;
920 goto eres;
923 host->regs = ioremap(res->start, res->end - res->start + 1);
924 if (!host->regs) {
925 err = -ENOMEM;
926 goto eres;
929 tmp = readw(host->regs + NFC_CONFIG1);
930 tmp |= NFC_INT_MSK;
931 writew(tmp, host->regs + NFC_CONFIG1);
933 init_waitqueue_head(&host->irq_waitq);
935 host->irq = platform_get_irq(pdev, 0);
937 err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
938 if (err)
939 goto eirq;
941 if (pdata->hw_ecc) {
942 this->ecc.calculate = mxc_nand_calculate_ecc;
943 this->ecc.hwctl = mxc_nand_enable_hwecc;
944 this->ecc.correct = mxc_nand_correct_data;
945 this->ecc.mode = NAND_ECC_HW;
946 this->ecc.size = 512;
947 this->ecc.bytes = 3;
948 tmp = readw(host->regs + NFC_CONFIG1);
949 tmp |= NFC_ECC_EN;
950 writew(tmp, host->regs + NFC_CONFIG1);
951 } else {
952 this->ecc.size = 512;
953 this->ecc.bytes = 3;
954 this->ecc.layout = &nand_hw_eccoob_8;
955 this->ecc.mode = NAND_ECC_SOFT;
956 tmp = readw(host->regs + NFC_CONFIG1);
957 tmp &= ~NFC_ECC_EN;
958 writew(tmp, host->regs + NFC_CONFIG1);
961 /* Reset NAND */
962 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
964 /* preset operation */
965 /* Unlock the internal RAM Buffer */
966 writew(0x2, host->regs + NFC_CONFIG);
968 /* Blocks to be unlocked */
969 writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
970 writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
972 /* Unlock Block Command for given address range */
973 writew(0x4, host->regs + NFC_WRPROT);
975 /* NAND bus width determines access funtions used by upper layer */
976 if (pdata->width == 2) {
977 this->options |= NAND_BUSWIDTH_16;
978 this->ecc.layout = &nand_hw_eccoob_16;
981 /* first scan to find the device and get the page size */
982 if (nand_scan_ident(mtd, 1)) {
983 err = -ENXIO;
984 goto escan;
987 if (mtd->writesize == 2048) {
988 host->pagesize_2k = 1;
989 this->badblock_pattern = &smallpage_memorybased;
992 if (this->ecc.mode == NAND_ECC_HW) {
993 switch (mtd->oobsize) {
994 case 8:
995 this->ecc.layout = &nand_hw_eccoob_8;
996 break;
997 case 16:
998 this->ecc.layout = &nand_hw_eccoob_16;
999 break;
1000 case 64:
1001 this->ecc.layout = &nand_hw_eccoob_64;
1002 break;
1003 default:
1004 /* page size not handled by HW ECC */
1005 /* switching back to soft ECC */
1006 this->ecc.size = 512;
1007 this->ecc.bytes = 3;
1008 this->ecc.layout = &nand_hw_eccoob_8;
1009 this->ecc.mode = NAND_ECC_SOFT;
1010 this->ecc.calculate = NULL;
1011 this->ecc.correct = NULL;
1012 this->ecc.hwctl = NULL;
1013 tmp = readw(host->regs + NFC_CONFIG1);
1014 tmp &= ~NFC_ECC_EN;
1015 writew(tmp, host->regs + NFC_CONFIG1);
1016 break;
1020 /* second phase scan */
1021 if (nand_scan_tail(mtd)) {
1022 err = -ENXIO;
1023 goto escan;
1026 /* Register the partitions */
1027 #ifdef CONFIG_MTD_PARTITIONS
1028 nr_parts =
1029 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
1030 if (nr_parts > 0)
1031 add_mtd_partitions(mtd, host->parts, nr_parts);
1032 else
1033 #endif
1035 pr_info("Registering %s as whole device\n", mtd->name);
1036 add_mtd_device(mtd);
1039 platform_set_drvdata(pdev, host);
1041 return 0;
1043 escan:
1044 free_irq(host->irq, host);
1045 eirq:
1046 iounmap(host->regs);
1047 eres:
1048 clk_put(host->clk);
1049 eclk:
1050 kfree(host);
1052 return err;
1055 static int __devexit mxcnd_remove(struct platform_device *pdev)
1057 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1059 clk_put(host->clk);
1061 platform_set_drvdata(pdev, NULL);
1063 nand_release(&host->mtd);
1064 free_irq(host->irq, host);
1065 iounmap(host->regs);
1066 kfree(host);
1068 return 0;
1071 #ifdef CONFIG_PM
1072 static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
1074 struct mtd_info *mtd = platform_get_drvdata(pdev);
1075 struct nand_chip *nand_chip = mtd->priv;
1076 struct mxc_nand_host *host = nand_chip->priv;
1077 int ret = 0;
1079 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
1080 if (mtd) {
1081 ret = mtd->suspend(mtd);
1082 /* Disable the NFC clock */
1083 clk_disable(host->clk);
1086 return ret;
1089 static int mxcnd_resume(struct platform_device *pdev)
1091 struct mtd_info *mtd = platform_get_drvdata(pdev);
1092 struct nand_chip *nand_chip = mtd->priv;
1093 struct mxc_nand_host *host = nand_chip->priv;
1094 int ret = 0;
1096 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
1098 if (mtd) {
1099 /* Enable the NFC clock */
1100 clk_enable(host->clk);
1101 mtd->resume(mtd);
1104 return ret;
1107 #else
1108 # define mxcnd_suspend NULL
1109 # define mxcnd_resume NULL
1110 #endif /* CONFIG_PM */
1112 static struct platform_driver mxcnd_driver = {
1113 .driver = {
1114 .name = DRIVER_NAME,
1116 .remove = __exit_p(mxcnd_remove),
1117 .suspend = mxcnd_suspend,
1118 .resume = mxcnd_resume,
1121 static int __init mxc_nd_init(void)
1123 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1126 static void __exit mxc_nd_cleanup(void)
1128 /* Unregister the device structure */
1129 platform_driver_unregister(&mxcnd_driver);
1132 module_init(mxc_nd_init);
1133 module_exit(mxc_nd_cleanup);
1135 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1136 MODULE_DESCRIPTION("MXC NAND MTD driver");
1137 MODULE_LICENSE("GPL");