5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8
= {
66 static struct nand_ecclayout nand_oob_16
= {
68 .eccpos
= {0, 1, 2, 3, 6, 7},
74 static struct nand_ecclayout nand_oob_64
= {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
85 static struct nand_ecclayout nand_oob_128
= {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
99 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
102 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
103 struct mtd_oob_ops
*ops
);
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
109 DEFINE_LED_TRIGGER(nand_led_trigger
);
112 * nand_release_device - [GENERIC] release chip
113 * @mtd: MTD device structure
115 * Deselect, release chip lock and wake up anyone waiting on the device
117 static void nand_release_device(struct mtd_info
*mtd
)
119 struct nand_chip
*chip
= mtd
->priv
;
121 /* De-select the NAND device */
122 chip
->select_chip(mtd
, -1);
124 /* Release the controller and the chip */
125 spin_lock(&chip
->controller
->lock
);
126 chip
->controller
->active
= NULL
;
127 chip
->state
= FL_READY
;
128 wake_up(&chip
->controller
->wq
);
129 spin_unlock(&chip
->controller
->lock
);
133 * nand_read_byte - [DEFAULT] read one byte from the chip
134 * @mtd: MTD device structure
136 * Default read function for 8bit buswith
138 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
140 struct nand_chip
*chip
= mtd
->priv
;
141 return readb(chip
->IO_ADDR_R
);
145 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146 * @mtd: MTD device structure
148 * Default read function for 16bit buswith with
149 * endianess conversion
151 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
153 struct nand_chip
*chip
= mtd
->priv
;
154 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
158 * nand_read_word - [DEFAULT] read one word from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswith without
162 * endianess conversion
164 static u16
nand_read_word(struct mtd_info
*mtd
)
166 struct nand_chip
*chip
= mtd
->priv
;
167 return readw(chip
->IO_ADDR_R
);
171 * nand_select_chip - [DEFAULT] control CE line
172 * @mtd: MTD device structure
173 * @chipnr: chipnumber to select, -1 for deselect
175 * Default select function for 1 chip devices.
177 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
179 struct nand_chip
*chip
= mtd
->priv
;
183 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
194 * nand_write_buf - [DEFAULT] write buffer to chip
195 * @mtd: MTD device structure
197 * @len: number of bytes to write
199 * Default write function for 8bit buswith
201 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
204 struct nand_chip
*chip
= mtd
->priv
;
206 for (i
= 0; i
< len
; i
++)
207 writeb(buf
[i
], chip
->IO_ADDR_W
);
211 * nand_read_buf - [DEFAULT] read chip data into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 * Default read function for 8bit buswith
218 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
221 struct nand_chip
*chip
= mtd
->priv
;
223 for (i
= 0; i
< len
; i
++)
224 buf
[i
] = readb(chip
->IO_ADDR_R
);
228 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
233 * Default verify function for 8bit buswith
235 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
238 struct nand_chip
*chip
= mtd
->priv
;
240 for (i
= 0; i
< len
; i
++)
241 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
247 * nand_write_buf16 - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
250 * @len: number of bytes to write
252 * Default write function for 16bit buswith
254 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
257 struct nand_chip
*chip
= mtd
->priv
;
258 u16
*p
= (u16
*) buf
;
261 for (i
= 0; i
< len
; i
++)
262 writew(p
[i
], chip
->IO_ADDR_W
);
267 * nand_read_buf16 - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 16bit buswith
274 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
277 struct nand_chip
*chip
= mtd
->priv
;
278 u16
*p
= (u16
*) buf
;
281 for (i
= 0; i
< len
; i
++)
282 p
[i
] = readw(chip
->IO_ADDR_R
);
286 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287 * @mtd: MTD device structure
288 * @buf: buffer containing the data to compare
289 * @len: number of bytes to compare
291 * Default verify function for 16bit buswith
293 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
296 struct nand_chip
*chip
= mtd
->priv
;
297 u16
*p
= (u16
*) buf
;
300 for (i
= 0; i
< len
; i
++)
301 if (p
[i
] != readw(chip
->IO_ADDR_R
))
308 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309 * @mtd: MTD device structure
310 * @ofs: offset from device start
311 * @getchip: 0, if the chip is already selected
313 * Check, if the block is bad.
315 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
317 int page
, chipnr
, res
= 0;
318 struct nand_chip
*chip
= mtd
->priv
;
321 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
324 chipnr
= (int)(ofs
>> chip
->chip_shift
);
326 nand_get_device(chip
, mtd
, FL_READING
);
328 /* Select the NAND device */
329 chip
->select_chip(mtd
, chipnr
);
332 if (chip
->options
& NAND_BUSWIDTH_16
) {
333 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
335 bad
= cpu_to_le16(chip
->read_word(mtd
));
336 if (chip
->badblockpos
& 0x1)
338 if ((bad
& 0xFF) != 0xff)
341 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
342 if (chip
->read_byte(mtd
) != 0xff)
347 nand_release_device(mtd
);
353 * nand_default_block_markbad - [DEFAULT] mark a block bad
354 * @mtd: MTD device structure
355 * @ofs: offset from device start
357 * This is the default implementation, which can be overridden by
358 * a hardware specific driver.
360 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
362 struct nand_chip
*chip
= mtd
->priv
;
363 uint8_t buf
[2] = { 0, 0 };
366 /* Get block number */
367 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
369 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
371 /* Do we have a flash based bad block table ? */
372 if (chip
->options
& NAND_USE_FLASH_BBT
)
373 ret
= nand_update_bbt(mtd
, ofs
);
375 /* We write two bytes, so we dont have to mess with 16 bit
378 nand_get_device(chip
, mtd
, FL_WRITING
);
380 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
381 chip
->ops
.datbuf
= NULL
;
382 chip
->ops
.oobbuf
= buf
;
383 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
385 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
386 nand_release_device(mtd
);
389 mtd
->ecc_stats
.badblocks
++;
395 * nand_check_wp - [GENERIC] check if the chip is write protected
396 * @mtd: MTD device structure
397 * Check, if the device is write protected
399 * The function expects, that the device is already selected
401 static int nand_check_wp(struct mtd_info
*mtd
)
403 struct nand_chip
*chip
= mtd
->priv
;
404 /* Check the WP bit */
405 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
406 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
410 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411 * @mtd: MTD device structure
412 * @ofs: offset from device start
413 * @getchip: 0, if the chip is already selected
414 * @allowbbt: 1, if its allowed to access the bbt area
416 * Check, if the block is bad. Either by reading the bad block table or
417 * calling of the scan function.
419 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
422 struct nand_chip
*chip
= mtd
->priv
;
425 return chip
->block_bad(mtd
, ofs
, getchip
);
427 /* Return info from the table */
428 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
432 * Wait for the ready pin, after a command
433 * The timeout is catched later.
435 void nand_wait_ready(struct mtd_info
*mtd
)
437 struct nand_chip
*chip
= mtd
->priv
;
438 unsigned long timeo
= jiffies
+ 2;
440 led_trigger_event(nand_led_trigger
, LED_FULL
);
441 /* wait until command is processed or timeout occures */
443 if (chip
->dev_ready(mtd
))
445 touch_softlockup_watchdog();
446 } while (time_before(jiffies
, timeo
));
447 led_trigger_event(nand_led_trigger
, LED_OFF
);
449 EXPORT_SYMBOL_GPL(nand_wait_ready
);
452 * nand_command - [DEFAULT] Send command to NAND device
453 * @mtd: MTD device structure
454 * @command: the command to be sent
455 * @column: the column address for this command, -1 if none
456 * @page_addr: the page address for this command, -1 if none
458 * Send command to NAND device. This function is used for small page
459 * devices (256/512 Bytes per page)
461 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
462 int column
, int page_addr
)
464 register struct nand_chip
*chip
= mtd
->priv
;
465 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
468 * Write out the command to the device.
470 if (command
== NAND_CMD_SEQIN
) {
473 if (column
>= mtd
->writesize
) {
475 column
-= mtd
->writesize
;
476 readcmd
= NAND_CMD_READOOB
;
477 } else if (column
< 256) {
478 /* First 256 bytes --> READ0 */
479 readcmd
= NAND_CMD_READ0
;
482 readcmd
= NAND_CMD_READ1
;
484 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
485 ctrl
&= ~NAND_CTRL_CHANGE
;
487 chip
->cmd_ctrl(mtd
, command
, ctrl
);
490 * Address cycle, when necessary
492 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
493 /* Serially input address */
495 /* Adjust columns for 16 bit buswidth */
496 if (chip
->options
& NAND_BUSWIDTH_16
)
498 chip
->cmd_ctrl(mtd
, column
, ctrl
);
499 ctrl
&= ~NAND_CTRL_CHANGE
;
501 if (page_addr
!= -1) {
502 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
503 ctrl
&= ~NAND_CTRL_CHANGE
;
504 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
505 /* One more address cycle for devices > 32MiB */
506 if (chip
->chipsize
> (32 << 20))
507 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
509 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
512 * program and erase have their own busy handlers
513 * status and sequential in needs no delay
517 case NAND_CMD_PAGEPROG
:
518 case NAND_CMD_ERASE1
:
519 case NAND_CMD_ERASE2
:
521 case NAND_CMD_STATUS
:
527 udelay(chip
->chip_delay
);
528 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
529 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
531 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
532 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
535 /* This applies to read commands */
538 * If we don't have access to the busy pin, we apply the given
541 if (!chip
->dev_ready
) {
542 udelay(chip
->chip_delay
);
546 /* Apply this short delay always to ensure that we do wait tWB in
547 * any case on any machine. */
550 nand_wait_ready(mtd
);
554 * nand_command_lp - [DEFAULT] Send command to NAND large page device
555 * @mtd: MTD device structure
556 * @command: the command to be sent
557 * @column: the column address for this command, -1 if none
558 * @page_addr: the page address for this command, -1 if none
560 * Send command to NAND device. This is the version for the new large page
561 * devices We dont have the separate regions as we have in the small page
562 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
564 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
565 int column
, int page_addr
)
567 register struct nand_chip
*chip
= mtd
->priv
;
569 /* Emulate NAND_CMD_READOOB */
570 if (command
== NAND_CMD_READOOB
) {
571 column
+= mtd
->writesize
;
572 command
= NAND_CMD_READ0
;
575 /* Command latch cycle */
576 chip
->cmd_ctrl(mtd
, command
& 0xff,
577 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
579 if (column
!= -1 || page_addr
!= -1) {
580 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
582 /* Serially input address */
584 /* Adjust columns for 16 bit buswidth */
585 if (chip
->options
& NAND_BUSWIDTH_16
)
587 chip
->cmd_ctrl(mtd
, column
, ctrl
);
588 ctrl
&= ~NAND_CTRL_CHANGE
;
589 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
591 if (page_addr
!= -1) {
592 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
593 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
594 NAND_NCE
| NAND_ALE
);
595 /* One more address cycle for devices > 128MiB */
596 if (chip
->chipsize
> (128 << 20))
597 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
598 NAND_NCE
| NAND_ALE
);
601 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
604 * program and erase have their own busy handlers
605 * status, sequential in, and deplete1 need no delay
609 case NAND_CMD_CACHEDPROG
:
610 case NAND_CMD_PAGEPROG
:
611 case NAND_CMD_ERASE1
:
612 case NAND_CMD_ERASE2
:
615 case NAND_CMD_STATUS
:
616 case NAND_CMD_DEPLETE1
:
620 * read error status commands require only a short delay
622 case NAND_CMD_STATUS_ERROR
:
623 case NAND_CMD_STATUS_ERROR0
:
624 case NAND_CMD_STATUS_ERROR1
:
625 case NAND_CMD_STATUS_ERROR2
:
626 case NAND_CMD_STATUS_ERROR3
:
627 udelay(chip
->chip_delay
);
633 udelay(chip
->chip_delay
);
634 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
635 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
636 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
637 NAND_NCE
| NAND_CTRL_CHANGE
);
638 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
641 case NAND_CMD_RNDOUT
:
642 /* No ready / busy check necessary */
643 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
644 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
645 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
646 NAND_NCE
| NAND_CTRL_CHANGE
);
650 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
651 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
652 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
653 NAND_NCE
| NAND_CTRL_CHANGE
);
655 /* This applies to read commands */
658 * If we don't have access to the busy pin, we apply the given
661 if (!chip
->dev_ready
) {
662 udelay(chip
->chip_delay
);
667 /* Apply this short delay always to ensure that we do wait tWB in
668 * any case on any machine. */
671 nand_wait_ready(mtd
);
675 * nand_get_device - [GENERIC] Get chip for selected access
676 * @chip: the nand chip descriptor
677 * @mtd: MTD device structure
678 * @new_state: the state which is requested
680 * Get the device and lock it for exclusive access
683 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
685 spinlock_t
*lock
= &chip
->controller
->lock
;
686 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
687 DECLARE_WAITQUEUE(wait
, current
);
691 /* Hardware controller shared among independent devices */
692 if (!chip
->controller
->active
)
693 chip
->controller
->active
= chip
;
695 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
696 chip
->state
= new_state
;
700 if (new_state
== FL_PM_SUSPENDED
) {
702 return (chip
->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
704 set_current_state(TASK_UNINTERRUPTIBLE
);
705 add_wait_queue(wq
, &wait
);
708 remove_wait_queue(wq
, &wait
);
713 * nand_wait - [DEFAULT] wait until the command is done
714 * @mtd: MTD device structure
715 * @chip: NAND chip structure
717 * Wait for command done. This applies to erase and program only
718 * Erase can take up to 400ms and program up to 20ms according to
719 * general NAND and SmartMedia specs
721 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
724 unsigned long timeo
= jiffies
;
725 int status
, state
= chip
->state
;
727 if (state
== FL_ERASING
)
728 timeo
+= (HZ
* 400) / 1000;
730 timeo
+= (HZ
* 20) / 1000;
732 led_trigger_event(nand_led_trigger
, LED_FULL
);
734 /* Apply this short delay always to ensure that we do wait tWB in
735 * any case on any machine. */
738 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
739 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
741 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
743 while (time_before(jiffies
, timeo
)) {
744 if (chip
->dev_ready
) {
745 if (chip
->dev_ready(mtd
))
748 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
753 led_trigger_event(nand_led_trigger
, LED_OFF
);
755 status
= (int)chip
->read_byte(mtd
);
760 * nand_read_page_raw - [Intern] read raw page data without ecc
761 * @mtd: mtd info structure
762 * @chip: nand chip info structure
763 * @buf: buffer to store read data
765 * Not for syndrome calculating ecc controllers, which use a special oob layout
767 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
768 uint8_t *buf
, int page
)
770 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
771 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
776 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
777 * @mtd: mtd info structure
778 * @chip: nand chip info structure
779 * @buf: buffer to store read data
781 * We need a special oob layout and handling even when OOB isn't used.
783 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
784 uint8_t *buf
, int page
)
786 int eccsize
= chip
->ecc
.size
;
787 int eccbytes
= chip
->ecc
.bytes
;
788 uint8_t *oob
= chip
->oob_poi
;
791 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
792 chip
->read_buf(mtd
, buf
, eccsize
);
795 if (chip
->ecc
.prepad
) {
796 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
797 oob
+= chip
->ecc
.prepad
;
800 chip
->read_buf(mtd
, oob
, eccbytes
);
803 if (chip
->ecc
.postpad
) {
804 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
805 oob
+= chip
->ecc
.postpad
;
809 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
811 chip
->read_buf(mtd
, oob
, size
);
817 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
818 * @mtd: mtd info structure
819 * @chip: nand chip info structure
820 * @buf: buffer to store read data
822 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
823 uint8_t *buf
, int page
)
825 int i
, eccsize
= chip
->ecc
.size
;
826 int eccbytes
= chip
->ecc
.bytes
;
827 int eccsteps
= chip
->ecc
.steps
;
829 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
830 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
831 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
833 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
835 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
836 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
838 for (i
= 0; i
< chip
->ecc
.total
; i
++)
839 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
841 eccsteps
= chip
->ecc
.steps
;
844 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
847 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
849 mtd
->ecc_stats
.failed
++;
851 mtd
->ecc_stats
.corrected
+= stat
;
857 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
858 * @mtd: mtd info structure
859 * @chip: nand chip info structure
860 * @data_offs: offset of requested data within the page
861 * @readlen: data length
862 * @bufpoi: buffer to store read data
864 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
, uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
866 int start_step
, end_step
, num_steps
;
867 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
869 int data_col_addr
, i
, gaps
= 0;
870 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
871 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
873 /* Column address wihin the page aligned to ECC size (256bytes). */
874 start_step
= data_offs
/ chip
->ecc
.size
;
875 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
876 num_steps
= end_step
- start_step
+ 1;
878 /* Data size aligned to ECC ecc.size*/
879 datafrag_len
= num_steps
* chip
->ecc
.size
;
880 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
882 data_col_addr
= start_step
* chip
->ecc
.size
;
883 /* If we read not a page aligned data */
884 if (data_col_addr
!= 0)
885 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
887 p
= bufpoi
+ data_col_addr
;
888 chip
->read_buf(mtd
, p
, datafrag_len
);
891 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
892 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
894 /* The performance is faster if to position offsets
895 according to ecc.pos. Let make sure here that
896 there are no gaps in ecc positions */
897 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
898 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
899 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
905 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
906 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
908 /* send the command to read the particular ecc bytes */
909 /* take care about buswidth alignment in read_buf */
910 aligned_pos
= eccpos
[start_step
* chip
->ecc
.bytes
] & ~(busw
- 1);
911 aligned_len
= eccfrag_len
;
912 if (eccpos
[start_step
* chip
->ecc
.bytes
] & (busw
- 1))
914 if (eccpos
[(start_step
+ num_steps
) * chip
->ecc
.bytes
] & (busw
- 1))
917 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
+ aligned_pos
, -1);
918 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
921 for (i
= 0; i
< eccfrag_len
; i
++)
922 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ start_step
* chip
->ecc
.bytes
]];
924 p
= bufpoi
+ data_col_addr
;
925 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
928 stat
= chip
->ecc
.correct(mtd
, p
, &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
930 mtd
->ecc_stats
.failed
++;
932 mtd
->ecc_stats
.corrected
+= stat
;
938 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
939 * @mtd: mtd info structure
940 * @chip: nand chip info structure
941 * @buf: buffer to store read data
943 * Not for syndrome calculating ecc controllers which need a special oob layout
945 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
946 uint8_t *buf
, int page
)
948 int i
, eccsize
= chip
->ecc
.size
;
949 int eccbytes
= chip
->ecc
.bytes
;
950 int eccsteps
= chip
->ecc
.steps
;
952 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
953 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
954 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
956 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
957 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
958 chip
->read_buf(mtd
, p
, eccsize
);
959 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
961 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
963 for (i
= 0; i
< chip
->ecc
.total
; i
++)
964 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
966 eccsteps
= chip
->ecc
.steps
;
969 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
972 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
974 mtd
->ecc_stats
.failed
++;
976 mtd
->ecc_stats
.corrected
+= stat
;
982 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
983 * @mtd: mtd info structure
984 * @chip: nand chip info structure
985 * @buf: buffer to store read data
987 * Hardware ECC for large page chips, require OOB to be read first.
988 * For this ECC mode, the write_page method is re-used from ECC_HW.
989 * These methods read/write ECC from the OOB area, unlike the
990 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
991 * "infix ECC" scheme and reads/writes ECC from the data area, by
992 * overwriting the NAND manufacturer bad block markings.
994 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
995 struct nand_chip
*chip
, uint8_t *buf
, int page
)
997 int i
, eccsize
= chip
->ecc
.size
;
998 int eccbytes
= chip
->ecc
.bytes
;
999 int eccsteps
= chip
->ecc
.steps
;
1001 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1002 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1003 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1005 /* Read the OOB area first */
1006 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1007 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1008 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1010 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1011 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1013 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1016 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1017 chip
->read_buf(mtd
, p
, eccsize
);
1018 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1020 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1022 mtd
->ecc_stats
.failed
++;
1024 mtd
->ecc_stats
.corrected
+= stat
;
1030 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1031 * @mtd: mtd info structure
1032 * @chip: nand chip info structure
1033 * @buf: buffer to store read data
1035 * The hw generator calculates the error syndrome automatically. Therefor
1036 * we need a special oob layout and handling.
1038 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1039 uint8_t *buf
, int page
)
1041 int i
, eccsize
= chip
->ecc
.size
;
1042 int eccbytes
= chip
->ecc
.bytes
;
1043 int eccsteps
= chip
->ecc
.steps
;
1045 uint8_t *oob
= chip
->oob_poi
;
1047 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1050 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1051 chip
->read_buf(mtd
, p
, eccsize
);
1053 if (chip
->ecc
.prepad
) {
1054 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1055 oob
+= chip
->ecc
.prepad
;
1058 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1059 chip
->read_buf(mtd
, oob
, eccbytes
);
1060 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1063 mtd
->ecc_stats
.failed
++;
1065 mtd
->ecc_stats
.corrected
+= stat
;
1069 if (chip
->ecc
.postpad
) {
1070 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1071 oob
+= chip
->ecc
.postpad
;
1075 /* Calculate remaining oob bytes */
1076 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1078 chip
->read_buf(mtd
, oob
, i
);
1084 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1085 * @chip: nand chip structure
1086 * @oob: oob destination address
1087 * @ops: oob ops structure
1088 * @len: size of oob to transfer
1090 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1091 struct mtd_oob_ops
*ops
, size_t len
)
1097 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1100 case MTD_OOB_AUTO
: {
1101 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1102 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1105 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1106 /* Read request not from offset 0 ? */
1107 if (unlikely(roffs
)) {
1108 if (roffs
>= free
->length
) {
1109 roffs
-= free
->length
;
1112 boffs
= free
->offset
+ roffs
;
1113 bytes
= min_t(size_t, len
,
1114 (free
->length
- roffs
));
1117 bytes
= min_t(size_t, len
, free
->length
);
1118 boffs
= free
->offset
;
1120 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1132 * nand_do_read_ops - [Internal] Read data with ECC
1134 * @mtd: MTD device structure
1135 * @from: offset to read from
1136 * @ops: oob ops structure
1138 * Internal function. Called with chip held.
1140 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1141 struct mtd_oob_ops
*ops
)
1143 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1144 struct nand_chip
*chip
= mtd
->priv
;
1145 struct mtd_ecc_stats stats
;
1146 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1149 uint32_t readlen
= ops
->len
;
1150 uint32_t oobreadlen
= ops
->ooblen
;
1151 uint8_t *bufpoi
, *oob
, *buf
;
1153 stats
= mtd
->ecc_stats
;
1155 chipnr
= (int)(from
>> chip
->chip_shift
);
1156 chip
->select_chip(mtd
, chipnr
);
1158 realpage
= (int)(from
>> chip
->page_shift
);
1159 page
= realpage
& chip
->pagemask
;
1161 col
= (int)(from
& (mtd
->writesize
- 1));
1167 bytes
= min(mtd
->writesize
- col
, readlen
);
1168 aligned
= (bytes
== mtd
->writesize
);
1170 /* Is the current page in the buffer ? */
1171 if (realpage
!= chip
->pagebuf
|| oob
) {
1172 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1174 if (likely(sndcmd
)) {
1175 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1179 /* Now read the page into the buffer */
1180 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1181 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1183 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1184 ret
= chip
->ecc
.read_subpage(mtd
, chip
, col
, bytes
, bufpoi
);
1186 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1191 /* Transfer not aligned data */
1193 if (!NAND_SUBPAGE_READ(chip
) && !oob
)
1194 chip
->pagebuf
= realpage
;
1195 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1200 if (unlikely(oob
)) {
1201 /* Raw mode does data:oob:data:oob */
1202 if (ops
->mode
!= MTD_OOB_RAW
) {
1203 int toread
= min(oobreadlen
,
1204 chip
->ecc
.layout
->oobavail
);
1206 oob
= nand_transfer_oob(chip
,
1208 oobreadlen
-= toread
;
1211 buf
= nand_transfer_oob(chip
,
1212 buf
, ops
, mtd
->oobsize
);
1215 if (!(chip
->options
& NAND_NO_READRDY
)) {
1217 * Apply delay or wait for ready/busy pin. Do
1218 * this before the AUTOINCR check, so no
1219 * problems arise if a chip which does auto
1220 * increment is marked as NOAUTOINCR by the
1223 if (!chip
->dev_ready
)
1224 udelay(chip
->chip_delay
);
1226 nand_wait_ready(mtd
);
1229 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1238 /* For subsequent reads align to page boundary. */
1240 /* Increment page address */
1243 page
= realpage
& chip
->pagemask
;
1244 /* Check, if we cross a chip boundary */
1247 chip
->select_chip(mtd
, -1);
1248 chip
->select_chip(mtd
, chipnr
);
1251 /* Check, if the chip supports auto page increment
1252 * or if we have hit a block boundary.
1254 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1258 ops
->retlen
= ops
->len
- (size_t) readlen
;
1260 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1265 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1268 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1272 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1273 * @mtd: MTD device structure
1274 * @from: offset to read from
1275 * @len: number of bytes to read
1276 * @retlen: pointer to variable to store the number of read bytes
1277 * @buf: the databuffer to put data
1279 * Get hold of the chip and call nand_do_read
1281 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1282 size_t *retlen
, uint8_t *buf
)
1284 struct nand_chip
*chip
= mtd
->priv
;
1287 /* Do not allow reads past end of device */
1288 if ((from
+ len
) > mtd
->size
)
1293 nand_get_device(chip
, mtd
, FL_READING
);
1295 chip
->ops
.len
= len
;
1296 chip
->ops
.datbuf
= buf
;
1297 chip
->ops
.oobbuf
= NULL
;
1299 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1301 *retlen
= chip
->ops
.retlen
;
1303 nand_release_device(mtd
);
1309 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1310 * @mtd: mtd info structure
1311 * @chip: nand chip info structure
1312 * @page: page number to read
1313 * @sndcmd: flag whether to issue read command or not
1315 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1316 int page
, int sndcmd
)
1319 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1322 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1327 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1329 * @mtd: mtd info structure
1330 * @chip: nand chip info structure
1331 * @page: page number to read
1332 * @sndcmd: flag whether to issue read command or not
1334 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1335 int page
, int sndcmd
)
1337 uint8_t *buf
= chip
->oob_poi
;
1338 int length
= mtd
->oobsize
;
1339 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1340 int eccsize
= chip
->ecc
.size
;
1341 uint8_t *bufpoi
= buf
;
1342 int i
, toread
, sndrnd
= 0, pos
;
1344 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1345 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1347 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1348 if (mtd
->writesize
> 512)
1349 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1351 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1354 toread
= min_t(int, length
, chunk
);
1355 chip
->read_buf(mtd
, bufpoi
, toread
);
1360 chip
->read_buf(mtd
, bufpoi
, length
);
1366 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1367 * @mtd: mtd info structure
1368 * @chip: nand chip info structure
1369 * @page: page number to write
1371 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1375 const uint8_t *buf
= chip
->oob_poi
;
1376 int length
= mtd
->oobsize
;
1378 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1379 chip
->write_buf(mtd
, buf
, length
);
1380 /* Send command to program the OOB data */
1381 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1383 status
= chip
->waitfunc(mtd
, chip
);
1385 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1389 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1390 * with syndrome - only for large page flash !
1391 * @mtd: mtd info structure
1392 * @chip: nand chip info structure
1393 * @page: page number to write
1395 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1396 struct nand_chip
*chip
, int page
)
1398 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1399 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1400 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1401 const uint8_t *bufpoi
= chip
->oob_poi
;
1404 * data-ecc-data-ecc ... ecc-oob
1406 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1408 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1409 pos
= steps
* (eccsize
+ chunk
);
1414 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1415 for (i
= 0; i
< steps
; i
++) {
1417 if (mtd
->writesize
<= 512) {
1418 uint32_t fill
= 0xFFFFFFFF;
1422 int num
= min_t(int, len
, 4);
1423 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1428 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1429 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1433 len
= min_t(int, length
, chunk
);
1434 chip
->write_buf(mtd
, bufpoi
, len
);
1439 chip
->write_buf(mtd
, bufpoi
, length
);
1441 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1442 status
= chip
->waitfunc(mtd
, chip
);
1444 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1448 * nand_do_read_oob - [Intern] NAND read out-of-band
1449 * @mtd: MTD device structure
1450 * @from: offset to read from
1451 * @ops: oob operations description structure
1453 * NAND read out-of-band data from the spare area
1455 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1456 struct mtd_oob_ops
*ops
)
1458 int page
, realpage
, chipnr
, sndcmd
= 1;
1459 struct nand_chip
*chip
= mtd
->priv
;
1460 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1461 int readlen
= ops
->ooblen
;
1463 uint8_t *buf
= ops
->oobbuf
;
1465 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08Lx, len = %i\n",
1466 __func__
, (unsigned long long)from
, readlen
);
1468 if (ops
->mode
== MTD_OOB_AUTO
)
1469 len
= chip
->ecc
.layout
->oobavail
;
1473 if (unlikely(ops
->ooboffs
>= len
)) {
1474 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start read "
1475 "outside oob\n", __func__
);
1479 /* Do not allow reads past end of device */
1480 if (unlikely(from
>= mtd
->size
||
1481 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1482 (from
>> chip
->page_shift
)) * len
)) {
1483 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read beyond end "
1484 "of device\n", __func__
);
1488 chipnr
= (int)(from
>> chip
->chip_shift
);
1489 chip
->select_chip(mtd
, chipnr
);
1491 /* Shift to get page */
1492 realpage
= (int)(from
>> chip
->page_shift
);
1493 page
= realpage
& chip
->pagemask
;
1496 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1498 len
= min(len
, readlen
);
1499 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1501 if (!(chip
->options
& NAND_NO_READRDY
)) {
1503 * Apply delay or wait for ready/busy pin. Do this
1504 * before the AUTOINCR check, so no problems arise if a
1505 * chip which does auto increment is marked as
1506 * NOAUTOINCR by the board driver.
1508 if (!chip
->dev_ready
)
1509 udelay(chip
->chip_delay
);
1511 nand_wait_ready(mtd
);
1518 /* Increment page address */
1521 page
= realpage
& chip
->pagemask
;
1522 /* Check, if we cross a chip boundary */
1525 chip
->select_chip(mtd
, -1);
1526 chip
->select_chip(mtd
, chipnr
);
1529 /* Check, if the chip supports auto page increment
1530 * or if we have hit a block boundary.
1532 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1536 ops
->oobretlen
= ops
->ooblen
;
1541 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1542 * @mtd: MTD device structure
1543 * @from: offset to read from
1544 * @ops: oob operation description structure
1546 * NAND read data and/or out-of-band data
1548 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1549 struct mtd_oob_ops
*ops
)
1551 struct nand_chip
*chip
= mtd
->priv
;
1552 int ret
= -ENOTSUPP
;
1556 /* Do not allow reads past end of device */
1557 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1558 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read "
1559 "beyond end of device\n", __func__
);
1563 nand_get_device(chip
, mtd
, FL_READING
);
1576 ret
= nand_do_read_oob(mtd
, from
, ops
);
1578 ret
= nand_do_read_ops(mtd
, from
, ops
);
1581 nand_release_device(mtd
);
1587 * nand_write_page_raw - [Intern] raw page write function
1588 * @mtd: mtd info structure
1589 * @chip: nand chip info structure
1592 * Not for syndrome calculating ecc controllers, which use a special oob layout
1594 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1597 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1598 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1602 * nand_write_page_raw_syndrome - [Intern] raw page write function
1603 * @mtd: mtd info structure
1604 * @chip: nand chip info structure
1607 * We need a special oob layout and handling even when ECC isn't checked.
1609 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1612 int eccsize
= chip
->ecc
.size
;
1613 int eccbytes
= chip
->ecc
.bytes
;
1614 uint8_t *oob
= chip
->oob_poi
;
1617 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1618 chip
->write_buf(mtd
, buf
, eccsize
);
1621 if (chip
->ecc
.prepad
) {
1622 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1623 oob
+= chip
->ecc
.prepad
;
1626 chip
->read_buf(mtd
, oob
, eccbytes
);
1629 if (chip
->ecc
.postpad
) {
1630 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1631 oob
+= chip
->ecc
.postpad
;
1635 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1637 chip
->write_buf(mtd
, oob
, size
);
1640 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1641 * @mtd: mtd info structure
1642 * @chip: nand chip info structure
1645 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1648 int i
, eccsize
= chip
->ecc
.size
;
1649 int eccbytes
= chip
->ecc
.bytes
;
1650 int eccsteps
= chip
->ecc
.steps
;
1651 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1652 const uint8_t *p
= buf
;
1653 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1655 /* Software ecc calculation */
1656 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1657 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1659 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1660 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1662 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1666 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1667 * @mtd: mtd info structure
1668 * @chip: nand chip info structure
1671 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1674 int i
, eccsize
= chip
->ecc
.size
;
1675 int eccbytes
= chip
->ecc
.bytes
;
1676 int eccsteps
= chip
->ecc
.steps
;
1677 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1678 const uint8_t *p
= buf
;
1679 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1681 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1682 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1683 chip
->write_buf(mtd
, p
, eccsize
);
1684 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1687 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1688 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1690 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1694 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1695 * @mtd: mtd info structure
1696 * @chip: nand chip info structure
1699 * The hw generator calculates the error syndrome automatically. Therefor
1700 * we need a special oob layout and handling.
1702 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
1703 struct nand_chip
*chip
, const uint8_t *buf
)
1705 int i
, eccsize
= chip
->ecc
.size
;
1706 int eccbytes
= chip
->ecc
.bytes
;
1707 int eccsteps
= chip
->ecc
.steps
;
1708 const uint8_t *p
= buf
;
1709 uint8_t *oob
= chip
->oob_poi
;
1711 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1713 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1714 chip
->write_buf(mtd
, p
, eccsize
);
1716 if (chip
->ecc
.prepad
) {
1717 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1718 oob
+= chip
->ecc
.prepad
;
1721 chip
->ecc
.calculate(mtd
, p
, oob
);
1722 chip
->write_buf(mtd
, oob
, eccbytes
);
1725 if (chip
->ecc
.postpad
) {
1726 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1727 oob
+= chip
->ecc
.postpad
;
1731 /* Calculate remaining oob bytes */
1732 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1734 chip
->write_buf(mtd
, oob
, i
);
1738 * nand_write_page - [REPLACEABLE] write one page
1739 * @mtd: MTD device structure
1740 * @chip: NAND chip descriptor
1741 * @buf: the data to write
1742 * @page: page number to write
1743 * @cached: cached programming
1744 * @raw: use _raw version of write_page
1746 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1747 const uint8_t *buf
, int page
, int cached
, int raw
)
1751 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1754 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1756 chip
->ecc
.write_page(mtd
, chip
, buf
);
1759 * Cached progamming disabled for now, Not sure if its worth the
1760 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1764 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
1766 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1767 status
= chip
->waitfunc(mtd
, chip
);
1769 * See if operation failed and additional status checks are
1772 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
1773 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
1776 if (status
& NAND_STATUS_FAIL
)
1779 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
1780 status
= chip
->waitfunc(mtd
, chip
);
1783 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1784 /* Send command to read back the data */
1785 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1787 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
1794 * nand_fill_oob - [Internal] Transfer client buffer to oob
1795 * @chip: nand chip structure
1796 * @oob: oob data buffer
1797 * @ops: oob ops structure
1799 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
,
1800 struct mtd_oob_ops
*ops
)
1802 size_t len
= ops
->ooblen
;
1808 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
1811 case MTD_OOB_AUTO
: {
1812 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1813 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
1816 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1817 /* Write request not from offset 0 ? */
1818 if (unlikely(woffs
)) {
1819 if (woffs
>= free
->length
) {
1820 woffs
-= free
->length
;
1823 boffs
= free
->offset
+ woffs
;
1824 bytes
= min_t(size_t, len
,
1825 (free
->length
- woffs
));
1828 bytes
= min_t(size_t, len
, free
->length
);
1829 boffs
= free
->offset
;
1831 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
1842 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1845 * nand_do_write_ops - [Internal] NAND write with ECC
1846 * @mtd: MTD device structure
1847 * @to: offset to write to
1848 * @ops: oob operations description structure
1850 * NAND write with ECC
1852 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
1853 struct mtd_oob_ops
*ops
)
1855 int chipnr
, realpage
, page
, blockmask
, column
;
1856 struct nand_chip
*chip
= mtd
->priv
;
1857 uint32_t writelen
= ops
->len
;
1858 uint8_t *oob
= ops
->oobbuf
;
1859 uint8_t *buf
= ops
->datbuf
;
1866 /* reject writes, which are not page aligned */
1867 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
1868 printk(KERN_NOTICE
"%s: Attempt to write not "
1869 "page aligned data\n", __func__
);
1873 column
= to
& (mtd
->writesize
- 1);
1874 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
1879 chipnr
= (int)(to
>> chip
->chip_shift
);
1880 chip
->select_chip(mtd
, chipnr
);
1882 /* Check, if it is write protected */
1883 if (nand_check_wp(mtd
))
1886 realpage
= (int)(to
>> chip
->page_shift
);
1887 page
= realpage
& chip
->pagemask
;
1888 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1890 /* Invalidate the page cache, when we write to the cached page */
1891 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
1892 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
1895 /* If we're not given explicit OOB data, let it be 0xFF */
1897 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1900 int bytes
= mtd
->writesize
;
1901 int cached
= writelen
> bytes
&& page
!= blockmask
;
1902 uint8_t *wbuf
= buf
;
1904 /* Partial page write ? */
1905 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
1907 bytes
= min_t(int, bytes
- column
, (int) writelen
);
1909 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
1910 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
1911 wbuf
= chip
->buffers
->databuf
;
1915 oob
= nand_fill_oob(chip
, oob
, ops
);
1917 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
1918 (ops
->mode
== MTD_OOB_RAW
));
1930 page
= realpage
& chip
->pagemask
;
1931 /* Check, if we cross a chip boundary */
1934 chip
->select_chip(mtd
, -1);
1935 chip
->select_chip(mtd
, chipnr
);
1939 ops
->retlen
= ops
->len
- writelen
;
1941 ops
->oobretlen
= ops
->ooblen
;
1946 * nand_write - [MTD Interface] NAND write with ECC
1947 * @mtd: MTD device structure
1948 * @to: offset to write to
1949 * @len: number of bytes to write
1950 * @retlen: pointer to variable to store the number of written bytes
1951 * @buf: the data to write
1953 * NAND write with ECC
1955 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1956 size_t *retlen
, const uint8_t *buf
)
1958 struct nand_chip
*chip
= mtd
->priv
;
1961 /* Do not allow reads past end of device */
1962 if ((to
+ len
) > mtd
->size
)
1967 nand_get_device(chip
, mtd
, FL_WRITING
);
1969 chip
->ops
.len
= len
;
1970 chip
->ops
.datbuf
= (uint8_t *)buf
;
1971 chip
->ops
.oobbuf
= NULL
;
1973 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
1975 *retlen
= chip
->ops
.retlen
;
1977 nand_release_device(mtd
);
1983 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1984 * @mtd: MTD device structure
1985 * @to: offset to write to
1986 * @ops: oob operation description structure
1988 * NAND write out-of-band
1990 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
1991 struct mtd_oob_ops
*ops
)
1993 int chipnr
, page
, status
, len
;
1994 struct nand_chip
*chip
= mtd
->priv
;
1996 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
1997 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
1999 if (ops
->mode
== MTD_OOB_AUTO
)
2000 len
= chip
->ecc
.layout
->oobavail
;
2004 /* Do not allow write past end of page */
2005 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2006 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to write "
2007 "past end of page\n", __func__
);
2011 if (unlikely(ops
->ooboffs
>= len
)) {
2012 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start "
2013 "write outside oob\n", __func__
);
2017 /* Do not allow reads past end of device */
2018 if (unlikely(to
>= mtd
->size
||
2019 ops
->ooboffs
+ ops
->ooblen
>
2020 ((mtd
->size
>> chip
->page_shift
) -
2021 (to
>> chip
->page_shift
)) * len
)) {
2022 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2023 "end of device\n", __func__
);
2027 chipnr
= (int)(to
>> chip
->chip_shift
);
2028 chip
->select_chip(mtd
, chipnr
);
2030 /* Shift to get page */
2031 page
= (int)(to
>> chip
->page_shift
);
2034 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2035 * of my DiskOnChip 2000 test units) will clear the whole data page too
2036 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2037 * it in the doc2000 driver in August 1999. dwmw2.
2039 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2041 /* Check, if it is write protected */
2042 if (nand_check_wp(mtd
))
2045 /* Invalidate the page cache, if we write to the cached page */
2046 if (page
== chip
->pagebuf
)
2049 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2050 nand_fill_oob(chip
, ops
->oobbuf
, ops
);
2051 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2052 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2057 ops
->oobretlen
= ops
->ooblen
;
2063 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2064 * @mtd: MTD device structure
2065 * @to: offset to write to
2066 * @ops: oob operation description structure
2068 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2069 struct mtd_oob_ops
*ops
)
2071 struct nand_chip
*chip
= mtd
->priv
;
2072 int ret
= -ENOTSUPP
;
2076 /* Do not allow writes past end of device */
2077 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2078 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2079 "end of device\n", __func__
);
2083 nand_get_device(chip
, mtd
, FL_WRITING
);
2096 ret
= nand_do_write_oob(mtd
, to
, ops
);
2098 ret
= nand_do_write_ops(mtd
, to
, ops
);
2101 nand_release_device(mtd
);
2106 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2107 * @mtd: MTD device structure
2108 * @page: the page address of the block which will be erased
2110 * Standard erase command for NAND chips
2112 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2114 struct nand_chip
*chip
= mtd
->priv
;
2115 /* Send commands to erase a block */
2116 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2117 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2121 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2122 * @mtd: MTD device structure
2123 * @page: the page address of the block which will be erased
2125 * AND multi block erase command function
2126 * Erase 4 consecutive blocks
2128 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2130 struct nand_chip
*chip
= mtd
->priv
;
2131 /* Send commands to erase a block */
2132 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2133 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2134 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2135 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2136 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2140 * nand_erase - [MTD Interface] erase block(s)
2141 * @mtd: MTD device structure
2142 * @instr: erase instruction
2144 * Erase one ore more blocks
2146 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2148 return nand_erase_nand(mtd
, instr
, 0);
2151 #define BBT_PAGE_MASK 0xffffff3f
2153 * nand_erase_nand - [Internal] erase block(s)
2154 * @mtd: MTD device structure
2155 * @instr: erase instruction
2156 * @allowbbt: allow erasing the bbt area
2158 * Erase one ore more blocks
2160 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2163 int page
, status
, pages_per_block
, ret
, chipnr
;
2164 struct nand_chip
*chip
= mtd
->priv
;
2165 loff_t rewrite_bbt
[NAND_MAX_CHIPS
]={0};
2166 unsigned int bbt_masked_page
= 0xffffffff;
2169 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
2170 __func__
, (unsigned long long)instr
->addr
,
2171 (unsigned long long)instr
->len
);
2173 /* Start address must align on block boundary */
2174 if (instr
->addr
& ((1 << chip
->phys_erase_shift
) - 1)) {
2175 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Unaligned address\n", __func__
);
2179 /* Length must align on block boundary */
2180 if (instr
->len
& ((1 << chip
->phys_erase_shift
) - 1)) {
2181 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Length not block aligned\n",
2186 /* Do not allow erase past end of device */
2187 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2188 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Erase past end of device\n",
2193 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2195 /* Grab the lock and see if the device is available */
2196 nand_get_device(chip
, mtd
, FL_ERASING
);
2198 /* Shift to get first page */
2199 page
= (int)(instr
->addr
>> chip
->page_shift
);
2200 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2202 /* Calculate pages in each block */
2203 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2205 /* Select the NAND device */
2206 chip
->select_chip(mtd
, chipnr
);
2208 /* Check, if it is write protected */
2209 if (nand_check_wp(mtd
)) {
2210 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
2212 instr
->state
= MTD_ERASE_FAILED
;
2217 * If BBT requires refresh, set the BBT page mask to see if the BBT
2218 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2219 * can not be matched. This is also done when the bbt is actually
2220 * erased to avoid recusrsive updates
2222 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2223 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2225 /* Loop through the pages */
2228 instr
->state
= MTD_ERASING
;
2232 * heck if we have a bad block, we do not erase bad blocks !
2234 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2235 chip
->page_shift
, 0, allowbbt
)) {
2236 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2237 "at page 0x%08x\n", __func__
, page
);
2238 instr
->state
= MTD_ERASE_FAILED
;
2243 * Invalidate the page cache, if we erase the block which
2244 * contains the current cached page
2246 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2247 (page
+ pages_per_block
))
2250 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2252 status
= chip
->waitfunc(mtd
, chip
);
2255 * See if operation failed and additional status checks are
2258 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2259 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2262 /* See if block erase succeeded */
2263 if (status
& NAND_STATUS_FAIL
) {
2264 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Failed erase, "
2265 "page 0x%08x\n", __func__
, page
);
2266 instr
->state
= MTD_ERASE_FAILED
;
2268 ((loff_t
)page
<< chip
->page_shift
);
2273 * If BBT requires refresh, set the BBT rewrite flag to the
2276 if (bbt_masked_page
!= 0xffffffff &&
2277 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2278 rewrite_bbt
[chipnr
] =
2279 ((loff_t
)page
<< chip
->page_shift
);
2281 /* Increment page address and decrement length */
2282 len
-= (1 << chip
->phys_erase_shift
);
2283 page
+= pages_per_block
;
2285 /* Check, if we cross a chip boundary */
2286 if (len
&& !(page
& chip
->pagemask
)) {
2288 chip
->select_chip(mtd
, -1);
2289 chip
->select_chip(mtd
, chipnr
);
2292 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2293 * page mask to see if this BBT should be rewritten
2295 if (bbt_masked_page
!= 0xffffffff &&
2296 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2297 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2301 instr
->state
= MTD_ERASE_DONE
;
2305 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2307 /* Deselect and wake up anyone waiting on the device */
2308 nand_release_device(mtd
);
2310 /* Do call back function */
2312 mtd_erase_callback(instr
);
2315 * If BBT requires refresh and erase was successful, rewrite any
2316 * selected bad block tables
2318 if (bbt_masked_page
== 0xffffffff || ret
)
2321 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2322 if (!rewrite_bbt
[chipnr
])
2324 /* update the BBT for chip */
2325 DEBUG(MTD_DEBUG_LEVEL0
, "%s: nand_update_bbt "
2326 "(%d:0x%0llx 0x%0x)\n", __func__
, chipnr
,
2327 rewrite_bbt
[chipnr
], chip
->bbt_td
->pages
[chipnr
]);
2328 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2331 /* Return more or less happy */
2336 * nand_sync - [MTD Interface] sync
2337 * @mtd: MTD device structure
2339 * Sync is actually a wait for chip ready function
2341 static void nand_sync(struct mtd_info
*mtd
)
2343 struct nand_chip
*chip
= mtd
->priv
;
2345 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2347 /* Grab the lock and see if the device is available */
2348 nand_get_device(chip
, mtd
, FL_SYNCING
);
2349 /* Release it and go back */
2350 nand_release_device(mtd
);
2354 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2355 * @mtd: MTD device structure
2356 * @offs: offset relative to mtd start
2358 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2360 /* Check for invalid offset */
2361 if (offs
> mtd
->size
)
2364 return nand_block_checkbad(mtd
, offs
, 1, 0);
2368 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2369 * @mtd: MTD device structure
2370 * @ofs: offset relative to mtd start
2372 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2374 struct nand_chip
*chip
= mtd
->priv
;
2377 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2378 /* If it was bad already, return success and do nothing. */
2384 return chip
->block_markbad(mtd
, ofs
);
2388 * nand_suspend - [MTD Interface] Suspend the NAND flash
2389 * @mtd: MTD device structure
2391 static int nand_suspend(struct mtd_info
*mtd
)
2393 struct nand_chip
*chip
= mtd
->priv
;
2395 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2399 * nand_resume - [MTD Interface] Resume the NAND flash
2400 * @mtd: MTD device structure
2402 static void nand_resume(struct mtd_info
*mtd
)
2404 struct nand_chip
*chip
= mtd
->priv
;
2406 if (chip
->state
== FL_PM_SUSPENDED
)
2407 nand_release_device(mtd
);
2409 printk(KERN_ERR
"%s called for a chip which is not "
2410 "in suspended state\n", __func__
);
2414 * Set default functions
2416 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2418 /* check for proper chip_delay setup, set 20us if not */
2419 if (!chip
->chip_delay
)
2420 chip
->chip_delay
= 20;
2422 /* check, if a user supplied command function given */
2423 if (chip
->cmdfunc
== NULL
)
2424 chip
->cmdfunc
= nand_command
;
2426 /* check, if a user supplied wait function given */
2427 if (chip
->waitfunc
== NULL
)
2428 chip
->waitfunc
= nand_wait
;
2430 if (!chip
->select_chip
)
2431 chip
->select_chip
= nand_select_chip
;
2432 if (!chip
->read_byte
)
2433 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2434 if (!chip
->read_word
)
2435 chip
->read_word
= nand_read_word
;
2436 if (!chip
->block_bad
)
2437 chip
->block_bad
= nand_block_bad
;
2438 if (!chip
->block_markbad
)
2439 chip
->block_markbad
= nand_default_block_markbad
;
2440 if (!chip
->write_buf
)
2441 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2442 if (!chip
->read_buf
)
2443 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2444 if (!chip
->verify_buf
)
2445 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2446 if (!chip
->scan_bbt
)
2447 chip
->scan_bbt
= nand_default_bbt
;
2449 if (!chip
->controller
) {
2450 chip
->controller
= &chip
->hwcontrol
;
2451 spin_lock_init(&chip
->controller
->lock
);
2452 init_waitqueue_head(&chip
->controller
->wq
);
2458 * Get the flash and manufacturer id and lookup if the type is supported
2460 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2461 struct nand_chip
*chip
,
2462 int busw
, int *maf_id
)
2464 struct nand_flash_dev
*type
= NULL
;
2465 int i
, dev_id
, maf_idx
;
2466 int tmp_id
, tmp_manf
;
2468 /* Select the device */
2469 chip
->select_chip(mtd
, 0);
2472 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2475 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2477 /* Send the command for reading device ID */
2478 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2480 /* Read manufacturer and device IDs */
2481 *maf_id
= chip
->read_byte(mtd
);
2482 dev_id
= chip
->read_byte(mtd
);
2484 /* Try again to make sure, as some systems the bus-hold or other
2485 * interface concerns can cause random data which looks like a
2486 * possibly credible NAND flash to appear. If the two results do
2487 * not match, ignore the device completely.
2490 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2492 /* Read manufacturer and device IDs */
2494 tmp_manf
= chip
->read_byte(mtd
);
2495 tmp_id
= chip
->read_byte(mtd
);
2497 if (tmp_manf
!= *maf_id
|| tmp_id
!= dev_id
) {
2498 printk(KERN_INFO
"%s: second ID read did not match "
2499 "%02x,%02x against %02x,%02x\n", __func__
,
2500 *maf_id
, dev_id
, tmp_manf
, tmp_id
);
2501 return ERR_PTR(-ENODEV
);
2504 /* Lookup the flash id */
2505 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2506 if (dev_id
== nand_flash_ids
[i
].id
) {
2507 type
= &nand_flash_ids
[i
];
2513 return ERR_PTR(-ENODEV
);
2516 mtd
->name
= type
->name
;
2518 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2520 /* Newer devices have all the information in additional id bytes */
2521 if (!type
->pagesize
) {
2523 /* The 3rd id byte holds MLC / multichip data */
2524 chip
->cellinfo
= chip
->read_byte(mtd
);
2525 /* The 4th id byte is the important one */
2526 extid
= chip
->read_byte(mtd
);
2528 mtd
->writesize
= 1024 << (extid
& 0x3);
2531 mtd
->oobsize
= (8 << (extid
& 0x01)) * (mtd
->writesize
>> 9);
2533 /* Calc blocksize. Blocksize is multiples of 64KiB */
2534 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2536 /* Get buswidth information */
2537 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2541 * Old devices have chip data hardcoded in the device id table
2543 mtd
->erasesize
= type
->erasesize
;
2544 mtd
->writesize
= type
->pagesize
;
2545 mtd
->oobsize
= mtd
->writesize
/ 32;
2546 busw
= type
->options
& NAND_BUSWIDTH_16
;
2549 /* Try to identify manufacturer */
2550 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
2551 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
2556 * Check, if buswidth is correct. Hardware drivers should set
2559 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
2560 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2561 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
2562 dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
2563 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
2564 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2566 return ERR_PTR(-EINVAL
);
2569 /* Calculate the address shift from the page size */
2570 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
2571 /* Convert chipsize to number of pages per chip -1. */
2572 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2574 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
2575 ffs(mtd
->erasesize
) - 1;
2576 if (chip
->chipsize
& 0xffffffff)
2577 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
2579 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32)) + 32 - 1;
2581 /* Set the bad block position */
2582 chip
->badblockpos
= mtd
->writesize
> 512 ?
2583 NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2585 /* Get chip options, preserve non chip based options */
2586 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2587 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
2590 * Set chip as a default. Board drivers can override it, if necessary
2592 chip
->options
|= NAND_NO_AUTOINCR
;
2594 /* Check if chip is a not a samsung device. Do not clear the
2595 * options for chips which are not having an extended id.
2597 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
2598 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2600 /* Check for AND chips with 4 page planes */
2601 if (chip
->options
& NAND_4PAGE_ARRAY
)
2602 chip
->erase_cmd
= multi_erase_cmd
;
2604 chip
->erase_cmd
= single_erase_cmd
;
2606 /* Do not replace user supplied command function ! */
2607 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
2608 chip
->cmdfunc
= nand_command_lp
;
2610 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2611 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, dev_id
,
2612 nand_manuf_ids
[maf_idx
].name
, type
->name
);
2618 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2619 * @mtd: MTD device structure
2620 * @maxchips: Number of chips to scan for
2622 * This is the first phase of the normal nand_scan() function. It
2623 * reads the flash ID and sets up MTD fields accordingly.
2625 * The mtd->owner field must be set to the module of the caller.
2627 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
)
2629 int i
, busw
, nand_maf_id
;
2630 struct nand_chip
*chip
= mtd
->priv
;
2631 struct nand_flash_dev
*type
;
2633 /* Get buswidth to select the correct functions */
2634 busw
= chip
->options
& NAND_BUSWIDTH_16
;
2635 /* Set the default functions */
2636 nand_set_defaults(chip
, busw
);
2638 /* Read the flash type */
2639 type
= nand_get_flash_type(mtd
, chip
, busw
, &nand_maf_id
);
2642 printk(KERN_WARNING
"No NAND device found!!!\n");
2643 chip
->select_chip(mtd
, -1);
2644 return PTR_ERR(type
);
2647 /* Check for a chip array */
2648 for (i
= 1; i
< maxchips
; i
++) {
2649 chip
->select_chip(mtd
, i
);
2650 /* See comment in nand_get_flash_type for reset */
2651 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2652 /* Send the command for reading device ID */
2653 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2654 /* Read manufacturer and device IDs */
2655 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
2656 type
->id
!= chip
->read_byte(mtd
))
2660 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2662 /* Store the number of chips and calc total size for mtd */
2664 mtd
->size
= i
* chip
->chipsize
;
2671 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2672 * @mtd: MTD device structure
2674 * This is the second phase of the normal nand_scan() function. It
2675 * fills out all the uninitialized function pointers with the defaults
2676 * and scans for a bad block table if appropriate.
2678 int nand_scan_tail(struct mtd_info
*mtd
)
2681 struct nand_chip
*chip
= mtd
->priv
;
2683 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2684 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
2688 /* Set the internal oob buffer location, just after the page data */
2689 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
2692 * If no default placement scheme is given, select an appropriate one
2694 if (!chip
->ecc
.layout
) {
2695 switch (mtd
->oobsize
) {
2697 chip
->ecc
.layout
= &nand_oob_8
;
2700 chip
->ecc
.layout
= &nand_oob_16
;
2703 chip
->ecc
.layout
= &nand_oob_64
;
2706 chip
->ecc
.layout
= &nand_oob_128
;
2709 printk(KERN_WARNING
"No oob scheme defined for "
2710 "oobsize %d\n", mtd
->oobsize
);
2715 if (!chip
->write_page
)
2716 chip
->write_page
= nand_write_page
;
2719 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2720 * selected and we have 256 byte pagesize fallback to software ECC
2723 switch (chip
->ecc
.mode
) {
2724 case NAND_ECC_HW_OOB_FIRST
:
2725 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2726 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2728 printk(KERN_WARNING
"No ECC functions supplied; "
2729 "Hardware ECC not possible\n");
2732 if (!chip
->ecc
.read_page
)
2733 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
2736 /* Use standard hwecc read page function ? */
2737 if (!chip
->ecc
.read_page
)
2738 chip
->ecc
.read_page
= nand_read_page_hwecc
;
2739 if (!chip
->ecc
.write_page
)
2740 chip
->ecc
.write_page
= nand_write_page_hwecc
;
2741 if (!chip
->ecc
.read_page_raw
)
2742 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2743 if (!chip
->ecc
.write_page_raw
)
2744 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2745 if (!chip
->ecc
.read_oob
)
2746 chip
->ecc
.read_oob
= nand_read_oob_std
;
2747 if (!chip
->ecc
.write_oob
)
2748 chip
->ecc
.write_oob
= nand_write_oob_std
;
2750 case NAND_ECC_HW_SYNDROME
:
2751 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2752 !chip
->ecc
.hwctl
) &&
2753 (!chip
->ecc
.read_page
||
2754 chip
->ecc
.read_page
== nand_read_page_hwecc
||
2755 !chip
->ecc
.write_page
||
2756 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
2757 printk(KERN_WARNING
"No ECC functions supplied; "
2758 "Hardware ECC not possible\n");
2761 /* Use standard syndrome read/write page function ? */
2762 if (!chip
->ecc
.read_page
)
2763 chip
->ecc
.read_page
= nand_read_page_syndrome
;
2764 if (!chip
->ecc
.write_page
)
2765 chip
->ecc
.write_page
= nand_write_page_syndrome
;
2766 if (!chip
->ecc
.read_page_raw
)
2767 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
2768 if (!chip
->ecc
.write_page_raw
)
2769 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
2770 if (!chip
->ecc
.read_oob
)
2771 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
2772 if (!chip
->ecc
.write_oob
)
2773 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
2775 if (mtd
->writesize
>= chip
->ecc
.size
)
2777 printk(KERN_WARNING
"%d byte HW ECC not possible on "
2778 "%d byte page size, fallback to SW ECC\n",
2779 chip
->ecc
.size
, mtd
->writesize
);
2780 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2783 chip
->ecc
.calculate
= nand_calculate_ecc
;
2784 chip
->ecc
.correct
= nand_correct_data
;
2785 chip
->ecc
.read_page
= nand_read_page_swecc
;
2786 chip
->ecc
.read_subpage
= nand_read_subpage
;
2787 chip
->ecc
.write_page
= nand_write_page_swecc
;
2788 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2789 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2790 chip
->ecc
.read_oob
= nand_read_oob_std
;
2791 chip
->ecc
.write_oob
= nand_write_oob_std
;
2792 if (!chip
->ecc
.size
)
2793 chip
->ecc
.size
= 256;
2794 chip
->ecc
.bytes
= 3;
2798 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
2799 "This is not recommended !!\n");
2800 chip
->ecc
.read_page
= nand_read_page_raw
;
2801 chip
->ecc
.write_page
= nand_write_page_raw
;
2802 chip
->ecc
.read_oob
= nand_read_oob_std
;
2803 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2804 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2805 chip
->ecc
.write_oob
= nand_write_oob_std
;
2806 chip
->ecc
.size
= mtd
->writesize
;
2807 chip
->ecc
.bytes
= 0;
2811 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
2817 * The number of bytes available for a client to place data into
2818 * the out of band area
2820 chip
->ecc
.layout
->oobavail
= 0;
2821 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
2822 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
2823 chip
->ecc
.layout
->oobavail
+=
2824 chip
->ecc
.layout
->oobfree
[i
].length
;
2825 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
2828 * Set the number of read / write steps for one page depending on ECC
2831 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
2832 if(chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
2833 printk(KERN_WARNING
"Invalid ecc parameters\n");
2836 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
2839 * Allow subpage writes up to ecc.steps. Not possible for MLC
2842 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2843 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
2844 switch(chip
->ecc
.steps
) {
2846 mtd
->subpage_sft
= 1;
2851 mtd
->subpage_sft
= 2;
2855 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
2857 /* Initialize state */
2858 chip
->state
= FL_READY
;
2860 /* De-select the device */
2861 chip
->select_chip(mtd
, -1);
2863 /* Invalidate the pagebuffer reference */
2866 /* Fill in remaining MTD driver data */
2867 mtd
->type
= MTD_NANDFLASH
;
2868 mtd
->flags
= MTD_CAP_NANDFLASH
;
2869 mtd
->erase
= nand_erase
;
2871 mtd
->unpoint
= NULL
;
2872 mtd
->read
= nand_read
;
2873 mtd
->write
= nand_write
;
2874 mtd
->read_oob
= nand_read_oob
;
2875 mtd
->write_oob
= nand_write_oob
;
2876 mtd
->sync
= nand_sync
;
2879 mtd
->suspend
= nand_suspend
;
2880 mtd
->resume
= nand_resume
;
2881 mtd
->block_isbad
= nand_block_isbad
;
2882 mtd
->block_markbad
= nand_block_markbad
;
2884 /* propagate ecc.layout to mtd_info */
2885 mtd
->ecclayout
= chip
->ecc
.layout
;
2887 /* Check, if we should skip the bad block table scan */
2888 if (chip
->options
& NAND_SKIP_BBTSCAN
)
2891 /* Build bad block table */
2892 return chip
->scan_bbt(mtd
);
2895 /* is_module_text_address() isn't exported, and it's mostly a pointless
2896 test if this is a module _anyway_ -- they'd have to try _really_ hard
2897 to call us from in-kernel code if the core NAND support is modular. */
2899 #define caller_is_module() (1)
2901 #define caller_is_module() \
2902 is_module_text_address((unsigned long)__builtin_return_address(0))
2906 * nand_scan - [NAND Interface] Scan for the NAND device
2907 * @mtd: MTD device structure
2908 * @maxchips: Number of chips to scan for
2910 * This fills out all the uninitialized function pointers
2911 * with the defaults.
2912 * The flash ID is read and the mtd/chip structures are
2913 * filled with the appropriate values.
2914 * The mtd->owner field must be set to the module of the caller
2917 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
2921 /* Many callers got this wrong, so check for it for a while... */
2922 if (!mtd
->owner
&& caller_is_module()) {
2923 printk(KERN_CRIT
"%s called with NULL mtd->owner!\n",
2928 ret
= nand_scan_ident(mtd
, maxchips
);
2930 ret
= nand_scan_tail(mtd
);
2935 * nand_release - [NAND Interface] Free resources held by the NAND device
2936 * @mtd: MTD device structure
2938 void nand_release(struct mtd_info
*mtd
)
2940 struct nand_chip
*chip
= mtd
->priv
;
2942 #ifdef CONFIG_MTD_PARTITIONS
2943 /* Deregister partitions */
2944 del_mtd_partitions(mtd
);
2946 /* Deregister the device */
2947 del_mtd_device(mtd
);
2949 /* Free bad block table memory */
2951 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2952 kfree(chip
->buffers
);
2955 EXPORT_SYMBOL_GPL(nand_scan
);
2956 EXPORT_SYMBOL_GPL(nand_scan_ident
);
2957 EXPORT_SYMBOL_GPL(nand_scan_tail
);
2958 EXPORT_SYMBOL_GPL(nand_release
);
2960 static int __init
nand_base_init(void)
2962 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
2966 static void __exit
nand_base_exit(void)
2968 led_trigger_unregister_simple(nand_led_trigger
);
2971 module_init(nand_base_init
);
2972 module_exit(nand_base_exit
);
2974 MODULE_LICENSE("GPL");
2975 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2976 MODULE_DESCRIPTION("Generic NAND flash driver code");