First Support on Ginger and OMAP TI
[linux-ginger.git] / drivers / mtd / nand / nand_base.c
blob22113865438b83eab930c9aa839a127c6a5c8de3
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <asm/io.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57 .eccbytes = 3,
58 .eccpos = {0, 1, 2},
59 .oobfree = {
60 {.offset = 3,
61 .length = 2},
62 {.offset = 6,
63 .length = 2}}
66 static struct nand_ecclayout nand_oob_16 = {
67 .eccbytes = 6,
68 .eccpos = {0, 1, 2, 3, 6, 7},
69 .oobfree = {
70 {.offset = 8,
71 . length = 8}}
74 static struct nand_ecclayout nand_oob_64 = {
75 .eccbytes = 24,
76 .eccpos = {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
80 .oobfree = {
81 {.offset = 2,
82 .length = 38}}
85 static struct nand_ecclayout nand_oob_128 = {
86 .eccbytes = 48,
87 .eccpos = {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
94 .oobfree = {
95 {.offset = 2,
96 .length = 78}}
99 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100 int new_state);
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103 struct mtd_oob_ops *ops);
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
109 DEFINE_LED_TRIGGER(nand_led_trigger);
112 * nand_release_device - [GENERIC] release chip
113 * @mtd: MTD device structure
115 * Deselect, release chip lock and wake up anyone waiting on the device
117 static void nand_release_device(struct mtd_info *mtd)
119 struct nand_chip *chip = mtd->priv;
121 /* De-select the NAND device */
122 chip->select_chip(mtd, -1);
124 /* Release the controller and the chip */
125 spin_lock(&chip->controller->lock);
126 chip->controller->active = NULL;
127 chip->state = FL_READY;
128 wake_up(&chip->controller->wq);
129 spin_unlock(&chip->controller->lock);
133 * nand_read_byte - [DEFAULT] read one byte from the chip
134 * @mtd: MTD device structure
136 * Default read function for 8bit buswith
138 static uint8_t nand_read_byte(struct mtd_info *mtd)
140 struct nand_chip *chip = mtd->priv;
141 return readb(chip->IO_ADDR_R);
145 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146 * @mtd: MTD device structure
148 * Default read function for 16bit buswith with
149 * endianess conversion
151 static uint8_t nand_read_byte16(struct mtd_info *mtd)
153 struct nand_chip *chip = mtd->priv;
154 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
158 * nand_read_word - [DEFAULT] read one word from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswith without
162 * endianess conversion
164 static u16 nand_read_word(struct mtd_info *mtd)
166 struct nand_chip *chip = mtd->priv;
167 return readw(chip->IO_ADDR_R);
171 * nand_select_chip - [DEFAULT] control CE line
172 * @mtd: MTD device structure
173 * @chipnr: chipnumber to select, -1 for deselect
175 * Default select function for 1 chip devices.
177 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
179 struct nand_chip *chip = mtd->priv;
181 switch (chipnr) {
182 case -1:
183 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
184 break;
185 case 0:
186 break;
188 default:
189 BUG();
194 * nand_write_buf - [DEFAULT] write buffer to chip
195 * @mtd: MTD device structure
196 * @buf: data buffer
197 * @len: number of bytes to write
199 * Default write function for 8bit buswith
201 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
203 int i;
204 struct nand_chip *chip = mtd->priv;
206 for (i = 0; i < len; i++)
207 writeb(buf[i], chip->IO_ADDR_W);
211 * nand_read_buf - [DEFAULT] read chip data into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 * Default read function for 8bit buswith
218 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
220 int i;
221 struct nand_chip *chip = mtd->priv;
223 for (i = 0; i < len; i++)
224 buf[i] = readb(chip->IO_ADDR_R);
228 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
233 * Default verify function for 8bit buswith
235 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
237 int i;
238 struct nand_chip *chip = mtd->priv;
240 for (i = 0; i < len; i++)
241 if (buf[i] != readb(chip->IO_ADDR_R))
242 return -EFAULT;
243 return 0;
247 * nand_write_buf16 - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
249 * @buf: data buffer
250 * @len: number of bytes to write
252 * Default write function for 16bit buswith
254 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
256 int i;
257 struct nand_chip *chip = mtd->priv;
258 u16 *p = (u16 *) buf;
259 len >>= 1;
261 for (i = 0; i < len; i++)
262 writew(p[i], chip->IO_ADDR_W);
267 * nand_read_buf16 - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 16bit buswith
274 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
276 int i;
277 struct nand_chip *chip = mtd->priv;
278 u16 *p = (u16 *) buf;
279 len >>= 1;
281 for (i = 0; i < len; i++)
282 p[i] = readw(chip->IO_ADDR_R);
286 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287 * @mtd: MTD device structure
288 * @buf: buffer containing the data to compare
289 * @len: number of bytes to compare
291 * Default verify function for 16bit buswith
293 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
295 int i;
296 struct nand_chip *chip = mtd->priv;
297 u16 *p = (u16 *) buf;
298 len >>= 1;
300 for (i = 0; i < len; i++)
301 if (p[i] != readw(chip->IO_ADDR_R))
302 return -EFAULT;
304 return 0;
308 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309 * @mtd: MTD device structure
310 * @ofs: offset from device start
311 * @getchip: 0, if the chip is already selected
313 * Check, if the block is bad.
315 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
317 int page, chipnr, res = 0;
318 struct nand_chip *chip = mtd->priv;
319 u16 bad;
321 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
323 if (getchip) {
324 chipnr = (int)(ofs >> chip->chip_shift);
326 nand_get_device(chip, mtd, FL_READING);
328 /* Select the NAND device */
329 chip->select_chip(mtd, chipnr);
332 if (chip->options & NAND_BUSWIDTH_16) {
333 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
334 page);
335 bad = cpu_to_le16(chip->read_word(mtd));
336 if (chip->badblockpos & 0x1)
337 bad >>= 8;
338 if ((bad & 0xFF) != 0xff)
339 res = 1;
340 } else {
341 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
342 if (chip->read_byte(mtd) != 0xff)
343 res = 1;
346 if (getchip)
347 nand_release_device(mtd);
349 return res;
353 * nand_default_block_markbad - [DEFAULT] mark a block bad
354 * @mtd: MTD device structure
355 * @ofs: offset from device start
357 * This is the default implementation, which can be overridden by
358 * a hardware specific driver.
360 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
362 struct nand_chip *chip = mtd->priv;
363 uint8_t buf[2] = { 0, 0 };
364 int block, ret;
366 /* Get block number */
367 block = (int)(ofs >> chip->bbt_erase_shift);
368 if (chip->bbt)
369 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
371 /* Do we have a flash based bad block table ? */
372 if (chip->options & NAND_USE_FLASH_BBT)
373 ret = nand_update_bbt(mtd, ofs);
374 else {
375 /* We write two bytes, so we dont have to mess with 16 bit
376 * access
378 nand_get_device(chip, mtd, FL_WRITING);
379 ofs += mtd->oobsize;
380 chip->ops.len = chip->ops.ooblen = 2;
381 chip->ops.datbuf = NULL;
382 chip->ops.oobbuf = buf;
383 chip->ops.ooboffs = chip->badblockpos & ~0x01;
385 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
386 nand_release_device(mtd);
388 if (!ret)
389 mtd->ecc_stats.badblocks++;
391 return ret;
395 * nand_check_wp - [GENERIC] check if the chip is write protected
396 * @mtd: MTD device structure
397 * Check, if the device is write protected
399 * The function expects, that the device is already selected
401 static int nand_check_wp(struct mtd_info *mtd)
403 struct nand_chip *chip = mtd->priv;
404 /* Check the WP bit */
405 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
406 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
410 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411 * @mtd: MTD device structure
412 * @ofs: offset from device start
413 * @getchip: 0, if the chip is already selected
414 * @allowbbt: 1, if its allowed to access the bbt area
416 * Check, if the block is bad. Either by reading the bad block table or
417 * calling of the scan function.
419 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
420 int allowbbt)
422 struct nand_chip *chip = mtd->priv;
424 if (!chip->bbt)
425 return chip->block_bad(mtd, ofs, getchip);
427 /* Return info from the table */
428 return nand_isbad_bbt(mtd, ofs, allowbbt);
432 * Wait for the ready pin, after a command
433 * The timeout is catched later.
435 void nand_wait_ready(struct mtd_info *mtd)
437 struct nand_chip *chip = mtd->priv;
438 unsigned long timeo = jiffies + 2;
440 led_trigger_event(nand_led_trigger, LED_FULL);
441 /* wait until command is processed or timeout occures */
442 do {
443 if (chip->dev_ready(mtd))
444 break;
445 touch_softlockup_watchdog();
446 } while (time_before(jiffies, timeo));
447 led_trigger_event(nand_led_trigger, LED_OFF);
449 EXPORT_SYMBOL_GPL(nand_wait_ready);
452 * nand_command - [DEFAULT] Send command to NAND device
453 * @mtd: MTD device structure
454 * @command: the command to be sent
455 * @column: the column address for this command, -1 if none
456 * @page_addr: the page address for this command, -1 if none
458 * Send command to NAND device. This function is used for small page
459 * devices (256/512 Bytes per page)
461 static void nand_command(struct mtd_info *mtd, unsigned int command,
462 int column, int page_addr)
464 register struct nand_chip *chip = mtd->priv;
465 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
468 * Write out the command to the device.
470 if (command == NAND_CMD_SEQIN) {
471 int readcmd;
473 if (column >= mtd->writesize) {
474 /* OOB area */
475 column -= mtd->writesize;
476 readcmd = NAND_CMD_READOOB;
477 } else if (column < 256) {
478 /* First 256 bytes --> READ0 */
479 readcmd = NAND_CMD_READ0;
480 } else {
481 column -= 256;
482 readcmd = NAND_CMD_READ1;
484 chip->cmd_ctrl(mtd, readcmd, ctrl);
485 ctrl &= ~NAND_CTRL_CHANGE;
487 chip->cmd_ctrl(mtd, command, ctrl);
490 * Address cycle, when necessary
492 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
493 /* Serially input address */
494 if (column != -1) {
495 /* Adjust columns for 16 bit buswidth */
496 if (chip->options & NAND_BUSWIDTH_16)
497 column >>= 1;
498 chip->cmd_ctrl(mtd, column, ctrl);
499 ctrl &= ~NAND_CTRL_CHANGE;
501 if (page_addr != -1) {
502 chip->cmd_ctrl(mtd, page_addr, ctrl);
503 ctrl &= ~NAND_CTRL_CHANGE;
504 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
505 /* One more address cycle for devices > 32MiB */
506 if (chip->chipsize > (32 << 20))
507 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
509 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
512 * program and erase have their own busy handlers
513 * status and sequential in needs no delay
515 switch (command) {
517 case NAND_CMD_PAGEPROG:
518 case NAND_CMD_ERASE1:
519 case NAND_CMD_ERASE2:
520 case NAND_CMD_SEQIN:
521 case NAND_CMD_STATUS:
522 return;
524 case NAND_CMD_RESET:
525 if (chip->dev_ready)
526 break;
527 udelay(chip->chip_delay);
528 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
529 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
530 chip->cmd_ctrl(mtd,
531 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
532 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
533 return;
535 /* This applies to read commands */
536 default:
538 * If we don't have access to the busy pin, we apply the given
539 * command delay
541 if (!chip->dev_ready) {
542 udelay(chip->chip_delay);
543 return;
546 /* Apply this short delay always to ensure that we do wait tWB in
547 * any case on any machine. */
548 ndelay(100);
550 nand_wait_ready(mtd);
554 * nand_command_lp - [DEFAULT] Send command to NAND large page device
555 * @mtd: MTD device structure
556 * @command: the command to be sent
557 * @column: the column address for this command, -1 if none
558 * @page_addr: the page address for this command, -1 if none
560 * Send command to NAND device. This is the version for the new large page
561 * devices We dont have the separate regions as we have in the small page
562 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
564 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
565 int column, int page_addr)
567 register struct nand_chip *chip = mtd->priv;
569 /* Emulate NAND_CMD_READOOB */
570 if (command == NAND_CMD_READOOB) {
571 column += mtd->writesize;
572 command = NAND_CMD_READ0;
575 /* Command latch cycle */
576 chip->cmd_ctrl(mtd, command & 0xff,
577 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
579 if (column != -1 || page_addr != -1) {
580 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
582 /* Serially input address */
583 if (column != -1) {
584 /* Adjust columns for 16 bit buswidth */
585 if (chip->options & NAND_BUSWIDTH_16)
586 column >>= 1;
587 chip->cmd_ctrl(mtd, column, ctrl);
588 ctrl &= ~NAND_CTRL_CHANGE;
589 chip->cmd_ctrl(mtd, column >> 8, ctrl);
591 if (page_addr != -1) {
592 chip->cmd_ctrl(mtd, page_addr, ctrl);
593 chip->cmd_ctrl(mtd, page_addr >> 8,
594 NAND_NCE | NAND_ALE);
595 /* One more address cycle for devices > 128MiB */
596 if (chip->chipsize > (128 << 20))
597 chip->cmd_ctrl(mtd, page_addr >> 16,
598 NAND_NCE | NAND_ALE);
601 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
604 * program and erase have their own busy handlers
605 * status, sequential in, and deplete1 need no delay
607 switch (command) {
609 case NAND_CMD_CACHEDPROG:
610 case NAND_CMD_PAGEPROG:
611 case NAND_CMD_ERASE1:
612 case NAND_CMD_ERASE2:
613 case NAND_CMD_SEQIN:
614 case NAND_CMD_RNDIN:
615 case NAND_CMD_STATUS:
616 case NAND_CMD_DEPLETE1:
617 return;
620 * read error status commands require only a short delay
622 case NAND_CMD_STATUS_ERROR:
623 case NAND_CMD_STATUS_ERROR0:
624 case NAND_CMD_STATUS_ERROR1:
625 case NAND_CMD_STATUS_ERROR2:
626 case NAND_CMD_STATUS_ERROR3:
627 udelay(chip->chip_delay);
628 return;
630 case NAND_CMD_RESET:
631 if (chip->dev_ready)
632 break;
633 udelay(chip->chip_delay);
634 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
635 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
636 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
637 NAND_NCE | NAND_CTRL_CHANGE);
638 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
639 return;
641 case NAND_CMD_RNDOUT:
642 /* No ready / busy check necessary */
643 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
644 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
645 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
646 NAND_NCE | NAND_CTRL_CHANGE);
647 return;
649 case NAND_CMD_READ0:
650 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
651 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
652 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
653 NAND_NCE | NAND_CTRL_CHANGE);
655 /* This applies to read commands */
656 default:
658 * If we don't have access to the busy pin, we apply the given
659 * command delay
661 if (!chip->dev_ready) {
662 udelay(chip->chip_delay);
663 return;
667 /* Apply this short delay always to ensure that we do wait tWB in
668 * any case on any machine. */
669 ndelay(100);
671 nand_wait_ready(mtd);
675 * nand_get_device - [GENERIC] Get chip for selected access
676 * @chip: the nand chip descriptor
677 * @mtd: MTD device structure
678 * @new_state: the state which is requested
680 * Get the device and lock it for exclusive access
682 static int
683 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
685 spinlock_t *lock = &chip->controller->lock;
686 wait_queue_head_t *wq = &chip->controller->wq;
687 DECLARE_WAITQUEUE(wait, current);
688 retry:
689 spin_lock(lock);
691 /* Hardware controller shared among independent devices */
692 if (!chip->controller->active)
693 chip->controller->active = chip;
695 if (chip->controller->active == chip && chip->state == FL_READY) {
696 chip->state = new_state;
697 spin_unlock(lock);
698 return 0;
700 if (new_state == FL_PM_SUSPENDED) {
701 spin_unlock(lock);
702 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
704 set_current_state(TASK_UNINTERRUPTIBLE);
705 add_wait_queue(wq, &wait);
706 spin_unlock(lock);
707 schedule();
708 remove_wait_queue(wq, &wait);
709 goto retry;
713 * nand_wait - [DEFAULT] wait until the command is done
714 * @mtd: MTD device structure
715 * @chip: NAND chip structure
717 * Wait for command done. This applies to erase and program only
718 * Erase can take up to 400ms and program up to 20ms according to
719 * general NAND and SmartMedia specs
721 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
724 unsigned long timeo = jiffies;
725 int status, state = chip->state;
727 if (state == FL_ERASING)
728 timeo += (HZ * 400) / 1000;
729 else
730 timeo += (HZ * 20) / 1000;
732 led_trigger_event(nand_led_trigger, LED_FULL);
734 /* Apply this short delay always to ensure that we do wait tWB in
735 * any case on any machine. */
736 ndelay(100);
738 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
739 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
740 else
741 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
743 while (time_before(jiffies, timeo)) {
744 if (chip->dev_ready) {
745 if (chip->dev_ready(mtd))
746 break;
747 } else {
748 if (chip->read_byte(mtd) & NAND_STATUS_READY)
749 break;
751 cond_resched();
753 led_trigger_event(nand_led_trigger, LED_OFF);
755 status = (int)chip->read_byte(mtd);
756 return status;
760 * nand_read_page_raw - [Intern] read raw page data without ecc
761 * @mtd: mtd info structure
762 * @chip: nand chip info structure
763 * @buf: buffer to store read data
765 * Not for syndrome calculating ecc controllers, which use a special oob layout
767 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
768 uint8_t *buf, int page)
770 chip->read_buf(mtd, buf, mtd->writesize);
771 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
772 return 0;
776 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
777 * @mtd: mtd info structure
778 * @chip: nand chip info structure
779 * @buf: buffer to store read data
781 * We need a special oob layout and handling even when OOB isn't used.
783 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
784 uint8_t *buf, int page)
786 int eccsize = chip->ecc.size;
787 int eccbytes = chip->ecc.bytes;
788 uint8_t *oob = chip->oob_poi;
789 int steps, size;
791 for (steps = chip->ecc.steps; steps > 0; steps--) {
792 chip->read_buf(mtd, buf, eccsize);
793 buf += eccsize;
795 if (chip->ecc.prepad) {
796 chip->read_buf(mtd, oob, chip->ecc.prepad);
797 oob += chip->ecc.prepad;
800 chip->read_buf(mtd, oob, eccbytes);
801 oob += eccbytes;
803 if (chip->ecc.postpad) {
804 chip->read_buf(mtd, oob, chip->ecc.postpad);
805 oob += chip->ecc.postpad;
809 size = mtd->oobsize - (oob - chip->oob_poi);
810 if (size)
811 chip->read_buf(mtd, oob, size);
813 return 0;
817 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
818 * @mtd: mtd info structure
819 * @chip: nand chip info structure
820 * @buf: buffer to store read data
822 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
823 uint8_t *buf, int page)
825 int i, eccsize = chip->ecc.size;
826 int eccbytes = chip->ecc.bytes;
827 int eccsteps = chip->ecc.steps;
828 uint8_t *p = buf;
829 uint8_t *ecc_calc = chip->buffers->ecccalc;
830 uint8_t *ecc_code = chip->buffers->ecccode;
831 uint32_t *eccpos = chip->ecc.layout->eccpos;
833 chip->ecc.read_page_raw(mtd, chip, buf, page);
835 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
836 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
838 for (i = 0; i < chip->ecc.total; i++)
839 ecc_code[i] = chip->oob_poi[eccpos[i]];
841 eccsteps = chip->ecc.steps;
842 p = buf;
844 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
845 int stat;
847 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
848 if (stat < 0)
849 mtd->ecc_stats.failed++;
850 else
851 mtd->ecc_stats.corrected += stat;
853 return 0;
857 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
858 * @mtd: mtd info structure
859 * @chip: nand chip info structure
860 * @data_offs: offset of requested data within the page
861 * @readlen: data length
862 * @bufpoi: buffer to store read data
864 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
866 int start_step, end_step, num_steps;
867 uint32_t *eccpos = chip->ecc.layout->eccpos;
868 uint8_t *p;
869 int data_col_addr, i, gaps = 0;
870 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
871 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
873 /* Column address wihin the page aligned to ECC size (256bytes). */
874 start_step = data_offs / chip->ecc.size;
875 end_step = (data_offs + readlen - 1) / chip->ecc.size;
876 num_steps = end_step - start_step + 1;
878 /* Data size aligned to ECC ecc.size*/
879 datafrag_len = num_steps * chip->ecc.size;
880 eccfrag_len = num_steps * chip->ecc.bytes;
882 data_col_addr = start_step * chip->ecc.size;
883 /* If we read not a page aligned data */
884 if (data_col_addr != 0)
885 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
887 p = bufpoi + data_col_addr;
888 chip->read_buf(mtd, p, datafrag_len);
890 /* Calculate ECC */
891 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
892 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
894 /* The performance is faster if to position offsets
895 according to ecc.pos. Let make sure here that
896 there are no gaps in ecc positions */
897 for (i = 0; i < eccfrag_len - 1; i++) {
898 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
899 eccpos[i + start_step * chip->ecc.bytes + 1]) {
900 gaps = 1;
901 break;
904 if (gaps) {
905 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
906 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
907 } else {
908 /* send the command to read the particular ecc bytes */
909 /* take care about buswidth alignment in read_buf */
910 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
911 aligned_len = eccfrag_len;
912 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
913 aligned_len++;
914 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
915 aligned_len++;
917 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
918 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
921 for (i = 0; i < eccfrag_len; i++)
922 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
924 p = bufpoi + data_col_addr;
925 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
926 int stat;
928 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
929 if (stat == -1)
930 mtd->ecc_stats.failed++;
931 else
932 mtd->ecc_stats.corrected += stat;
934 return 0;
938 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
939 * @mtd: mtd info structure
940 * @chip: nand chip info structure
941 * @buf: buffer to store read data
943 * Not for syndrome calculating ecc controllers which need a special oob layout
945 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
946 uint8_t *buf, int page)
948 int i, eccsize = chip->ecc.size;
949 int eccbytes = chip->ecc.bytes;
950 int eccsteps = chip->ecc.steps;
951 uint8_t *p = buf;
952 uint8_t *ecc_calc = chip->buffers->ecccalc;
953 uint8_t *ecc_code = chip->buffers->ecccode;
954 uint32_t *eccpos = chip->ecc.layout->eccpos;
956 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
957 chip->ecc.hwctl(mtd, NAND_ECC_READ);
958 chip->read_buf(mtd, p, eccsize);
959 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
961 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
963 for (i = 0; i < chip->ecc.total; i++)
964 ecc_code[i] = chip->oob_poi[eccpos[i]];
966 eccsteps = chip->ecc.steps;
967 p = buf;
969 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
970 int stat;
972 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
973 if (stat < 0)
974 mtd->ecc_stats.failed++;
975 else
976 mtd->ecc_stats.corrected += stat;
978 return 0;
982 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
983 * @mtd: mtd info structure
984 * @chip: nand chip info structure
985 * @buf: buffer to store read data
987 * Hardware ECC for large page chips, require OOB to be read first.
988 * For this ECC mode, the write_page method is re-used from ECC_HW.
989 * These methods read/write ECC from the OOB area, unlike the
990 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
991 * "infix ECC" scheme and reads/writes ECC from the data area, by
992 * overwriting the NAND manufacturer bad block markings.
994 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
995 struct nand_chip *chip, uint8_t *buf, int page)
997 int i, eccsize = chip->ecc.size;
998 int eccbytes = chip->ecc.bytes;
999 int eccsteps = chip->ecc.steps;
1000 uint8_t *p = buf;
1001 uint8_t *ecc_code = chip->buffers->ecccode;
1002 uint32_t *eccpos = chip->ecc.layout->eccpos;
1003 uint8_t *ecc_calc = chip->buffers->ecccalc;
1005 /* Read the OOB area first */
1006 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1007 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1008 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1010 for (i = 0; i < chip->ecc.total; i++)
1011 ecc_code[i] = chip->oob_poi[eccpos[i]];
1013 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1014 int stat;
1016 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1017 chip->read_buf(mtd, p, eccsize);
1018 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1020 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1021 if (stat < 0)
1022 mtd->ecc_stats.failed++;
1023 else
1024 mtd->ecc_stats.corrected += stat;
1026 return 0;
1030 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1031 * @mtd: mtd info structure
1032 * @chip: nand chip info structure
1033 * @buf: buffer to store read data
1035 * The hw generator calculates the error syndrome automatically. Therefor
1036 * we need a special oob layout and handling.
1038 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1039 uint8_t *buf, int page)
1041 int i, eccsize = chip->ecc.size;
1042 int eccbytes = chip->ecc.bytes;
1043 int eccsteps = chip->ecc.steps;
1044 uint8_t *p = buf;
1045 uint8_t *oob = chip->oob_poi;
1047 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1048 int stat;
1050 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1051 chip->read_buf(mtd, p, eccsize);
1053 if (chip->ecc.prepad) {
1054 chip->read_buf(mtd, oob, chip->ecc.prepad);
1055 oob += chip->ecc.prepad;
1058 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1059 chip->read_buf(mtd, oob, eccbytes);
1060 stat = chip->ecc.correct(mtd, p, oob, NULL);
1062 if (stat < 0)
1063 mtd->ecc_stats.failed++;
1064 else
1065 mtd->ecc_stats.corrected += stat;
1067 oob += eccbytes;
1069 if (chip->ecc.postpad) {
1070 chip->read_buf(mtd, oob, chip->ecc.postpad);
1071 oob += chip->ecc.postpad;
1075 /* Calculate remaining oob bytes */
1076 i = mtd->oobsize - (oob - chip->oob_poi);
1077 if (i)
1078 chip->read_buf(mtd, oob, i);
1080 return 0;
1084 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1085 * @chip: nand chip structure
1086 * @oob: oob destination address
1087 * @ops: oob ops structure
1088 * @len: size of oob to transfer
1090 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1091 struct mtd_oob_ops *ops, size_t len)
1093 switch(ops->mode) {
1095 case MTD_OOB_PLACE:
1096 case MTD_OOB_RAW:
1097 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1098 return oob + len;
1100 case MTD_OOB_AUTO: {
1101 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1102 uint32_t boffs = 0, roffs = ops->ooboffs;
1103 size_t bytes = 0;
1105 for(; free->length && len; free++, len -= bytes) {
1106 /* Read request not from offset 0 ? */
1107 if (unlikely(roffs)) {
1108 if (roffs >= free->length) {
1109 roffs -= free->length;
1110 continue;
1112 boffs = free->offset + roffs;
1113 bytes = min_t(size_t, len,
1114 (free->length - roffs));
1115 roffs = 0;
1116 } else {
1117 bytes = min_t(size_t, len, free->length);
1118 boffs = free->offset;
1120 memcpy(oob, chip->oob_poi + boffs, bytes);
1121 oob += bytes;
1123 return oob;
1125 default:
1126 BUG();
1128 return NULL;
1132 * nand_do_read_ops - [Internal] Read data with ECC
1134 * @mtd: MTD device structure
1135 * @from: offset to read from
1136 * @ops: oob ops structure
1138 * Internal function. Called with chip held.
1140 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1141 struct mtd_oob_ops *ops)
1143 int chipnr, page, realpage, col, bytes, aligned;
1144 struct nand_chip *chip = mtd->priv;
1145 struct mtd_ecc_stats stats;
1146 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1147 int sndcmd = 1;
1148 int ret = 0;
1149 uint32_t readlen = ops->len;
1150 uint32_t oobreadlen = ops->ooblen;
1151 uint8_t *bufpoi, *oob, *buf;
1153 stats = mtd->ecc_stats;
1155 chipnr = (int)(from >> chip->chip_shift);
1156 chip->select_chip(mtd, chipnr);
1158 realpage = (int)(from >> chip->page_shift);
1159 page = realpage & chip->pagemask;
1161 col = (int)(from & (mtd->writesize - 1));
1163 buf = ops->datbuf;
1164 oob = ops->oobbuf;
1166 while(1) {
1167 bytes = min(mtd->writesize - col, readlen);
1168 aligned = (bytes == mtd->writesize);
1170 /* Is the current page in the buffer ? */
1171 if (realpage != chip->pagebuf || oob) {
1172 bufpoi = aligned ? buf : chip->buffers->databuf;
1174 if (likely(sndcmd)) {
1175 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1176 sndcmd = 0;
1179 /* Now read the page into the buffer */
1180 if (unlikely(ops->mode == MTD_OOB_RAW))
1181 ret = chip->ecc.read_page_raw(mtd, chip,
1182 bufpoi, page);
1183 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1184 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1185 else
1186 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1187 page);
1188 if (ret < 0)
1189 break;
1191 /* Transfer not aligned data */
1192 if (!aligned) {
1193 if (!NAND_SUBPAGE_READ(chip) && !oob)
1194 chip->pagebuf = realpage;
1195 memcpy(buf, chip->buffers->databuf + col, bytes);
1198 buf += bytes;
1200 if (unlikely(oob)) {
1201 /* Raw mode does data:oob:data:oob */
1202 if (ops->mode != MTD_OOB_RAW) {
1203 int toread = min(oobreadlen,
1204 chip->ecc.layout->oobavail);
1205 if (toread) {
1206 oob = nand_transfer_oob(chip,
1207 oob, ops, toread);
1208 oobreadlen -= toread;
1210 } else
1211 buf = nand_transfer_oob(chip,
1212 buf, ops, mtd->oobsize);
1215 if (!(chip->options & NAND_NO_READRDY)) {
1217 * Apply delay or wait for ready/busy pin. Do
1218 * this before the AUTOINCR check, so no
1219 * problems arise if a chip which does auto
1220 * increment is marked as NOAUTOINCR by the
1221 * board driver.
1223 if (!chip->dev_ready)
1224 udelay(chip->chip_delay);
1225 else
1226 nand_wait_ready(mtd);
1228 } else {
1229 memcpy(buf, chip->buffers->databuf + col, bytes);
1230 buf += bytes;
1233 readlen -= bytes;
1235 if (!readlen)
1236 break;
1238 /* For subsequent reads align to page boundary. */
1239 col = 0;
1240 /* Increment page address */
1241 realpage++;
1243 page = realpage & chip->pagemask;
1244 /* Check, if we cross a chip boundary */
1245 if (!page) {
1246 chipnr++;
1247 chip->select_chip(mtd, -1);
1248 chip->select_chip(mtd, chipnr);
1251 /* Check, if the chip supports auto page increment
1252 * or if we have hit a block boundary.
1254 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1255 sndcmd = 1;
1258 ops->retlen = ops->len - (size_t) readlen;
1259 if (oob)
1260 ops->oobretlen = ops->ooblen - oobreadlen;
1262 if (ret)
1263 return ret;
1265 if (mtd->ecc_stats.failed - stats.failed)
1266 return -EBADMSG;
1268 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1272 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1273 * @mtd: MTD device structure
1274 * @from: offset to read from
1275 * @len: number of bytes to read
1276 * @retlen: pointer to variable to store the number of read bytes
1277 * @buf: the databuffer to put data
1279 * Get hold of the chip and call nand_do_read
1281 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1282 size_t *retlen, uint8_t *buf)
1284 struct nand_chip *chip = mtd->priv;
1285 int ret;
1287 /* Do not allow reads past end of device */
1288 if ((from + len) > mtd->size)
1289 return -EINVAL;
1290 if (!len)
1291 return 0;
1293 nand_get_device(chip, mtd, FL_READING);
1295 chip->ops.len = len;
1296 chip->ops.datbuf = buf;
1297 chip->ops.oobbuf = NULL;
1299 ret = nand_do_read_ops(mtd, from, &chip->ops);
1301 *retlen = chip->ops.retlen;
1303 nand_release_device(mtd);
1305 return ret;
1309 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1310 * @mtd: mtd info structure
1311 * @chip: nand chip info structure
1312 * @page: page number to read
1313 * @sndcmd: flag whether to issue read command or not
1315 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1316 int page, int sndcmd)
1318 if (sndcmd) {
1319 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1320 sndcmd = 0;
1322 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1323 return sndcmd;
1327 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1328 * with syndromes
1329 * @mtd: mtd info structure
1330 * @chip: nand chip info structure
1331 * @page: page number to read
1332 * @sndcmd: flag whether to issue read command or not
1334 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1335 int page, int sndcmd)
1337 uint8_t *buf = chip->oob_poi;
1338 int length = mtd->oobsize;
1339 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1340 int eccsize = chip->ecc.size;
1341 uint8_t *bufpoi = buf;
1342 int i, toread, sndrnd = 0, pos;
1344 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1345 for (i = 0; i < chip->ecc.steps; i++) {
1346 if (sndrnd) {
1347 pos = eccsize + i * (eccsize + chunk);
1348 if (mtd->writesize > 512)
1349 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1350 else
1351 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1352 } else
1353 sndrnd = 1;
1354 toread = min_t(int, length, chunk);
1355 chip->read_buf(mtd, bufpoi, toread);
1356 bufpoi += toread;
1357 length -= toread;
1359 if (length > 0)
1360 chip->read_buf(mtd, bufpoi, length);
1362 return 1;
1366 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1367 * @mtd: mtd info structure
1368 * @chip: nand chip info structure
1369 * @page: page number to write
1371 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1372 int page)
1374 int status = 0;
1375 const uint8_t *buf = chip->oob_poi;
1376 int length = mtd->oobsize;
1378 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1379 chip->write_buf(mtd, buf, length);
1380 /* Send command to program the OOB data */
1381 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1383 status = chip->waitfunc(mtd, chip);
1385 return status & NAND_STATUS_FAIL ? -EIO : 0;
1389 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1390 * with syndrome - only for large page flash !
1391 * @mtd: mtd info structure
1392 * @chip: nand chip info structure
1393 * @page: page number to write
1395 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1396 struct nand_chip *chip, int page)
1398 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1399 int eccsize = chip->ecc.size, length = mtd->oobsize;
1400 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1401 const uint8_t *bufpoi = chip->oob_poi;
1404 * data-ecc-data-ecc ... ecc-oob
1405 * or
1406 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1408 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1409 pos = steps * (eccsize + chunk);
1410 steps = 0;
1411 } else
1412 pos = eccsize;
1414 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1415 for (i = 0; i < steps; i++) {
1416 if (sndcmd) {
1417 if (mtd->writesize <= 512) {
1418 uint32_t fill = 0xFFFFFFFF;
1420 len = eccsize;
1421 while (len > 0) {
1422 int num = min_t(int, len, 4);
1423 chip->write_buf(mtd, (uint8_t *)&fill,
1424 num);
1425 len -= num;
1427 } else {
1428 pos = eccsize + i * (eccsize + chunk);
1429 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1431 } else
1432 sndcmd = 1;
1433 len = min_t(int, length, chunk);
1434 chip->write_buf(mtd, bufpoi, len);
1435 bufpoi += len;
1436 length -= len;
1438 if (length > 0)
1439 chip->write_buf(mtd, bufpoi, length);
1441 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1442 status = chip->waitfunc(mtd, chip);
1444 return status & NAND_STATUS_FAIL ? -EIO : 0;
1448 * nand_do_read_oob - [Intern] NAND read out-of-band
1449 * @mtd: MTD device structure
1450 * @from: offset to read from
1451 * @ops: oob operations description structure
1453 * NAND read out-of-band data from the spare area
1455 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1456 struct mtd_oob_ops *ops)
1458 int page, realpage, chipnr, sndcmd = 1;
1459 struct nand_chip *chip = mtd->priv;
1460 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1461 int readlen = ops->ooblen;
1462 int len;
1463 uint8_t *buf = ops->oobbuf;
1465 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1466 __func__, (unsigned long long)from, readlen);
1468 if (ops->mode == MTD_OOB_AUTO)
1469 len = chip->ecc.layout->oobavail;
1470 else
1471 len = mtd->oobsize;
1473 if (unlikely(ops->ooboffs >= len)) {
1474 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1475 "outside oob\n", __func__);
1476 return -EINVAL;
1479 /* Do not allow reads past end of device */
1480 if (unlikely(from >= mtd->size ||
1481 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1482 (from >> chip->page_shift)) * len)) {
1483 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1484 "of device\n", __func__);
1485 return -EINVAL;
1488 chipnr = (int)(from >> chip->chip_shift);
1489 chip->select_chip(mtd, chipnr);
1491 /* Shift to get page */
1492 realpage = (int)(from >> chip->page_shift);
1493 page = realpage & chip->pagemask;
1495 while(1) {
1496 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1498 len = min(len, readlen);
1499 buf = nand_transfer_oob(chip, buf, ops, len);
1501 if (!(chip->options & NAND_NO_READRDY)) {
1503 * Apply delay or wait for ready/busy pin. Do this
1504 * before the AUTOINCR check, so no problems arise if a
1505 * chip which does auto increment is marked as
1506 * NOAUTOINCR by the board driver.
1508 if (!chip->dev_ready)
1509 udelay(chip->chip_delay);
1510 else
1511 nand_wait_ready(mtd);
1514 readlen -= len;
1515 if (!readlen)
1516 break;
1518 /* Increment page address */
1519 realpage++;
1521 page = realpage & chip->pagemask;
1522 /* Check, if we cross a chip boundary */
1523 if (!page) {
1524 chipnr++;
1525 chip->select_chip(mtd, -1);
1526 chip->select_chip(mtd, chipnr);
1529 /* Check, if the chip supports auto page increment
1530 * or if we have hit a block boundary.
1532 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1533 sndcmd = 1;
1536 ops->oobretlen = ops->ooblen;
1537 return 0;
1541 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1542 * @mtd: MTD device structure
1543 * @from: offset to read from
1544 * @ops: oob operation description structure
1546 * NAND read data and/or out-of-band data
1548 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1549 struct mtd_oob_ops *ops)
1551 struct nand_chip *chip = mtd->priv;
1552 int ret = -ENOTSUPP;
1554 ops->retlen = 0;
1556 /* Do not allow reads past end of device */
1557 if (ops->datbuf && (from + ops->len) > mtd->size) {
1558 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1559 "beyond end of device\n", __func__);
1560 return -EINVAL;
1563 nand_get_device(chip, mtd, FL_READING);
1565 switch(ops->mode) {
1566 case MTD_OOB_PLACE:
1567 case MTD_OOB_AUTO:
1568 case MTD_OOB_RAW:
1569 break;
1571 default:
1572 goto out;
1575 if (!ops->datbuf)
1576 ret = nand_do_read_oob(mtd, from, ops);
1577 else
1578 ret = nand_do_read_ops(mtd, from, ops);
1580 out:
1581 nand_release_device(mtd);
1582 return ret;
1587 * nand_write_page_raw - [Intern] raw page write function
1588 * @mtd: mtd info structure
1589 * @chip: nand chip info structure
1590 * @buf: data buffer
1592 * Not for syndrome calculating ecc controllers, which use a special oob layout
1594 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1595 const uint8_t *buf)
1597 chip->write_buf(mtd, buf, mtd->writesize);
1598 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1602 * nand_write_page_raw_syndrome - [Intern] raw page write function
1603 * @mtd: mtd info structure
1604 * @chip: nand chip info structure
1605 * @buf: data buffer
1607 * We need a special oob layout and handling even when ECC isn't checked.
1609 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1610 const uint8_t *buf)
1612 int eccsize = chip->ecc.size;
1613 int eccbytes = chip->ecc.bytes;
1614 uint8_t *oob = chip->oob_poi;
1615 int steps, size;
1617 for (steps = chip->ecc.steps; steps > 0; steps--) {
1618 chip->write_buf(mtd, buf, eccsize);
1619 buf += eccsize;
1621 if (chip->ecc.prepad) {
1622 chip->write_buf(mtd, oob, chip->ecc.prepad);
1623 oob += chip->ecc.prepad;
1626 chip->read_buf(mtd, oob, eccbytes);
1627 oob += eccbytes;
1629 if (chip->ecc.postpad) {
1630 chip->write_buf(mtd, oob, chip->ecc.postpad);
1631 oob += chip->ecc.postpad;
1635 size = mtd->oobsize - (oob - chip->oob_poi);
1636 if (size)
1637 chip->write_buf(mtd, oob, size);
1640 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1641 * @mtd: mtd info structure
1642 * @chip: nand chip info structure
1643 * @buf: data buffer
1645 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1646 const uint8_t *buf)
1648 int i, eccsize = chip->ecc.size;
1649 int eccbytes = chip->ecc.bytes;
1650 int eccsteps = chip->ecc.steps;
1651 uint8_t *ecc_calc = chip->buffers->ecccalc;
1652 const uint8_t *p = buf;
1653 uint32_t *eccpos = chip->ecc.layout->eccpos;
1655 /* Software ecc calculation */
1656 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1657 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1659 for (i = 0; i < chip->ecc.total; i++)
1660 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1662 chip->ecc.write_page_raw(mtd, chip, buf);
1666 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1667 * @mtd: mtd info structure
1668 * @chip: nand chip info structure
1669 * @buf: data buffer
1671 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1672 const uint8_t *buf)
1674 int i, eccsize = chip->ecc.size;
1675 int eccbytes = chip->ecc.bytes;
1676 int eccsteps = chip->ecc.steps;
1677 uint8_t *ecc_calc = chip->buffers->ecccalc;
1678 const uint8_t *p = buf;
1679 uint32_t *eccpos = chip->ecc.layout->eccpos;
1681 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1682 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1683 chip->write_buf(mtd, p, eccsize);
1684 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1687 for (i = 0; i < chip->ecc.total; i++)
1688 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1690 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1694 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1695 * @mtd: mtd info structure
1696 * @chip: nand chip info structure
1697 * @buf: data buffer
1699 * The hw generator calculates the error syndrome automatically. Therefor
1700 * we need a special oob layout and handling.
1702 static void nand_write_page_syndrome(struct mtd_info *mtd,
1703 struct nand_chip *chip, const uint8_t *buf)
1705 int i, eccsize = chip->ecc.size;
1706 int eccbytes = chip->ecc.bytes;
1707 int eccsteps = chip->ecc.steps;
1708 const uint8_t *p = buf;
1709 uint8_t *oob = chip->oob_poi;
1711 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1713 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1714 chip->write_buf(mtd, p, eccsize);
1716 if (chip->ecc.prepad) {
1717 chip->write_buf(mtd, oob, chip->ecc.prepad);
1718 oob += chip->ecc.prepad;
1721 chip->ecc.calculate(mtd, p, oob);
1722 chip->write_buf(mtd, oob, eccbytes);
1723 oob += eccbytes;
1725 if (chip->ecc.postpad) {
1726 chip->write_buf(mtd, oob, chip->ecc.postpad);
1727 oob += chip->ecc.postpad;
1731 /* Calculate remaining oob bytes */
1732 i = mtd->oobsize - (oob - chip->oob_poi);
1733 if (i)
1734 chip->write_buf(mtd, oob, i);
1738 * nand_write_page - [REPLACEABLE] write one page
1739 * @mtd: MTD device structure
1740 * @chip: NAND chip descriptor
1741 * @buf: the data to write
1742 * @page: page number to write
1743 * @cached: cached programming
1744 * @raw: use _raw version of write_page
1746 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1747 const uint8_t *buf, int page, int cached, int raw)
1749 int status;
1751 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1753 if (unlikely(raw))
1754 chip->ecc.write_page_raw(mtd, chip, buf);
1755 else
1756 chip->ecc.write_page(mtd, chip, buf);
1759 * Cached progamming disabled for now, Not sure if its worth the
1760 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1762 cached = 0;
1764 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1766 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1767 status = chip->waitfunc(mtd, chip);
1769 * See if operation failed and additional status checks are
1770 * available
1772 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1773 status = chip->errstat(mtd, chip, FL_WRITING, status,
1774 page);
1776 if (status & NAND_STATUS_FAIL)
1777 return -EIO;
1778 } else {
1779 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1780 status = chip->waitfunc(mtd, chip);
1783 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1784 /* Send command to read back the data */
1785 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1787 if (chip->verify_buf(mtd, buf, mtd->writesize))
1788 return -EIO;
1789 #endif
1790 return 0;
1794 * nand_fill_oob - [Internal] Transfer client buffer to oob
1795 * @chip: nand chip structure
1796 * @oob: oob data buffer
1797 * @ops: oob ops structure
1799 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1800 struct mtd_oob_ops *ops)
1802 size_t len = ops->ooblen;
1804 switch(ops->mode) {
1806 case MTD_OOB_PLACE:
1807 case MTD_OOB_RAW:
1808 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1809 return oob + len;
1811 case MTD_OOB_AUTO: {
1812 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1813 uint32_t boffs = 0, woffs = ops->ooboffs;
1814 size_t bytes = 0;
1816 for(; free->length && len; free++, len -= bytes) {
1817 /* Write request not from offset 0 ? */
1818 if (unlikely(woffs)) {
1819 if (woffs >= free->length) {
1820 woffs -= free->length;
1821 continue;
1823 boffs = free->offset + woffs;
1824 bytes = min_t(size_t, len,
1825 (free->length - woffs));
1826 woffs = 0;
1827 } else {
1828 bytes = min_t(size_t, len, free->length);
1829 boffs = free->offset;
1831 memcpy(chip->oob_poi + boffs, oob, bytes);
1832 oob += bytes;
1834 return oob;
1836 default:
1837 BUG();
1839 return NULL;
1842 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1845 * nand_do_write_ops - [Internal] NAND write with ECC
1846 * @mtd: MTD device structure
1847 * @to: offset to write to
1848 * @ops: oob operations description structure
1850 * NAND write with ECC
1852 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1853 struct mtd_oob_ops *ops)
1855 int chipnr, realpage, page, blockmask, column;
1856 struct nand_chip *chip = mtd->priv;
1857 uint32_t writelen = ops->len;
1858 uint8_t *oob = ops->oobbuf;
1859 uint8_t *buf = ops->datbuf;
1860 int ret, subpage;
1862 ops->retlen = 0;
1863 if (!writelen)
1864 return 0;
1866 /* reject writes, which are not page aligned */
1867 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1868 printk(KERN_NOTICE "%s: Attempt to write not "
1869 "page aligned data\n", __func__);
1870 return -EINVAL;
1873 column = to & (mtd->writesize - 1);
1874 subpage = column || (writelen & (mtd->writesize - 1));
1876 if (subpage && oob)
1877 return -EINVAL;
1879 chipnr = (int)(to >> chip->chip_shift);
1880 chip->select_chip(mtd, chipnr);
1882 /* Check, if it is write protected */
1883 if (nand_check_wp(mtd))
1884 return -EIO;
1886 realpage = (int)(to >> chip->page_shift);
1887 page = realpage & chip->pagemask;
1888 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1890 /* Invalidate the page cache, when we write to the cached page */
1891 if (to <= (chip->pagebuf << chip->page_shift) &&
1892 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1893 chip->pagebuf = -1;
1895 /* If we're not given explicit OOB data, let it be 0xFF */
1896 if (likely(!oob))
1897 memset(chip->oob_poi, 0xff, mtd->oobsize);
1899 while(1) {
1900 int bytes = mtd->writesize;
1901 int cached = writelen > bytes && page != blockmask;
1902 uint8_t *wbuf = buf;
1904 /* Partial page write ? */
1905 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1906 cached = 0;
1907 bytes = min_t(int, bytes - column, (int) writelen);
1908 chip->pagebuf = -1;
1909 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1910 memcpy(&chip->buffers->databuf[column], buf, bytes);
1911 wbuf = chip->buffers->databuf;
1914 if (unlikely(oob))
1915 oob = nand_fill_oob(chip, oob, ops);
1917 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1918 (ops->mode == MTD_OOB_RAW));
1919 if (ret)
1920 break;
1922 writelen -= bytes;
1923 if (!writelen)
1924 break;
1926 column = 0;
1927 buf += bytes;
1928 realpage++;
1930 page = realpage & chip->pagemask;
1931 /* Check, if we cross a chip boundary */
1932 if (!page) {
1933 chipnr++;
1934 chip->select_chip(mtd, -1);
1935 chip->select_chip(mtd, chipnr);
1939 ops->retlen = ops->len - writelen;
1940 if (unlikely(oob))
1941 ops->oobretlen = ops->ooblen;
1942 return ret;
1946 * nand_write - [MTD Interface] NAND write with ECC
1947 * @mtd: MTD device structure
1948 * @to: offset to write to
1949 * @len: number of bytes to write
1950 * @retlen: pointer to variable to store the number of written bytes
1951 * @buf: the data to write
1953 * NAND write with ECC
1955 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1956 size_t *retlen, const uint8_t *buf)
1958 struct nand_chip *chip = mtd->priv;
1959 int ret;
1961 /* Do not allow reads past end of device */
1962 if ((to + len) > mtd->size)
1963 return -EINVAL;
1964 if (!len)
1965 return 0;
1967 nand_get_device(chip, mtd, FL_WRITING);
1969 chip->ops.len = len;
1970 chip->ops.datbuf = (uint8_t *)buf;
1971 chip->ops.oobbuf = NULL;
1973 ret = nand_do_write_ops(mtd, to, &chip->ops);
1975 *retlen = chip->ops.retlen;
1977 nand_release_device(mtd);
1979 return ret;
1983 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1984 * @mtd: MTD device structure
1985 * @to: offset to write to
1986 * @ops: oob operation description structure
1988 * NAND write out-of-band
1990 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1991 struct mtd_oob_ops *ops)
1993 int chipnr, page, status, len;
1994 struct nand_chip *chip = mtd->priv;
1996 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1997 __func__, (unsigned int)to, (int)ops->ooblen);
1999 if (ops->mode == MTD_OOB_AUTO)
2000 len = chip->ecc.layout->oobavail;
2001 else
2002 len = mtd->oobsize;
2004 /* Do not allow write past end of page */
2005 if ((ops->ooboffs + ops->ooblen) > len) {
2006 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2007 "past end of page\n", __func__);
2008 return -EINVAL;
2011 if (unlikely(ops->ooboffs >= len)) {
2012 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2013 "write outside oob\n", __func__);
2014 return -EINVAL;
2017 /* Do not allow reads past end of device */
2018 if (unlikely(to >= mtd->size ||
2019 ops->ooboffs + ops->ooblen >
2020 ((mtd->size >> chip->page_shift) -
2021 (to >> chip->page_shift)) * len)) {
2022 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2023 "end of device\n", __func__);
2024 return -EINVAL;
2027 chipnr = (int)(to >> chip->chip_shift);
2028 chip->select_chip(mtd, chipnr);
2030 /* Shift to get page */
2031 page = (int)(to >> chip->page_shift);
2034 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2035 * of my DiskOnChip 2000 test units) will clear the whole data page too
2036 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2037 * it in the doc2000 driver in August 1999. dwmw2.
2039 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2041 /* Check, if it is write protected */
2042 if (nand_check_wp(mtd))
2043 return -EROFS;
2045 /* Invalidate the page cache, if we write to the cached page */
2046 if (page == chip->pagebuf)
2047 chip->pagebuf = -1;
2049 memset(chip->oob_poi, 0xff, mtd->oobsize);
2050 nand_fill_oob(chip, ops->oobbuf, ops);
2051 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2052 memset(chip->oob_poi, 0xff, mtd->oobsize);
2054 if (status)
2055 return status;
2057 ops->oobretlen = ops->ooblen;
2059 return 0;
2063 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2064 * @mtd: MTD device structure
2065 * @to: offset to write to
2066 * @ops: oob operation description structure
2068 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2069 struct mtd_oob_ops *ops)
2071 struct nand_chip *chip = mtd->priv;
2072 int ret = -ENOTSUPP;
2074 ops->retlen = 0;
2076 /* Do not allow writes past end of device */
2077 if (ops->datbuf && (to + ops->len) > mtd->size) {
2078 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2079 "end of device\n", __func__);
2080 return -EINVAL;
2083 nand_get_device(chip, mtd, FL_WRITING);
2085 switch(ops->mode) {
2086 case MTD_OOB_PLACE:
2087 case MTD_OOB_AUTO:
2088 case MTD_OOB_RAW:
2089 break;
2091 default:
2092 goto out;
2095 if (!ops->datbuf)
2096 ret = nand_do_write_oob(mtd, to, ops);
2097 else
2098 ret = nand_do_write_ops(mtd, to, ops);
2100 out:
2101 nand_release_device(mtd);
2102 return ret;
2106 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2107 * @mtd: MTD device structure
2108 * @page: the page address of the block which will be erased
2110 * Standard erase command for NAND chips
2112 static void single_erase_cmd(struct mtd_info *mtd, int page)
2114 struct nand_chip *chip = mtd->priv;
2115 /* Send commands to erase a block */
2116 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2117 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2121 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2122 * @mtd: MTD device structure
2123 * @page: the page address of the block which will be erased
2125 * AND multi block erase command function
2126 * Erase 4 consecutive blocks
2128 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2130 struct nand_chip *chip = mtd->priv;
2131 /* Send commands to erase a block */
2132 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2133 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2134 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2135 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2136 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2140 * nand_erase - [MTD Interface] erase block(s)
2141 * @mtd: MTD device structure
2142 * @instr: erase instruction
2144 * Erase one ore more blocks
2146 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2148 return nand_erase_nand(mtd, instr, 0);
2151 #define BBT_PAGE_MASK 0xffffff3f
2153 * nand_erase_nand - [Internal] erase block(s)
2154 * @mtd: MTD device structure
2155 * @instr: erase instruction
2156 * @allowbbt: allow erasing the bbt area
2158 * Erase one ore more blocks
2160 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2161 int allowbbt)
2163 int page, status, pages_per_block, ret, chipnr;
2164 struct nand_chip *chip = mtd->priv;
2165 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2166 unsigned int bbt_masked_page = 0xffffffff;
2167 loff_t len;
2169 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2170 __func__, (unsigned long long)instr->addr,
2171 (unsigned long long)instr->len);
2173 /* Start address must align on block boundary */
2174 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2175 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
2176 return -EINVAL;
2179 /* Length must align on block boundary */
2180 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2181 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
2182 __func__);
2183 return -EINVAL;
2186 /* Do not allow erase past end of device */
2187 if ((instr->len + instr->addr) > mtd->size) {
2188 DEBUG(MTD_DEBUG_LEVEL0, "%s: Erase past end of device\n",
2189 __func__);
2190 return -EINVAL;
2193 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2195 /* Grab the lock and see if the device is available */
2196 nand_get_device(chip, mtd, FL_ERASING);
2198 /* Shift to get first page */
2199 page = (int)(instr->addr >> chip->page_shift);
2200 chipnr = (int)(instr->addr >> chip->chip_shift);
2202 /* Calculate pages in each block */
2203 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2205 /* Select the NAND device */
2206 chip->select_chip(mtd, chipnr);
2208 /* Check, if it is write protected */
2209 if (nand_check_wp(mtd)) {
2210 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2211 __func__);
2212 instr->state = MTD_ERASE_FAILED;
2213 goto erase_exit;
2217 * If BBT requires refresh, set the BBT page mask to see if the BBT
2218 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2219 * can not be matched. This is also done when the bbt is actually
2220 * erased to avoid recusrsive updates
2222 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2223 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2225 /* Loop through the pages */
2226 len = instr->len;
2228 instr->state = MTD_ERASING;
2230 while (len) {
2232 * heck if we have a bad block, we do not erase bad blocks !
2234 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2235 chip->page_shift, 0, allowbbt)) {
2236 printk(KERN_WARNING "%s: attempt to erase a bad block "
2237 "at page 0x%08x\n", __func__, page);
2238 instr->state = MTD_ERASE_FAILED;
2239 goto erase_exit;
2243 * Invalidate the page cache, if we erase the block which
2244 * contains the current cached page
2246 if (page <= chip->pagebuf && chip->pagebuf <
2247 (page + pages_per_block))
2248 chip->pagebuf = -1;
2250 chip->erase_cmd(mtd, page & chip->pagemask);
2252 status = chip->waitfunc(mtd, chip);
2255 * See if operation failed and additional status checks are
2256 * available
2258 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2259 status = chip->errstat(mtd, chip, FL_ERASING,
2260 status, page);
2262 /* See if block erase succeeded */
2263 if (status & NAND_STATUS_FAIL) {
2264 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2265 "page 0x%08x\n", __func__, page);
2266 instr->state = MTD_ERASE_FAILED;
2267 instr->fail_addr =
2268 ((loff_t)page << chip->page_shift);
2269 goto erase_exit;
2273 * If BBT requires refresh, set the BBT rewrite flag to the
2274 * page being erased
2276 if (bbt_masked_page != 0xffffffff &&
2277 (page & BBT_PAGE_MASK) == bbt_masked_page)
2278 rewrite_bbt[chipnr] =
2279 ((loff_t)page << chip->page_shift);
2281 /* Increment page address and decrement length */
2282 len -= (1 << chip->phys_erase_shift);
2283 page += pages_per_block;
2285 /* Check, if we cross a chip boundary */
2286 if (len && !(page & chip->pagemask)) {
2287 chipnr++;
2288 chip->select_chip(mtd, -1);
2289 chip->select_chip(mtd, chipnr);
2292 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2293 * page mask to see if this BBT should be rewritten
2295 if (bbt_masked_page != 0xffffffff &&
2296 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2297 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2298 BBT_PAGE_MASK;
2301 instr->state = MTD_ERASE_DONE;
2303 erase_exit:
2305 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2307 /* Deselect and wake up anyone waiting on the device */
2308 nand_release_device(mtd);
2310 /* Do call back function */
2311 if (!ret)
2312 mtd_erase_callback(instr);
2315 * If BBT requires refresh and erase was successful, rewrite any
2316 * selected bad block tables
2318 if (bbt_masked_page == 0xffffffff || ret)
2319 return ret;
2321 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2322 if (!rewrite_bbt[chipnr])
2323 continue;
2324 /* update the BBT for chip */
2325 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2326 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2327 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2328 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2331 /* Return more or less happy */
2332 return ret;
2336 * nand_sync - [MTD Interface] sync
2337 * @mtd: MTD device structure
2339 * Sync is actually a wait for chip ready function
2341 static void nand_sync(struct mtd_info *mtd)
2343 struct nand_chip *chip = mtd->priv;
2345 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2347 /* Grab the lock and see if the device is available */
2348 nand_get_device(chip, mtd, FL_SYNCING);
2349 /* Release it and go back */
2350 nand_release_device(mtd);
2354 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2355 * @mtd: MTD device structure
2356 * @offs: offset relative to mtd start
2358 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2360 /* Check for invalid offset */
2361 if (offs > mtd->size)
2362 return -EINVAL;
2364 return nand_block_checkbad(mtd, offs, 1, 0);
2368 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2369 * @mtd: MTD device structure
2370 * @ofs: offset relative to mtd start
2372 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2374 struct nand_chip *chip = mtd->priv;
2375 int ret;
2377 if ((ret = nand_block_isbad(mtd, ofs))) {
2378 /* If it was bad already, return success and do nothing. */
2379 if (ret > 0)
2380 return 0;
2381 return ret;
2384 return chip->block_markbad(mtd, ofs);
2388 * nand_suspend - [MTD Interface] Suspend the NAND flash
2389 * @mtd: MTD device structure
2391 static int nand_suspend(struct mtd_info *mtd)
2393 struct nand_chip *chip = mtd->priv;
2395 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2399 * nand_resume - [MTD Interface] Resume the NAND flash
2400 * @mtd: MTD device structure
2402 static void nand_resume(struct mtd_info *mtd)
2404 struct nand_chip *chip = mtd->priv;
2406 if (chip->state == FL_PM_SUSPENDED)
2407 nand_release_device(mtd);
2408 else
2409 printk(KERN_ERR "%s called for a chip which is not "
2410 "in suspended state\n", __func__);
2414 * Set default functions
2416 static void nand_set_defaults(struct nand_chip *chip, int busw)
2418 /* check for proper chip_delay setup, set 20us if not */
2419 if (!chip->chip_delay)
2420 chip->chip_delay = 20;
2422 /* check, if a user supplied command function given */
2423 if (chip->cmdfunc == NULL)
2424 chip->cmdfunc = nand_command;
2426 /* check, if a user supplied wait function given */
2427 if (chip->waitfunc == NULL)
2428 chip->waitfunc = nand_wait;
2430 if (!chip->select_chip)
2431 chip->select_chip = nand_select_chip;
2432 if (!chip->read_byte)
2433 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2434 if (!chip->read_word)
2435 chip->read_word = nand_read_word;
2436 if (!chip->block_bad)
2437 chip->block_bad = nand_block_bad;
2438 if (!chip->block_markbad)
2439 chip->block_markbad = nand_default_block_markbad;
2440 if (!chip->write_buf)
2441 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2442 if (!chip->read_buf)
2443 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2444 if (!chip->verify_buf)
2445 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2446 if (!chip->scan_bbt)
2447 chip->scan_bbt = nand_default_bbt;
2449 if (!chip->controller) {
2450 chip->controller = &chip->hwcontrol;
2451 spin_lock_init(&chip->controller->lock);
2452 init_waitqueue_head(&chip->controller->wq);
2458 * Get the flash and manufacturer id and lookup if the type is supported
2460 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2461 struct nand_chip *chip,
2462 int busw, int *maf_id)
2464 struct nand_flash_dev *type = NULL;
2465 int i, dev_id, maf_idx;
2466 int tmp_id, tmp_manf;
2468 /* Select the device */
2469 chip->select_chip(mtd, 0);
2472 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2473 * after power-up
2475 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2477 /* Send the command for reading device ID */
2478 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2480 /* Read manufacturer and device IDs */
2481 *maf_id = chip->read_byte(mtd);
2482 dev_id = chip->read_byte(mtd);
2484 /* Try again to make sure, as some systems the bus-hold or other
2485 * interface concerns can cause random data which looks like a
2486 * possibly credible NAND flash to appear. If the two results do
2487 * not match, ignore the device completely.
2490 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2492 /* Read manufacturer and device IDs */
2494 tmp_manf = chip->read_byte(mtd);
2495 tmp_id = chip->read_byte(mtd);
2497 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2498 printk(KERN_INFO "%s: second ID read did not match "
2499 "%02x,%02x against %02x,%02x\n", __func__,
2500 *maf_id, dev_id, tmp_manf, tmp_id);
2501 return ERR_PTR(-ENODEV);
2504 /* Lookup the flash id */
2505 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2506 if (dev_id == nand_flash_ids[i].id) {
2507 type = &nand_flash_ids[i];
2508 break;
2512 if (!type)
2513 return ERR_PTR(-ENODEV);
2515 if (!mtd->name)
2516 mtd->name = type->name;
2518 chip->chipsize = (uint64_t)type->chipsize << 20;
2520 /* Newer devices have all the information in additional id bytes */
2521 if (!type->pagesize) {
2522 int extid;
2523 /* The 3rd id byte holds MLC / multichip data */
2524 chip->cellinfo = chip->read_byte(mtd);
2525 /* The 4th id byte is the important one */
2526 extid = chip->read_byte(mtd);
2527 /* Calc pagesize */
2528 mtd->writesize = 1024 << (extid & 0x3);
2529 extid >>= 2;
2530 /* Calc oobsize */
2531 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2532 extid >>= 2;
2533 /* Calc blocksize. Blocksize is multiples of 64KiB */
2534 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2535 extid >>= 2;
2536 /* Get buswidth information */
2537 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2539 } else {
2541 * Old devices have chip data hardcoded in the device id table
2543 mtd->erasesize = type->erasesize;
2544 mtd->writesize = type->pagesize;
2545 mtd->oobsize = mtd->writesize / 32;
2546 busw = type->options & NAND_BUSWIDTH_16;
2549 /* Try to identify manufacturer */
2550 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2551 if (nand_manuf_ids[maf_idx].id == *maf_id)
2552 break;
2556 * Check, if buswidth is correct. Hardware drivers should set
2557 * chip correct !
2559 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2560 printk(KERN_INFO "NAND device: Manufacturer ID:"
2561 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2562 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2563 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2564 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2565 busw ? 16 : 8);
2566 return ERR_PTR(-EINVAL);
2569 /* Calculate the address shift from the page size */
2570 chip->page_shift = ffs(mtd->writesize) - 1;
2571 /* Convert chipsize to number of pages per chip -1. */
2572 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2574 chip->bbt_erase_shift = chip->phys_erase_shift =
2575 ffs(mtd->erasesize) - 1;
2576 if (chip->chipsize & 0xffffffff)
2577 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2578 else
2579 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2581 /* Set the bad block position */
2582 chip->badblockpos = mtd->writesize > 512 ?
2583 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2585 /* Get chip options, preserve non chip based options */
2586 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2587 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2590 * Set chip as a default. Board drivers can override it, if necessary
2592 chip->options |= NAND_NO_AUTOINCR;
2594 /* Check if chip is a not a samsung device. Do not clear the
2595 * options for chips which are not having an extended id.
2597 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2598 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2600 /* Check for AND chips with 4 page planes */
2601 if (chip->options & NAND_4PAGE_ARRAY)
2602 chip->erase_cmd = multi_erase_cmd;
2603 else
2604 chip->erase_cmd = single_erase_cmd;
2606 /* Do not replace user supplied command function ! */
2607 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2608 chip->cmdfunc = nand_command_lp;
2610 printk(KERN_INFO "NAND device: Manufacturer ID:"
2611 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2612 nand_manuf_ids[maf_idx].name, type->name);
2614 return type;
2618 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2619 * @mtd: MTD device structure
2620 * @maxchips: Number of chips to scan for
2622 * This is the first phase of the normal nand_scan() function. It
2623 * reads the flash ID and sets up MTD fields accordingly.
2625 * The mtd->owner field must be set to the module of the caller.
2627 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2629 int i, busw, nand_maf_id;
2630 struct nand_chip *chip = mtd->priv;
2631 struct nand_flash_dev *type;
2633 /* Get buswidth to select the correct functions */
2634 busw = chip->options & NAND_BUSWIDTH_16;
2635 /* Set the default functions */
2636 nand_set_defaults(chip, busw);
2638 /* Read the flash type */
2639 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2641 if (IS_ERR(type)) {
2642 printk(KERN_WARNING "No NAND device found!!!\n");
2643 chip->select_chip(mtd, -1);
2644 return PTR_ERR(type);
2647 /* Check for a chip array */
2648 for (i = 1; i < maxchips; i++) {
2649 chip->select_chip(mtd, i);
2650 /* See comment in nand_get_flash_type for reset */
2651 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2652 /* Send the command for reading device ID */
2653 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2654 /* Read manufacturer and device IDs */
2655 if (nand_maf_id != chip->read_byte(mtd) ||
2656 type->id != chip->read_byte(mtd))
2657 break;
2659 if (i > 1)
2660 printk(KERN_INFO "%d NAND chips detected\n", i);
2662 /* Store the number of chips and calc total size for mtd */
2663 chip->numchips = i;
2664 mtd->size = i * chip->chipsize;
2666 return 0;
2671 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2672 * @mtd: MTD device structure
2674 * This is the second phase of the normal nand_scan() function. It
2675 * fills out all the uninitialized function pointers with the defaults
2676 * and scans for a bad block table if appropriate.
2678 int nand_scan_tail(struct mtd_info *mtd)
2680 int i;
2681 struct nand_chip *chip = mtd->priv;
2683 if (!(chip->options & NAND_OWN_BUFFERS))
2684 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2685 if (!chip->buffers)
2686 return -ENOMEM;
2688 /* Set the internal oob buffer location, just after the page data */
2689 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2692 * If no default placement scheme is given, select an appropriate one
2694 if (!chip->ecc.layout) {
2695 switch (mtd->oobsize) {
2696 case 8:
2697 chip->ecc.layout = &nand_oob_8;
2698 break;
2699 case 16:
2700 chip->ecc.layout = &nand_oob_16;
2701 break;
2702 case 64:
2703 chip->ecc.layout = &nand_oob_64;
2704 break;
2705 case 128:
2706 chip->ecc.layout = &nand_oob_128;
2707 break;
2708 default:
2709 printk(KERN_WARNING "No oob scheme defined for "
2710 "oobsize %d\n", mtd->oobsize);
2711 BUG();
2715 if (!chip->write_page)
2716 chip->write_page = nand_write_page;
2719 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2720 * selected and we have 256 byte pagesize fallback to software ECC
2723 switch (chip->ecc.mode) {
2724 case NAND_ECC_HW_OOB_FIRST:
2725 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2726 if (!chip->ecc.calculate || !chip->ecc.correct ||
2727 !chip->ecc.hwctl) {
2728 printk(KERN_WARNING "No ECC functions supplied; "
2729 "Hardware ECC not possible\n");
2730 BUG();
2732 if (!chip->ecc.read_page)
2733 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2735 case NAND_ECC_HW:
2736 /* Use standard hwecc read page function ? */
2737 if (!chip->ecc.read_page)
2738 chip->ecc.read_page = nand_read_page_hwecc;
2739 if (!chip->ecc.write_page)
2740 chip->ecc.write_page = nand_write_page_hwecc;
2741 if (!chip->ecc.read_page_raw)
2742 chip->ecc.read_page_raw = nand_read_page_raw;
2743 if (!chip->ecc.write_page_raw)
2744 chip->ecc.write_page_raw = nand_write_page_raw;
2745 if (!chip->ecc.read_oob)
2746 chip->ecc.read_oob = nand_read_oob_std;
2747 if (!chip->ecc.write_oob)
2748 chip->ecc.write_oob = nand_write_oob_std;
2750 case NAND_ECC_HW_SYNDROME:
2751 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2752 !chip->ecc.hwctl) &&
2753 (!chip->ecc.read_page ||
2754 chip->ecc.read_page == nand_read_page_hwecc ||
2755 !chip->ecc.write_page ||
2756 chip->ecc.write_page == nand_write_page_hwecc)) {
2757 printk(KERN_WARNING "No ECC functions supplied; "
2758 "Hardware ECC not possible\n");
2759 BUG();
2761 /* Use standard syndrome read/write page function ? */
2762 if (!chip->ecc.read_page)
2763 chip->ecc.read_page = nand_read_page_syndrome;
2764 if (!chip->ecc.write_page)
2765 chip->ecc.write_page = nand_write_page_syndrome;
2766 if (!chip->ecc.read_page_raw)
2767 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
2768 if (!chip->ecc.write_page_raw)
2769 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
2770 if (!chip->ecc.read_oob)
2771 chip->ecc.read_oob = nand_read_oob_syndrome;
2772 if (!chip->ecc.write_oob)
2773 chip->ecc.write_oob = nand_write_oob_syndrome;
2775 if (mtd->writesize >= chip->ecc.size)
2776 break;
2777 printk(KERN_WARNING "%d byte HW ECC not possible on "
2778 "%d byte page size, fallback to SW ECC\n",
2779 chip->ecc.size, mtd->writesize);
2780 chip->ecc.mode = NAND_ECC_SOFT;
2782 case NAND_ECC_SOFT:
2783 chip->ecc.calculate = nand_calculate_ecc;
2784 chip->ecc.correct = nand_correct_data;
2785 chip->ecc.read_page = nand_read_page_swecc;
2786 chip->ecc.read_subpage = nand_read_subpage;
2787 chip->ecc.write_page = nand_write_page_swecc;
2788 chip->ecc.read_page_raw = nand_read_page_raw;
2789 chip->ecc.write_page_raw = nand_write_page_raw;
2790 chip->ecc.read_oob = nand_read_oob_std;
2791 chip->ecc.write_oob = nand_write_oob_std;
2792 if (!chip->ecc.size)
2793 chip->ecc.size = 256;
2794 chip->ecc.bytes = 3;
2795 break;
2797 case NAND_ECC_NONE:
2798 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2799 "This is not recommended !!\n");
2800 chip->ecc.read_page = nand_read_page_raw;
2801 chip->ecc.write_page = nand_write_page_raw;
2802 chip->ecc.read_oob = nand_read_oob_std;
2803 chip->ecc.read_page_raw = nand_read_page_raw;
2804 chip->ecc.write_page_raw = nand_write_page_raw;
2805 chip->ecc.write_oob = nand_write_oob_std;
2806 chip->ecc.size = mtd->writesize;
2807 chip->ecc.bytes = 0;
2808 break;
2810 default:
2811 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2812 chip->ecc.mode);
2813 BUG();
2817 * The number of bytes available for a client to place data into
2818 * the out of band area
2820 chip->ecc.layout->oobavail = 0;
2821 for (i = 0; chip->ecc.layout->oobfree[i].length
2822 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
2823 chip->ecc.layout->oobavail +=
2824 chip->ecc.layout->oobfree[i].length;
2825 mtd->oobavail = chip->ecc.layout->oobavail;
2828 * Set the number of read / write steps for one page depending on ECC
2829 * mode
2831 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2832 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2833 printk(KERN_WARNING "Invalid ecc parameters\n");
2834 BUG();
2836 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2839 * Allow subpage writes up to ecc.steps. Not possible for MLC
2840 * FLASH.
2842 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2843 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2844 switch(chip->ecc.steps) {
2845 case 2:
2846 mtd->subpage_sft = 1;
2847 break;
2848 case 4:
2849 case 8:
2850 case 16:
2851 mtd->subpage_sft = 2;
2852 break;
2855 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2857 /* Initialize state */
2858 chip->state = FL_READY;
2860 /* De-select the device */
2861 chip->select_chip(mtd, -1);
2863 /* Invalidate the pagebuffer reference */
2864 chip->pagebuf = -1;
2866 /* Fill in remaining MTD driver data */
2867 mtd->type = MTD_NANDFLASH;
2868 mtd->flags = MTD_CAP_NANDFLASH;
2869 mtd->erase = nand_erase;
2870 mtd->point = NULL;
2871 mtd->unpoint = NULL;
2872 mtd->read = nand_read;
2873 mtd->write = nand_write;
2874 mtd->read_oob = nand_read_oob;
2875 mtd->write_oob = nand_write_oob;
2876 mtd->sync = nand_sync;
2877 mtd->lock = NULL;
2878 mtd->unlock = NULL;
2879 mtd->suspend = nand_suspend;
2880 mtd->resume = nand_resume;
2881 mtd->block_isbad = nand_block_isbad;
2882 mtd->block_markbad = nand_block_markbad;
2884 /* propagate ecc.layout to mtd_info */
2885 mtd->ecclayout = chip->ecc.layout;
2887 /* Check, if we should skip the bad block table scan */
2888 if (chip->options & NAND_SKIP_BBTSCAN)
2889 return 0;
2891 /* Build bad block table */
2892 return chip->scan_bbt(mtd);
2895 /* is_module_text_address() isn't exported, and it's mostly a pointless
2896 test if this is a module _anyway_ -- they'd have to try _really_ hard
2897 to call us from in-kernel code if the core NAND support is modular. */
2898 #ifdef MODULE
2899 #define caller_is_module() (1)
2900 #else
2901 #define caller_is_module() \
2902 is_module_text_address((unsigned long)__builtin_return_address(0))
2903 #endif
2906 * nand_scan - [NAND Interface] Scan for the NAND device
2907 * @mtd: MTD device structure
2908 * @maxchips: Number of chips to scan for
2910 * This fills out all the uninitialized function pointers
2911 * with the defaults.
2912 * The flash ID is read and the mtd/chip structures are
2913 * filled with the appropriate values.
2914 * The mtd->owner field must be set to the module of the caller
2917 int nand_scan(struct mtd_info *mtd, int maxchips)
2919 int ret;
2921 /* Many callers got this wrong, so check for it for a while... */
2922 if (!mtd->owner && caller_is_module()) {
2923 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
2924 __func__);
2925 BUG();
2928 ret = nand_scan_ident(mtd, maxchips);
2929 if (!ret)
2930 ret = nand_scan_tail(mtd);
2931 return ret;
2935 * nand_release - [NAND Interface] Free resources held by the NAND device
2936 * @mtd: MTD device structure
2938 void nand_release(struct mtd_info *mtd)
2940 struct nand_chip *chip = mtd->priv;
2942 #ifdef CONFIG_MTD_PARTITIONS
2943 /* Deregister partitions */
2944 del_mtd_partitions(mtd);
2945 #endif
2946 /* Deregister the device */
2947 del_mtd_device(mtd);
2949 /* Free bad block table memory */
2950 kfree(chip->bbt);
2951 if (!(chip->options & NAND_OWN_BUFFERS))
2952 kfree(chip->buffers);
2955 EXPORT_SYMBOL_GPL(nand_scan);
2956 EXPORT_SYMBOL_GPL(nand_scan_ident);
2957 EXPORT_SYMBOL_GPL(nand_scan_tail);
2958 EXPORT_SYMBOL_GPL(nand_release);
2960 static int __init nand_base_init(void)
2962 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2963 return 0;
2966 static void __exit nand_base_exit(void)
2968 led_trigger_unregister_simple(nand_led_trigger);
2971 module_init(nand_base_init);
2972 module_exit(nand_base_exit);
2974 MODULE_LICENSE("GPL");
2975 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2976 MODULE_DESCRIPTION("Generic NAND flash driver code");