2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/jiffies.h>
15 #include <linux/sched.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
22 #include <plat/gpmc.h>
23 #include <plat/nand.h>
25 #define GPMC_IRQ_STATUS 0x18
26 #define GPMC_ECC_CONFIG 0x1F4
27 #define GPMC_ECC_CONTROL 0x1F8
28 #define GPMC_ECC_SIZE_CONFIG 0x1FC
29 #define GPMC_ECC1_RESULT 0x200
31 #define DRIVER_NAME "omap2-nand"
33 /* size (4 KiB) for IO mapping */
34 #define NAND_IO_SIZE SZ_4K
37 #define NAND_WP_BIT 0x00000010
38 #define WR_RD_PIN_MONITORING 0x00600000
40 #define GPMC_BUF_FULL 0x00000001
41 #define GPMC_BUF_EMPTY 0x00000000
43 #define NAND_Ecc_P1e (1 << 0)
44 #define NAND_Ecc_P2e (1 << 1)
45 #define NAND_Ecc_P4e (1 << 2)
46 #define NAND_Ecc_P8e (1 << 3)
47 #define NAND_Ecc_P16e (1 << 4)
48 #define NAND_Ecc_P32e (1 << 5)
49 #define NAND_Ecc_P64e (1 << 6)
50 #define NAND_Ecc_P128e (1 << 7)
51 #define NAND_Ecc_P256e (1 << 8)
52 #define NAND_Ecc_P512e (1 << 9)
53 #define NAND_Ecc_P1024e (1 << 10)
54 #define NAND_Ecc_P2048e (1 << 11)
56 #define NAND_Ecc_P1o (1 << 16)
57 #define NAND_Ecc_P2o (1 << 17)
58 #define NAND_Ecc_P4o (1 << 18)
59 #define NAND_Ecc_P8o (1 << 19)
60 #define NAND_Ecc_P16o (1 << 20)
61 #define NAND_Ecc_P32o (1 << 21)
62 #define NAND_Ecc_P64o (1 << 22)
63 #define NAND_Ecc_P128o (1 << 23)
64 #define NAND_Ecc_P256o (1 << 24)
65 #define NAND_Ecc_P512o (1 << 25)
66 #define NAND_Ecc_P1024o (1 << 26)
67 #define NAND_Ecc_P2048o (1 << 27)
69 #define TF(value) (value ? 1 : 0)
71 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
72 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
73 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
74 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
75 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
76 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
77 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
78 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
80 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
81 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
82 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
83 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
84 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
85 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
86 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
87 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
89 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
90 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
91 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
92 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
93 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
94 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
95 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
96 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
98 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
99 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
100 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
101 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
102 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
103 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
104 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
105 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
107 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
108 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
110 #ifdef CONFIG_MTD_PARTITIONS
111 static const char *part_probes
[] = { "cmdlinepart", NULL
};
114 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
115 static int use_prefetch
= 1;
117 /* "modprobe ... use_prefetch=0" etc */
118 module_param(use_prefetch
, bool, 0);
119 MODULE_PARM_DESC(use_prefetch
, "enable/disable use of PREFETCH");
121 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
122 static int use_dma
= 1;
124 /* "modprobe ... use_dma=0" etc */
125 module_param(use_dma
, bool, 0);
126 MODULE_PARM_DESC(use_dma
, "enable/disable use of DMA");
131 const int use_prefetch
;
135 struct omap_nand_info
{
136 struct nand_hw_control controller
;
137 struct omap_nand_platform_data
*pdata
;
139 struct mtd_partition
*parts
;
140 struct nand_chip nand
;
141 struct platform_device
*pdev
;
144 unsigned long phys_base
;
145 void __iomem
*gpmc_cs_baseaddr
;
146 void __iomem
*gpmc_baseaddr
;
147 void __iomem
*nand_pref_fifo_add
;
148 struct completion comp
;
153 * omap_nand_wp - This function enable or disable the Write Protect feature
154 * @mtd: MTD device structure
157 static void omap_nand_wp(struct mtd_info
*mtd
, int mode
)
159 struct omap_nand_info
*info
= container_of(mtd
,
160 struct omap_nand_info
, mtd
);
162 unsigned long config
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_CONFIG
);
165 config
&= ~(NAND_WP_BIT
); /* WP is ON */
167 config
|= (NAND_WP_BIT
); /* WP is OFF */
169 __raw_writel(config
, (info
->gpmc_baseaddr
+ GPMC_CONFIG
));
173 * omap_hwcontrol - hardware specific access to control-lines
174 * @mtd: MTD device structure
175 * @cmd: command to device
177 * NAND_NCE: bit 0 -> don't care
178 * NAND_CLE: bit 1 -> Command Latch
179 * NAND_ALE: bit 2 -> Address Latch
181 * NOTE: boards may use different bits for these!!
183 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
185 struct omap_nand_info
*info
= container_of(mtd
,
186 struct omap_nand_info
, mtd
);
188 case NAND_CTRL_CHANGE
| NAND_CTRL_CLE
:
189 info
->nand
.IO_ADDR_W
= info
->gpmc_cs_baseaddr
+
190 GPMC_CS_NAND_COMMAND
;
191 info
->nand
.IO_ADDR_R
= info
->gpmc_cs_baseaddr
+
195 case NAND_CTRL_CHANGE
| NAND_CTRL_ALE
:
196 info
->nand
.IO_ADDR_W
= info
->gpmc_cs_baseaddr
+
197 GPMC_CS_NAND_ADDRESS
;
198 info
->nand
.IO_ADDR_R
= info
->gpmc_cs_baseaddr
+
202 case NAND_CTRL_CHANGE
| NAND_NCE
:
203 info
->nand
.IO_ADDR_W
= info
->gpmc_cs_baseaddr
+
205 info
->nand
.IO_ADDR_R
= info
->gpmc_cs_baseaddr
+
210 if (cmd
!= NAND_CMD_NONE
)
211 __raw_writeb(cmd
, info
->nand
.IO_ADDR_W
);
215 * omap_read_buf8 - read data from NAND controller into buffer
216 * @mtd: MTD device structure
217 * @buf: buffer to store date
218 * @len: number of bytes to read
220 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
222 struct nand_chip
*nand
= mtd
->priv
;
224 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
228 * omap_write_buf8 - write buffer to NAND controller
229 * @mtd: MTD device structure
231 * @len: number of bytes to write
233 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
235 struct omap_nand_info
*info
= container_of(mtd
,
236 struct omap_nand_info
, mtd
);
237 u_char
*p
= (u_char
*)buf
;
240 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
241 while (GPMC_BUF_EMPTY
== (readl(info
->gpmc_baseaddr
+
242 GPMC_STATUS
) & GPMC_BUF_FULL
));
247 * omap_read_buf16 - read data from NAND controller into buffer
248 * @mtd: MTD device structure
249 * @buf: buffer to store date
250 * @len: number of bytes to read
252 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
254 struct nand_chip
*nand
= mtd
->priv
;
256 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
260 * omap_write_buf16 - write buffer to NAND controller
261 * @mtd: MTD device structure
263 * @len: number of bytes to write
265 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
267 struct omap_nand_info
*info
= container_of(mtd
,
268 struct omap_nand_info
, mtd
);
269 u16
*p
= (u16
*) buf
;
271 /* FIXME try bursts of writesw() or DMA ... */
275 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
277 while (GPMC_BUF_EMPTY
== (readl(info
->gpmc_baseaddr
+
278 GPMC_STATUS
) & GPMC_BUF_FULL
))
284 * omap_read_buf_pref - read data from NAND controller into buffer
285 * @mtd: MTD device structure
286 * @buf: buffer to store date
287 * @len: number of bytes to read
289 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
291 struct omap_nand_info
*info
= container_of(mtd
,
292 struct omap_nand_info
, mtd
);
293 uint32_t pfpw_status
= 0, r_count
= 0;
297 /* take care of subpage reads */
298 for (; len
% 4 != 0; ) {
299 *buf
++ = __raw_readb(info
->nand
.IO_ADDR_R
);
304 /* configure and start prefetch transfer */
305 ret
= gpmc_prefetch_enable(info
->gpmc_cs
, 0x0, len
, 0x0);
307 /* PFPW engine is busy, use cpu copy method */
308 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
309 omap_read_buf16(mtd
, buf
, len
);
311 omap_read_buf8(mtd
, buf
, len
);
314 pfpw_status
= gpmc_prefetch_status();
315 r_count
= ((pfpw_status
>> 24) & 0x7F) >> 2;
316 ioread32_rep(info
->nand_pref_fifo_add
, p
, r_count
);
321 /* disable and stop the PFPW engine */
322 gpmc_prefetch_reset();
327 * omap_write_buf_pref - write buffer to NAND controller
328 * @mtd: MTD device structure
330 * @len: number of bytes to write
332 static void omap_write_buf_pref(struct mtd_info
*mtd
,
333 const u_char
*buf
, int len
)
335 struct omap_nand_info
*info
= container_of(mtd
,
336 struct omap_nand_info
, mtd
);
337 uint32_t pfpw_status
= 0, w_count
= 0;
339 u16
*p
= (u16
*) buf
;
341 /* take care of subpage writes */
343 writeb(*buf
, info
->nand
.IO_ADDR_R
);
344 p
= (u16
*)(buf
+ 1);
348 /* configure and start prefetch transfer */
349 ret
= gpmc_prefetch_enable(info
->gpmc_cs
, 0x0, len
, 0x1);
351 /* PFPW engine is busy, use cpu copy method */
352 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
353 omap_write_buf16(mtd
, buf
, len
);
355 omap_write_buf8(mtd
, buf
, len
);
357 pfpw_status
= gpmc_prefetch_status();
358 while (pfpw_status
& 0x3FFF) {
359 w_count
= ((pfpw_status
>> 24) & 0x7F) >> 1;
360 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
361 iowrite16(*p
++, info
->nand_pref_fifo_add
);
362 pfpw_status
= gpmc_prefetch_status();
365 /* disable and stop the PFPW engine */
366 gpmc_prefetch_reset();
370 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
372 * omap_nand_dma_cb: callback on the completion of dma transfer
373 * @lch: logical channel
374 * @ch_satuts: channel status
375 * @data: pointer to completion data structure
377 static void omap_nand_dma_cb(int lch
, u16 ch_status
, void *data
)
379 complete((struct completion
*) data
);
383 * omap_nand_dma_transfer: configer and start dma transfer
384 * @mtd: MTD device structure
385 * @addr: virtual address in RAM of source/destination
386 * @len: number of data bytes to be transferred
387 * @is_write: flag for read/write operation
389 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
390 unsigned int len
, int is_write
)
392 struct omap_nand_info
*info
= container_of(mtd
,
393 struct omap_nand_info
, mtd
);
394 uint32_t prefetch_status
= 0;
395 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
400 /* The fifo depth is 64 bytes. We have a sync at each frame and frame
401 * length is 64 bytes.
403 int buf_len
= len
>> 6;
405 if (addr
>= high_memory
) {
408 if (((size_t)addr
& PAGE_MASK
) !=
409 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
411 p1
= vmalloc_to_page(addr
);
414 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
417 dma_addr
= dma_map_single(&info
->pdev
->dev
, addr
, len
, dir
);
418 if (dma_mapping_error(&info
->pdev
->dev
, dma_addr
)) {
419 dev_err(&info
->pdev
->dev
,
420 "Couldn't DMA map a %d byte buffer\n", len
);
425 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
426 info
->phys_base
, 0, 0);
427 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
429 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
430 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
431 OMAP24XX_DMA_GPMC
, OMAP_DMA_DST_SYNC
);
433 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
434 info
->phys_base
, 0, 0);
435 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
437 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
438 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
439 OMAP24XX_DMA_GPMC
, OMAP_DMA_SRC_SYNC
);
441 /* configure and start prefetch transfer */
442 ret
= gpmc_prefetch_enable(info
->gpmc_cs
, 0x1, len
, is_write
);
444 /* PFPW engine is busy, use cpu copy methode */
447 init_completion(&info
->comp
);
449 omap_start_dma(info
->dma_ch
);
451 /* setup and start DMA using dma_addr */
452 wait_for_completion(&info
->comp
);
454 while (0x3fff & (prefetch_status
= gpmc_prefetch_status()))
456 /* disable and stop the PFPW engine */
457 gpmc_prefetch_reset();
459 dma_unmap_single(&info
->pdev
->dev
, dma_addr
, len
, dir
);
463 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
464 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
465 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
467 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
468 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
472 static void omap_nand_dma_cb(int lch
, u16 ch_status
, void *data
) {}
473 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
474 unsigned int len
, int is_write
)
481 * omap_read_buf_dma_pref - read data from NAND controller into buffer
482 * @mtd: MTD device structure
483 * @buf: buffer to store date
484 * @len: number of bytes to read
486 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
488 if (len
<= mtd
->oobsize
)
489 omap_read_buf_pref(mtd
, buf
, len
);
491 /* start transfer in DMA mode */
492 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
496 * omap_write_buf_dma_pref - write buffer to NAND controller
497 * @mtd: MTD device structure
499 * @len: number of bytes to write
501 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
502 const u_char
*buf
, int len
)
504 if (len
<= mtd
->oobsize
)
505 omap_write_buf_pref(mtd
, buf
, len
);
507 /* start transfer in DMA mode */
508 omap_nand_dma_transfer(mtd
, (void *)buf
, len
, 0x1);
512 * omap_verify_buf - Verify chip data against buffer
513 * @mtd: MTD device structure
514 * @buf: buffer containing the data to compare
515 * @len: number of bytes to compare
517 static int omap_verify_buf(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
519 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
521 u16
*p
= (u16
*) buf
;
525 if (*p
++ != cpu_to_le16(readw(info
->nand
.IO_ADDR_R
)))
532 #ifdef CONFIG_MTD_NAND_OMAP_HWECC
534 * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
535 * @mtd: MTD device structure
537 static void omap_hwecc_init(struct mtd_info
*mtd
)
539 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
541 struct nand_chip
*chip
= mtd
->priv
;
542 unsigned long val
= 0x0;
544 /* Read from ECC Control Register */
545 val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
546 /* Clear all ECC | Enable Reg1 */
547 val
= ((0x00000001<<8) | 0x00000001);
548 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
550 /* Read from ECC Size Config Register */
551 val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_ECC_SIZE_CONFIG
);
552 /* ECCSIZE1=512 | Select eccResultsize[0-3] */
553 val
= ((((chip
->ecc
.size
>> 1) - 1) << 22) | (0x0000000F));
554 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_ECC_SIZE_CONFIG
);
558 * gen_true_ecc - This function will generate true ECC value
559 * @ecc_buf: buffer to store ecc code
561 * This generated true ECC value can be used when correcting
562 * data read from NAND flash memory core
564 static void gen_true_ecc(u8
*ecc_buf
)
566 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
567 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
569 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
570 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
571 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
572 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
573 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
574 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
578 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
579 * @ecc_data1: ecc code from nand spare area
580 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
581 * @page_data: page data
583 * This function compares two ECC's and indicates if there is an error.
584 * If the error can be corrected it will be corrected to the buffer.
586 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
587 u8
*ecc_data2
, /* read from register */
591 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
592 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
599 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
601 gen_true_ecc(ecc_data1
);
602 gen_true_ecc(ecc_data2
);
604 for (i
= 0; i
<= 2; i
++) {
605 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
606 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
609 for (i
= 0; i
< 8; i
++) {
610 tmp0_bit
[i
] = *ecc_data1
% 2;
611 *ecc_data1
= *ecc_data1
/ 2;
614 for (i
= 0; i
< 8; i
++) {
615 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
616 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
619 for (i
= 0; i
< 8; i
++) {
620 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
621 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
624 for (i
= 0; i
< 8; i
++) {
625 comp0_bit
[i
] = *ecc_data2
% 2;
626 *ecc_data2
= *ecc_data2
/ 2;
629 for (i
= 0; i
< 8; i
++) {
630 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
631 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
634 for (i
= 0; i
< 8; i
++) {
635 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
636 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
639 for (i
= 0; i
< 6; i
++)
640 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
642 for (i
= 0; i
< 8; i
++)
643 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
645 for (i
= 0; i
< 8; i
++)
646 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
648 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
649 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
651 for (i
= 0; i
< 24; i
++)
652 ecc_sum
+= ecc_bit
[i
];
656 /* Not reached because this function is not called if
657 * ECC values are equal
662 /* Uncorrectable error */
663 DEBUG(MTD_DEBUG_LEVEL0
, "ECC UNCORRECTED_ERROR 1\n");
667 /* UN-Correctable error */
668 DEBUG(MTD_DEBUG_LEVEL0
, "ECC UNCORRECTED_ERROR B\n");
672 /* Correctable error */
673 find_byte
= (ecc_bit
[23] << 8) +
683 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
685 DEBUG(MTD_DEBUG_LEVEL0
, "Correcting single bit ECC error at "
686 "offset: %d, bit: %d\n", find_byte
, find_bit
);
688 page_data
[find_byte
] ^= (1 << find_bit
);
693 if (ecc_data2
[0] == 0 &&
698 DEBUG(MTD_DEBUG_LEVEL0
, "UNCORRECTED_ERROR default\n");
704 * omap_correct_data - Compares the ECC read with HW generated ECC
705 * @mtd: MTD device structure
707 * @read_ecc: ecc read from nand flash
708 * @calc_ecc: ecc read from HW ECC registers
710 * Compares the ecc read from nand spare area with ECC registers values
711 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
714 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
715 u_char
*read_ecc
, u_char
*calc_ecc
)
717 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
719 int blockCnt
= 0, i
= 0, ret
= 0;
721 /* Ex NAND_ECC_HW12_2048 */
722 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
723 (info
->nand
.ecc
.size
== 2048))
728 for (i
= 0; i
< blockCnt
; i
++) {
729 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
730 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
742 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
743 * @mtd: MTD device structure
744 * @dat: The pointer to data on which ecc is computed
745 * @ecc_code: The ecc_code buffer
747 * Using noninverted ECC can be considered ugly since writing a blank
748 * page ie. padding will clear the ECC bytes. This is no problem as long
749 * nobody is trying to write data on the seemingly unused page. Reading
750 * an erased page will produce an ECC mismatch between generated and read
751 * ECC bytes that has to be dealt with separately.
753 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
756 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
758 unsigned long val
= 0x0;
761 /* Start Reading from HW ECC1_Result = 0x200 */
762 reg
= (unsigned long)(info
->gpmc_baseaddr
+ GPMC_ECC1_RESULT
);
763 val
= __raw_readl(reg
);
764 *ecc_code
++ = val
; /* P128e, ..., P1e */
765 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
766 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
767 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
774 * omap_enable_hwecc - This function enables the hardware ecc functionality
775 * @mtd: MTD device structure
776 * @mode: Read/Write mode
778 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
780 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
782 struct nand_chip
*chip
= mtd
->priv
;
783 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
784 unsigned long val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_ECC_CONFIG
);
788 __raw_writel(0x101, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
789 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
790 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
792 case NAND_ECC_READSYN
:
793 __raw_writel(0x100, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
794 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
795 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
798 __raw_writel(0x101, info
->gpmc_baseaddr
+ GPMC_ECC_CONTROL
);
799 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
800 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
803 DEBUG(MTD_DEBUG_LEVEL0
, "Error: Unrecognized Mode[%d]!\n",
808 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_ECC_CONFIG
);
813 * omap_wait - wait until the command is done
814 * @mtd: MTD device structure
815 * @chip: NAND Chip structure
817 * Wait function is called during Program and erase operations and
818 * the way it is called from MTD layer, we should wait till the NAND
819 * chip is ready after the programming/erase operation has completed.
821 * Erase can take up to 400ms and program up to 20ms according to
822 * general NAND and SmartMedia specs
824 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
826 struct nand_chip
*this = mtd
->priv
;
827 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
829 unsigned long timeo
= jiffies
;
830 int status
= NAND_STATUS_FAIL
, state
= this->state
;
832 if (state
== FL_ERASING
)
833 timeo
+= (HZ
* 400) / 1000;
835 timeo
+= (HZ
* 20) / 1000;
837 this->IO_ADDR_W
= (void *) info
->gpmc_cs_baseaddr
+
838 GPMC_CS_NAND_COMMAND
;
839 this->IO_ADDR_R
= (void *) info
->gpmc_cs_baseaddr
+ GPMC_CS_NAND_DATA
;
841 __raw_writeb(NAND_CMD_STATUS
& 0xFF, this->IO_ADDR_W
);
843 while (time_before(jiffies
, timeo
)) {
844 status
= __raw_readb(this->IO_ADDR_R
);
845 if (status
& NAND_STATUS_READY
)
853 * omap_dev_ready - calls the platform specific dev_ready function
854 * @mtd: MTD device structure
856 static int omap_dev_ready(struct mtd_info
*mtd
)
858 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
860 unsigned int val
= __raw_readl(info
->gpmc_baseaddr
+ GPMC_IRQ_STATUS
);
862 if ((val
& 0x100) == 0x100) {
863 /* Clear IRQ Interrupt */
866 __raw_writel(val
, info
->gpmc_baseaddr
+ GPMC_IRQ_STATUS
);
868 unsigned int cnt
= 0;
869 while (cnt
++ < 0x1FF) {
870 if ((val
& 0x100) == 0x100)
872 val
= __raw_readl(info
->gpmc_baseaddr
+
880 static int __devinit
omap_nand_probe(struct platform_device
*pdev
)
882 struct omap_nand_info
*info
;
883 struct omap_nand_platform_data
*pdata
;
888 pdata
= pdev
->dev
.platform_data
;
890 dev_err(&pdev
->dev
, "platform data missing\n");
894 info
= kzalloc(sizeof(struct omap_nand_info
), GFP_KERNEL
);
898 platform_set_drvdata(pdev
, info
);
900 spin_lock_init(&info
->controller
.lock
);
901 init_waitqueue_head(&info
->controller
.wq
);
905 info
->gpmc_cs
= pdata
->cs
;
906 info
->gpmc_baseaddr
= pdata
->gpmc_baseaddr
;
907 info
->gpmc_cs_baseaddr
= pdata
->gpmc_cs_baseaddr
;
909 info
->mtd
.priv
= &info
->nand
;
910 info
->mtd
.name
= dev_name(&pdev
->dev
);
911 info
->mtd
.owner
= THIS_MODULE
;
913 err
= gpmc_cs_request(info
->gpmc_cs
, NAND_IO_SIZE
, &info
->phys_base
);
915 dev_err(&pdev
->dev
, "Cannot request GPMC CS\n");
919 /* Enable RD PIN Monitoring Reg */
920 if (pdata
->dev_ready
) {
921 val
= gpmc_cs_read_reg(info
->gpmc_cs
, GPMC_CS_CONFIG1
);
922 val
|= WR_RD_PIN_MONITORING
;
923 gpmc_cs_write_reg(info
->gpmc_cs
, GPMC_CS_CONFIG1
, val
);
926 val
= gpmc_cs_read_reg(info
->gpmc_cs
, GPMC_CS_CONFIG7
);
928 val
|= (0xc & 0xf) << 8;
929 gpmc_cs_write_reg(info
->gpmc_cs
, GPMC_CS_CONFIG7
, val
);
931 /* NAND write protect off */
932 omap_nand_wp(&info
->mtd
, NAND_WP_OFF
);
934 if (!request_mem_region(info
->phys_base
, NAND_IO_SIZE
,
935 pdev
->dev
.driver
->name
)) {
940 info
->nand
.IO_ADDR_R
= ioremap(info
->phys_base
, NAND_IO_SIZE
);
941 if (!info
->nand
.IO_ADDR_R
) {
943 goto out_release_mem_region
;
946 info
->nand
.controller
= &info
->controller
;
948 info
->nand
.IO_ADDR_W
= info
->nand
.IO_ADDR_R
;
949 info
->nand
.cmd_ctrl
= omap_hwcontrol
;
952 * If RDY/BSY line is connected to OMAP then use the omap ready
953 * funcrtion and the generic nand_wait function which reads the status
954 * register after monitoring the RDY/BSY line.Otherwise use a standard
955 * chip delay which is slightly more than tR (AC Timing) of the NAND
956 * device and read status register until you get a failure or success
958 if (pdata
->dev_ready
) {
959 info
->nand
.dev_ready
= omap_dev_ready
;
960 info
->nand
.chip_delay
= 0;
962 info
->nand
.waitfunc
= omap_wait
;
963 info
->nand
.chip_delay
= 50;
966 info
->nand
.options
|= NAND_SKIP_BBTSCAN
;
967 if ((gpmc_cs_read_reg(info
->gpmc_cs
, GPMC_CS_CONFIG1
) & 0x3000)
969 info
->nand
.options
|= NAND_BUSWIDTH_16
;
972 /* copy the virtual address of nand base for fifo access */
973 info
->nand_pref_fifo_add
= info
->nand
.IO_ADDR_R
;
975 info
->nand
.read_buf
= omap_read_buf_pref
;
976 info
->nand
.write_buf
= omap_write_buf_pref
;
978 err
= omap_request_dma(OMAP24XX_DMA_GPMC
, "NAND",
979 omap_nand_dma_cb
, &info
->comp
, &info
->dma_ch
);
982 printk(KERN_WARNING
"DMA request failed."
983 " Non-dma data transfer mode\n");
985 omap_set_dma_dest_burst_mode(info
->dma_ch
,
986 OMAP_DMA_DATA_BURST_16
);
987 omap_set_dma_src_burst_mode(info
->dma_ch
,
988 OMAP_DMA_DATA_BURST_16
);
990 info
->nand
.read_buf
= omap_read_buf_dma_pref
;
991 info
->nand
.write_buf
= omap_write_buf_dma_pref
;
995 if (info
->nand
.options
& NAND_BUSWIDTH_16
) {
996 info
->nand
.read_buf
= omap_read_buf16
;
997 info
->nand
.write_buf
= omap_write_buf16
;
999 info
->nand
.read_buf
= omap_read_buf8
;
1000 info
->nand
.write_buf
= omap_write_buf8
;
1003 info
->nand
.verify_buf
= omap_verify_buf
;
1005 #ifdef CONFIG_MTD_NAND_OMAP_HWECC
1006 info
->nand
.ecc
.bytes
= 3;
1007 info
->nand
.ecc
.size
= 512;
1008 info
->nand
.ecc
.calculate
= omap_calculate_ecc
;
1009 info
->nand
.ecc
.hwctl
= omap_enable_hwecc
;
1010 info
->nand
.ecc
.correct
= omap_correct_data
;
1011 info
->nand
.ecc
.mode
= NAND_ECC_HW
;
1014 omap_hwecc_init(&info
->mtd
);
1016 info
->nand
.ecc
.mode
= NAND_ECC_SOFT
;
1019 /* DIP switches on some boards change between 8 and 16 bit
1020 * bus widths for flash. Try the other width if the first try fails.
1022 if (nand_scan(&info
->mtd
, 1)) {
1023 info
->nand
.options
^= NAND_BUSWIDTH_16
;
1024 if (nand_scan(&info
->mtd
, 1)) {
1026 goto out_release_mem_region
;
1030 #ifdef CONFIG_MTD_PARTITIONS
1031 err
= parse_mtd_partitions(&info
->mtd
, part_probes
, &info
->parts
, 0);
1033 add_mtd_partitions(&info
->mtd
, info
->parts
, err
);
1034 else if (pdata
->parts
)
1035 add_mtd_partitions(&info
->mtd
, pdata
->parts
, pdata
->nr_parts
);
1038 add_mtd_device(&info
->mtd
);
1040 platform_set_drvdata(pdev
, &info
->mtd
);
1044 out_release_mem_region
:
1045 release_mem_region(info
->phys_base
, NAND_IO_SIZE
);
1047 gpmc_cs_free(info
->gpmc_cs
);
1054 static int omap_nand_remove(struct platform_device
*pdev
)
1056 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
1057 struct omap_nand_info
*info
= mtd
->priv
;
1059 platform_set_drvdata(pdev
, NULL
);
1061 omap_free_dma(info
->dma_ch
);
1063 /* Release NAND device, its internal structures and partitions */
1064 nand_release(&info
->mtd
);
1065 iounmap(info
->nand_pref_fifo_add
);
1070 static struct platform_driver omap_nand_driver
= {
1071 .probe
= omap_nand_probe
,
1072 .remove
= omap_nand_remove
,
1074 .name
= DRIVER_NAME
,
1075 .owner
= THIS_MODULE
,
1079 static int __init
omap_nand_init(void)
1081 printk(KERN_INFO
"%s driver initializing\n", DRIVER_NAME
);
1083 /* This check is required if driver is being
1084 * loaded run time as a module
1086 if ((1 == use_dma
) && (0 == use_prefetch
)) {
1087 printk(KERN_INFO
"Wrong parameters: 'use_dma' can not be 1 "
1088 "without use_prefetch'. Prefetch will not be"
1089 " used in either mode (mpu or dma)\n");
1091 return platform_driver_register(&omap_nand_driver
);
1094 static void __exit
omap_nand_exit(void)
1096 platform_driver_unregister(&omap_nand_driver
);
1099 module_init(omap_nand_init
);
1100 module_exit(omap_nand_exit
);
1102 MODULE_ALIAS(DRIVER_NAME
);
1103 MODULE_LICENSE("GPL");
1104 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");