2 * Toshiba TMIO NAND flash controller driver
4 * Slightly murky pre-git history of the driver:
6 * Copyright (c) Ian Molton 2004, 2005, 2008
7 * Original work, independant of sharps code. Included hardware ECC support.
8 * Hard ECC did not work for writes in the early revisions.
9 * Copyright (c) Dirk Opfer 2005.
10 * Modifications developed from sharps code but
11 * NOT containing any, ported onto Ians base.
12 * Copyright (c) Chris Humbert 2005
13 * Copyright (c) Dmitry Baryshkov 2008
16 * Parts copyright Sebastian Carlier
18 * This file is licensed under
19 * the terms of the GNU General Public License version 2. This program
20 * is licensed "as is" without any warranty of any kind, whether express
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
41 /*--------------------------------------------------------------------------*/
44 * NAND Flash Host Controller Configuration Register
46 #define CCR_COMMAND 0x04 /* w Command */
47 #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
48 #define CCR_INTP 0x3d /* b Interrupt Pin */
49 #define CCR_INTE 0x48 /* b Interrupt Enable */
50 #define CCR_EC 0x4a /* b Event Control */
51 #define CCR_ICC 0x4c /* b Internal Clock Control */
52 #define CCR_ECCC 0x5b /* b ECC Control */
53 #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
54 #define CCR_NFM 0x61 /* b NAND Flash Monitor */
55 #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
56 #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
59 * NAND Flash Control Register
61 #define FCR_DATA 0x00 /* bwl Data Register */
62 #define FCR_MODE 0x04 /* b Mode Register */
63 #define FCR_STATUS 0x05 /* b Status Register */
64 #define FCR_ISR 0x06 /* b Interrupt Status Register */
65 #define FCR_IMR 0x07 /* b Interrupt Mask Register */
67 /* FCR_MODE Register Command List */
68 #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
69 #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
70 #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
72 #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
73 #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
74 #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
76 #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
77 #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
79 #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
80 #define FCR_MODE_LED_ON 0x04 /* LED ON */
82 #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
83 #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
85 #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
86 #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
88 #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
89 #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
91 #define FCR_MODE_WE 0x80
92 #define FCR_MODE_ECC1 0x40
93 #define FCR_MODE_ECC0 0x20
94 #define FCR_MODE_CE 0x10
95 #define FCR_MODE_PCNT1 0x08
96 #define FCR_MODE_PCNT0 0x04
97 #define FCR_MODE_ALE 0x02
98 #define FCR_MODE_CLE 0x01
100 #define FCR_STATUS_BUSY 0x80
102 /*--------------------------------------------------------------------------*/
106 struct nand_chip chip
;
108 struct platform_device
*dev
;
112 unsigned long fcr_base
;
116 /* for tmio_nand_read_byte */
118 unsigned read_good
:1;
121 #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd)
123 #ifdef CONFIG_MTD_CMDLINE_PARTS
124 static const char *part_probes
[] = { "cmdlinepart", NULL
};
127 /*--------------------------------------------------------------------------*/
129 static void tmio_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
132 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
133 struct nand_chip
*chip
= mtd
->priv
;
135 if (ctrl
& NAND_CTRL_CHANGE
) {
138 if (ctrl
& NAND_NCE
) {
139 mode
= FCR_MODE_DATA
;
142 mode
|= FCR_MODE_CLE
;
144 mode
&= ~FCR_MODE_CLE
;
147 mode
|= FCR_MODE_ALE
;
149 mode
&= ~FCR_MODE_ALE
;
151 mode
= FCR_MODE_STANDBY
;
154 tmio_iowrite8(mode
, tmio
->fcr
+ FCR_MODE
);
158 if (cmd
!= NAND_CMD_NONE
)
159 tmio_iowrite8(cmd
, chip
->IO_ADDR_W
);
162 static int tmio_nand_dev_ready(struct mtd_info
*mtd
)
164 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
166 return !(tmio_ioread8(tmio
->fcr
+ FCR_STATUS
) & FCR_STATUS_BUSY
);
169 static irqreturn_t
tmio_irq(int irq
, void *__tmio
)
171 struct tmio_nand
*tmio
= __tmio
;
172 struct nand_chip
*nand_chip
= &tmio
->chip
;
174 /* disable RDYREQ interrupt */
175 tmio_iowrite8(0x00, tmio
->fcr
+ FCR_IMR
);
177 if (unlikely(!waitqueue_active(&nand_chip
->controller
->wq
)))
178 dev_warn(&tmio
->dev
->dev
, "spurious interrupt\n");
180 wake_up(&nand_chip
->controller
->wq
);
185 *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
186 *This interrupt is normally disabled, but for long operations like
187 *erase and write, we enable it to wake us up. The irq handler
188 *disables the interrupt.
191 tmio_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*nand_chip
)
193 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
196 /* enable RDYREQ interrupt */
197 tmio_iowrite8(0x0f, tmio
->fcr
+ FCR_ISR
);
198 tmio_iowrite8(0x81, tmio
->fcr
+ FCR_IMR
);
200 timeout
= wait_event_timeout(nand_chip
->controller
->wq
,
201 tmio_nand_dev_ready(mtd
),
202 msecs_to_jiffies(nand_chip
->state
== FL_ERASING
? 400 : 20));
204 if (unlikely(!tmio_nand_dev_ready(mtd
))) {
205 tmio_iowrite8(0x00, tmio
->fcr
+ FCR_IMR
);
206 dev_warn(&tmio
->dev
->dev
, "still busy with %s after %d ms\n",
207 nand_chip
->state
== FL_ERASING
? "erase" : "program",
208 nand_chip
->state
== FL_ERASING
? 400 : 20);
210 } else if (unlikely(!timeout
)) {
211 tmio_iowrite8(0x00, tmio
->fcr
+ FCR_IMR
);
212 dev_warn(&tmio
->dev
->dev
, "timeout waiting for interrupt\n");
215 nand_chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
216 return nand_chip
->read_byte(mtd
);
220 *The TMIO controller combines two 8-bit data bytes into one 16-bit
221 *word. This function separates them so nand_base.c works as expected,
222 *especially its NAND_CMD_READID routines.
224 *To prevent stale data from being read, tmio_nand_hwcontrol() clears
227 static u_char
tmio_nand_read_byte(struct mtd_info
*mtd
)
229 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
232 if (tmio
->read_good
--)
235 data
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
236 tmio
->read
= data
>> 8;
241 *The TMIO controller converts an 8-bit NAND interface to a 16-bit
242 *bus interface, so all data reads and writes must be 16-bit wide.
243 *Thus, we implement 16-bit versions of the read, write, and verify
247 tmio_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
249 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
251 tmio_iowrite16_rep(tmio
->fcr
+ FCR_DATA
, buf
, len
>> 1);
254 static void tmio_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
256 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
258 tmio_ioread16_rep(tmio
->fcr
+ FCR_DATA
, buf
, len
>> 1);
262 tmio_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
264 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
265 u16
*p
= (u16
*) buf
;
267 for (len
>>= 1; len
; len
--)
268 if (*(p
++) != tmio_ioread16(tmio
->fcr
+ FCR_DATA
))
273 static void tmio_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
275 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
277 tmio_iowrite8(FCR_MODE_HWECC_RESET
, tmio
->fcr
+ FCR_MODE
);
278 tmio_ioread8(tmio
->fcr
+ FCR_DATA
); /* dummy read */
279 tmio_iowrite8(FCR_MODE_HWECC_CALC
, tmio
->fcr
+ FCR_MODE
);
282 static int tmio_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
285 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
288 tmio_iowrite8(FCR_MODE_HWECC_RESULT
, tmio
->fcr
+ FCR_MODE
);
290 ecc
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
291 ecc_code
[1] = ecc
; /* 000-255 LP7-0 */
292 ecc_code
[0] = ecc
>> 8; /* 000-255 LP15-8 */
293 ecc
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
294 ecc_code
[2] = ecc
; /* 000-255 CP5-0,11b */
295 ecc_code
[4] = ecc
>> 8; /* 256-511 LP7-0 */
296 ecc
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
297 ecc_code
[3] = ecc
; /* 256-511 LP15-8 */
298 ecc_code
[5] = ecc
>> 8; /* 256-511 CP5-0,11b */
300 tmio_iowrite8(FCR_MODE_DATA
, tmio
->fcr
+ FCR_MODE
);
304 static int tmio_nand_correct_data(struct mtd_info
*mtd
, unsigned char *buf
,
305 unsigned char *read_ecc
, unsigned char *calc_ecc
)
309 /* assume ecc.size = 512 and ecc.bytes = 6 */
310 r0
= __nand_correct_data(buf
, read_ecc
, calc_ecc
, 256);
313 r1
= __nand_correct_data(buf
+ 256, read_ecc
+ 3, calc_ecc
+ 3, 256);
319 static int tmio_hw_init(struct platform_device
*dev
, struct tmio_nand
*tmio
)
321 struct mfd_cell
*cell
= (struct mfd_cell
*)dev
->dev
.platform_data
;
325 ret
= cell
->enable(dev
);
330 /* (4Ch) CLKRUN Enable 1st spcrunc */
331 tmio_iowrite8(0x81, tmio
->ccr
+ CCR_ICC
);
333 /* (10h)BaseAddress 0x1000 spba.spba2 */
334 tmio_iowrite16(tmio
->fcr_base
, tmio
->ccr
+ CCR_BASE
);
335 tmio_iowrite16(tmio
->fcr_base
>> 16, tmio
->ccr
+ CCR_BASE
+ 2);
337 /* (04h)Command Register I/O spcmd */
338 tmio_iowrite8(0x02, tmio
->ccr
+ CCR_COMMAND
);
340 /* (62h) Power Supply Control ssmpwc */
341 /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
342 tmio_iowrite8(0x02, tmio
->ccr
+ CCR_NFPSC
);
344 /* (63h) Detect Control ssmdtc */
345 tmio_iowrite8(0x02, tmio
->ccr
+ CCR_NFDC
);
347 /* Interrupt status register clear sintst */
348 tmio_iowrite8(0x0f, tmio
->fcr
+ FCR_ISR
);
350 /* After power supply, Media are reset smode */
351 tmio_iowrite8(FCR_MODE_POWER_ON
, tmio
->fcr
+ FCR_MODE
);
352 tmio_iowrite8(FCR_MODE_COMMAND
, tmio
->fcr
+ FCR_MODE
);
353 tmio_iowrite8(NAND_CMD_RESET
, tmio
->fcr
+ FCR_DATA
);
355 /* Standby Mode smode */
356 tmio_iowrite8(FCR_MODE_STANDBY
, tmio
->fcr
+ FCR_MODE
);
363 static void tmio_hw_stop(struct platform_device
*dev
, struct tmio_nand
*tmio
)
365 struct mfd_cell
*cell
= (struct mfd_cell
*)dev
->dev
.platform_data
;
367 tmio_iowrite8(FCR_MODE_POWER_OFF
, tmio
->fcr
+ FCR_MODE
);
372 static int tmio_probe(struct platform_device
*dev
)
374 struct mfd_cell
*cell
= (struct mfd_cell
*)dev
->dev
.platform_data
;
375 struct tmio_nand_data
*data
= cell
->driver_data
;
376 struct resource
*fcr
= platform_get_resource(dev
,
378 struct resource
*ccr
= platform_get_resource(dev
,
380 int irq
= platform_get_irq(dev
, 0);
381 struct tmio_nand
*tmio
;
382 struct mtd_info
*mtd
;
383 struct nand_chip
*nand_chip
;
384 #ifdef CONFIG_MTD_PARTITIONS
385 struct mtd_partition
*parts
;
391 dev_warn(&dev
->dev
, "NULL platform data!\n");
393 tmio
= kzalloc(sizeof *tmio
, GFP_KERNEL
);
401 platform_set_drvdata(dev
, tmio
);
403 nand_chip
= &tmio
->chip
;
404 mtd
->priv
= nand_chip
;
405 mtd
->name
= "tmio-nand";
407 tmio
->ccr
= ioremap(ccr
->start
, ccr
->end
- ccr
->start
+ 1);
413 tmio
->fcr_base
= fcr
->start
& 0xfffff;
414 tmio
->fcr
= ioremap(fcr
->start
, fcr
->end
- fcr
->start
+ 1);
420 retval
= tmio_hw_init(dev
, tmio
);
424 /* Set address of NAND IO lines */
425 nand_chip
->IO_ADDR_R
= tmio
->fcr
;
426 nand_chip
->IO_ADDR_W
= tmio
->fcr
;
428 /* Set address of hardware control function */
429 nand_chip
->cmd_ctrl
= tmio_nand_hwcontrol
;
430 nand_chip
->dev_ready
= tmio_nand_dev_ready
;
431 nand_chip
->read_byte
= tmio_nand_read_byte
;
432 nand_chip
->write_buf
= tmio_nand_write_buf
;
433 nand_chip
->read_buf
= tmio_nand_read_buf
;
434 nand_chip
->verify_buf
= tmio_nand_verify_buf
;
436 /* set eccmode using hardware ECC */
437 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
438 nand_chip
->ecc
.size
= 512;
439 nand_chip
->ecc
.bytes
= 6;
440 nand_chip
->ecc
.hwctl
= tmio_nand_enable_hwecc
;
441 nand_chip
->ecc
.calculate
= tmio_nand_calculate_ecc
;
442 nand_chip
->ecc
.correct
= tmio_nand_correct_data
;
445 nand_chip
->badblock_pattern
= data
->badblock_pattern
;
447 /* 15 us command delay time */
448 nand_chip
->chip_delay
= 15;
450 retval
= request_irq(irq
, &tmio_irq
,
451 IRQF_DISABLED
, dev_name(&dev
->dev
), tmio
);
453 dev_err(&dev
->dev
, "request_irq error %d\n", retval
);
458 nand_chip
->waitfunc
= tmio_nand_wait
;
460 /* Scan to find existence of the device */
461 if (nand_scan(mtd
, 1)) {
465 /* Register the partitions */
466 #ifdef CONFIG_MTD_PARTITIONS
467 #ifdef CONFIG_MTD_CMDLINE_PARTS
468 nbparts
= parse_mtd_partitions(mtd
, part_probes
, &parts
, 0);
470 if (nbparts
<= 0 && data
) {
471 parts
= data
->partition
;
472 nbparts
= data
->num_partitions
;
476 retval
= add_mtd_partitions(mtd
, parts
, nbparts
);
479 retval
= add_mtd_device(mtd
);
488 free_irq(tmio
->irq
, tmio
);
490 tmio_hw_stop(dev
, tmio
);
501 static int tmio_remove(struct platform_device
*dev
)
503 struct tmio_nand
*tmio
= platform_get_drvdata(dev
);
505 nand_release(&tmio
->mtd
);
507 free_irq(tmio
->irq
, tmio
);
508 tmio_hw_stop(dev
, tmio
);
516 static int tmio_suspend(struct platform_device
*dev
, pm_message_t state
)
518 struct mfd_cell
*cell
= (struct mfd_cell
*)dev
->dev
.platform_data
;
523 tmio_hw_stop(dev
, platform_get_drvdata(dev
));
527 static int tmio_resume(struct platform_device
*dev
)
529 struct mfd_cell
*cell
= (struct mfd_cell
*)dev
->dev
.platform_data
;
531 /* FIXME - is this required or merely another attack of the broken
532 * SHARP platform? Looks suspicious.
534 tmio_hw_init(dev
, platform_get_drvdata(dev
));
542 #define tmio_suspend NULL
543 #define tmio_resume NULL
546 static struct platform_driver tmio_driver
= {
547 .driver
.name
= "tmio-nand",
548 .driver
.owner
= THIS_MODULE
,
550 .remove
= tmio_remove
,
551 .suspend
= tmio_suspend
,
552 .resume
= tmio_resume
,
555 static int __init
tmio_init(void)
557 return platform_driver_register(&tmio_driver
);
560 static void __exit
tmio_exit(void)
562 platform_driver_unregister(&tmio_driver
);
565 module_init(tmio_init
);
566 module_exit(tmio_exit
);
568 MODULE_LICENSE("GPL v2");
569 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
570 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
571 MODULE_ALIAS("platform:tmio-nand");