First Support on Ginger and OMAP TI
[linux-ginger.git] / drivers / mtd / onenand / onenand_base.c
blobff66e4330aa71ebde90b830b0faca5e4dc6f31d0
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright (C) 2005-2007 Samsung Electronics
5 * Kyungmin Park <kyungmin.park@samsung.com>
7 * Credits:
8 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 * auto-placement support, read-while load support, various fixes
10 * Copyright (C) Nokia Corporation, 2007
12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 * Flex-OneNAND support
14 * Copyright (C) Samsung Electronics, 2008
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/init.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/onenand.h>
31 #include <linux/mtd/partitions.h>
33 #include <asm/io.h>
35 /* Default Flex-OneNAND boundary and lock respectively */
36 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
38 module_param_array(flex_bdry, int, NULL, 0400);
39 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
40 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
41 "DIE_BDRY: SLC boundary of the die"
42 "LOCK: Locking information for SLC boundary"
43 " : 0->Set boundary in unlocked status"
44 " : 1->Set boundary in locked status");
46 /**
47 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
48 * For now, we expose only 64 out of 80 ecc bytes
50 static struct nand_ecclayout onenand_oob_128 = {
51 .eccbytes = 64,
52 .eccpos = {
53 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
54 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
55 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
56 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
57 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
58 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
59 102, 103, 104, 105
61 .oobfree = {
62 {2, 4}, {18, 4}, {34, 4}, {50, 4},
63 {66, 4}, {82, 4}, {98, 4}, {114, 4}
67 /**
68 * onenand_oob_64 - oob info for large (2KB) page
70 static struct nand_ecclayout onenand_oob_64 = {
71 .eccbytes = 20,
72 .eccpos = {
73 8, 9, 10, 11, 12,
74 24, 25, 26, 27, 28,
75 40, 41, 42, 43, 44,
76 56, 57, 58, 59, 60,
78 .oobfree = {
79 {2, 3}, {14, 2}, {18, 3}, {30, 2},
80 {34, 3}, {46, 2}, {50, 3}, {62, 2}
84 /**
85 * onenand_oob_32 - oob info for middle (1KB) page
87 static struct nand_ecclayout onenand_oob_32 = {
88 .eccbytes = 10,
89 .eccpos = {
90 8, 9, 10, 11, 12,
91 24, 25, 26, 27, 28,
93 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
96 static const unsigned char ffchars[] = {
97 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
99 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
101 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
103 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
105 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
111 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
112 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
116 * onenand_readw - [OneNAND Interface] Read OneNAND register
117 * @param addr address to read
119 * Read OneNAND register
121 static unsigned short onenand_readw(void __iomem *addr)
123 return readw(addr);
127 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
128 * @param value value to write
129 * @param addr address to write
131 * Write OneNAND register with value
133 static void onenand_writew(unsigned short value, void __iomem *addr)
135 writew(value, addr);
139 * onenand_block_address - [DEFAULT] Get block address
140 * @param this onenand chip data structure
141 * @param block the block
142 * @return translated block address if DDP, otherwise same
144 * Setup Start Address 1 Register (F100h)
146 static int onenand_block_address(struct onenand_chip *this, int block)
148 /* Device Flash Core select, NAND Flash Block Address */
149 if (block & this->density_mask)
150 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
152 return block;
156 * onenand_bufferram_address - [DEFAULT] Get bufferram address
157 * @param this onenand chip data structure
158 * @param block the block
159 * @return set DBS value if DDP, otherwise 0
161 * Setup Start Address 2 Register (F101h) for DDP
163 static int onenand_bufferram_address(struct onenand_chip *this, int block)
165 /* Device BufferRAM Select */
166 if (block & this->density_mask)
167 return ONENAND_DDP_CHIP1;
169 return ONENAND_DDP_CHIP0;
173 * onenand_page_address - [DEFAULT] Get page address
174 * @param page the page address
175 * @param sector the sector address
176 * @return combined page and sector address
178 * Setup Start Address 8 Register (F107h)
180 static int onenand_page_address(int page, int sector)
182 /* Flash Page Address, Flash Sector Address */
183 int fpa, fsa;
185 fpa = page & ONENAND_FPA_MASK;
186 fsa = sector & ONENAND_FSA_MASK;
188 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
192 * onenand_buffer_address - [DEFAULT] Get buffer address
193 * @param dataram1 DataRAM index
194 * @param sectors the sector address
195 * @param count the number of sectors
196 * @return the start buffer value
198 * Setup Start Buffer Register (F200h)
200 static int onenand_buffer_address(int dataram1, int sectors, int count)
202 int bsa, bsc;
204 /* BufferRAM Sector Address */
205 bsa = sectors & ONENAND_BSA_MASK;
207 if (dataram1)
208 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
209 else
210 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
212 /* BufferRAM Sector Count */
213 bsc = count & ONENAND_BSC_MASK;
215 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
219 * flexonenand_block- For given address return block number
220 * @param this - OneNAND device structure
221 * @param addr - Address for which block number is needed
223 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
225 unsigned boundary, blk, die = 0;
227 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
228 die = 1;
229 addr -= this->diesize[0];
232 boundary = this->boundary[die];
234 blk = addr >> (this->erase_shift - 1);
235 if (blk > boundary)
236 blk = (blk + boundary + 1) >> 1;
238 blk += die ? this->density_mask : 0;
239 return blk;
242 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
244 if (!FLEXONENAND(this))
245 return addr >> this->erase_shift;
246 return flexonenand_block(this, addr);
250 * flexonenand_addr - Return address of the block
251 * @this: OneNAND device structure
252 * @block: Block number on Flex-OneNAND
254 * Return address of the block
256 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
258 loff_t ofs = 0;
259 int die = 0, boundary;
261 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
262 block -= this->density_mask;
263 die = 1;
264 ofs = this->diesize[0];
267 boundary = this->boundary[die];
268 ofs += (loff_t)block << (this->erase_shift - 1);
269 if (block > (boundary + 1))
270 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
271 return ofs;
274 loff_t onenand_addr(struct onenand_chip *this, int block)
276 if (!FLEXONENAND(this))
277 return (loff_t)block << this->erase_shift;
278 return flexonenand_addr(this, block);
280 EXPORT_SYMBOL(onenand_addr);
283 * onenand_get_density - [DEFAULT] Get OneNAND density
284 * @param dev_id OneNAND device ID
286 * Get OneNAND density from device ID
288 static inline int onenand_get_density(int dev_id)
290 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
291 return (density & ONENAND_DEVICE_DENSITY_MASK);
295 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
296 * @param mtd MTD device structure
297 * @param addr address whose erase region needs to be identified
299 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
301 int i;
303 for (i = 0; i < mtd->numeraseregions; i++)
304 if (addr < mtd->eraseregions[i].offset)
305 break;
306 return i - 1;
308 EXPORT_SYMBOL(flexonenand_region);
311 * onenand_command - [DEFAULT] Send command to OneNAND device
312 * @param mtd MTD device structure
313 * @param cmd the command to be sent
314 * @param addr offset to read from or write to
315 * @param len number of bytes to read or write
317 * Send command to OneNAND device. This function is used for middle/large page
318 * devices (1KB/2KB Bytes per page)
320 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
322 struct onenand_chip *this = mtd->priv;
323 int value, block, page;
325 /* Address translation */
326 switch (cmd) {
327 case ONENAND_CMD_UNLOCK:
328 case ONENAND_CMD_LOCK:
329 case ONENAND_CMD_LOCK_TIGHT:
330 case ONENAND_CMD_UNLOCK_ALL:
331 block = -1;
332 page = -1;
333 break;
335 case FLEXONENAND_CMD_PI_ACCESS:
336 /* addr contains die index */
337 block = addr * this->density_mask;
338 page = -1;
339 break;
341 case ONENAND_CMD_ERASE:
342 case ONENAND_CMD_BUFFERRAM:
343 case ONENAND_CMD_OTP_ACCESS:
344 block = onenand_block(this, addr);
345 page = -1;
346 break;
348 case FLEXONENAND_CMD_READ_PI:
349 cmd = ONENAND_CMD_READ;
350 block = addr * this->density_mask;
351 page = 0;
352 break;
354 default:
355 block = onenand_block(this, addr);
356 page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
358 if (ONENAND_IS_2PLANE(this)) {
359 /* Make the even block number */
360 block &= ~1;
361 /* Is it the odd plane? */
362 if (addr & this->writesize)
363 block++;
364 page >>= 1;
366 page &= this->page_mask;
367 break;
370 /* NOTE: The setting order of the registers is very important! */
371 if (cmd == ONENAND_CMD_BUFFERRAM) {
372 /* Select DataRAM for DDP */
373 value = onenand_bufferram_address(this, block);
374 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
376 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
377 /* It is always BufferRAM0 */
378 ONENAND_SET_BUFFERRAM0(this);
379 else
380 /* Switch to the next data buffer */
381 ONENAND_SET_NEXT_BUFFERRAM(this);
383 return 0;
386 if (block != -1) {
387 /* Write 'DFS, FBA' of Flash */
388 value = onenand_block_address(this, block);
389 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
391 /* Select DataRAM for DDP */
392 value = onenand_bufferram_address(this, block);
393 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
396 if (page != -1) {
397 /* Now we use page size operation */
398 int sectors = 0, count = 0;
399 int dataram;
401 switch (cmd) {
402 case FLEXONENAND_CMD_RECOVER_LSB:
403 case ONENAND_CMD_READ:
404 case ONENAND_CMD_READOOB:
405 if (ONENAND_IS_MLC(this))
406 /* It is always BufferRAM0 */
407 dataram = ONENAND_SET_BUFFERRAM0(this);
408 else
409 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
410 break;
412 default:
413 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
414 cmd = ONENAND_CMD_2X_PROG;
415 dataram = ONENAND_CURRENT_BUFFERRAM(this);
416 break;
419 /* Write 'FPA, FSA' of Flash */
420 value = onenand_page_address(page, sectors);
421 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
423 /* Write 'BSA, BSC' of DataRAM */
424 value = onenand_buffer_address(dataram, sectors, count);
425 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
428 /* Interrupt clear */
429 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
431 /* Write command */
432 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
434 return 0;
438 * onenand_read_ecc - return ecc status
439 * @param this onenand chip structure
441 static inline int onenand_read_ecc(struct onenand_chip *this)
443 int ecc, i, result = 0;
445 if (!FLEXONENAND(this))
446 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
448 for (i = 0; i < 4; i++) {
449 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
450 if (likely(!ecc))
451 continue;
452 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
453 return ONENAND_ECC_2BIT_ALL;
454 else
455 result = ONENAND_ECC_1BIT_ALL;
458 return result;
462 * onenand_wait - [DEFAULT] wait until the command is done
463 * @param mtd MTD device structure
464 * @param state state to select the max. timeout value
466 * Wait for command done. This applies to all OneNAND command
467 * Read can take up to 30us, erase up to 2ms and program up to 350us
468 * according to general OneNAND specs
470 static int onenand_wait(struct mtd_info *mtd, int state)
472 struct onenand_chip * this = mtd->priv;
473 unsigned long timeout;
474 unsigned int flags = ONENAND_INT_MASTER;
475 unsigned int interrupt = 0;
476 unsigned int ctrl;
478 /* The 20 msec is enough */
479 timeout = jiffies + msecs_to_jiffies(20);
480 while (time_before(jiffies, timeout)) {
481 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
483 if (interrupt & flags)
484 break;
486 if (state != FL_READING)
487 cond_resched();
489 /* To get correct interrupt status in timeout case */
490 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
492 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
495 * In the Spec. it checks the controller status first
496 * However if you get the correct information in case of
497 * power off recovery (POR) test, it should read ECC status first
499 if (interrupt & ONENAND_INT_READ) {
500 int ecc = onenand_read_ecc(this);
501 if (ecc) {
502 if (ecc & ONENAND_ECC_2BIT_ALL) {
503 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
504 mtd->ecc_stats.failed++;
505 return -EBADMSG;
506 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
507 printk(KERN_DEBUG "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
508 mtd->ecc_stats.corrected++;
511 } else if (state == FL_READING) {
512 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
513 return -EIO;
516 /* If there's controller error, it's a real error */
517 if (ctrl & ONENAND_CTRL_ERROR) {
518 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n",
519 ctrl);
520 if (ctrl & ONENAND_CTRL_LOCK)
521 printk(KERN_ERR "onenand_wait: it's locked error.\n");
522 return -EIO;
525 return 0;
529 * onenand_interrupt - [DEFAULT] onenand interrupt handler
530 * @param irq onenand interrupt number
531 * @param dev_id interrupt data
533 * complete the work
535 static irqreturn_t onenand_interrupt(int irq, void *data)
537 struct onenand_chip *this = data;
539 /* To handle shared interrupt */
540 if (!this->complete.done)
541 complete(&this->complete);
543 return IRQ_HANDLED;
547 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
548 * @param mtd MTD device structure
549 * @param state state to select the max. timeout value
551 * Wait for command done.
553 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
555 struct onenand_chip *this = mtd->priv;
557 wait_for_completion(&this->complete);
559 return onenand_wait(mtd, state);
563 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
564 * @param mtd MTD device structure
565 * @param state state to select the max. timeout value
567 * Try interrupt based wait (It is used one-time)
569 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
571 struct onenand_chip *this = mtd->priv;
572 unsigned long remain, timeout;
574 /* We use interrupt wait first */
575 this->wait = onenand_interrupt_wait;
577 timeout = msecs_to_jiffies(100);
578 remain = wait_for_completion_timeout(&this->complete, timeout);
579 if (!remain) {
580 printk(KERN_INFO "OneNAND: There's no interrupt. "
581 "We use the normal wait\n");
583 /* Release the irq */
584 free_irq(this->irq, this);
586 this->wait = onenand_wait;
589 return onenand_wait(mtd, state);
593 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
594 * @param mtd MTD device structure
596 * There's two method to wait onenand work
597 * 1. polling - read interrupt status register
598 * 2. interrupt - use the kernel interrupt method
600 static void onenand_setup_wait(struct mtd_info *mtd)
602 struct onenand_chip *this = mtd->priv;
603 int syscfg;
605 init_completion(&this->complete);
607 if (this->irq <= 0) {
608 this->wait = onenand_wait;
609 return;
612 if (request_irq(this->irq, &onenand_interrupt,
613 IRQF_SHARED, "onenand", this)) {
614 /* If we can't get irq, use the normal wait */
615 this->wait = onenand_wait;
616 return;
619 /* Enable interrupt */
620 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
621 syscfg |= ONENAND_SYS_CFG1_IOBE;
622 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
624 this->wait = onenand_try_interrupt_wait;
628 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
629 * @param mtd MTD data structure
630 * @param area BufferRAM area
631 * @return offset given area
633 * Return BufferRAM offset given area
635 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
637 struct onenand_chip *this = mtd->priv;
639 if (ONENAND_CURRENT_BUFFERRAM(this)) {
640 /* Note: the 'this->writesize' is a real page size */
641 if (area == ONENAND_DATARAM)
642 return this->writesize;
643 if (area == ONENAND_SPARERAM)
644 return mtd->oobsize;
647 return 0;
651 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
652 * @param mtd MTD data structure
653 * @param area BufferRAM area
654 * @param buffer the databuffer to put/get data
655 * @param offset offset to read from or write to
656 * @param count number of bytes to read/write
658 * Read the BufferRAM area
660 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
661 unsigned char *buffer, int offset, size_t count)
663 struct onenand_chip *this = mtd->priv;
664 void __iomem *bufferram;
666 bufferram = this->base + area;
668 bufferram += onenand_bufferram_offset(mtd, area);
670 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
671 unsigned short word;
673 /* Align with word(16-bit) size */
674 count--;
676 /* Read word and save byte */
677 word = this->read_word(bufferram + offset + count);
678 buffer[count] = (word & 0xff);
681 memcpy(buffer, bufferram + offset, count);
683 return 0;
687 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
688 * @param mtd MTD data structure
689 * @param area BufferRAM area
690 * @param buffer the databuffer to put/get data
691 * @param offset offset to read from or write to
692 * @param count number of bytes to read/write
694 * Read the BufferRAM area with Sync. Burst Mode
696 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
697 unsigned char *buffer, int offset, size_t count)
699 struct onenand_chip *this = mtd->priv;
700 void __iomem *bufferram;
702 bufferram = this->base + area;
704 bufferram += onenand_bufferram_offset(mtd, area);
706 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
708 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
709 unsigned short word;
711 /* Align with word(16-bit) size */
712 count--;
714 /* Read word and save byte */
715 word = this->read_word(bufferram + offset + count);
716 buffer[count] = (word & 0xff);
719 memcpy(buffer, bufferram + offset, count);
721 this->mmcontrol(mtd, 0);
723 return 0;
727 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
728 * @param mtd MTD data structure
729 * @param area BufferRAM area
730 * @param buffer the databuffer to put/get data
731 * @param offset offset to read from or write to
732 * @param count number of bytes to read/write
734 * Write the BufferRAM area
736 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
737 const unsigned char *buffer, int offset, size_t count)
739 struct onenand_chip *this = mtd->priv;
740 void __iomem *bufferram;
742 bufferram = this->base + area;
744 bufferram += onenand_bufferram_offset(mtd, area);
746 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
747 unsigned short word;
748 int byte_offset;
750 /* Align with word(16-bit) size */
751 count--;
753 /* Calculate byte access offset */
754 byte_offset = offset + count;
756 /* Read word and save byte */
757 word = this->read_word(bufferram + byte_offset);
758 word = (word & ~0xff) | buffer[count];
759 this->write_word(word, bufferram + byte_offset);
762 memcpy(bufferram + offset, buffer, count);
764 return 0;
768 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
769 * @param mtd MTD data structure
770 * @param addr address to check
771 * @return blockpage address
773 * Get blockpage address at 2x program mode
775 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
777 struct onenand_chip *this = mtd->priv;
778 int blockpage, block, page;
780 /* Calculate the even block number */
781 block = (int) (addr >> this->erase_shift) & ~1;
782 /* Is it the odd plane? */
783 if (addr & this->writesize)
784 block++;
785 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
786 blockpage = (block << 7) | page;
788 return blockpage;
792 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
793 * @param mtd MTD data structure
794 * @param addr address to check
795 * @return 1 if there are valid data, otherwise 0
797 * Check bufferram if there is data we required
799 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
801 struct onenand_chip *this = mtd->priv;
802 int blockpage, found = 0;
803 unsigned int i;
805 if (ONENAND_IS_2PLANE(this))
806 blockpage = onenand_get_2x_blockpage(mtd, addr);
807 else
808 blockpage = (int) (addr >> this->page_shift);
810 /* Is there valid data? */
811 i = ONENAND_CURRENT_BUFFERRAM(this);
812 if (this->bufferram[i].blockpage == blockpage)
813 found = 1;
814 else {
815 /* Check another BufferRAM */
816 i = ONENAND_NEXT_BUFFERRAM(this);
817 if (this->bufferram[i].blockpage == blockpage) {
818 ONENAND_SET_NEXT_BUFFERRAM(this);
819 found = 1;
823 if (found && ONENAND_IS_DDP(this)) {
824 /* Select DataRAM for DDP */
825 int block = onenand_block(this, addr);
826 int value = onenand_bufferram_address(this, block);
827 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
830 return found;
834 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
835 * @param mtd MTD data structure
836 * @param addr address to update
837 * @param valid valid flag
839 * Update BufferRAM information
841 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
842 int valid)
844 struct onenand_chip *this = mtd->priv;
845 int blockpage;
846 unsigned int i;
848 if (ONENAND_IS_2PLANE(this))
849 blockpage = onenand_get_2x_blockpage(mtd, addr);
850 else
851 blockpage = (int) (addr >> this->page_shift);
853 /* Invalidate another BufferRAM */
854 i = ONENAND_NEXT_BUFFERRAM(this);
855 if (this->bufferram[i].blockpage == blockpage)
856 this->bufferram[i].blockpage = -1;
858 /* Update BufferRAM */
859 i = ONENAND_CURRENT_BUFFERRAM(this);
860 if (valid)
861 this->bufferram[i].blockpage = blockpage;
862 else
863 this->bufferram[i].blockpage = -1;
867 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
868 * @param mtd MTD data structure
869 * @param addr start address to invalidate
870 * @param len length to invalidate
872 * Invalidate BufferRAM information
874 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
875 unsigned int len)
877 struct onenand_chip *this = mtd->priv;
878 int i;
879 loff_t end_addr = addr + len;
881 /* Invalidate BufferRAM */
882 for (i = 0; i < MAX_BUFFERRAM; i++) {
883 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
884 if (buf_addr >= addr && buf_addr < end_addr)
885 this->bufferram[i].blockpage = -1;
890 * onenand_get_device - [GENERIC] Get chip for selected access
891 * @param mtd MTD device structure
892 * @param new_state the state which is requested
894 * Get the device and lock it for exclusive access
896 static int onenand_get_device(struct mtd_info *mtd, int new_state)
898 struct onenand_chip *this = mtd->priv;
899 DECLARE_WAITQUEUE(wait, current);
902 * Grab the lock and see if the device is available
904 while (1) {
905 spin_lock(&this->chip_lock);
906 if (this->state == FL_READY) {
907 this->state = new_state;
908 spin_unlock(&this->chip_lock);
909 break;
911 if (new_state == FL_PM_SUSPENDED) {
912 spin_unlock(&this->chip_lock);
913 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
915 set_current_state(TASK_UNINTERRUPTIBLE);
916 add_wait_queue(&this->wq, &wait);
917 spin_unlock(&this->chip_lock);
918 schedule();
919 remove_wait_queue(&this->wq, &wait);
922 return 0;
926 * onenand_release_device - [GENERIC] release chip
927 * @param mtd MTD device structure
929 * Deselect, release chip lock and wake up anyone waiting on the device
931 static void onenand_release_device(struct mtd_info *mtd)
933 struct onenand_chip *this = mtd->priv;
935 /* Release the chip */
936 spin_lock(&this->chip_lock);
937 this->state = FL_READY;
938 wake_up(&this->wq);
939 spin_unlock(&this->chip_lock);
943 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
944 * @param mtd MTD device structure
945 * @param buf destination address
946 * @param column oob offset to read from
947 * @param thislen oob length to read
949 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
950 int thislen)
952 struct onenand_chip *this = mtd->priv;
953 struct nand_oobfree *free;
954 int readcol = column;
955 int readend = column + thislen;
956 int lastgap = 0;
957 unsigned int i;
958 uint8_t *oob_buf = this->oob_buf;
960 free = this->ecclayout->oobfree;
961 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
962 if (readcol >= lastgap)
963 readcol += free->offset - lastgap;
964 if (readend >= lastgap)
965 readend += free->offset - lastgap;
966 lastgap = free->offset + free->length;
968 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
969 free = this->ecclayout->oobfree;
970 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
971 int free_end = free->offset + free->length;
972 if (free->offset < readend && free_end > readcol) {
973 int st = max_t(int,free->offset,readcol);
974 int ed = min_t(int,free_end,readend);
975 int n = ed - st;
976 memcpy(buf, oob_buf + st, n);
977 buf += n;
978 } else if (column == 0)
979 break;
981 return 0;
985 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
986 * @param mtd MTD device structure
987 * @param addr address to recover
988 * @param status return value from onenand_wait / onenand_bbt_wait
990 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
991 * lower page address and MSB page has higher page address in paired pages.
992 * If power off occurs during MSB page program, the paired LSB page data can
993 * become corrupt. LSB page recovery read is a way to read LSB page though page
994 * data are corrupted. When uncorrectable error occurs as a result of LSB page
995 * read after power up, issue LSB page recovery read.
997 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
999 struct onenand_chip *this = mtd->priv;
1000 int i;
1002 /* Recovery is only for Flex-OneNAND */
1003 if (!FLEXONENAND(this))
1004 return status;
1006 /* check if we failed due to uncorrectable error */
1007 if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1008 return status;
1010 /* check if address lies in MLC region */
1011 i = flexonenand_region(mtd, addr);
1012 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1013 return status;
1015 /* We are attempting to reread, so decrement stats.failed
1016 * which was incremented by onenand_wait due to read failure
1018 printk(KERN_INFO "onenand_recover_lsb: Attempting to recover from uncorrectable read\n");
1019 mtd->ecc_stats.failed--;
1021 /* Issue the LSB page recovery command */
1022 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1023 return this->wait(mtd, FL_READING);
1027 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1028 * @param mtd MTD device structure
1029 * @param from offset to read from
1030 * @param ops: oob operation description structure
1032 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1033 * So, read-while-load is not present.
1035 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1036 struct mtd_oob_ops *ops)
1038 struct onenand_chip *this = mtd->priv;
1039 struct mtd_ecc_stats stats;
1040 size_t len = ops->len;
1041 size_t ooblen = ops->ooblen;
1042 u_char *buf = ops->datbuf;
1043 u_char *oobbuf = ops->oobbuf;
1044 int read = 0, column, thislen;
1045 int oobread = 0, oobcolumn, thisooblen, oobsize;
1046 int ret = 0;
1047 int writesize = this->writesize;
1049 DEBUG(MTD_DEBUG_LEVEL3, "onenand_mlc_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1051 if (ops->mode == MTD_OOB_AUTO)
1052 oobsize = this->ecclayout->oobavail;
1053 else
1054 oobsize = mtd->oobsize;
1056 oobcolumn = from & (mtd->oobsize - 1);
1058 /* Do not allow reads past end of device */
1059 if (from + len > mtd->size) {
1060 printk(KERN_ERR "onenand_mlc_read_ops_nolock: Attempt read beyond end of device\n");
1061 ops->retlen = 0;
1062 ops->oobretlen = 0;
1063 return -EINVAL;
1066 stats = mtd->ecc_stats;
1068 while (read < len) {
1069 cond_resched();
1071 thislen = min_t(int, writesize, len - read);
1073 column = from & (writesize - 1);
1074 if (column + thislen > writesize)
1075 thislen = writesize - column;
1077 if (!onenand_check_bufferram(mtd, from)) {
1078 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1080 ret = this->wait(mtd, FL_READING);
1081 if (unlikely(ret))
1082 ret = onenand_recover_lsb(mtd, from, ret);
1083 onenand_update_bufferram(mtd, from, !ret);
1084 if (ret == -EBADMSG)
1085 ret = 0;
1088 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1089 if (oobbuf) {
1090 thisooblen = oobsize - oobcolumn;
1091 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1093 if (ops->mode == MTD_OOB_AUTO)
1094 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1095 else
1096 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1097 oobread += thisooblen;
1098 oobbuf += thisooblen;
1099 oobcolumn = 0;
1102 read += thislen;
1103 if (read == len)
1104 break;
1106 from += thislen;
1107 buf += thislen;
1111 * Return success, if no ECC failures, else -EBADMSG
1112 * fs driver will take care of that, because
1113 * retlen == desired len and result == -EBADMSG
1115 ops->retlen = read;
1116 ops->oobretlen = oobread;
1118 if (ret)
1119 return ret;
1121 if (mtd->ecc_stats.failed - stats.failed)
1122 return -EBADMSG;
1124 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1128 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1129 * @param mtd MTD device structure
1130 * @param from offset to read from
1131 * @param ops: oob operation description structure
1133 * OneNAND read main and/or out-of-band data
1135 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1136 struct mtd_oob_ops *ops)
1138 struct onenand_chip *this = mtd->priv;
1139 struct mtd_ecc_stats stats;
1140 size_t len = ops->len;
1141 size_t ooblen = ops->ooblen;
1142 u_char *buf = ops->datbuf;
1143 u_char *oobbuf = ops->oobbuf;
1144 int read = 0, column, thislen;
1145 int oobread = 0, oobcolumn, thisooblen, oobsize;
1146 int ret = 0, boundary = 0;
1147 int writesize = this->writesize;
1149 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1151 if (ops->mode == MTD_OOB_AUTO)
1152 oobsize = this->ecclayout->oobavail;
1153 else
1154 oobsize = mtd->oobsize;
1156 oobcolumn = from & (mtd->oobsize - 1);
1158 /* Do not allow reads past end of device */
1159 if ((from + len) > mtd->size) {
1160 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
1161 ops->retlen = 0;
1162 ops->oobretlen = 0;
1163 return -EINVAL;
1166 stats = mtd->ecc_stats;
1168 /* Read-while-load method */
1170 /* Do first load to bufferRAM */
1171 if (read < len) {
1172 if (!onenand_check_bufferram(mtd, from)) {
1173 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1174 ret = this->wait(mtd, FL_READING);
1175 onenand_update_bufferram(mtd, from, !ret);
1176 if (ret == -EBADMSG)
1177 ret = 0;
1181 thislen = min_t(int, writesize, len - read);
1182 column = from & (writesize - 1);
1183 if (column + thislen > writesize)
1184 thislen = writesize - column;
1186 while (!ret) {
1187 /* If there is more to load then start next load */
1188 from += thislen;
1189 if (read + thislen < len) {
1190 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1192 * Chip boundary handling in DDP
1193 * Now we issued chip 1 read and pointed chip 1
1194 * bufferram so we have to point chip 0 bufferram.
1196 if (ONENAND_IS_DDP(this) &&
1197 unlikely(from == (this->chipsize >> 1))) {
1198 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1199 boundary = 1;
1200 } else
1201 boundary = 0;
1202 ONENAND_SET_PREV_BUFFERRAM(this);
1204 /* While load is going, read from last bufferRAM */
1205 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1207 /* Read oob area if needed */
1208 if (oobbuf) {
1209 thisooblen = oobsize - oobcolumn;
1210 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1212 if (ops->mode == MTD_OOB_AUTO)
1213 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1214 else
1215 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1216 oobread += thisooblen;
1217 oobbuf += thisooblen;
1218 oobcolumn = 0;
1221 /* See if we are done */
1222 read += thislen;
1223 if (read == len)
1224 break;
1225 /* Set up for next read from bufferRAM */
1226 if (unlikely(boundary))
1227 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1228 ONENAND_SET_NEXT_BUFFERRAM(this);
1229 buf += thislen;
1230 thislen = min_t(int, writesize, len - read);
1231 column = 0;
1232 cond_resched();
1233 /* Now wait for load */
1234 ret = this->wait(mtd, FL_READING);
1235 onenand_update_bufferram(mtd, from, !ret);
1236 if (ret == -EBADMSG)
1237 ret = 0;
1241 * Return success, if no ECC failures, else -EBADMSG
1242 * fs driver will take care of that, because
1243 * retlen == desired len and result == -EBADMSG
1245 ops->retlen = read;
1246 ops->oobretlen = oobread;
1248 if (ret)
1249 return ret;
1251 if (mtd->ecc_stats.failed - stats.failed)
1252 return -EBADMSG;
1254 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1258 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1259 * @param mtd MTD device structure
1260 * @param from offset to read from
1261 * @param ops: oob operation description structure
1263 * OneNAND read out-of-band data from the spare area
1265 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1266 struct mtd_oob_ops *ops)
1268 struct onenand_chip *this = mtd->priv;
1269 struct mtd_ecc_stats stats;
1270 int read = 0, thislen, column, oobsize;
1271 size_t len = ops->ooblen;
1272 mtd_oob_mode_t mode = ops->mode;
1273 u_char *buf = ops->oobbuf;
1274 int ret = 0, readcmd;
1276 from += ops->ooboffs;
1278 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1280 /* Initialize return length value */
1281 ops->oobretlen = 0;
1283 if (mode == MTD_OOB_AUTO)
1284 oobsize = this->ecclayout->oobavail;
1285 else
1286 oobsize = mtd->oobsize;
1288 column = from & (mtd->oobsize - 1);
1290 if (unlikely(column >= oobsize)) {
1291 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1292 return -EINVAL;
1295 /* Do not allow reads past end of device */
1296 if (unlikely(from >= mtd->size ||
1297 column + len > ((mtd->size >> this->page_shift) -
1298 (from >> this->page_shift)) * oobsize)) {
1299 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1300 return -EINVAL;
1303 stats = mtd->ecc_stats;
1305 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1307 while (read < len) {
1308 cond_resched();
1310 thislen = oobsize - column;
1311 thislen = min_t(int, thislen, len);
1313 this->command(mtd, readcmd, from, mtd->oobsize);
1315 onenand_update_bufferram(mtd, from, 0);
1317 ret = this->wait(mtd, FL_READING);
1318 if (unlikely(ret))
1319 ret = onenand_recover_lsb(mtd, from, ret);
1321 if (ret && ret != -EBADMSG) {
1322 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1323 break;
1326 if (mode == MTD_OOB_AUTO)
1327 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1328 else
1329 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1331 read += thislen;
1333 if (read == len)
1334 break;
1336 buf += thislen;
1338 /* Read more? */
1339 if (read < len) {
1340 /* Page size */
1341 from += mtd->writesize;
1342 column = 0;
1346 ops->oobretlen = read;
1348 if (ret)
1349 return ret;
1351 if (mtd->ecc_stats.failed - stats.failed)
1352 return -EBADMSG;
1354 return 0;
1358 * onenand_read - [MTD Interface] Read data from flash
1359 * @param mtd MTD device structure
1360 * @param from offset to read from
1361 * @param len number of bytes to read
1362 * @param retlen pointer to variable to store the number of read bytes
1363 * @param buf the databuffer to put data
1365 * Read with ecc
1367 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1368 size_t *retlen, u_char *buf)
1370 struct onenand_chip *this = mtd->priv;
1371 struct mtd_oob_ops ops = {
1372 .len = len,
1373 .ooblen = 0,
1374 .datbuf = buf,
1375 .oobbuf = NULL,
1377 int ret;
1379 onenand_get_device(mtd, FL_READING);
1380 ret = ONENAND_IS_MLC(this) ?
1381 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1382 onenand_read_ops_nolock(mtd, from, &ops);
1383 onenand_release_device(mtd);
1385 *retlen = ops.retlen;
1386 return ret;
1390 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1391 * @param mtd: MTD device structure
1392 * @param from: offset to read from
1393 * @param ops: oob operation description structure
1395 * Read main and/or out-of-band
1397 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1398 struct mtd_oob_ops *ops)
1400 struct onenand_chip *this = mtd->priv;
1401 int ret;
1403 switch (ops->mode) {
1404 case MTD_OOB_PLACE:
1405 case MTD_OOB_AUTO:
1406 break;
1407 case MTD_OOB_RAW:
1408 /* Not implemented yet */
1409 default:
1410 return -EINVAL;
1413 onenand_get_device(mtd, FL_READING);
1414 if (ops->datbuf)
1415 ret = ONENAND_IS_MLC(this) ?
1416 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1417 onenand_read_ops_nolock(mtd, from, ops);
1418 else
1419 ret = onenand_read_oob_nolock(mtd, from, ops);
1420 onenand_release_device(mtd);
1422 return ret;
1426 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1427 * @param mtd MTD device structure
1428 * @param state state to select the max. timeout value
1430 * Wait for command done.
1432 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1434 struct onenand_chip *this = mtd->priv;
1435 unsigned long timeout;
1436 unsigned int interrupt;
1437 unsigned int ctrl;
1439 /* The 20 msec is enough */
1440 timeout = jiffies + msecs_to_jiffies(20);
1441 while (time_before(jiffies, timeout)) {
1442 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1443 if (interrupt & ONENAND_INT_MASTER)
1444 break;
1446 /* To get correct interrupt status in timeout case */
1447 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1448 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1450 if (interrupt & ONENAND_INT_READ) {
1451 int ecc = onenand_read_ecc(this);
1452 if (ecc & ONENAND_ECC_2BIT_ALL) {
1453 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1454 ", controller error 0x%04x\n", ecc, ctrl);
1455 return ONENAND_BBT_READ_ECC_ERROR;
1457 } else {
1458 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1459 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1460 return ONENAND_BBT_READ_FATAL_ERROR;
1463 /* Initial bad block case: 0x2400 or 0x0400 */
1464 if (ctrl & ONENAND_CTRL_ERROR) {
1465 printk(KERN_DEBUG "onenand_bbt_wait: "
1466 "controller error = 0x%04x\n", ctrl);
1467 return ONENAND_BBT_READ_ERROR;
1470 return 0;
1474 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1475 * @param mtd MTD device structure
1476 * @param from offset to read from
1477 * @param ops oob operation description structure
1479 * OneNAND read out-of-band data from the spare area for bbt scan
1481 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1482 struct mtd_oob_ops *ops)
1484 struct onenand_chip *this = mtd->priv;
1485 int read = 0, thislen, column;
1486 int ret = 0, readcmd;
1487 size_t len = ops->ooblen;
1488 u_char *buf = ops->oobbuf;
1490 DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1492 /* Initialize return value */
1493 ops->oobretlen = 0;
1495 /* Do not allow reads past end of device */
1496 if (unlikely((from + len) > mtd->size)) {
1497 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1498 return ONENAND_BBT_READ_FATAL_ERROR;
1501 /* Grab the lock and see if the device is available */
1502 onenand_get_device(mtd, FL_READING);
1504 column = from & (mtd->oobsize - 1);
1506 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1508 while (read < len) {
1509 cond_resched();
1511 thislen = mtd->oobsize - column;
1512 thislen = min_t(int, thislen, len);
1514 this->command(mtd, readcmd, from, mtd->oobsize);
1516 onenand_update_bufferram(mtd, from, 0);
1518 ret = this->bbt_wait(mtd, FL_READING);
1519 if (unlikely(ret))
1520 ret = onenand_recover_lsb(mtd, from, ret);
1522 if (ret)
1523 break;
1525 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1526 read += thislen;
1527 if (read == len)
1528 break;
1530 buf += thislen;
1532 /* Read more? */
1533 if (read < len) {
1534 /* Update Page size */
1535 from += this->writesize;
1536 column = 0;
1540 /* Deselect and wake up anyone waiting on the device */
1541 onenand_release_device(mtd);
1543 ops->oobretlen = read;
1544 return ret;
1547 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1549 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1550 * @param mtd MTD device structure
1551 * @param buf the databuffer to verify
1552 * @param to offset to read from
1554 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1556 struct onenand_chip *this = mtd->priv;
1557 u_char *oob_buf = this->oob_buf;
1558 int status, i, readcmd;
1560 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1562 this->command(mtd, readcmd, to, mtd->oobsize);
1563 onenand_update_bufferram(mtd, to, 0);
1564 status = this->wait(mtd, FL_READING);
1565 if (status)
1566 return status;
1568 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1569 for (i = 0; i < mtd->oobsize; i++)
1570 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1571 return -EBADMSG;
1573 return 0;
1577 * onenand_verify - [GENERIC] verify the chip contents after a write
1578 * @param mtd MTD device structure
1579 * @param buf the databuffer to verify
1580 * @param addr offset to read from
1581 * @param len number of bytes to read and compare
1583 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1585 struct onenand_chip *this = mtd->priv;
1586 void __iomem *dataram;
1587 int ret = 0;
1588 int thislen, column;
1590 while (len != 0) {
1591 thislen = min_t(int, this->writesize, len);
1592 column = addr & (this->writesize - 1);
1593 if (column + thislen > this->writesize)
1594 thislen = this->writesize - column;
1596 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1598 onenand_update_bufferram(mtd, addr, 0);
1600 ret = this->wait(mtd, FL_READING);
1601 if (ret)
1602 return ret;
1604 onenand_update_bufferram(mtd, addr, 1);
1606 dataram = this->base + ONENAND_DATARAM;
1607 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1609 if (memcmp(buf, dataram + column, thislen))
1610 return -EBADMSG;
1612 len -= thislen;
1613 buf += thislen;
1614 addr += thislen;
1617 return 0;
1619 #else
1620 #define onenand_verify(...) (0)
1621 #define onenand_verify_oob(...) (0)
1622 #endif
1624 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1626 static void onenand_panic_wait(struct mtd_info *mtd)
1628 struct onenand_chip *this = mtd->priv;
1629 unsigned int interrupt;
1630 int i;
1632 for (i = 0; i < 2000; i++) {
1633 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1634 if (interrupt & ONENAND_INT_MASTER)
1635 break;
1636 udelay(10);
1641 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1642 * @param mtd MTD device structure
1643 * @param to offset to write to
1644 * @param len number of bytes to write
1645 * @param retlen pointer to variable to store the number of written bytes
1646 * @param buf the data to write
1648 * Write with ECC
1650 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1651 size_t *retlen, const u_char *buf)
1653 struct onenand_chip *this = mtd->priv;
1654 int column, subpage;
1655 int written = 0;
1656 int ret = 0;
1658 if (this->state == FL_PM_SUSPENDED)
1659 return -EBUSY;
1661 /* Wait for any existing operation to clear */
1662 onenand_panic_wait(mtd);
1664 DEBUG(MTD_DEBUG_LEVEL3, "onenand_panic_write: to = 0x%08x, len = %i\n",
1665 (unsigned int) to, (int) len);
1667 /* Initialize retlen, in case of early exit */
1668 *retlen = 0;
1670 /* Do not allow writes past end of device */
1671 if (unlikely((to + len) > mtd->size)) {
1672 printk(KERN_ERR "onenand_panic_write: Attempt write to past end of device\n");
1673 return -EINVAL;
1676 /* Reject writes, which are not page aligned */
1677 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1678 printk(KERN_ERR "onenand_panic_write: Attempt to write not page aligned data\n");
1679 return -EINVAL;
1682 column = to & (mtd->writesize - 1);
1684 /* Loop until all data write */
1685 while (written < len) {
1686 int thislen = min_t(int, mtd->writesize - column, len - written);
1687 u_char *wbuf = (u_char *) buf;
1689 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1691 /* Partial page write */
1692 subpage = thislen < mtd->writesize;
1693 if (subpage) {
1694 memset(this->page_buf, 0xff, mtd->writesize);
1695 memcpy(this->page_buf + column, buf, thislen);
1696 wbuf = this->page_buf;
1699 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1700 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1702 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1704 onenand_panic_wait(mtd);
1706 /* In partial page write we don't update bufferram */
1707 onenand_update_bufferram(mtd, to, !ret && !subpage);
1708 if (ONENAND_IS_2PLANE(this)) {
1709 ONENAND_SET_BUFFERRAM1(this);
1710 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1713 if (ret) {
1714 printk(KERN_ERR "onenand_panic_write: write failed %d\n", ret);
1715 break;
1718 written += thislen;
1720 if (written == len)
1721 break;
1723 column = 0;
1724 to += thislen;
1725 buf += thislen;
1728 *retlen = written;
1729 return ret;
1733 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1734 * @param mtd MTD device structure
1735 * @param oob_buf oob buffer
1736 * @param buf source address
1737 * @param column oob offset to write to
1738 * @param thislen oob length to write
1740 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1741 const u_char *buf, int column, int thislen)
1743 struct onenand_chip *this = mtd->priv;
1744 struct nand_oobfree *free;
1745 int writecol = column;
1746 int writeend = column + thislen;
1747 int lastgap = 0;
1748 unsigned int i;
1750 free = this->ecclayout->oobfree;
1751 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1752 if (writecol >= lastgap)
1753 writecol += free->offset - lastgap;
1754 if (writeend >= lastgap)
1755 writeend += free->offset - lastgap;
1756 lastgap = free->offset + free->length;
1758 free = this->ecclayout->oobfree;
1759 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1760 int free_end = free->offset + free->length;
1761 if (free->offset < writeend && free_end > writecol) {
1762 int st = max_t(int,free->offset,writecol);
1763 int ed = min_t(int,free_end,writeend);
1764 int n = ed - st;
1765 memcpy(oob_buf + st, buf, n);
1766 buf += n;
1767 } else if (column == 0)
1768 break;
1770 return 0;
1774 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1775 * @param mtd MTD device structure
1776 * @param to offset to write to
1777 * @param ops oob operation description structure
1779 * Write main and/or oob with ECC
1781 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1782 struct mtd_oob_ops *ops)
1784 struct onenand_chip *this = mtd->priv;
1785 int written = 0, column, thislen = 0, subpage = 0;
1786 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1787 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1788 size_t len = ops->len;
1789 size_t ooblen = ops->ooblen;
1790 const u_char *buf = ops->datbuf;
1791 const u_char *oob = ops->oobbuf;
1792 u_char *oobbuf;
1793 int ret = 0;
1795 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1797 /* Initialize retlen, in case of early exit */
1798 ops->retlen = 0;
1799 ops->oobretlen = 0;
1801 /* Do not allow writes past end of device */
1802 if (unlikely((to + len) > mtd->size)) {
1803 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1804 return -EINVAL;
1807 /* Reject writes, which are not page aligned */
1808 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1809 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1810 return -EINVAL;
1813 /* Check zero length */
1814 if (!len)
1815 return 0;
1817 if (ops->mode == MTD_OOB_AUTO)
1818 oobsize = this->ecclayout->oobavail;
1819 else
1820 oobsize = mtd->oobsize;
1822 oobcolumn = to & (mtd->oobsize - 1);
1824 column = to & (mtd->writesize - 1);
1826 /* Loop until all data write */
1827 while (1) {
1828 if (written < len) {
1829 u_char *wbuf = (u_char *) buf;
1831 thislen = min_t(int, mtd->writesize - column, len - written);
1832 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1834 cond_resched();
1836 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1838 /* Partial page write */
1839 subpage = thislen < mtd->writesize;
1840 if (subpage) {
1841 memset(this->page_buf, 0xff, mtd->writesize);
1842 memcpy(this->page_buf + column, buf, thislen);
1843 wbuf = this->page_buf;
1846 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1848 if (oob) {
1849 oobbuf = this->oob_buf;
1851 /* We send data to spare ram with oobsize
1852 * to prevent byte access */
1853 memset(oobbuf, 0xff, mtd->oobsize);
1854 if (ops->mode == MTD_OOB_AUTO)
1855 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1856 else
1857 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1859 oobwritten += thisooblen;
1860 oob += thisooblen;
1861 oobcolumn = 0;
1862 } else
1863 oobbuf = (u_char *) ffchars;
1865 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1866 } else
1867 ONENAND_SET_NEXT_BUFFERRAM(this);
1870 * 2 PLANE, MLC, and Flex-OneNAND do not support
1871 * write-while-program feature.
1873 if (!ONENAND_IS_2PLANE(this) && !first) {
1874 ONENAND_SET_PREV_BUFFERRAM(this);
1876 ret = this->wait(mtd, FL_WRITING);
1878 /* In partial page write we don't update bufferram */
1879 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1880 if (ret) {
1881 written -= prevlen;
1882 printk(KERN_ERR "onenand_write_ops_nolock: write failed %d\n", ret);
1883 break;
1886 if (written == len) {
1887 /* Only check verify write turn on */
1888 ret = onenand_verify(mtd, buf - len, to - len, len);
1889 if (ret)
1890 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1891 break;
1894 ONENAND_SET_NEXT_BUFFERRAM(this);
1897 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1900 * 2 PLANE, MLC, and Flex-OneNAND wait here
1902 if (ONENAND_IS_2PLANE(this)) {
1903 ret = this->wait(mtd, FL_WRITING);
1905 /* In partial page write we don't update bufferram */
1906 onenand_update_bufferram(mtd, to, !ret && !subpage);
1907 if (ret) {
1908 printk(KERN_ERR "onenand_write_ops_nolock: write failed %d\n", ret);
1909 break;
1912 /* Only check verify write turn on */
1913 ret = onenand_verify(mtd, buf, to, thislen);
1914 if (ret) {
1915 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1916 break;
1919 written += thislen;
1921 if (written == len)
1922 break;
1924 } else
1925 written += thislen;
1927 column = 0;
1928 prev_subpage = subpage;
1929 prev = to;
1930 prevlen = thislen;
1931 to += thislen;
1932 buf += thislen;
1933 first = 0;
1936 /* In error case, clear all bufferrams */
1937 if (written != len)
1938 onenand_invalidate_bufferram(mtd, 0, -1);
1940 ops->retlen = written;
1941 ops->oobretlen = oobwritten;
1943 return ret;
1948 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1949 * @param mtd MTD device structure
1950 * @param to offset to write to
1951 * @param len number of bytes to write
1952 * @param retlen pointer to variable to store the number of written bytes
1953 * @param buf the data to write
1954 * @param mode operation mode
1956 * OneNAND write out-of-band
1958 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1959 struct mtd_oob_ops *ops)
1961 struct onenand_chip *this = mtd->priv;
1962 int column, ret = 0, oobsize;
1963 int written = 0, oobcmd;
1964 u_char *oobbuf;
1965 size_t len = ops->ooblen;
1966 const u_char *buf = ops->oobbuf;
1967 mtd_oob_mode_t mode = ops->mode;
1969 to += ops->ooboffs;
1971 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1973 /* Initialize retlen, in case of early exit */
1974 ops->oobretlen = 0;
1976 if (mode == MTD_OOB_AUTO)
1977 oobsize = this->ecclayout->oobavail;
1978 else
1979 oobsize = mtd->oobsize;
1981 column = to & (mtd->oobsize - 1);
1983 if (unlikely(column >= oobsize)) {
1984 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1985 return -EINVAL;
1988 /* For compatibility with NAND: Do not allow write past end of page */
1989 if (unlikely(column + len > oobsize)) {
1990 printk(KERN_ERR "onenand_write_oob_nolock: "
1991 "Attempt to write past end of page\n");
1992 return -EINVAL;
1995 /* Do not allow reads past end of device */
1996 if (unlikely(to >= mtd->size ||
1997 column + len > ((mtd->size >> this->page_shift) -
1998 (to >> this->page_shift)) * oobsize)) {
1999 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
2000 return -EINVAL;
2003 oobbuf = this->oob_buf;
2005 oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2007 /* Loop until all data write */
2008 while (written < len) {
2009 int thislen = min_t(int, oobsize, len - written);
2011 cond_resched();
2013 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2015 /* We send data to spare ram with oobsize
2016 * to prevent byte access */
2017 memset(oobbuf, 0xff, mtd->oobsize);
2018 if (mode == MTD_OOB_AUTO)
2019 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2020 else
2021 memcpy(oobbuf + column, buf, thislen);
2022 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2024 if (ONENAND_IS_MLC(this)) {
2025 /* Set main area of DataRAM to 0xff*/
2026 memset(this->page_buf, 0xff, mtd->writesize);
2027 this->write_bufferram(mtd, ONENAND_DATARAM,
2028 this->page_buf, 0, mtd->writesize);
2031 this->command(mtd, oobcmd, to, mtd->oobsize);
2033 onenand_update_bufferram(mtd, to, 0);
2034 if (ONENAND_IS_2PLANE(this)) {
2035 ONENAND_SET_BUFFERRAM1(this);
2036 onenand_update_bufferram(mtd, to + this->writesize, 0);
2039 ret = this->wait(mtd, FL_WRITING);
2040 if (ret) {
2041 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
2042 break;
2045 ret = onenand_verify_oob(mtd, oobbuf, to);
2046 if (ret) {
2047 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
2048 break;
2051 written += thislen;
2052 if (written == len)
2053 break;
2055 to += mtd->writesize;
2056 buf += thislen;
2057 column = 0;
2060 ops->oobretlen = written;
2062 return ret;
2066 * onenand_write - [MTD Interface] write buffer to FLASH
2067 * @param mtd MTD device structure
2068 * @param to offset to write to
2069 * @param len number of bytes to write
2070 * @param retlen pointer to variable to store the number of written bytes
2071 * @param buf the data to write
2073 * Write with ECC
2075 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2076 size_t *retlen, const u_char *buf)
2078 struct mtd_oob_ops ops = {
2079 .len = len,
2080 .ooblen = 0,
2081 .datbuf = (u_char *) buf,
2082 .oobbuf = NULL,
2084 int ret;
2086 onenand_get_device(mtd, FL_WRITING);
2087 ret = onenand_write_ops_nolock(mtd, to, &ops);
2088 onenand_release_device(mtd);
2090 *retlen = ops.retlen;
2091 return ret;
2095 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2096 * @param mtd: MTD device structure
2097 * @param to: offset to write
2098 * @param ops: oob operation description structure
2100 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2101 struct mtd_oob_ops *ops)
2103 int ret;
2105 switch (ops->mode) {
2106 case MTD_OOB_PLACE:
2107 case MTD_OOB_AUTO:
2108 break;
2109 case MTD_OOB_RAW:
2110 /* Not implemented yet */
2111 default:
2112 return -EINVAL;
2115 onenand_get_device(mtd, FL_WRITING);
2116 if (ops->datbuf)
2117 ret = onenand_write_ops_nolock(mtd, to, ops);
2118 else
2119 ret = onenand_write_oob_nolock(mtd, to, ops);
2120 onenand_release_device(mtd);
2122 return ret;
2126 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2127 * @param mtd MTD device structure
2128 * @param ofs offset from device start
2129 * @param allowbbt 1, if its allowed to access the bbt area
2131 * Check, if the block is bad. Either by reading the bad block table or
2132 * calling of the scan function.
2134 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2136 struct onenand_chip *this = mtd->priv;
2137 struct bbm_info *bbm = this->bbm;
2139 /* Return info from the table */
2140 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2144 * onenand_erase - [MTD Interface] erase block(s)
2145 * @param mtd MTD device structure
2146 * @param instr erase instruction
2148 * Erase one ore more blocks
2150 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2152 struct onenand_chip *this = mtd->priv;
2153 unsigned int block_size;
2154 loff_t addr = instr->addr;
2155 loff_t len = instr->len;
2156 int ret = 0, i;
2157 struct mtd_erase_region_info *region = NULL;
2158 loff_t region_end = 0;
2160 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len);
2162 /* Do not allow erase past end of device */
2163 if (unlikely((len + addr) > mtd->size)) {
2164 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
2165 return -EINVAL;
2168 if (FLEXONENAND(this)) {
2169 /* Find the eraseregion of this address */
2170 i = flexonenand_region(mtd, addr);
2171 region = &mtd->eraseregions[i];
2173 block_size = region->erasesize;
2174 region_end = region->offset + region->erasesize * region->numblocks;
2176 /* Start address within region must align on block boundary.
2177 * Erase region's start offset is always block start address.
2179 if (unlikely((addr - region->offset) & (block_size - 1))) {
2180 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2181 return -EINVAL;
2183 } else {
2184 block_size = 1 << this->erase_shift;
2186 /* Start address must align on block boundary */
2187 if (unlikely(addr & (block_size - 1))) {
2188 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2189 return -EINVAL;
2193 /* Length must align on block boundary */
2194 if (unlikely(len & (block_size - 1))) {
2195 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
2196 return -EINVAL;
2199 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2201 /* Grab the lock and see if the device is available */
2202 onenand_get_device(mtd, FL_ERASING);
2204 /* Loop through the blocks */
2205 instr->state = MTD_ERASING;
2207 while (len) {
2208 cond_resched();
2210 /* Check if we have a bad block, we do not erase bad blocks */
2211 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2212 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%012llx\n", (unsigned long long) addr);
2213 instr->state = MTD_ERASE_FAILED;
2214 goto erase_exit;
2217 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2219 onenand_invalidate_bufferram(mtd, addr, block_size);
2221 ret = this->wait(mtd, FL_ERASING);
2222 /* Check, if it is write protected */
2223 if (ret) {
2224 printk(KERN_ERR "onenand_erase: Failed erase, block %d\n",
2225 onenand_block(this, addr));
2226 instr->state = MTD_ERASE_FAILED;
2227 instr->fail_addr = addr;
2228 goto erase_exit;
2231 len -= block_size;
2232 addr += block_size;
2234 if (addr == region_end) {
2235 if (!len)
2236 break;
2237 region++;
2239 block_size = region->erasesize;
2240 region_end = region->offset + region->erasesize * region->numblocks;
2242 if (len & (block_size - 1)) {
2243 /* FIXME: This should be handled at MTD partitioning level. */
2244 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2245 goto erase_exit;
2251 instr->state = MTD_ERASE_DONE;
2253 erase_exit:
2255 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2257 /* Deselect and wake up anyone waiting on the device */
2258 onenand_release_device(mtd);
2260 /* Do call back function */
2261 if (!ret)
2262 mtd_erase_callback(instr);
2264 return ret;
2268 * onenand_sync - [MTD Interface] sync
2269 * @param mtd MTD device structure
2271 * Sync is actually a wait for chip ready function
2273 static void onenand_sync(struct mtd_info *mtd)
2275 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
2277 /* Grab the lock and see if the device is available */
2278 onenand_get_device(mtd, FL_SYNCING);
2280 /* Release it and go back */
2281 onenand_release_device(mtd);
2285 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2286 * @param mtd MTD device structure
2287 * @param ofs offset relative to mtd start
2289 * Check whether the block is bad
2291 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2293 int ret;
2295 /* Check for invalid offset */
2296 if (ofs > mtd->size)
2297 return -EINVAL;
2299 onenand_get_device(mtd, FL_READING);
2300 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2301 onenand_release_device(mtd);
2302 return ret;
2306 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2307 * @param mtd MTD device structure
2308 * @param ofs offset from device start
2310 * This is the default implementation, which can be overridden by
2311 * a hardware specific driver.
2313 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2315 struct onenand_chip *this = mtd->priv;
2316 struct bbm_info *bbm = this->bbm;
2317 u_char buf[2] = {0, 0};
2318 struct mtd_oob_ops ops = {
2319 .mode = MTD_OOB_PLACE,
2320 .ooblen = 2,
2321 .oobbuf = buf,
2322 .ooboffs = 0,
2324 int block;
2326 /* Get block number */
2327 block = onenand_block(this, ofs);
2328 if (bbm->bbt)
2329 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2331 /* We write two bytes, so we don't have to mess with 16-bit access */
2332 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2333 /* FIXME : What to do when marking SLC block in partition
2334 * with MLC erasesize? For now, it is not advisable to
2335 * create partitions containing both SLC and MLC regions.
2337 return onenand_write_oob_nolock(mtd, ofs, &ops);
2341 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2342 * @param mtd MTD device structure
2343 * @param ofs offset relative to mtd start
2345 * Mark the block as bad
2347 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2349 struct onenand_chip *this = mtd->priv;
2350 int ret;
2352 ret = onenand_block_isbad(mtd, ofs);
2353 if (ret) {
2354 /* If it was bad already, return success and do nothing */
2355 if (ret > 0)
2356 return 0;
2357 return ret;
2360 onenand_get_device(mtd, FL_WRITING);
2361 ret = this->block_markbad(mtd, ofs);
2362 onenand_release_device(mtd);
2363 return ret;
2367 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2368 * @param mtd MTD device structure
2369 * @param ofs offset relative to mtd start
2370 * @param len number of bytes to lock or unlock
2371 * @param cmd lock or unlock command
2373 * Lock or unlock one or more blocks
2375 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2377 struct onenand_chip *this = mtd->priv;
2378 int start, end, block, value, status;
2379 int wp_status_mask;
2381 start = onenand_block(this, ofs);
2382 end = onenand_block(this, ofs + len) - 1;
2384 if (cmd == ONENAND_CMD_LOCK)
2385 wp_status_mask = ONENAND_WP_LS;
2386 else
2387 wp_status_mask = ONENAND_WP_US;
2389 /* Continuous lock scheme */
2390 if (this->options & ONENAND_HAS_CONT_LOCK) {
2391 /* Set start block address */
2392 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2393 /* Set end block address */
2394 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2395 /* Write lock command */
2396 this->command(mtd, cmd, 0, 0);
2398 /* There's no return value */
2399 this->wait(mtd, FL_LOCKING);
2401 /* Sanity check */
2402 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2403 & ONENAND_CTRL_ONGO)
2404 continue;
2406 /* Check lock status */
2407 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2408 if (!(status & wp_status_mask))
2409 printk(KERN_ERR "wp status = 0x%x\n", status);
2411 return 0;
2414 /* Block lock scheme */
2415 for (block = start; block < end + 1; block++) {
2416 /* Set block address */
2417 value = onenand_block_address(this, block);
2418 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2419 /* Select DataRAM for DDP */
2420 value = onenand_bufferram_address(this, block);
2421 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2422 /* Set start block address */
2423 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2424 /* Write lock command */
2425 this->command(mtd, cmd, 0, 0);
2427 /* There's no return value */
2428 this->wait(mtd, FL_LOCKING);
2430 /* Sanity check */
2431 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2432 & ONENAND_CTRL_ONGO)
2433 continue;
2435 /* Check lock status */
2436 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2437 if (!(status & wp_status_mask))
2438 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2441 return 0;
2445 * onenand_lock - [MTD Interface] Lock block(s)
2446 * @param mtd MTD device structure
2447 * @param ofs offset relative to mtd start
2448 * @param len number of bytes to unlock
2450 * Lock one or more blocks
2452 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2454 int ret;
2456 onenand_get_device(mtd, FL_LOCKING);
2457 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2458 onenand_release_device(mtd);
2459 return ret;
2463 * onenand_unlock - [MTD Interface] Unlock block(s)
2464 * @param mtd MTD device structure
2465 * @param ofs offset relative to mtd start
2466 * @param len number of bytes to unlock
2468 * Unlock one or more blocks
2470 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2472 int ret;
2474 onenand_get_device(mtd, FL_LOCKING);
2475 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2476 onenand_release_device(mtd);
2477 return ret;
2481 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2482 * @param this onenand chip data structure
2484 * Check lock status
2486 static int onenand_check_lock_status(struct onenand_chip *this)
2488 unsigned int value, block, status;
2489 unsigned int end;
2491 end = this->chipsize >> this->erase_shift;
2492 for (block = 0; block < end; block++) {
2493 /* Set block address */
2494 value = onenand_block_address(this, block);
2495 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2496 /* Select DataRAM for DDP */
2497 value = onenand_bufferram_address(this, block);
2498 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2499 /* Set start block address */
2500 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2502 /* Check lock status */
2503 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2504 if (!(status & ONENAND_WP_US)) {
2505 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2506 return 0;
2510 return 1;
2514 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2515 * @param mtd MTD device structure
2517 * Unlock all blocks
2519 static void onenand_unlock_all(struct mtd_info *mtd)
2521 struct onenand_chip *this = mtd->priv;
2522 loff_t ofs = 0;
2523 loff_t len = mtd->size;
2525 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2526 /* Set start block address */
2527 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2528 /* Write unlock command */
2529 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2531 /* There's no return value */
2532 this->wait(mtd, FL_LOCKING);
2534 /* Sanity check */
2535 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2536 & ONENAND_CTRL_ONGO)
2537 continue;
2539 /* Don't check lock status */
2540 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2541 return;
2543 /* Check lock status */
2544 if (onenand_check_lock_status(this))
2545 return;
2547 /* Workaround for all block unlock in DDP */
2548 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2549 /* All blocks on another chip */
2550 ofs = this->chipsize >> 1;
2551 len = this->chipsize >> 1;
2555 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2558 #ifdef CONFIG_MTD_ONENAND_OTP
2560 /* Internal OTP operation */
2561 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2562 size_t *retlen, u_char *buf);
2565 * do_otp_read - [DEFAULT] Read OTP block area
2566 * @param mtd MTD device structure
2567 * @param from The offset to read
2568 * @param len number of bytes to read
2569 * @param retlen pointer to variable to store the number of readbytes
2570 * @param buf the databuffer to put/get data
2572 * Read OTP block area.
2574 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2575 size_t *retlen, u_char *buf)
2577 struct onenand_chip *this = mtd->priv;
2578 struct mtd_oob_ops ops = {
2579 .len = len,
2580 .ooblen = 0,
2581 .datbuf = buf,
2582 .oobbuf = NULL,
2584 int ret;
2586 /* Enter OTP access mode */
2587 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2588 this->wait(mtd, FL_OTPING);
2590 ret = ONENAND_IS_MLC(this) ?
2591 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2592 onenand_read_ops_nolock(mtd, from, &ops);
2594 /* Exit OTP access mode */
2595 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2596 this->wait(mtd, FL_RESETING);
2598 return ret;
2602 * do_otp_write - [DEFAULT] Write OTP block area
2603 * @param mtd MTD device structure
2604 * @param to The offset to write
2605 * @param len number of bytes to write
2606 * @param retlen pointer to variable to store the number of write bytes
2607 * @param buf the databuffer to put/get data
2609 * Write OTP block area.
2611 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2612 size_t *retlen, u_char *buf)
2614 struct onenand_chip *this = mtd->priv;
2615 unsigned char *pbuf = buf;
2616 int ret;
2617 struct mtd_oob_ops ops;
2619 /* Force buffer page aligned */
2620 if (len < mtd->writesize) {
2621 memcpy(this->page_buf, buf, len);
2622 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2623 pbuf = this->page_buf;
2624 len = mtd->writesize;
2627 /* Enter OTP access mode */
2628 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2629 this->wait(mtd, FL_OTPING);
2631 ops.len = len;
2632 ops.ooblen = 0;
2633 ops.datbuf = pbuf;
2634 ops.oobbuf = NULL;
2635 ret = onenand_write_ops_nolock(mtd, to, &ops);
2636 *retlen = ops.retlen;
2638 /* Exit OTP access mode */
2639 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2640 this->wait(mtd, FL_RESETING);
2642 return ret;
2646 * do_otp_lock - [DEFAULT] Lock OTP block area
2647 * @param mtd MTD device structure
2648 * @param from The offset to lock
2649 * @param len number of bytes to lock
2650 * @param retlen pointer to variable to store the number of lock bytes
2651 * @param buf the databuffer to put/get data
2653 * Lock OTP block area.
2655 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2656 size_t *retlen, u_char *buf)
2658 struct onenand_chip *this = mtd->priv;
2659 struct mtd_oob_ops ops;
2660 int ret;
2662 /* Enter OTP access mode */
2663 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2664 this->wait(mtd, FL_OTPING);
2666 if (FLEXONENAND(this)) {
2668 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2669 * main area of page 49.
2671 ops.len = mtd->writesize;
2672 ops.ooblen = 0;
2673 ops.datbuf = buf;
2674 ops.oobbuf = NULL;
2675 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2676 *retlen = ops.retlen;
2677 } else {
2678 ops.mode = MTD_OOB_PLACE;
2679 ops.ooblen = len;
2680 ops.oobbuf = buf;
2681 ops.ooboffs = 0;
2682 ret = onenand_write_oob_nolock(mtd, from, &ops);
2683 *retlen = ops.oobretlen;
2686 /* Exit OTP access mode */
2687 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2688 this->wait(mtd, FL_RESETING);
2690 return ret;
2694 * onenand_otp_walk - [DEFAULT] Handle OTP operation
2695 * @param mtd MTD device structure
2696 * @param from The offset to read/write
2697 * @param len number of bytes to read/write
2698 * @param retlen pointer to variable to store the number of read bytes
2699 * @param buf the databuffer to put/get data
2700 * @param action do given action
2701 * @param mode specify user and factory
2703 * Handle OTP operation.
2705 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2706 size_t *retlen, u_char *buf,
2707 otp_op_t action, int mode)
2709 struct onenand_chip *this = mtd->priv;
2710 int otp_pages;
2711 int density;
2712 int ret = 0;
2714 *retlen = 0;
2716 density = onenand_get_density(this->device_id);
2717 if (density < ONENAND_DEVICE_DENSITY_512Mb)
2718 otp_pages = 20;
2719 else
2720 otp_pages = 10;
2722 if (mode == MTD_OTP_FACTORY) {
2723 from += mtd->writesize * otp_pages;
2724 otp_pages = 64 - otp_pages;
2727 /* Check User/Factory boundary */
2728 if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2729 return 0;
2731 onenand_get_device(mtd, FL_OTPING);
2732 while (len > 0 && otp_pages > 0) {
2733 if (!action) { /* OTP Info functions */
2734 struct otp_info *otpinfo;
2736 len -= sizeof(struct otp_info);
2737 if (len <= 0) {
2738 ret = -ENOSPC;
2739 break;
2742 otpinfo = (struct otp_info *) buf;
2743 otpinfo->start = from;
2744 otpinfo->length = mtd->writesize;
2745 otpinfo->locked = 0;
2747 from += mtd->writesize;
2748 buf += sizeof(struct otp_info);
2749 *retlen += sizeof(struct otp_info);
2750 } else {
2751 size_t tmp_retlen;
2752 int size = len;
2754 ret = action(mtd, from, len, &tmp_retlen, buf);
2756 buf += size;
2757 len -= size;
2758 *retlen += size;
2760 if (ret)
2761 break;
2763 otp_pages--;
2765 onenand_release_device(mtd);
2767 return ret;
2771 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2772 * @param mtd MTD device structure
2773 * @param buf the databuffer to put/get data
2774 * @param len number of bytes to read
2776 * Read factory OTP info.
2778 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2779 struct otp_info *buf, size_t len)
2781 size_t retlen;
2782 int ret;
2784 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2786 return ret ? : retlen;
2790 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2791 * @param mtd MTD device structure
2792 * @param from The offset to read
2793 * @param len number of bytes to read
2794 * @param retlen pointer to variable to store the number of read bytes
2795 * @param buf the databuffer to put/get data
2797 * Read factory OTP area.
2799 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2800 size_t len, size_t *retlen, u_char *buf)
2802 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2806 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2807 * @param mtd MTD device structure
2808 * @param buf the databuffer to put/get data
2809 * @param len number of bytes to read
2811 * Read user OTP info.
2813 static int onenand_get_user_prot_info(struct mtd_info *mtd,
2814 struct otp_info *buf, size_t len)
2816 size_t retlen;
2817 int ret;
2819 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2821 return ret ? : retlen;
2825 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2826 * @param mtd MTD device structure
2827 * @param from The offset to read
2828 * @param len number of bytes to read
2829 * @param retlen pointer to variable to store the number of read bytes
2830 * @param buf the databuffer to put/get data
2832 * Read user OTP area.
2834 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2835 size_t len, size_t *retlen, u_char *buf)
2837 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2841 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2842 * @param mtd MTD device structure
2843 * @param from The offset to write
2844 * @param len number of bytes to write
2845 * @param retlen pointer to variable to store the number of write bytes
2846 * @param buf the databuffer to put/get data
2848 * Write user OTP area.
2850 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2851 size_t len, size_t *retlen, u_char *buf)
2853 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2857 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2858 * @param mtd MTD device structure
2859 * @param from The offset to lock
2860 * @param len number of bytes to unlock
2862 * Write lock mark on spare area in page 0 in OTP block
2864 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2865 size_t len)
2867 struct onenand_chip *this = mtd->priv;
2868 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
2869 size_t retlen;
2870 int ret;
2872 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
2873 : mtd->oobsize);
2875 * Note: OTP lock operation
2876 * OTP block : 0xXXFC
2877 * 1st block : 0xXXF3 (If chip support)
2878 * Both : 0xXXF0 (If chip support)
2880 if (FLEXONENAND(this))
2881 buf[FLEXONENAND_OTP_LOCK_OFFSET] = 0xFC;
2882 else
2883 buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2886 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2887 * We write 16 bytes spare area instead of 2 bytes.
2888 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2889 * main area of page 49.
2892 from = 0;
2893 len = FLEXONENAND(this) ? mtd->writesize : 16;
2895 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
2897 return ret ? : retlen;
2899 #endif /* CONFIG_MTD_ONENAND_OTP */
2902 * onenand_check_features - Check and set OneNAND features
2903 * @param mtd MTD data structure
2905 * Check and set OneNAND features
2906 * - lock scheme
2907 * - two plane
2909 static void onenand_check_features(struct mtd_info *mtd)
2911 struct onenand_chip *this = mtd->priv;
2912 unsigned int density, process;
2914 /* Lock scheme depends on density and process */
2915 density = onenand_get_density(this->device_id);
2916 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2918 /* Lock scheme */
2919 switch (density) {
2920 case ONENAND_DEVICE_DENSITY_4Gb:
2921 this->options |= ONENAND_HAS_2PLANE;
2923 case ONENAND_DEVICE_DENSITY_2Gb:
2924 /* 2Gb DDP does not have 2 plane */
2925 if (!ONENAND_IS_DDP(this))
2926 this->options |= ONENAND_HAS_2PLANE;
2927 this->options |= ONENAND_HAS_UNLOCK_ALL;
2929 case ONENAND_DEVICE_DENSITY_1Gb:
2930 /* A-Die has all block unlock */
2931 if (process)
2932 this->options |= ONENAND_HAS_UNLOCK_ALL;
2933 break;
2935 default:
2936 /* Some OneNAND has continuous lock scheme */
2937 if (!process)
2938 this->options |= ONENAND_HAS_CONT_LOCK;
2939 break;
2942 if (ONENAND_IS_MLC(this))
2943 this->options &= ~ONENAND_HAS_2PLANE;
2945 if (FLEXONENAND(this)) {
2946 this->options &= ~ONENAND_HAS_CONT_LOCK;
2947 this->options |= ONENAND_HAS_UNLOCK_ALL;
2950 if (this->options & ONENAND_HAS_CONT_LOCK)
2951 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2952 if (this->options & ONENAND_HAS_UNLOCK_ALL)
2953 printk(KERN_DEBUG "Chip support all block unlock\n");
2954 if (this->options & ONENAND_HAS_2PLANE)
2955 printk(KERN_DEBUG "Chip has 2 plane\n");
2959 * onenand_print_device_info - Print device & version ID
2960 * @param device device ID
2961 * @param version version ID
2963 * Print device & version ID
2965 static void onenand_print_device_info(int device, int version)
2967 int vcc, demuxed, ddp, density, flexonenand;
2969 vcc = device & ONENAND_DEVICE_VCC_MASK;
2970 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2971 ddp = device & ONENAND_DEVICE_IS_DDP;
2972 density = onenand_get_density(device);
2973 flexonenand = device & DEVICE_IS_FLEXONENAND;
2974 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2975 demuxed ? "" : "Muxed ",
2976 flexonenand ? "Flex-" : "",
2977 ddp ? "(DDP)" : "",
2978 (16 << density),
2979 vcc ? "2.65/3.3" : "1.8",
2980 device);
2981 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2984 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2985 {ONENAND_MFR_SAMSUNG, "Samsung"},
2986 {ONENAND_MFR_NUMONYX, "Numonyx"},
2990 * onenand_check_maf - Check manufacturer ID
2991 * @param manuf manufacturer ID
2993 * Check manufacturer ID
2995 static int onenand_check_maf(int manuf)
2997 int size = ARRAY_SIZE(onenand_manuf_ids);
2998 char *name;
2999 int i;
3001 for (i = 0; i < size; i++)
3002 if (manuf == onenand_manuf_ids[i].id)
3003 break;
3005 if (i < size)
3006 name = onenand_manuf_ids[i].name;
3007 else
3008 name = "Unknown";
3010 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3012 return (i == size);
3016 * flexonenand_get_boundary - Reads the SLC boundary
3017 * @param onenand_info - onenand info structure
3019 static int flexonenand_get_boundary(struct mtd_info *mtd)
3021 struct onenand_chip *this = mtd->priv;
3022 unsigned die, bdry;
3023 int ret, syscfg, locked;
3025 /* Disable ECC */
3026 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3027 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3029 for (die = 0; die < this->dies; die++) {
3030 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3031 this->wait(mtd, FL_SYNCING);
3033 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3034 ret = this->wait(mtd, FL_READING);
3036 bdry = this->read_word(this->base + ONENAND_DATARAM);
3037 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3038 locked = 0;
3039 else
3040 locked = 1;
3041 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3043 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3044 ret = this->wait(mtd, FL_RESETING);
3046 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3047 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3050 /* Enable ECC */
3051 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3052 return 0;
3056 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3057 * boundary[], diesize[], mtd->size, mtd->erasesize
3058 * @param mtd - MTD device structure
3060 static void flexonenand_get_size(struct mtd_info *mtd)
3062 struct onenand_chip *this = mtd->priv;
3063 int die, i, eraseshift, density;
3064 int blksperdie, maxbdry;
3065 loff_t ofs;
3067 density = onenand_get_density(this->device_id);
3068 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3069 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3070 maxbdry = blksperdie - 1;
3071 eraseshift = this->erase_shift - 1;
3073 mtd->numeraseregions = this->dies << 1;
3075 /* This fills up the device boundary */
3076 flexonenand_get_boundary(mtd);
3077 die = ofs = 0;
3078 i = -1;
3079 for (; die < this->dies; die++) {
3080 if (!die || this->boundary[die-1] != maxbdry) {
3081 i++;
3082 mtd->eraseregions[i].offset = ofs;
3083 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3084 mtd->eraseregions[i].numblocks =
3085 this->boundary[die] + 1;
3086 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3087 eraseshift++;
3088 } else {
3089 mtd->numeraseregions -= 1;
3090 mtd->eraseregions[i].numblocks +=
3091 this->boundary[die] + 1;
3092 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3094 if (this->boundary[die] != maxbdry) {
3095 i++;
3096 mtd->eraseregions[i].offset = ofs;
3097 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3098 mtd->eraseregions[i].numblocks = maxbdry ^
3099 this->boundary[die];
3100 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3101 eraseshift--;
3102 } else
3103 mtd->numeraseregions -= 1;
3106 /* Expose MLC erase size except when all blocks are SLC */
3107 mtd->erasesize = 1 << this->erase_shift;
3108 if (mtd->numeraseregions == 1)
3109 mtd->erasesize >>= 1;
3111 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3112 for (i = 0; i < mtd->numeraseregions; i++)
3113 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3114 " numblocks: %04u]\n",
3115 (unsigned int) mtd->eraseregions[i].offset,
3116 mtd->eraseregions[i].erasesize,
3117 mtd->eraseregions[i].numblocks);
3119 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3120 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3121 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3122 << (this->erase_shift - 1);
3123 mtd->size += this->diesize[die];
3128 * flexonenand_check_blocks_erased - Check if blocks are erased
3129 * @param mtd_info - mtd info structure
3130 * @param start - first erase block to check
3131 * @param end - last erase block to check
3133 * Converting an unerased block from MLC to SLC
3134 * causes byte values to change. Since both data and its ECC
3135 * have changed, reads on the block give uncorrectable error.
3136 * This might lead to the block being detected as bad.
3138 * Avoid this by ensuring that the block to be converted is
3139 * erased.
3141 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3143 struct onenand_chip *this = mtd->priv;
3144 int i, ret;
3145 int block;
3146 struct mtd_oob_ops ops = {
3147 .mode = MTD_OOB_PLACE,
3148 .ooboffs = 0,
3149 .ooblen = mtd->oobsize,
3150 .datbuf = NULL,
3151 .oobbuf = this->oob_buf,
3153 loff_t addr;
3155 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3157 for (block = start; block <= end; block++) {
3158 addr = flexonenand_addr(this, block);
3159 if (onenand_block_isbad_nolock(mtd, addr, 0))
3160 continue;
3163 * Since main area write results in ECC write to spare,
3164 * it is sufficient to check only ECC bytes for change.
3166 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3167 if (ret)
3168 return ret;
3170 for (i = 0; i < mtd->oobsize; i++)
3171 if (this->oob_buf[i] != 0xff)
3172 break;
3174 if (i != mtd->oobsize) {
3175 printk(KERN_WARNING "Block %d not erased.\n", block);
3176 return 1;
3180 return 0;
3184 * flexonenand_set_boundary - Writes the SLC boundary
3185 * @param mtd - mtd info structure
3187 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3188 int boundary, int lock)
3190 struct onenand_chip *this = mtd->priv;
3191 int ret, density, blksperdie, old, new, thisboundary;
3192 loff_t addr;
3194 /* Change only once for SDP Flex-OneNAND */
3195 if (die && (!ONENAND_IS_DDP(this)))
3196 return 0;
3198 /* boundary value of -1 indicates no required change */
3199 if (boundary < 0 || boundary == this->boundary[die])
3200 return 0;
3202 density = onenand_get_density(this->device_id);
3203 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3204 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3206 if (boundary >= blksperdie) {
3207 printk(KERN_ERR "flexonenand_set_boundary: Invalid boundary value. "
3208 "Boundary not changed.\n");
3209 return -EINVAL;
3212 /* Check if converting blocks are erased */
3213 old = this->boundary[die] + (die * this->density_mask);
3214 new = boundary + (die * this->density_mask);
3215 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3216 if (ret) {
3217 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
3218 return ret;
3221 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3222 this->wait(mtd, FL_SYNCING);
3224 /* Check is boundary is locked */
3225 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3226 ret = this->wait(mtd, FL_READING);
3228 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3229 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3230 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
3231 ret = 1;
3232 goto out;
3235 printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
3236 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3238 addr = die ? this->diesize[0] : 0;
3240 boundary &= FLEXONENAND_PI_MASK;
3241 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3243 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3244 ret = this->wait(mtd, FL_ERASING);
3245 if (ret) {
3246 printk(KERN_ERR "flexonenand_set_boundary: Failed PI erase for Die %d\n", die);
3247 goto out;
3250 this->write_word(boundary, this->base + ONENAND_DATARAM);
3251 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3252 ret = this->wait(mtd, FL_WRITING);
3253 if (ret) {
3254 printk(KERN_ERR "flexonenand_set_boundary: Failed PI write for Die %d\n", die);
3255 goto out;
3258 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3259 ret = this->wait(mtd, FL_WRITING);
3260 out:
3261 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3262 this->wait(mtd, FL_RESETING);
3263 if (!ret)
3264 /* Recalculate device size on boundary change*/
3265 flexonenand_get_size(mtd);
3267 return ret;
3271 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3272 * @param mtd MTD device structure
3274 * OneNAND detection method:
3275 * Compare the values from command with ones from register
3277 static int onenand_probe(struct mtd_info *mtd)
3279 struct onenand_chip *this = mtd->priv;
3280 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
3281 int density;
3282 int syscfg;
3284 /* Save system configuration 1 */
3285 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3286 /* Clear Sync. Burst Read mode to read BootRAM */
3287 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3289 /* Send the command for reading device ID from BootRAM */
3290 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3292 /* Read manufacturer and device IDs from BootRAM */
3293 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3294 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3296 /* Reset OneNAND to read default register values */
3297 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3298 /* Wait reset */
3299 this->wait(mtd, FL_RESETING);
3301 /* Restore system configuration 1 */
3302 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3304 /* Check manufacturer ID */
3305 if (onenand_check_maf(bram_maf_id))
3306 return -ENXIO;
3308 /* Read manufacturer and device IDs from Register */
3309 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3310 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3311 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3312 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3314 /* Check OneNAND device */
3315 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3316 return -ENXIO;
3318 /* Flash device information */
3319 onenand_print_device_info(dev_id, ver_id);
3320 this->device_id = dev_id;
3321 this->version_id = ver_id;
3323 density = onenand_get_density(dev_id);
3324 if (FLEXONENAND(this)) {
3325 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3326 /* Maximum possible erase regions */
3327 mtd->numeraseregions = this->dies << 1;
3328 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3329 * (this->dies << 1), GFP_KERNEL);
3330 if (!mtd->eraseregions)
3331 return -ENOMEM;
3335 * For Flex-OneNAND, chipsize represents maximum possible device size.
3336 * mtd->size represents the actual device size.
3338 this->chipsize = (16 << density) << 20;
3340 /* OneNAND page size & block size */
3341 /* The data buffer size is equal to page size */
3342 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3343 /* We use the full BufferRAM */
3344 if (ONENAND_IS_MLC(this))
3345 mtd->writesize <<= 1;
3347 mtd->oobsize = mtd->writesize >> 5;
3348 /* Pages per a block are always 64 in OneNAND */
3349 mtd->erasesize = mtd->writesize << 6;
3351 * Flex-OneNAND SLC area has 64 pages per block.
3352 * Flex-OneNAND MLC area has 128 pages per block.
3353 * Expose MLC erase size to find erase_shift and page_mask.
3355 if (FLEXONENAND(this))
3356 mtd->erasesize <<= 1;
3358 this->erase_shift = ffs(mtd->erasesize) - 1;
3359 this->page_shift = ffs(mtd->writesize) - 1;
3360 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3361 /* Set density mask. it is used for DDP */
3362 if (ONENAND_IS_DDP(this))
3363 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3364 /* It's real page size */
3365 this->writesize = mtd->writesize;
3367 /* REVISIT: Multichip handling */
3369 if (FLEXONENAND(this))
3370 flexonenand_get_size(mtd);
3371 else
3372 mtd->size = this->chipsize;
3374 /* Check OneNAND features */
3375 onenand_check_features(mtd);
3378 * We emulate the 4KiB page and 256KiB erase block size
3379 * But oobsize is still 64 bytes.
3380 * It is only valid if you turn on 2X program support,
3381 * Otherwise it will be ignored by compiler.
3383 if (ONENAND_IS_2PLANE(this)) {
3384 mtd->writesize <<= 1;
3385 mtd->erasesize <<= 1;
3388 return 0;
3392 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3393 * @param mtd MTD device structure
3395 static int onenand_suspend(struct mtd_info *mtd)
3397 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3401 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3402 * @param mtd MTD device structure
3404 static void onenand_resume(struct mtd_info *mtd)
3406 struct onenand_chip *this = mtd->priv;
3408 if (this->state == FL_PM_SUSPENDED)
3409 onenand_release_device(mtd);
3410 else
3411 printk(KERN_ERR "resume() called for the chip which is not"
3412 "in suspended state\n");
3416 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3417 * @param mtd MTD device structure
3418 * @param maxchips Number of chips to scan for
3420 * This fills out all the not initialized function pointers
3421 * with the defaults.
3422 * The flash ID is read and the mtd/chip structures are
3423 * filled with the appropriate values.
3425 int onenand_scan(struct mtd_info *mtd, int maxchips)
3427 int i, ret;
3428 struct onenand_chip *this = mtd->priv;
3430 if (!this->read_word)
3431 this->read_word = onenand_readw;
3432 if (!this->write_word)
3433 this->write_word = onenand_writew;
3435 if (!this->command)
3436 this->command = onenand_command;
3437 if (!this->wait)
3438 onenand_setup_wait(mtd);
3439 if (!this->bbt_wait)
3440 this->bbt_wait = onenand_bbt_wait;
3441 if (!this->unlock_all)
3442 this->unlock_all = onenand_unlock_all;
3444 if (!this->read_bufferram)
3445 this->read_bufferram = onenand_read_bufferram;
3446 if (!this->write_bufferram)
3447 this->write_bufferram = onenand_write_bufferram;
3449 if (!this->block_markbad)
3450 this->block_markbad = onenand_default_block_markbad;
3451 if (!this->scan_bbt)
3452 this->scan_bbt = onenand_default_bbt;
3454 if (onenand_probe(mtd))
3455 return -ENXIO;
3457 /* Set Sync. Burst Read after probing */
3458 if (this->mmcontrol) {
3459 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3460 this->read_bufferram = onenand_sync_read_bufferram;
3463 /* Allocate buffers, if necessary */
3464 if (!this->page_buf) {
3465 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3466 if (!this->page_buf) {
3467 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
3468 return -ENOMEM;
3470 this->options |= ONENAND_PAGEBUF_ALLOC;
3472 if (!this->oob_buf) {
3473 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3474 if (!this->oob_buf) {
3475 printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
3476 if (this->options & ONENAND_PAGEBUF_ALLOC) {
3477 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3478 kfree(this->page_buf);
3480 return -ENOMEM;
3482 this->options |= ONENAND_OOBBUF_ALLOC;
3485 this->state = FL_READY;
3486 init_waitqueue_head(&this->wq);
3487 spin_lock_init(&this->chip_lock);
3490 * Allow subpage writes up to oobsize.
3492 switch (mtd->oobsize) {
3493 case 128:
3494 this->ecclayout = &onenand_oob_128;
3495 mtd->subpage_sft = 0;
3496 break;
3497 case 64:
3498 this->ecclayout = &onenand_oob_64;
3499 mtd->subpage_sft = 2;
3500 break;
3502 case 32:
3503 this->ecclayout = &onenand_oob_32;
3504 mtd->subpage_sft = 1;
3505 break;
3507 default:
3508 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
3509 mtd->oobsize);
3510 mtd->subpage_sft = 0;
3511 /* To prevent kernel oops */
3512 this->ecclayout = &onenand_oob_32;
3513 break;
3516 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3519 * The number of bytes available for a client to place data into
3520 * the out of band area
3522 this->ecclayout->oobavail = 0;
3523 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
3524 this->ecclayout->oobfree[i].length; i++)
3525 this->ecclayout->oobavail +=
3526 this->ecclayout->oobfree[i].length;
3527 mtd->oobavail = this->ecclayout->oobavail;
3529 mtd->ecclayout = this->ecclayout;
3531 /* Fill in remaining MTD driver data */
3532 mtd->type = MTD_NANDFLASH;
3533 mtd->flags = MTD_CAP_NANDFLASH;
3534 mtd->erase = onenand_erase;
3535 mtd->point = NULL;
3536 mtd->unpoint = NULL;
3537 mtd->read = onenand_read;
3538 mtd->write = onenand_write;
3539 mtd->read_oob = onenand_read_oob;
3540 mtd->write_oob = onenand_write_oob;
3541 mtd->panic_write = onenand_panic_write;
3542 #ifdef CONFIG_MTD_ONENAND_OTP
3543 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
3544 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
3545 mtd->get_user_prot_info = onenand_get_user_prot_info;
3546 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
3547 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
3548 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
3549 #endif
3550 mtd->sync = onenand_sync;
3551 mtd->lock = onenand_lock;
3552 mtd->unlock = onenand_unlock;
3553 mtd->suspend = onenand_suspend;
3554 mtd->resume = onenand_resume;
3555 mtd->block_isbad = onenand_block_isbad;
3556 mtd->block_markbad = onenand_block_markbad;
3557 mtd->owner = THIS_MODULE;
3559 /* Unlock whole block */
3560 this->unlock_all(mtd);
3562 ret = this->scan_bbt(mtd);
3563 if ((!FLEXONENAND(this)) || ret)
3564 return ret;
3566 /* Change Flex-OneNAND boundaries if required */
3567 for (i = 0; i < MAX_DIES; i++)
3568 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3569 flex_bdry[(2 * i) + 1]);
3571 return 0;
3575 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3576 * @param mtd MTD device structure
3578 void onenand_release(struct mtd_info *mtd)
3580 struct onenand_chip *this = mtd->priv;
3582 #ifdef CONFIG_MTD_PARTITIONS
3583 /* Deregister partitions */
3584 del_mtd_partitions (mtd);
3585 #endif
3586 /* Deregister the device */
3587 del_mtd_device (mtd);
3589 /* Free bad block table memory, if allocated */
3590 if (this->bbm) {
3591 struct bbm_info *bbm = this->bbm;
3592 kfree(bbm->bbt);
3593 kfree(this->bbm);
3595 /* Buffers allocated by onenand_scan */
3596 if (this->options & ONENAND_PAGEBUF_ALLOC)
3597 kfree(this->page_buf);
3598 if (this->options & ONENAND_OOBBUF_ALLOC)
3599 kfree(this->oob_buf);
3600 kfree(mtd->eraseregions);
3603 EXPORT_SYMBOL_GPL(onenand_scan);
3604 EXPORT_SYMBOL_GPL(onenand_release);
3606 MODULE_LICENSE("GPL");
3607 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
3608 MODULE_DESCRIPTION("Generic OneNAND flash driver code");