First Support on Ginger and OMAP TI
[linux-ginger.git] / fs / dcache.c
bloba100fa35a48f3702fbe5522e2636501dc8eb93f3
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
44 EXPORT_SYMBOL(dcache_lock);
46 static struct kmem_cache *dentry_cache __read_mostly;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
70 static void __d_free(struct dentry *dentry)
72 WARN_ON(!list_empty(&dentry->d_alias));
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
78 static void d_callback(struct rcu_head *head)
80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 __d_free(dentry);
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
86 * inside dcache_lock.
88 static void d_free(struct dentry *dentry)
90 if (dentry->d_op && dentry->d_op->d_release)
91 dentry->d_op->d_release(dentry);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry->d_hash))
94 __d_free(dentry);
95 else
96 call_rcu(&dentry->d_u.d_rcu, d_callback);
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
103 static void dentry_iput(struct dentry * dentry)
104 __releases(dentry->d_lock)
105 __releases(dcache_lock)
107 struct inode *inode = dentry->d_inode;
108 if (inode) {
109 dentry->d_inode = NULL;
110 list_del_init(&dentry->d_alias);
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
113 if (!inode->i_nlink)
114 fsnotify_inoderemove(inode);
115 if (dentry->d_op && dentry->d_op->d_iput)
116 dentry->d_op->d_iput(dentry, inode);
117 else
118 iput(inode);
119 } else {
120 spin_unlock(&dentry->d_lock);
121 spin_unlock(&dcache_lock);
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
128 static void dentry_lru_add(struct dentry *dentry)
130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 dentry->d_sb->s_nr_dentry_unused++;
132 dentry_stat.nr_unused++;
135 static void dentry_lru_add_tail(struct dentry *dentry)
137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 dentry->d_sb->s_nr_dentry_unused++;
139 dentry_stat.nr_unused++;
142 static void dentry_lru_del(struct dentry *dentry)
144 if (!list_empty(&dentry->d_lru)) {
145 list_del(&dentry->d_lru);
146 dentry->d_sb->s_nr_dentry_unused--;
147 dentry_stat.nr_unused--;
151 static void dentry_lru_del_init(struct dentry *dentry)
153 if (likely(!list_empty(&dentry->d_lru))) {
154 list_del_init(&dentry->d_lru);
155 dentry->d_sb->s_nr_dentry_unused--;
156 dentry_stat.nr_unused--;
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
164 * The dentry must already be unhashed and removed from the LRU.
166 * If this is the root of the dentry tree, return NULL.
168 static struct dentry *d_kill(struct dentry *dentry)
169 __releases(dentry->d_lock)
170 __releases(dcache_lock)
172 struct dentry *parent;
174 list_del(&dentry->d_u.d_child);
175 dentry_stat.nr_dentry--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
177 dentry_iput(dentry);
178 if (IS_ROOT(dentry))
179 parent = NULL;
180 else
181 parent = dentry->d_parent;
182 d_free(dentry);
183 return parent;
187 * This is dput
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
204 * dput - release a dentry
205 * @dentry: dentry to release
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
212 * no dcache lock, please.
215 void dput(struct dentry *dentry)
217 if (!dentry)
218 return;
220 repeat:
221 if (atomic_read(&dentry->d_count) == 1)
222 might_sleep();
223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 return;
226 spin_lock(&dentry->d_lock);
227 if (atomic_read(&dentry->d_count)) {
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&dcache_lock);
230 return;
234 * AV: ->d_delete() is _NOT_ allowed to block now.
236 if (dentry->d_op && dentry->d_op->d_delete) {
237 if (dentry->d_op->d_delete(dentry))
238 goto unhash_it;
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry))
242 goto kill_it;
243 if (list_empty(&dentry->d_lru)) {
244 dentry->d_flags |= DCACHE_REFERENCED;
245 dentry_lru_add(dentry);
247 spin_unlock(&dentry->d_lock);
248 spin_unlock(&dcache_lock);
249 return;
251 unhash_it:
252 __d_drop(dentry);
253 kill_it:
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry);
256 dentry = d_kill(dentry);
257 if (dentry)
258 goto repeat;
262 * d_invalidate - invalidate a dentry
263 * @dentry: dentry to invalidate
265 * Try to invalidate the dentry if it turns out to be
266 * possible. If there are other dentries that can be
267 * reached through this one we can't delete it and we
268 * return -EBUSY. On success we return 0.
270 * no dcache lock.
273 int d_invalidate(struct dentry * dentry)
276 * If it's already been dropped, return OK.
278 spin_lock(&dcache_lock);
279 if (d_unhashed(dentry)) {
280 spin_unlock(&dcache_lock);
281 return 0;
284 * Check whether to do a partial shrink_dcache
285 * to get rid of unused child entries.
287 if (!list_empty(&dentry->d_subdirs)) {
288 spin_unlock(&dcache_lock);
289 shrink_dcache_parent(dentry);
290 spin_lock(&dcache_lock);
294 * Somebody else still using it?
296 * If it's a directory, we can't drop it
297 * for fear of somebody re-populating it
298 * with children (even though dropping it
299 * would make it unreachable from the root,
300 * we might still populate it if it was a
301 * working directory or similar).
303 spin_lock(&dentry->d_lock);
304 if (atomic_read(&dentry->d_count) > 1) {
305 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
306 spin_unlock(&dentry->d_lock);
307 spin_unlock(&dcache_lock);
308 return -EBUSY;
312 __d_drop(dentry);
313 spin_unlock(&dentry->d_lock);
314 spin_unlock(&dcache_lock);
315 return 0;
318 /* This should be called _only_ with dcache_lock held */
320 static inline struct dentry * __dget_locked(struct dentry *dentry)
322 atomic_inc(&dentry->d_count);
323 dentry_lru_del_init(dentry);
324 return dentry;
327 struct dentry * dget_locked(struct dentry *dentry)
329 return __dget_locked(dentry);
333 * d_find_alias - grab a hashed alias of inode
334 * @inode: inode in question
335 * @want_discon: flag, used by d_splice_alias, to request
336 * that only a DISCONNECTED alias be returned.
338 * If inode has a hashed alias, or is a directory and has any alias,
339 * acquire the reference to alias and return it. Otherwise return NULL.
340 * Notice that if inode is a directory there can be only one alias and
341 * it can be unhashed only if it has no children, or if it is the root
342 * of a filesystem.
344 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
345 * any other hashed alias over that one unless @want_discon is set,
346 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
349 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
351 struct list_head *head, *next, *tmp;
352 struct dentry *alias, *discon_alias=NULL;
354 head = &inode->i_dentry;
355 next = inode->i_dentry.next;
356 while (next != head) {
357 tmp = next;
358 next = tmp->next;
359 prefetch(next);
360 alias = list_entry(tmp, struct dentry, d_alias);
361 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
362 if (IS_ROOT(alias) &&
363 (alias->d_flags & DCACHE_DISCONNECTED))
364 discon_alias = alias;
365 else if (!want_discon) {
366 __dget_locked(alias);
367 return alias;
371 if (discon_alias)
372 __dget_locked(discon_alias);
373 return discon_alias;
376 struct dentry * d_find_alias(struct inode *inode)
378 struct dentry *de = NULL;
380 if (!list_empty(&inode->i_dentry)) {
381 spin_lock(&dcache_lock);
382 de = __d_find_alias(inode, 0);
383 spin_unlock(&dcache_lock);
385 return de;
389 * Try to kill dentries associated with this inode.
390 * WARNING: you must own a reference to inode.
392 void d_prune_aliases(struct inode *inode)
394 struct dentry *dentry;
395 restart:
396 spin_lock(&dcache_lock);
397 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
398 spin_lock(&dentry->d_lock);
399 if (!atomic_read(&dentry->d_count)) {
400 __dget_locked(dentry);
401 __d_drop(dentry);
402 spin_unlock(&dentry->d_lock);
403 spin_unlock(&dcache_lock);
404 dput(dentry);
405 goto restart;
407 spin_unlock(&dentry->d_lock);
409 spin_unlock(&dcache_lock);
413 * Throw away a dentry - free the inode, dput the parent. This requires that
414 * the LRU list has already been removed.
416 * Try to prune ancestors as well. This is necessary to prevent
417 * quadratic behavior of shrink_dcache_parent(), but is also expected
418 * to be beneficial in reducing dentry cache fragmentation.
420 static void prune_one_dentry(struct dentry * dentry)
421 __releases(dentry->d_lock)
422 __releases(dcache_lock)
423 __acquires(dcache_lock)
425 __d_drop(dentry);
426 dentry = d_kill(dentry);
429 * Prune ancestors. Locking is simpler than in dput(),
430 * because dcache_lock needs to be taken anyway.
432 spin_lock(&dcache_lock);
433 while (dentry) {
434 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
435 return;
437 if (dentry->d_op && dentry->d_op->d_delete)
438 dentry->d_op->d_delete(dentry);
439 dentry_lru_del_init(dentry);
440 __d_drop(dentry);
441 dentry = d_kill(dentry);
442 spin_lock(&dcache_lock);
447 * Shrink the dentry LRU on a given superblock.
448 * @sb : superblock to shrink dentry LRU.
449 * @count: If count is NULL, we prune all dentries on superblock.
450 * @flags: If flags is non-zero, we need to do special processing based on
451 * which flags are set. This means we don't need to maintain multiple
452 * similar copies of this loop.
454 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
456 LIST_HEAD(referenced);
457 LIST_HEAD(tmp);
458 struct dentry *dentry;
459 int cnt = 0;
461 BUG_ON(!sb);
462 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
463 spin_lock(&dcache_lock);
464 if (count != NULL)
465 /* called from prune_dcache() and shrink_dcache_parent() */
466 cnt = *count;
467 restart:
468 if (count == NULL)
469 list_splice_init(&sb->s_dentry_lru, &tmp);
470 else {
471 while (!list_empty(&sb->s_dentry_lru)) {
472 dentry = list_entry(sb->s_dentry_lru.prev,
473 struct dentry, d_lru);
474 BUG_ON(dentry->d_sb != sb);
476 spin_lock(&dentry->d_lock);
478 * If we are honouring the DCACHE_REFERENCED flag and
479 * the dentry has this flag set, don't free it. Clear
480 * the flag and put it back on the LRU.
482 if ((flags & DCACHE_REFERENCED)
483 && (dentry->d_flags & DCACHE_REFERENCED)) {
484 dentry->d_flags &= ~DCACHE_REFERENCED;
485 list_move(&dentry->d_lru, &referenced);
486 spin_unlock(&dentry->d_lock);
487 } else {
488 list_move_tail(&dentry->d_lru, &tmp);
489 spin_unlock(&dentry->d_lock);
490 cnt--;
491 if (!cnt)
492 break;
494 cond_resched_lock(&dcache_lock);
497 while (!list_empty(&tmp)) {
498 dentry = list_entry(tmp.prev, struct dentry, d_lru);
499 dentry_lru_del_init(dentry);
500 spin_lock(&dentry->d_lock);
502 * We found an inuse dentry which was not removed from
503 * the LRU because of laziness during lookup. Do not free
504 * it - just keep it off the LRU list.
506 if (atomic_read(&dentry->d_count)) {
507 spin_unlock(&dentry->d_lock);
508 continue;
510 prune_one_dentry(dentry);
511 /* dentry->d_lock was dropped in prune_one_dentry() */
512 cond_resched_lock(&dcache_lock);
514 if (count == NULL && !list_empty(&sb->s_dentry_lru))
515 goto restart;
516 if (count != NULL)
517 *count = cnt;
518 if (!list_empty(&referenced))
519 list_splice(&referenced, &sb->s_dentry_lru);
520 spin_unlock(&dcache_lock);
524 * prune_dcache - shrink the dcache
525 * @count: number of entries to try to free
527 * Shrink the dcache. This is done when we need more memory, or simply when we
528 * need to unmount something (at which point we need to unuse all dentries).
530 * This function may fail to free any resources if all the dentries are in use.
532 static void prune_dcache(int count)
534 struct super_block *sb;
535 int w_count;
536 int unused = dentry_stat.nr_unused;
537 int prune_ratio;
538 int pruned;
540 if (unused == 0 || count == 0)
541 return;
542 spin_lock(&dcache_lock);
543 restart:
544 if (count >= unused)
545 prune_ratio = 1;
546 else
547 prune_ratio = unused / count;
548 spin_lock(&sb_lock);
549 list_for_each_entry(sb, &super_blocks, s_list) {
550 if (sb->s_nr_dentry_unused == 0)
551 continue;
552 sb->s_count++;
553 /* Now, we reclaim unused dentrins with fairness.
554 * We reclaim them same percentage from each superblock.
555 * We calculate number of dentries to scan on this sb
556 * as follows, but the implementation is arranged to avoid
557 * overflows:
558 * number of dentries to scan on this sb =
559 * count * (number of dentries on this sb /
560 * number of dentries in the machine)
562 spin_unlock(&sb_lock);
563 if (prune_ratio != 1)
564 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
565 else
566 w_count = sb->s_nr_dentry_unused;
567 pruned = w_count;
569 * We need to be sure this filesystem isn't being unmounted,
570 * otherwise we could race with generic_shutdown_super(), and
571 * end up holding a reference to an inode while the filesystem
572 * is unmounted. So we try to get s_umount, and make sure
573 * s_root isn't NULL.
575 if (down_read_trylock(&sb->s_umount)) {
576 if ((sb->s_root != NULL) &&
577 (!list_empty(&sb->s_dentry_lru))) {
578 spin_unlock(&dcache_lock);
579 __shrink_dcache_sb(sb, &w_count,
580 DCACHE_REFERENCED);
581 pruned -= w_count;
582 spin_lock(&dcache_lock);
584 up_read(&sb->s_umount);
586 spin_lock(&sb_lock);
587 count -= pruned;
589 * restart only when sb is no longer on the list and
590 * we have more work to do.
592 if (__put_super_and_need_restart(sb) && count > 0) {
593 spin_unlock(&sb_lock);
594 goto restart;
597 spin_unlock(&sb_lock);
598 spin_unlock(&dcache_lock);
602 * shrink_dcache_sb - shrink dcache for a superblock
603 * @sb: superblock
605 * Shrink the dcache for the specified super block. This
606 * is used to free the dcache before unmounting a file
607 * system
609 void shrink_dcache_sb(struct super_block * sb)
611 __shrink_dcache_sb(sb, NULL, 0);
615 * destroy a single subtree of dentries for unmount
616 * - see the comments on shrink_dcache_for_umount() for a description of the
617 * locking
619 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
621 struct dentry *parent;
622 unsigned detached = 0;
624 BUG_ON(!IS_ROOT(dentry));
626 /* detach this root from the system */
627 spin_lock(&dcache_lock);
628 dentry_lru_del_init(dentry);
629 __d_drop(dentry);
630 spin_unlock(&dcache_lock);
632 for (;;) {
633 /* descend to the first leaf in the current subtree */
634 while (!list_empty(&dentry->d_subdirs)) {
635 struct dentry *loop;
637 /* this is a branch with children - detach all of them
638 * from the system in one go */
639 spin_lock(&dcache_lock);
640 list_for_each_entry(loop, &dentry->d_subdirs,
641 d_u.d_child) {
642 dentry_lru_del_init(loop);
643 __d_drop(loop);
644 cond_resched_lock(&dcache_lock);
646 spin_unlock(&dcache_lock);
648 /* move to the first child */
649 dentry = list_entry(dentry->d_subdirs.next,
650 struct dentry, d_u.d_child);
653 /* consume the dentries from this leaf up through its parents
654 * until we find one with children or run out altogether */
655 do {
656 struct inode *inode;
658 if (atomic_read(&dentry->d_count) != 0) {
659 printk(KERN_ERR
660 "BUG: Dentry %p{i=%lx,n=%s}"
661 " still in use (%d)"
662 " [unmount of %s %s]\n",
663 dentry,
664 dentry->d_inode ?
665 dentry->d_inode->i_ino : 0UL,
666 dentry->d_name.name,
667 atomic_read(&dentry->d_count),
668 dentry->d_sb->s_type->name,
669 dentry->d_sb->s_id);
670 BUG();
673 if (IS_ROOT(dentry))
674 parent = NULL;
675 else {
676 parent = dentry->d_parent;
677 atomic_dec(&parent->d_count);
680 list_del(&dentry->d_u.d_child);
681 detached++;
683 inode = dentry->d_inode;
684 if (inode) {
685 dentry->d_inode = NULL;
686 list_del_init(&dentry->d_alias);
687 if (dentry->d_op && dentry->d_op->d_iput)
688 dentry->d_op->d_iput(dentry, inode);
689 else
690 iput(inode);
693 d_free(dentry);
695 /* finished when we fall off the top of the tree,
696 * otherwise we ascend to the parent and move to the
697 * next sibling if there is one */
698 if (!parent)
699 goto out;
701 dentry = parent;
703 } while (list_empty(&dentry->d_subdirs));
705 dentry = list_entry(dentry->d_subdirs.next,
706 struct dentry, d_u.d_child);
708 out:
709 /* several dentries were freed, need to correct nr_dentry */
710 spin_lock(&dcache_lock);
711 dentry_stat.nr_dentry -= detached;
712 spin_unlock(&dcache_lock);
716 * destroy the dentries attached to a superblock on unmounting
717 * - we don't need to use dentry->d_lock, and only need dcache_lock when
718 * removing the dentry from the system lists and hashes because:
719 * - the superblock is detached from all mountings and open files, so the
720 * dentry trees will not be rearranged by the VFS
721 * - s_umount is write-locked, so the memory pressure shrinker will ignore
722 * any dentries belonging to this superblock that it comes across
723 * - the filesystem itself is no longer permitted to rearrange the dentries
724 * in this superblock
726 void shrink_dcache_for_umount(struct super_block *sb)
728 struct dentry *dentry;
730 if (down_read_trylock(&sb->s_umount))
731 BUG();
733 dentry = sb->s_root;
734 sb->s_root = NULL;
735 atomic_dec(&dentry->d_count);
736 shrink_dcache_for_umount_subtree(dentry);
738 while (!hlist_empty(&sb->s_anon)) {
739 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
740 shrink_dcache_for_umount_subtree(dentry);
745 * Search for at least 1 mount point in the dentry's subdirs.
746 * We descend to the next level whenever the d_subdirs
747 * list is non-empty and continue searching.
751 * have_submounts - check for mounts over a dentry
752 * @parent: dentry to check.
754 * Return true if the parent or its subdirectories contain
755 * a mount point
758 int have_submounts(struct dentry *parent)
760 struct dentry *this_parent = parent;
761 struct list_head *next;
763 spin_lock(&dcache_lock);
764 if (d_mountpoint(parent))
765 goto positive;
766 repeat:
767 next = this_parent->d_subdirs.next;
768 resume:
769 while (next != &this_parent->d_subdirs) {
770 struct list_head *tmp = next;
771 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
772 next = tmp->next;
773 /* Have we found a mount point ? */
774 if (d_mountpoint(dentry))
775 goto positive;
776 if (!list_empty(&dentry->d_subdirs)) {
777 this_parent = dentry;
778 goto repeat;
782 * All done at this level ... ascend and resume the search.
784 if (this_parent != parent) {
785 next = this_parent->d_u.d_child.next;
786 this_parent = this_parent->d_parent;
787 goto resume;
789 spin_unlock(&dcache_lock);
790 return 0; /* No mount points found in tree */
791 positive:
792 spin_unlock(&dcache_lock);
793 return 1;
797 * Search the dentry child list for the specified parent,
798 * and move any unused dentries to the end of the unused
799 * list for prune_dcache(). We descend to the next level
800 * whenever the d_subdirs list is non-empty and continue
801 * searching.
803 * It returns zero iff there are no unused children,
804 * otherwise it returns the number of children moved to
805 * the end of the unused list. This may not be the total
806 * number of unused children, because select_parent can
807 * drop the lock and return early due to latency
808 * constraints.
810 static int select_parent(struct dentry * parent)
812 struct dentry *this_parent = parent;
813 struct list_head *next;
814 int found = 0;
816 spin_lock(&dcache_lock);
817 repeat:
818 next = this_parent->d_subdirs.next;
819 resume:
820 while (next != &this_parent->d_subdirs) {
821 struct list_head *tmp = next;
822 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
823 next = tmp->next;
825 dentry_lru_del_init(dentry);
827 * move only zero ref count dentries to the end
828 * of the unused list for prune_dcache
830 if (!atomic_read(&dentry->d_count)) {
831 dentry_lru_add_tail(dentry);
832 found++;
836 * We can return to the caller if we have found some (this
837 * ensures forward progress). We'll be coming back to find
838 * the rest.
840 if (found && need_resched())
841 goto out;
844 * Descend a level if the d_subdirs list is non-empty.
846 if (!list_empty(&dentry->d_subdirs)) {
847 this_parent = dentry;
848 goto repeat;
852 * All done at this level ... ascend and resume the search.
854 if (this_parent != parent) {
855 next = this_parent->d_u.d_child.next;
856 this_parent = this_parent->d_parent;
857 goto resume;
859 out:
860 spin_unlock(&dcache_lock);
861 return found;
865 * shrink_dcache_parent - prune dcache
866 * @parent: parent of entries to prune
868 * Prune the dcache to remove unused children of the parent dentry.
871 void shrink_dcache_parent(struct dentry * parent)
873 struct super_block *sb = parent->d_sb;
874 int found;
876 while ((found = select_parent(parent)) != 0)
877 __shrink_dcache_sb(sb, &found, 0);
881 * Scan `nr' dentries and return the number which remain.
883 * We need to avoid reentering the filesystem if the caller is performing a
884 * GFP_NOFS allocation attempt. One example deadlock is:
886 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
887 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
888 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
890 * In this case we return -1 to tell the caller that we baled.
892 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
894 if (nr) {
895 if (!(gfp_mask & __GFP_FS))
896 return -1;
897 prune_dcache(nr);
899 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
902 static struct shrinker dcache_shrinker = {
903 .shrink = shrink_dcache_memory,
904 .seeks = DEFAULT_SEEKS,
908 * d_alloc - allocate a dcache entry
909 * @parent: parent of entry to allocate
910 * @name: qstr of the name
912 * Allocates a dentry. It returns %NULL if there is insufficient memory
913 * available. On a success the dentry is returned. The name passed in is
914 * copied and the copy passed in may be reused after this call.
917 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
919 struct dentry *dentry;
920 char *dname;
922 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
923 if (!dentry)
924 return NULL;
926 if (name->len > DNAME_INLINE_LEN-1) {
927 dname = kmalloc(name->len + 1, GFP_KERNEL);
928 if (!dname) {
929 kmem_cache_free(dentry_cache, dentry);
930 return NULL;
932 } else {
933 dname = dentry->d_iname;
935 dentry->d_name.name = dname;
937 dentry->d_name.len = name->len;
938 dentry->d_name.hash = name->hash;
939 memcpy(dname, name->name, name->len);
940 dname[name->len] = 0;
942 atomic_set(&dentry->d_count, 1);
943 dentry->d_flags = DCACHE_UNHASHED;
944 spin_lock_init(&dentry->d_lock);
945 dentry->d_inode = NULL;
946 dentry->d_parent = NULL;
947 dentry->d_sb = NULL;
948 dentry->d_op = NULL;
949 dentry->d_fsdata = NULL;
950 dentry->d_mounted = 0;
951 INIT_HLIST_NODE(&dentry->d_hash);
952 INIT_LIST_HEAD(&dentry->d_lru);
953 INIT_LIST_HEAD(&dentry->d_subdirs);
954 INIT_LIST_HEAD(&dentry->d_alias);
956 if (parent) {
957 dentry->d_parent = dget(parent);
958 dentry->d_sb = parent->d_sb;
959 } else {
960 INIT_LIST_HEAD(&dentry->d_u.d_child);
963 spin_lock(&dcache_lock);
964 if (parent)
965 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
966 dentry_stat.nr_dentry++;
967 spin_unlock(&dcache_lock);
969 return dentry;
972 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
974 struct qstr q;
976 q.name = name;
977 q.len = strlen(name);
978 q.hash = full_name_hash(q.name, q.len);
979 return d_alloc(parent, &q);
982 /* the caller must hold dcache_lock */
983 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
985 if (inode)
986 list_add(&dentry->d_alias, &inode->i_dentry);
987 dentry->d_inode = inode;
988 fsnotify_d_instantiate(dentry, inode);
992 * d_instantiate - fill in inode information for a dentry
993 * @entry: dentry to complete
994 * @inode: inode to attach to this dentry
996 * Fill in inode information in the entry.
998 * This turns negative dentries into productive full members
999 * of society.
1001 * NOTE! This assumes that the inode count has been incremented
1002 * (or otherwise set) by the caller to indicate that it is now
1003 * in use by the dcache.
1006 void d_instantiate(struct dentry *entry, struct inode * inode)
1008 BUG_ON(!list_empty(&entry->d_alias));
1009 spin_lock(&dcache_lock);
1010 __d_instantiate(entry, inode);
1011 spin_unlock(&dcache_lock);
1012 security_d_instantiate(entry, inode);
1016 * d_instantiate_unique - instantiate a non-aliased dentry
1017 * @entry: dentry to instantiate
1018 * @inode: inode to attach to this dentry
1020 * Fill in inode information in the entry. On success, it returns NULL.
1021 * If an unhashed alias of "entry" already exists, then we return the
1022 * aliased dentry instead and drop one reference to inode.
1024 * Note that in order to avoid conflicts with rename() etc, the caller
1025 * had better be holding the parent directory semaphore.
1027 * This also assumes that the inode count has been incremented
1028 * (or otherwise set) by the caller to indicate that it is now
1029 * in use by the dcache.
1031 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1032 struct inode *inode)
1034 struct dentry *alias;
1035 int len = entry->d_name.len;
1036 const char *name = entry->d_name.name;
1037 unsigned int hash = entry->d_name.hash;
1039 if (!inode) {
1040 __d_instantiate(entry, NULL);
1041 return NULL;
1044 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1045 struct qstr *qstr = &alias->d_name;
1047 if (qstr->hash != hash)
1048 continue;
1049 if (alias->d_parent != entry->d_parent)
1050 continue;
1051 if (qstr->len != len)
1052 continue;
1053 if (memcmp(qstr->name, name, len))
1054 continue;
1055 dget_locked(alias);
1056 return alias;
1059 __d_instantiate(entry, inode);
1060 return NULL;
1063 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1065 struct dentry *result;
1067 BUG_ON(!list_empty(&entry->d_alias));
1069 spin_lock(&dcache_lock);
1070 result = __d_instantiate_unique(entry, inode);
1071 spin_unlock(&dcache_lock);
1073 if (!result) {
1074 security_d_instantiate(entry, inode);
1075 return NULL;
1078 BUG_ON(!d_unhashed(result));
1079 iput(inode);
1080 return result;
1083 EXPORT_SYMBOL(d_instantiate_unique);
1086 * d_alloc_root - allocate root dentry
1087 * @root_inode: inode to allocate the root for
1089 * Allocate a root ("/") dentry for the inode given. The inode is
1090 * instantiated and returned. %NULL is returned if there is insufficient
1091 * memory or the inode passed is %NULL.
1094 struct dentry * d_alloc_root(struct inode * root_inode)
1096 struct dentry *res = NULL;
1098 if (root_inode) {
1099 static const struct qstr name = { .name = "/", .len = 1 };
1101 res = d_alloc(NULL, &name);
1102 if (res) {
1103 res->d_sb = root_inode->i_sb;
1104 res->d_parent = res;
1105 d_instantiate(res, root_inode);
1108 return res;
1111 static inline struct hlist_head *d_hash(struct dentry *parent,
1112 unsigned long hash)
1114 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1115 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1116 return dentry_hashtable + (hash & D_HASHMASK);
1120 * d_obtain_alias - find or allocate a dentry for a given inode
1121 * @inode: inode to allocate the dentry for
1123 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1124 * similar open by handle operations. The returned dentry may be anonymous,
1125 * or may have a full name (if the inode was already in the cache).
1127 * When called on a directory inode, we must ensure that the inode only ever
1128 * has one dentry. If a dentry is found, that is returned instead of
1129 * allocating a new one.
1131 * On successful return, the reference to the inode has been transferred
1132 * to the dentry. In case of an error the reference on the inode is released.
1133 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1134 * be passed in and will be the error will be propagate to the return value,
1135 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1137 struct dentry *d_obtain_alias(struct inode *inode)
1139 static const struct qstr anonstring = { .name = "" };
1140 struct dentry *tmp;
1141 struct dentry *res;
1143 if (!inode)
1144 return ERR_PTR(-ESTALE);
1145 if (IS_ERR(inode))
1146 return ERR_CAST(inode);
1148 res = d_find_alias(inode);
1149 if (res)
1150 goto out_iput;
1152 tmp = d_alloc(NULL, &anonstring);
1153 if (!tmp) {
1154 res = ERR_PTR(-ENOMEM);
1155 goto out_iput;
1157 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1159 spin_lock(&dcache_lock);
1160 res = __d_find_alias(inode, 0);
1161 if (res) {
1162 spin_unlock(&dcache_lock);
1163 dput(tmp);
1164 goto out_iput;
1167 /* attach a disconnected dentry */
1168 spin_lock(&tmp->d_lock);
1169 tmp->d_sb = inode->i_sb;
1170 tmp->d_inode = inode;
1171 tmp->d_flags |= DCACHE_DISCONNECTED;
1172 tmp->d_flags &= ~DCACHE_UNHASHED;
1173 list_add(&tmp->d_alias, &inode->i_dentry);
1174 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1175 spin_unlock(&tmp->d_lock);
1177 spin_unlock(&dcache_lock);
1178 return tmp;
1180 out_iput:
1181 iput(inode);
1182 return res;
1184 EXPORT_SYMBOL(d_obtain_alias);
1187 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1188 * @inode: the inode which may have a disconnected dentry
1189 * @dentry: a negative dentry which we want to point to the inode.
1191 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1192 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1193 * and return it, else simply d_add the inode to the dentry and return NULL.
1195 * This is needed in the lookup routine of any filesystem that is exportable
1196 * (via knfsd) so that we can build dcache paths to directories effectively.
1198 * If a dentry was found and moved, then it is returned. Otherwise NULL
1199 * is returned. This matches the expected return value of ->lookup.
1202 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1204 struct dentry *new = NULL;
1206 if (inode && S_ISDIR(inode->i_mode)) {
1207 spin_lock(&dcache_lock);
1208 new = __d_find_alias(inode, 1);
1209 if (new) {
1210 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1211 spin_unlock(&dcache_lock);
1212 security_d_instantiate(new, inode);
1213 d_rehash(dentry);
1214 d_move(new, dentry);
1215 iput(inode);
1216 } else {
1217 /* already taking dcache_lock, so d_add() by hand */
1218 __d_instantiate(dentry, inode);
1219 spin_unlock(&dcache_lock);
1220 security_d_instantiate(dentry, inode);
1221 d_rehash(dentry);
1223 } else
1224 d_add(dentry, inode);
1225 return new;
1229 * d_add_ci - lookup or allocate new dentry with case-exact name
1230 * @inode: the inode case-insensitive lookup has found
1231 * @dentry: the negative dentry that was passed to the parent's lookup func
1232 * @name: the case-exact name to be associated with the returned dentry
1234 * This is to avoid filling the dcache with case-insensitive names to the
1235 * same inode, only the actual correct case is stored in the dcache for
1236 * case-insensitive filesystems.
1238 * For a case-insensitive lookup match and if the the case-exact dentry
1239 * already exists in in the dcache, use it and return it.
1241 * If no entry exists with the exact case name, allocate new dentry with
1242 * the exact case, and return the spliced entry.
1244 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1245 struct qstr *name)
1247 int error;
1248 struct dentry *found;
1249 struct dentry *new;
1252 * First check if a dentry matching the name already exists,
1253 * if not go ahead and create it now.
1255 found = d_hash_and_lookup(dentry->d_parent, name);
1256 if (!found) {
1257 new = d_alloc(dentry->d_parent, name);
1258 if (!new) {
1259 error = -ENOMEM;
1260 goto err_out;
1263 found = d_splice_alias(inode, new);
1264 if (found) {
1265 dput(new);
1266 return found;
1268 return new;
1272 * If a matching dentry exists, and it's not negative use it.
1274 * Decrement the reference count to balance the iget() done
1275 * earlier on.
1277 if (found->d_inode) {
1278 if (unlikely(found->d_inode != inode)) {
1279 /* This can't happen because bad inodes are unhashed. */
1280 BUG_ON(!is_bad_inode(inode));
1281 BUG_ON(!is_bad_inode(found->d_inode));
1283 iput(inode);
1284 return found;
1288 * Negative dentry: instantiate it unless the inode is a directory and
1289 * already has a dentry.
1291 spin_lock(&dcache_lock);
1292 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1293 __d_instantiate(found, inode);
1294 spin_unlock(&dcache_lock);
1295 security_d_instantiate(found, inode);
1296 return found;
1300 * In case a directory already has a (disconnected) entry grab a
1301 * reference to it, move it in place and use it.
1303 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1304 dget_locked(new);
1305 spin_unlock(&dcache_lock);
1306 security_d_instantiate(found, inode);
1307 d_move(new, found);
1308 iput(inode);
1309 dput(found);
1310 return new;
1312 err_out:
1313 iput(inode);
1314 return ERR_PTR(error);
1318 * d_lookup - search for a dentry
1319 * @parent: parent dentry
1320 * @name: qstr of name we wish to find
1322 * Searches the children of the parent dentry for the name in question. If
1323 * the dentry is found its reference count is incremented and the dentry
1324 * is returned. The caller must use dput to free the entry when it has
1325 * finished using it. %NULL is returned on failure.
1327 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1328 * Memory barriers are used while updating and doing lockless traversal.
1329 * To avoid races with d_move while rename is happening, d_lock is used.
1331 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1332 * and name pointer in one structure pointed by d_qstr.
1334 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1335 * lookup is going on.
1337 * The dentry unused LRU is not updated even if lookup finds the required dentry
1338 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1339 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1340 * acquisition.
1342 * d_lookup() is protected against the concurrent renames in some unrelated
1343 * directory using the seqlockt_t rename_lock.
1346 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1348 struct dentry * dentry = NULL;
1349 unsigned long seq;
1351 do {
1352 seq = read_seqbegin(&rename_lock);
1353 dentry = __d_lookup(parent, name);
1354 if (dentry)
1355 break;
1356 } while (read_seqretry(&rename_lock, seq));
1357 return dentry;
1360 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1362 unsigned int len = name->len;
1363 unsigned int hash = name->hash;
1364 const unsigned char *str = name->name;
1365 struct hlist_head *head = d_hash(parent,hash);
1366 struct dentry *found = NULL;
1367 struct hlist_node *node;
1368 struct dentry *dentry;
1370 rcu_read_lock();
1372 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1373 struct qstr *qstr;
1375 if (dentry->d_name.hash != hash)
1376 continue;
1377 if (dentry->d_parent != parent)
1378 continue;
1380 spin_lock(&dentry->d_lock);
1383 * Recheck the dentry after taking the lock - d_move may have
1384 * changed things. Don't bother checking the hash because we're
1385 * about to compare the whole name anyway.
1387 if (dentry->d_parent != parent)
1388 goto next;
1390 /* non-existing due to RCU? */
1391 if (d_unhashed(dentry))
1392 goto next;
1395 * It is safe to compare names since d_move() cannot
1396 * change the qstr (protected by d_lock).
1398 qstr = &dentry->d_name;
1399 if (parent->d_op && parent->d_op->d_compare) {
1400 if (parent->d_op->d_compare(parent, qstr, name))
1401 goto next;
1402 } else {
1403 if (qstr->len != len)
1404 goto next;
1405 if (memcmp(qstr->name, str, len))
1406 goto next;
1409 atomic_inc(&dentry->d_count);
1410 found = dentry;
1411 spin_unlock(&dentry->d_lock);
1412 break;
1413 next:
1414 spin_unlock(&dentry->d_lock);
1416 rcu_read_unlock();
1418 return found;
1422 * d_hash_and_lookup - hash the qstr then search for a dentry
1423 * @dir: Directory to search in
1424 * @name: qstr of name we wish to find
1426 * On hash failure or on lookup failure NULL is returned.
1428 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1430 struct dentry *dentry = NULL;
1433 * Check for a fs-specific hash function. Note that we must
1434 * calculate the standard hash first, as the d_op->d_hash()
1435 * routine may choose to leave the hash value unchanged.
1437 name->hash = full_name_hash(name->name, name->len);
1438 if (dir->d_op && dir->d_op->d_hash) {
1439 if (dir->d_op->d_hash(dir, name) < 0)
1440 goto out;
1442 dentry = d_lookup(dir, name);
1443 out:
1444 return dentry;
1448 * d_validate - verify dentry provided from insecure source
1449 * @dentry: The dentry alleged to be valid child of @dparent
1450 * @dparent: The parent dentry (known to be valid)
1452 * An insecure source has sent us a dentry, here we verify it and dget() it.
1453 * This is used by ncpfs in its readdir implementation.
1454 * Zero is returned in the dentry is invalid.
1457 int d_validate(struct dentry *dentry, struct dentry *dparent)
1459 struct hlist_head *base;
1460 struct hlist_node *lhp;
1462 /* Check whether the ptr might be valid at all.. */
1463 if (!kmem_ptr_validate(dentry_cache, dentry))
1464 goto out;
1466 if (dentry->d_parent != dparent)
1467 goto out;
1469 spin_lock(&dcache_lock);
1470 base = d_hash(dparent, dentry->d_name.hash);
1471 hlist_for_each(lhp,base) {
1472 /* hlist_for_each_entry_rcu() not required for d_hash list
1473 * as it is parsed under dcache_lock
1475 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1476 __dget_locked(dentry);
1477 spin_unlock(&dcache_lock);
1478 return 1;
1481 spin_unlock(&dcache_lock);
1482 out:
1483 return 0;
1487 * When a file is deleted, we have two options:
1488 * - turn this dentry into a negative dentry
1489 * - unhash this dentry and free it.
1491 * Usually, we want to just turn this into
1492 * a negative dentry, but if anybody else is
1493 * currently using the dentry or the inode
1494 * we can't do that and we fall back on removing
1495 * it from the hash queues and waiting for
1496 * it to be deleted later when it has no users
1500 * d_delete - delete a dentry
1501 * @dentry: The dentry to delete
1503 * Turn the dentry into a negative dentry if possible, otherwise
1504 * remove it from the hash queues so it can be deleted later
1507 void d_delete(struct dentry * dentry)
1509 int isdir = 0;
1511 * Are we the only user?
1513 spin_lock(&dcache_lock);
1514 spin_lock(&dentry->d_lock);
1515 isdir = S_ISDIR(dentry->d_inode->i_mode);
1516 if (atomic_read(&dentry->d_count) == 1) {
1517 dentry_iput(dentry);
1518 fsnotify_nameremove(dentry, isdir);
1519 return;
1522 if (!d_unhashed(dentry))
1523 __d_drop(dentry);
1525 spin_unlock(&dentry->d_lock);
1526 spin_unlock(&dcache_lock);
1528 fsnotify_nameremove(dentry, isdir);
1531 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1534 entry->d_flags &= ~DCACHE_UNHASHED;
1535 hlist_add_head_rcu(&entry->d_hash, list);
1538 static void _d_rehash(struct dentry * entry)
1540 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1544 * d_rehash - add an entry back to the hash
1545 * @entry: dentry to add to the hash
1547 * Adds a dentry to the hash according to its name.
1550 void d_rehash(struct dentry * entry)
1552 spin_lock(&dcache_lock);
1553 spin_lock(&entry->d_lock);
1554 _d_rehash(entry);
1555 spin_unlock(&entry->d_lock);
1556 spin_unlock(&dcache_lock);
1560 * When switching names, the actual string doesn't strictly have to
1561 * be preserved in the target - because we're dropping the target
1562 * anyway. As such, we can just do a simple memcpy() to copy over
1563 * the new name before we switch.
1565 * Note that we have to be a lot more careful about getting the hash
1566 * switched - we have to switch the hash value properly even if it
1567 * then no longer matches the actual (corrupted) string of the target.
1568 * The hash value has to match the hash queue that the dentry is on..
1570 static void switch_names(struct dentry *dentry, struct dentry *target)
1572 if (dname_external(target)) {
1573 if (dname_external(dentry)) {
1575 * Both external: swap the pointers
1577 swap(target->d_name.name, dentry->d_name.name);
1578 } else {
1580 * dentry:internal, target:external. Steal target's
1581 * storage and make target internal.
1583 memcpy(target->d_iname, dentry->d_name.name,
1584 dentry->d_name.len + 1);
1585 dentry->d_name.name = target->d_name.name;
1586 target->d_name.name = target->d_iname;
1588 } else {
1589 if (dname_external(dentry)) {
1591 * dentry:external, target:internal. Give dentry's
1592 * storage to target and make dentry internal
1594 memcpy(dentry->d_iname, target->d_name.name,
1595 target->d_name.len + 1);
1596 target->d_name.name = dentry->d_name.name;
1597 dentry->d_name.name = dentry->d_iname;
1598 } else {
1600 * Both are internal. Just copy target to dentry
1602 memcpy(dentry->d_iname, target->d_name.name,
1603 target->d_name.len + 1);
1604 dentry->d_name.len = target->d_name.len;
1605 return;
1608 swap(dentry->d_name.len, target->d_name.len);
1612 * We cannibalize "target" when moving dentry on top of it,
1613 * because it's going to be thrown away anyway. We could be more
1614 * polite about it, though.
1616 * This forceful removal will result in ugly /proc output if
1617 * somebody holds a file open that got deleted due to a rename.
1618 * We could be nicer about the deleted file, and let it show
1619 * up under the name it had before it was deleted rather than
1620 * under the original name of the file that was moved on top of it.
1624 * d_move_locked - move a dentry
1625 * @dentry: entry to move
1626 * @target: new dentry
1628 * Update the dcache to reflect the move of a file name. Negative
1629 * dcache entries should not be moved in this way.
1631 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1633 struct hlist_head *list;
1635 if (!dentry->d_inode)
1636 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1638 write_seqlock(&rename_lock);
1640 * XXXX: do we really need to take target->d_lock?
1642 if (target < dentry) {
1643 spin_lock(&target->d_lock);
1644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1645 } else {
1646 spin_lock(&dentry->d_lock);
1647 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1650 /* Move the dentry to the target hash queue, if on different bucket */
1651 if (d_unhashed(dentry))
1652 goto already_unhashed;
1654 hlist_del_rcu(&dentry->d_hash);
1656 already_unhashed:
1657 list = d_hash(target->d_parent, target->d_name.hash);
1658 __d_rehash(dentry, list);
1660 /* Unhash the target: dput() will then get rid of it */
1661 __d_drop(target);
1663 list_del(&dentry->d_u.d_child);
1664 list_del(&target->d_u.d_child);
1666 /* Switch the names.. */
1667 switch_names(dentry, target);
1668 swap(dentry->d_name.hash, target->d_name.hash);
1670 /* ... and switch the parents */
1671 if (IS_ROOT(dentry)) {
1672 dentry->d_parent = target->d_parent;
1673 target->d_parent = target;
1674 INIT_LIST_HEAD(&target->d_u.d_child);
1675 } else {
1676 swap(dentry->d_parent, target->d_parent);
1678 /* And add them back to the (new) parent lists */
1679 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1682 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1683 spin_unlock(&target->d_lock);
1684 fsnotify_d_move(dentry);
1685 spin_unlock(&dentry->d_lock);
1686 write_sequnlock(&rename_lock);
1690 * d_move - move a dentry
1691 * @dentry: entry to move
1692 * @target: new dentry
1694 * Update the dcache to reflect the move of a file name. Negative
1695 * dcache entries should not be moved in this way.
1698 void d_move(struct dentry * dentry, struct dentry * target)
1700 spin_lock(&dcache_lock);
1701 d_move_locked(dentry, target);
1702 spin_unlock(&dcache_lock);
1706 * d_ancestor - search for an ancestor
1707 * @p1: ancestor dentry
1708 * @p2: child dentry
1710 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1711 * an ancestor of p2, else NULL.
1713 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1715 struct dentry *p;
1717 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1718 if (p->d_parent == p1)
1719 return p;
1721 return NULL;
1725 * This helper attempts to cope with remotely renamed directories
1727 * It assumes that the caller is already holding
1728 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1730 * Note: If ever the locking in lock_rename() changes, then please
1731 * remember to update this too...
1733 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1734 __releases(dcache_lock)
1736 struct mutex *m1 = NULL, *m2 = NULL;
1737 struct dentry *ret;
1739 /* If alias and dentry share a parent, then no extra locks required */
1740 if (alias->d_parent == dentry->d_parent)
1741 goto out_unalias;
1743 /* Check for loops */
1744 ret = ERR_PTR(-ELOOP);
1745 if (d_ancestor(alias, dentry))
1746 goto out_err;
1748 /* See lock_rename() */
1749 ret = ERR_PTR(-EBUSY);
1750 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1751 goto out_err;
1752 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1753 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1754 goto out_err;
1755 m2 = &alias->d_parent->d_inode->i_mutex;
1756 out_unalias:
1757 d_move_locked(alias, dentry);
1758 ret = alias;
1759 out_err:
1760 spin_unlock(&dcache_lock);
1761 if (m2)
1762 mutex_unlock(m2);
1763 if (m1)
1764 mutex_unlock(m1);
1765 return ret;
1769 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1770 * named dentry in place of the dentry to be replaced.
1772 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1774 struct dentry *dparent, *aparent;
1776 switch_names(dentry, anon);
1777 swap(dentry->d_name.hash, anon->d_name.hash);
1779 dparent = dentry->d_parent;
1780 aparent = anon->d_parent;
1782 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1783 list_del(&dentry->d_u.d_child);
1784 if (!IS_ROOT(dentry))
1785 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1786 else
1787 INIT_LIST_HEAD(&dentry->d_u.d_child);
1789 anon->d_parent = (dparent == dentry) ? anon : dparent;
1790 list_del(&anon->d_u.d_child);
1791 if (!IS_ROOT(anon))
1792 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1793 else
1794 INIT_LIST_HEAD(&anon->d_u.d_child);
1796 anon->d_flags &= ~DCACHE_DISCONNECTED;
1800 * d_materialise_unique - introduce an inode into the tree
1801 * @dentry: candidate dentry
1802 * @inode: inode to bind to the dentry, to which aliases may be attached
1804 * Introduces an dentry into the tree, substituting an extant disconnected
1805 * root directory alias in its place if there is one
1807 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1809 struct dentry *actual;
1811 BUG_ON(!d_unhashed(dentry));
1813 spin_lock(&dcache_lock);
1815 if (!inode) {
1816 actual = dentry;
1817 __d_instantiate(dentry, NULL);
1818 goto found_lock;
1821 if (S_ISDIR(inode->i_mode)) {
1822 struct dentry *alias;
1824 /* Does an aliased dentry already exist? */
1825 alias = __d_find_alias(inode, 0);
1826 if (alias) {
1827 actual = alias;
1828 /* Is this an anonymous mountpoint that we could splice
1829 * into our tree? */
1830 if (IS_ROOT(alias)) {
1831 spin_lock(&alias->d_lock);
1832 __d_materialise_dentry(dentry, alias);
1833 __d_drop(alias);
1834 goto found;
1836 /* Nope, but we must(!) avoid directory aliasing */
1837 actual = __d_unalias(dentry, alias);
1838 if (IS_ERR(actual))
1839 dput(alias);
1840 goto out_nolock;
1844 /* Add a unique reference */
1845 actual = __d_instantiate_unique(dentry, inode);
1846 if (!actual)
1847 actual = dentry;
1848 else if (unlikely(!d_unhashed(actual)))
1849 goto shouldnt_be_hashed;
1851 found_lock:
1852 spin_lock(&actual->d_lock);
1853 found:
1854 _d_rehash(actual);
1855 spin_unlock(&actual->d_lock);
1856 spin_unlock(&dcache_lock);
1857 out_nolock:
1858 if (actual == dentry) {
1859 security_d_instantiate(dentry, inode);
1860 return NULL;
1863 iput(inode);
1864 return actual;
1866 shouldnt_be_hashed:
1867 spin_unlock(&dcache_lock);
1868 BUG();
1871 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1873 *buflen -= namelen;
1874 if (*buflen < 0)
1875 return -ENAMETOOLONG;
1876 *buffer -= namelen;
1877 memcpy(*buffer, str, namelen);
1878 return 0;
1881 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1883 return prepend(buffer, buflen, name->name, name->len);
1887 * __d_path - return the path of a dentry
1888 * @path: the dentry/vfsmount to report
1889 * @root: root vfsmnt/dentry (may be modified by this function)
1890 * @buffer: buffer to return value in
1891 * @buflen: buffer length
1893 * Convert a dentry into an ASCII path name. If the entry has been deleted
1894 * the string " (deleted)" is appended. Note that this is ambiguous.
1896 * Returns a pointer into the buffer or an error code if the
1897 * path was too long.
1899 * "buflen" should be positive. Caller holds the dcache_lock.
1901 * If path is not reachable from the supplied root, then the value of
1902 * root is changed (without modifying refcounts).
1904 char *__d_path(const struct path *path, struct path *root,
1905 char *buffer, int buflen)
1907 struct dentry *dentry = path->dentry;
1908 struct vfsmount *vfsmnt = path->mnt;
1909 char *end = buffer + buflen;
1910 char *retval;
1912 spin_lock(&vfsmount_lock);
1913 prepend(&end, &buflen, "\0", 1);
1914 if (d_unlinked(dentry) &&
1915 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1916 goto Elong;
1918 if (buflen < 1)
1919 goto Elong;
1920 /* Get '/' right */
1921 retval = end-1;
1922 *retval = '/';
1924 for (;;) {
1925 struct dentry * parent;
1927 if (dentry == root->dentry && vfsmnt == root->mnt)
1928 break;
1929 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1930 /* Global root? */
1931 if (vfsmnt->mnt_parent == vfsmnt) {
1932 goto global_root;
1934 dentry = vfsmnt->mnt_mountpoint;
1935 vfsmnt = vfsmnt->mnt_parent;
1936 continue;
1938 parent = dentry->d_parent;
1939 prefetch(parent);
1940 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1941 (prepend(&end, &buflen, "/", 1) != 0))
1942 goto Elong;
1943 retval = end;
1944 dentry = parent;
1947 out:
1948 spin_unlock(&vfsmount_lock);
1949 return retval;
1951 global_root:
1952 retval += 1; /* hit the slash */
1953 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1954 goto Elong;
1955 root->mnt = vfsmnt;
1956 root->dentry = dentry;
1957 goto out;
1959 Elong:
1960 retval = ERR_PTR(-ENAMETOOLONG);
1961 goto out;
1965 * d_path - return the path of a dentry
1966 * @path: path to report
1967 * @buf: buffer to return value in
1968 * @buflen: buffer length
1970 * Convert a dentry into an ASCII path name. If the entry has been deleted
1971 * the string " (deleted)" is appended. Note that this is ambiguous.
1973 * Returns a pointer into the buffer or an error code if the path was
1974 * too long. Note: Callers should use the returned pointer, not the passed
1975 * in buffer, to use the name! The implementation often starts at an offset
1976 * into the buffer, and may leave 0 bytes at the start.
1978 * "buflen" should be positive.
1980 char *d_path(const struct path *path, char *buf, int buflen)
1982 char *res;
1983 struct path root;
1984 struct path tmp;
1987 * We have various synthetic filesystems that never get mounted. On
1988 * these filesystems dentries are never used for lookup purposes, and
1989 * thus don't need to be hashed. They also don't need a name until a
1990 * user wants to identify the object in /proc/pid/fd/. The little hack
1991 * below allows us to generate a name for these objects on demand:
1993 if (path->dentry->d_op && path->dentry->d_op->d_dname)
1994 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1996 read_lock(&current->fs->lock);
1997 root = current->fs->root;
1998 path_get(&root);
1999 read_unlock(&current->fs->lock);
2000 spin_lock(&dcache_lock);
2001 tmp = root;
2002 res = __d_path(path, &tmp, buf, buflen);
2003 spin_unlock(&dcache_lock);
2004 path_put(&root);
2005 return res;
2009 * Helper function for dentry_operations.d_dname() members
2011 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2012 const char *fmt, ...)
2014 va_list args;
2015 char temp[64];
2016 int sz;
2018 va_start(args, fmt);
2019 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2020 va_end(args);
2022 if (sz > sizeof(temp) || sz > buflen)
2023 return ERR_PTR(-ENAMETOOLONG);
2025 buffer += buflen - sz;
2026 return memcpy(buffer, temp, sz);
2030 * Write full pathname from the root of the filesystem into the buffer.
2032 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2034 char *end = buf + buflen;
2035 char *retval;
2037 spin_lock(&dcache_lock);
2038 prepend(&end, &buflen, "\0", 1);
2039 if (d_unlinked(dentry) &&
2040 (prepend(&end, &buflen, "//deleted", 9) != 0))
2041 goto Elong;
2042 if (buflen < 1)
2043 goto Elong;
2044 /* Get '/' right */
2045 retval = end-1;
2046 *retval = '/';
2048 while (!IS_ROOT(dentry)) {
2049 struct dentry *parent = dentry->d_parent;
2051 prefetch(parent);
2052 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2053 (prepend(&end, &buflen, "/", 1) != 0))
2054 goto Elong;
2056 retval = end;
2057 dentry = parent;
2059 spin_unlock(&dcache_lock);
2060 return retval;
2061 Elong:
2062 spin_unlock(&dcache_lock);
2063 return ERR_PTR(-ENAMETOOLONG);
2067 * NOTE! The user-level library version returns a
2068 * character pointer. The kernel system call just
2069 * returns the length of the buffer filled (which
2070 * includes the ending '\0' character), or a negative
2071 * error value. So libc would do something like
2073 * char *getcwd(char * buf, size_t size)
2075 * int retval;
2077 * retval = sys_getcwd(buf, size);
2078 * if (retval >= 0)
2079 * return buf;
2080 * errno = -retval;
2081 * return NULL;
2084 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2086 int error;
2087 struct path pwd, root;
2088 char *page = (char *) __get_free_page(GFP_USER);
2090 if (!page)
2091 return -ENOMEM;
2093 read_lock(&current->fs->lock);
2094 pwd = current->fs->pwd;
2095 path_get(&pwd);
2096 root = current->fs->root;
2097 path_get(&root);
2098 read_unlock(&current->fs->lock);
2100 error = -ENOENT;
2101 spin_lock(&dcache_lock);
2102 if (!d_unlinked(pwd.dentry)) {
2103 unsigned long len;
2104 struct path tmp = root;
2105 char * cwd;
2107 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2108 spin_unlock(&dcache_lock);
2110 error = PTR_ERR(cwd);
2111 if (IS_ERR(cwd))
2112 goto out;
2114 error = -ERANGE;
2115 len = PAGE_SIZE + page - cwd;
2116 if (len <= size) {
2117 error = len;
2118 if (copy_to_user(buf, cwd, len))
2119 error = -EFAULT;
2121 } else
2122 spin_unlock(&dcache_lock);
2124 out:
2125 path_put(&pwd);
2126 path_put(&root);
2127 free_page((unsigned long) page);
2128 return error;
2132 * Test whether new_dentry is a subdirectory of old_dentry.
2134 * Trivially implemented using the dcache structure
2138 * is_subdir - is new dentry a subdirectory of old_dentry
2139 * @new_dentry: new dentry
2140 * @old_dentry: old dentry
2142 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2143 * Returns 0 otherwise.
2144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2147 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2149 int result;
2150 unsigned long seq;
2152 if (new_dentry == old_dentry)
2153 return 1;
2156 * Need rcu_readlock to protect against the d_parent trashing
2157 * due to d_move
2159 rcu_read_lock();
2160 do {
2161 /* for restarting inner loop in case of seq retry */
2162 seq = read_seqbegin(&rename_lock);
2163 if (d_ancestor(old_dentry, new_dentry))
2164 result = 1;
2165 else
2166 result = 0;
2167 } while (read_seqretry(&rename_lock, seq));
2168 rcu_read_unlock();
2170 return result;
2173 void d_genocide(struct dentry *root)
2175 struct dentry *this_parent = root;
2176 struct list_head *next;
2178 spin_lock(&dcache_lock);
2179 repeat:
2180 next = this_parent->d_subdirs.next;
2181 resume:
2182 while (next != &this_parent->d_subdirs) {
2183 struct list_head *tmp = next;
2184 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2185 next = tmp->next;
2186 if (d_unhashed(dentry)||!dentry->d_inode)
2187 continue;
2188 if (!list_empty(&dentry->d_subdirs)) {
2189 this_parent = dentry;
2190 goto repeat;
2192 atomic_dec(&dentry->d_count);
2194 if (this_parent != root) {
2195 next = this_parent->d_u.d_child.next;
2196 atomic_dec(&this_parent->d_count);
2197 this_parent = this_parent->d_parent;
2198 goto resume;
2200 spin_unlock(&dcache_lock);
2204 * find_inode_number - check for dentry with name
2205 * @dir: directory to check
2206 * @name: Name to find.
2208 * Check whether a dentry already exists for the given name,
2209 * and return the inode number if it has an inode. Otherwise
2210 * 0 is returned.
2212 * This routine is used to post-process directory listings for
2213 * filesystems using synthetic inode numbers, and is necessary
2214 * to keep getcwd() working.
2217 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2219 struct dentry * dentry;
2220 ino_t ino = 0;
2222 dentry = d_hash_and_lookup(dir, name);
2223 if (dentry) {
2224 if (dentry->d_inode)
2225 ino = dentry->d_inode->i_ino;
2226 dput(dentry);
2228 return ino;
2231 static __initdata unsigned long dhash_entries;
2232 static int __init set_dhash_entries(char *str)
2234 if (!str)
2235 return 0;
2236 dhash_entries = simple_strtoul(str, &str, 0);
2237 return 1;
2239 __setup("dhash_entries=", set_dhash_entries);
2241 static void __init dcache_init_early(void)
2243 int loop;
2245 /* If hashes are distributed across NUMA nodes, defer
2246 * hash allocation until vmalloc space is available.
2248 if (hashdist)
2249 return;
2251 dentry_hashtable =
2252 alloc_large_system_hash("Dentry cache",
2253 sizeof(struct hlist_head),
2254 dhash_entries,
2256 HASH_EARLY,
2257 &d_hash_shift,
2258 &d_hash_mask,
2261 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2262 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2265 static void __init dcache_init(void)
2267 int loop;
2270 * A constructor could be added for stable state like the lists,
2271 * but it is probably not worth it because of the cache nature
2272 * of the dcache.
2274 dentry_cache = KMEM_CACHE(dentry,
2275 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2277 register_shrinker(&dcache_shrinker);
2279 /* Hash may have been set up in dcache_init_early */
2280 if (!hashdist)
2281 return;
2283 dentry_hashtable =
2284 alloc_large_system_hash("Dentry cache",
2285 sizeof(struct hlist_head),
2286 dhash_entries,
2289 &d_hash_shift,
2290 &d_hash_mask,
2293 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2294 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2297 /* SLAB cache for __getname() consumers */
2298 struct kmem_cache *names_cachep __read_mostly;
2300 EXPORT_SYMBOL(d_genocide);
2302 void __init vfs_caches_init_early(void)
2304 dcache_init_early();
2305 inode_init_early();
2308 void __init vfs_caches_init(unsigned long mempages)
2310 unsigned long reserve;
2312 /* Base hash sizes on available memory, with a reserve equal to
2313 150% of current kernel size */
2315 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2316 mempages -= reserve;
2318 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2319 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2321 dcache_init();
2322 inode_init();
2323 files_init(mempages);
2324 mnt_init();
2325 bdev_cache_init();
2326 chrdev_init();
2329 EXPORT_SYMBOL(d_alloc);
2330 EXPORT_SYMBOL(d_alloc_root);
2331 EXPORT_SYMBOL(d_delete);
2332 EXPORT_SYMBOL(d_find_alias);
2333 EXPORT_SYMBOL(d_instantiate);
2334 EXPORT_SYMBOL(d_invalidate);
2335 EXPORT_SYMBOL(d_lookup);
2336 EXPORT_SYMBOL(d_move);
2337 EXPORT_SYMBOL_GPL(d_materialise_unique);
2338 EXPORT_SYMBOL(d_path);
2339 EXPORT_SYMBOL(d_prune_aliases);
2340 EXPORT_SYMBOL(d_rehash);
2341 EXPORT_SYMBOL(d_splice_alias);
2342 EXPORT_SYMBOL(d_add_ci);
2343 EXPORT_SYMBOL(d_validate);
2344 EXPORT_SYMBOL(dget_locked);
2345 EXPORT_SYMBOL(dput);
2346 EXPORT_SYMBOL(find_inode_number);
2347 EXPORT_SYMBOL(have_submounts);
2348 EXPORT_SYMBOL(names_cachep);
2349 EXPORT_SYMBOL(shrink_dcache_parent);
2350 EXPORT_SYMBOL(shrink_dcache_sb);