First Support on Ginger and OMAP TI
[linux-ginger.git] / net / core / sock.c
blob7626b6aacd685551cf13bf5fe8fbbbbc6105e56f
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err = 0;
278 int skb_len;
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
306 skb_len = skb->len;
308 skb_queue_tail(&sk->sk_receive_queue, skb);
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
319 int rc = NET_RX_SUCCESS;
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
324 skb->dev = NULL;
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
332 * trylock + unlock semantics:
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
336 rc = sk_backlog_rcv(sk, skb);
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
349 EXPORT_SYMBOL(sk_receive_skb);
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
353 struct dst_entry *dst = sk->sk_dst_cache;
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
361 return dst;
363 EXPORT_SYMBOL(__sk_dst_check);
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
367 struct dst_entry *dst = sk_dst_get(sk);
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
375 return dst;
377 EXPORT_SYMBOL(sk_dst_check);
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
418 index = dev->ifindex;
419 dev_put(dev);
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
427 ret = 0;
429 out:
430 #endif
432 return ret;
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, unsigned int optlen)
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
458 * Options without arguments
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
464 if (optlen < sizeof(int))
465 return -EINVAL;
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
470 valbool = val ? 1 : 0;
472 lock_sock(sk);
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_PROTOCOL:
486 case SO_DOMAIN:
487 case SO_ERROR:
488 ret = -ENOPROTOOPT;
489 break;
490 case SO_DONTROUTE:
491 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
492 break;
493 case SO_BROADCAST:
494 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
495 break;
496 case SO_SNDBUF:
497 /* Don't error on this BSD doesn't and if you think
498 about it this is right. Otherwise apps have to
499 play 'guess the biggest size' games. RCVBUF/SNDBUF
500 are treated in BSD as hints */
502 if (val > sysctl_wmem_max)
503 val = sysctl_wmem_max;
504 set_sndbuf:
505 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
506 if ((val * 2) < SOCK_MIN_SNDBUF)
507 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
508 else
509 sk->sk_sndbuf = val * 2;
512 * Wake up sending tasks if we
513 * upped the value.
515 sk->sk_write_space(sk);
516 break;
518 case SO_SNDBUFFORCE:
519 if (!capable(CAP_NET_ADMIN)) {
520 ret = -EPERM;
521 break;
523 goto set_sndbuf;
525 case SO_RCVBUF:
526 /* Don't error on this BSD doesn't and if you think
527 about it this is right. Otherwise apps have to
528 play 'guess the biggest size' games. RCVBUF/SNDBUF
529 are treated in BSD as hints */
531 if (val > sysctl_rmem_max)
532 val = sysctl_rmem_max;
533 set_rcvbuf:
534 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
536 * We double it on the way in to account for
537 * "struct sk_buff" etc. overhead. Applications
538 * assume that the SO_RCVBUF setting they make will
539 * allow that much actual data to be received on that
540 * socket.
542 * Applications are unaware that "struct sk_buff" and
543 * other overheads allocate from the receive buffer
544 * during socket buffer allocation.
546 * And after considering the possible alternatives,
547 * returning the value we actually used in getsockopt
548 * is the most desirable behavior.
550 if ((val * 2) < SOCK_MIN_RCVBUF)
551 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
552 else
553 sk->sk_rcvbuf = val * 2;
554 break;
556 case SO_RCVBUFFORCE:
557 if (!capable(CAP_NET_ADMIN)) {
558 ret = -EPERM;
559 break;
561 goto set_rcvbuf;
563 case SO_KEEPALIVE:
564 #ifdef CONFIG_INET
565 if (sk->sk_protocol == IPPROTO_TCP)
566 tcp_set_keepalive(sk, valbool);
567 #endif
568 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
569 break;
571 case SO_OOBINLINE:
572 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
573 break;
575 case SO_NO_CHECK:
576 sk->sk_no_check = valbool;
577 break;
579 case SO_PRIORITY:
580 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
581 sk->sk_priority = val;
582 else
583 ret = -EPERM;
584 break;
586 case SO_LINGER:
587 if (optlen < sizeof(ling)) {
588 ret = -EINVAL; /* 1003.1g */
589 break;
591 if (copy_from_user(&ling, optval, sizeof(ling))) {
592 ret = -EFAULT;
593 break;
595 if (!ling.l_onoff)
596 sock_reset_flag(sk, SOCK_LINGER);
597 else {
598 #if (BITS_PER_LONG == 32)
599 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
600 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
601 else
602 #endif
603 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
604 sock_set_flag(sk, SOCK_LINGER);
606 break;
608 case SO_BSDCOMPAT:
609 sock_warn_obsolete_bsdism("setsockopt");
610 break;
612 case SO_PASSCRED:
613 if (valbool)
614 set_bit(SOCK_PASSCRED, &sock->flags);
615 else
616 clear_bit(SOCK_PASSCRED, &sock->flags);
617 break;
619 case SO_TIMESTAMP:
620 case SO_TIMESTAMPNS:
621 if (valbool) {
622 if (optname == SO_TIMESTAMP)
623 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
624 else
625 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
626 sock_set_flag(sk, SOCK_RCVTSTAMP);
627 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
628 } else {
629 sock_reset_flag(sk, SOCK_RCVTSTAMP);
630 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
632 break;
634 case SO_TIMESTAMPING:
635 if (val & ~SOF_TIMESTAMPING_MASK) {
636 ret = -EINVAL;
637 break;
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
640 val & SOF_TIMESTAMPING_TX_HARDWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
642 val & SOF_TIMESTAMPING_TX_SOFTWARE);
643 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
644 val & SOF_TIMESTAMPING_RX_HARDWARE);
645 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
646 sock_enable_timestamp(sk,
647 SOCK_TIMESTAMPING_RX_SOFTWARE);
648 else
649 sock_disable_timestamp(sk,
650 SOCK_TIMESTAMPING_RX_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
652 val & SOF_TIMESTAMPING_SOFTWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
654 val & SOF_TIMESTAMPING_SYS_HARDWARE);
655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
656 val & SOF_TIMESTAMPING_RAW_HARDWARE);
657 break;
659 case SO_RCVLOWAT:
660 if (val < 0)
661 val = INT_MAX;
662 sk->sk_rcvlowat = val ? : 1;
663 break;
665 case SO_RCVTIMEO:
666 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
667 break;
669 case SO_SNDTIMEO:
670 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
671 break;
673 case SO_ATTACH_FILTER:
674 ret = -EINVAL;
675 if (optlen == sizeof(struct sock_fprog)) {
676 struct sock_fprog fprog;
678 ret = -EFAULT;
679 if (copy_from_user(&fprog, optval, sizeof(fprog)))
680 break;
682 ret = sk_attach_filter(&fprog, sk);
684 break;
686 case SO_DETACH_FILTER:
687 ret = sk_detach_filter(sk);
688 break;
690 case SO_PASSSEC:
691 if (valbool)
692 set_bit(SOCK_PASSSEC, &sock->flags);
693 else
694 clear_bit(SOCK_PASSSEC, &sock->flags);
695 break;
696 case SO_MARK:
697 if (!capable(CAP_NET_ADMIN))
698 ret = -EPERM;
699 else
700 sk->sk_mark = val;
701 break;
703 /* We implement the SO_SNDLOWAT etc to
704 not be settable (1003.1g 5.3) */
705 default:
706 ret = -ENOPROTOOPT;
707 break;
709 release_sock(sk);
710 return ret;
712 EXPORT_SYMBOL(sock_setsockopt);
715 int sock_getsockopt(struct socket *sock, int level, int optname,
716 char __user *optval, int __user *optlen)
718 struct sock *sk = sock->sk;
720 union {
721 int val;
722 struct linger ling;
723 struct timeval tm;
724 } v;
726 unsigned int lv = sizeof(int);
727 int len;
729 if (get_user(len, optlen))
730 return -EFAULT;
731 if (len < 0)
732 return -EINVAL;
734 memset(&v, 0, sizeof(v));
736 switch (optname) {
737 case SO_DEBUG:
738 v.val = sock_flag(sk, SOCK_DBG);
739 break;
741 case SO_DONTROUTE:
742 v.val = sock_flag(sk, SOCK_LOCALROUTE);
743 break;
745 case SO_BROADCAST:
746 v.val = !!sock_flag(sk, SOCK_BROADCAST);
747 break;
749 case SO_SNDBUF:
750 v.val = sk->sk_sndbuf;
751 break;
753 case SO_RCVBUF:
754 v.val = sk->sk_rcvbuf;
755 break;
757 case SO_REUSEADDR:
758 v.val = sk->sk_reuse;
759 break;
761 case SO_KEEPALIVE:
762 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
763 break;
765 case SO_TYPE:
766 v.val = sk->sk_type;
767 break;
769 case SO_PROTOCOL:
770 v.val = sk->sk_protocol;
771 break;
773 case SO_DOMAIN:
774 v.val = sk->sk_family;
775 break;
777 case SO_ERROR:
778 v.val = -sock_error(sk);
779 if (v.val == 0)
780 v.val = xchg(&sk->sk_err_soft, 0);
781 break;
783 case SO_OOBINLINE:
784 v.val = !!sock_flag(sk, SOCK_URGINLINE);
785 break;
787 case SO_NO_CHECK:
788 v.val = sk->sk_no_check;
789 break;
791 case SO_PRIORITY:
792 v.val = sk->sk_priority;
793 break;
795 case SO_LINGER:
796 lv = sizeof(v.ling);
797 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
798 v.ling.l_linger = sk->sk_lingertime / HZ;
799 break;
801 case SO_BSDCOMPAT:
802 sock_warn_obsolete_bsdism("getsockopt");
803 break;
805 case SO_TIMESTAMP:
806 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
807 !sock_flag(sk, SOCK_RCVTSTAMPNS);
808 break;
810 case SO_TIMESTAMPNS:
811 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
812 break;
814 case SO_TIMESTAMPING:
815 v.val = 0;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
819 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
820 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
821 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
822 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
823 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
824 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
825 v.val |= SOF_TIMESTAMPING_SOFTWARE;
826 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
827 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
828 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
829 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
830 break;
832 case SO_RCVTIMEO:
833 lv = sizeof(struct timeval);
834 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
835 v.tm.tv_sec = 0;
836 v.tm.tv_usec = 0;
837 } else {
838 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
839 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
841 break;
843 case SO_SNDTIMEO:
844 lv = sizeof(struct timeval);
845 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
846 v.tm.tv_sec = 0;
847 v.tm.tv_usec = 0;
848 } else {
849 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
850 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
852 break;
854 case SO_RCVLOWAT:
855 v.val = sk->sk_rcvlowat;
856 break;
858 case SO_SNDLOWAT:
859 v.val = 1;
860 break;
862 case SO_PASSCRED:
863 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
864 break;
866 case SO_PEERCRED:
867 if (len > sizeof(sk->sk_peercred))
868 len = sizeof(sk->sk_peercred);
869 if (copy_to_user(optval, &sk->sk_peercred, len))
870 return -EFAULT;
871 goto lenout;
873 case SO_PEERNAME:
875 char address[128];
877 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
878 return -ENOTCONN;
879 if (lv < len)
880 return -EINVAL;
881 if (copy_to_user(optval, address, len))
882 return -EFAULT;
883 goto lenout;
886 /* Dubious BSD thing... Probably nobody even uses it, but
887 * the UNIX standard wants it for whatever reason... -DaveM
889 case SO_ACCEPTCONN:
890 v.val = sk->sk_state == TCP_LISTEN;
891 break;
893 case SO_PASSSEC:
894 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
895 break;
897 case SO_PEERSEC:
898 return security_socket_getpeersec_stream(sock, optval, optlen, len);
900 case SO_MARK:
901 v.val = sk->sk_mark;
902 break;
904 default:
905 return -ENOPROTOOPT;
908 if (len > lv)
909 len = lv;
910 if (copy_to_user(optval, &v, len))
911 return -EFAULT;
912 lenout:
913 if (put_user(len, optlen))
914 return -EFAULT;
915 return 0;
919 * Initialize an sk_lock.
921 * (We also register the sk_lock with the lock validator.)
923 static inline void sock_lock_init(struct sock *sk)
925 sock_lock_init_class_and_name(sk,
926 af_family_slock_key_strings[sk->sk_family],
927 af_family_slock_keys + sk->sk_family,
928 af_family_key_strings[sk->sk_family],
929 af_family_keys + sk->sk_family);
933 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
934 * even temporarly, because of RCU lookups. sk_node should also be left as is.
936 static void sock_copy(struct sock *nsk, const struct sock *osk)
938 #ifdef CONFIG_SECURITY_NETWORK
939 void *sptr = nsk->sk_security;
940 #endif
941 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
942 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
943 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
944 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
945 #ifdef CONFIG_SECURITY_NETWORK
946 nsk->sk_security = sptr;
947 security_sk_clone(osk, nsk);
948 #endif
951 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
952 int family)
954 struct sock *sk;
955 struct kmem_cache *slab;
957 slab = prot->slab;
958 if (slab != NULL) {
959 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
960 if (!sk)
961 return sk;
962 if (priority & __GFP_ZERO) {
964 * caches using SLAB_DESTROY_BY_RCU should let
965 * sk_node.next un-modified. Special care is taken
966 * when initializing object to zero.
968 if (offsetof(struct sock, sk_node.next) != 0)
969 memset(sk, 0, offsetof(struct sock, sk_node.next));
970 memset(&sk->sk_node.pprev, 0,
971 prot->obj_size - offsetof(struct sock,
972 sk_node.pprev));
975 else
976 sk = kmalloc(prot->obj_size, priority);
978 if (sk != NULL) {
979 kmemcheck_annotate_bitfield(sk, flags);
981 if (security_sk_alloc(sk, family, priority))
982 goto out_free;
984 if (!try_module_get(prot->owner))
985 goto out_free_sec;
988 return sk;
990 out_free_sec:
991 security_sk_free(sk);
992 out_free:
993 if (slab != NULL)
994 kmem_cache_free(slab, sk);
995 else
996 kfree(sk);
997 return NULL;
1000 static void sk_prot_free(struct proto *prot, struct sock *sk)
1002 struct kmem_cache *slab;
1003 struct module *owner;
1005 owner = prot->owner;
1006 slab = prot->slab;
1008 security_sk_free(sk);
1009 if (slab != NULL)
1010 kmem_cache_free(slab, sk);
1011 else
1012 kfree(sk);
1013 module_put(owner);
1017 * sk_alloc - All socket objects are allocated here
1018 * @net: the applicable net namespace
1019 * @family: protocol family
1020 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1021 * @prot: struct proto associated with this new sock instance
1023 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1024 struct proto *prot)
1026 struct sock *sk;
1028 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1029 if (sk) {
1030 sk->sk_family = family;
1032 * See comment in struct sock definition to understand
1033 * why we need sk_prot_creator -acme
1035 sk->sk_prot = sk->sk_prot_creator = prot;
1036 sock_lock_init(sk);
1037 sock_net_set(sk, get_net(net));
1038 atomic_set(&sk->sk_wmem_alloc, 1);
1041 return sk;
1043 EXPORT_SYMBOL(sk_alloc);
1045 static void __sk_free(struct sock *sk)
1047 struct sk_filter *filter;
1049 if (sk->sk_destruct)
1050 sk->sk_destruct(sk);
1052 filter = rcu_dereference(sk->sk_filter);
1053 if (filter) {
1054 sk_filter_uncharge(sk, filter);
1055 rcu_assign_pointer(sk->sk_filter, NULL);
1058 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1059 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1061 if (atomic_read(&sk->sk_omem_alloc))
1062 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1063 __func__, atomic_read(&sk->sk_omem_alloc));
1065 put_net(sock_net(sk));
1066 sk_prot_free(sk->sk_prot_creator, sk);
1069 void sk_free(struct sock *sk)
1072 * We substract one from sk_wmem_alloc and can know if
1073 * some packets are still in some tx queue.
1074 * If not null, sock_wfree() will call __sk_free(sk) later
1076 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1077 __sk_free(sk);
1079 EXPORT_SYMBOL(sk_free);
1082 * Last sock_put should drop referrence to sk->sk_net. It has already
1083 * been dropped in sk_change_net. Taking referrence to stopping namespace
1084 * is not an option.
1085 * Take referrence to a socket to remove it from hash _alive_ and after that
1086 * destroy it in the context of init_net.
1088 void sk_release_kernel(struct sock *sk)
1090 if (sk == NULL || sk->sk_socket == NULL)
1091 return;
1093 sock_hold(sk);
1094 sock_release(sk->sk_socket);
1095 release_net(sock_net(sk));
1096 sock_net_set(sk, get_net(&init_net));
1097 sock_put(sk);
1099 EXPORT_SYMBOL(sk_release_kernel);
1101 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1103 struct sock *newsk;
1105 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1106 if (newsk != NULL) {
1107 struct sk_filter *filter;
1109 sock_copy(newsk, sk);
1111 /* SANITY */
1112 get_net(sock_net(newsk));
1113 sk_node_init(&newsk->sk_node);
1114 sock_lock_init(newsk);
1115 bh_lock_sock(newsk);
1116 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1118 atomic_set(&newsk->sk_rmem_alloc, 0);
1120 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1122 atomic_set(&newsk->sk_wmem_alloc, 1);
1123 atomic_set(&newsk->sk_omem_alloc, 0);
1124 skb_queue_head_init(&newsk->sk_receive_queue);
1125 skb_queue_head_init(&newsk->sk_write_queue);
1126 #ifdef CONFIG_NET_DMA
1127 skb_queue_head_init(&newsk->sk_async_wait_queue);
1128 #endif
1130 rwlock_init(&newsk->sk_dst_lock);
1131 rwlock_init(&newsk->sk_callback_lock);
1132 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1133 af_callback_keys + newsk->sk_family,
1134 af_family_clock_key_strings[newsk->sk_family]);
1136 newsk->sk_dst_cache = NULL;
1137 newsk->sk_wmem_queued = 0;
1138 newsk->sk_forward_alloc = 0;
1139 newsk->sk_send_head = NULL;
1140 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1142 sock_reset_flag(newsk, SOCK_DONE);
1143 skb_queue_head_init(&newsk->sk_error_queue);
1145 filter = newsk->sk_filter;
1146 if (filter != NULL)
1147 sk_filter_charge(newsk, filter);
1149 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1150 /* It is still raw copy of parent, so invalidate
1151 * destructor and make plain sk_free() */
1152 newsk->sk_destruct = NULL;
1153 sk_free(newsk);
1154 newsk = NULL;
1155 goto out;
1158 newsk->sk_err = 0;
1159 newsk->sk_priority = 0;
1161 * Before updating sk_refcnt, we must commit prior changes to memory
1162 * (Documentation/RCU/rculist_nulls.txt for details)
1164 smp_wmb();
1165 atomic_set(&newsk->sk_refcnt, 2);
1168 * Increment the counter in the same struct proto as the master
1169 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1170 * is the same as sk->sk_prot->socks, as this field was copied
1171 * with memcpy).
1173 * This _changes_ the previous behaviour, where
1174 * tcp_create_openreq_child always was incrementing the
1175 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1176 * to be taken into account in all callers. -acme
1178 sk_refcnt_debug_inc(newsk);
1179 sk_set_socket(newsk, NULL);
1180 newsk->sk_sleep = NULL;
1182 if (newsk->sk_prot->sockets_allocated)
1183 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1185 out:
1186 return newsk;
1188 EXPORT_SYMBOL_GPL(sk_clone);
1190 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1192 __sk_dst_set(sk, dst);
1193 sk->sk_route_caps = dst->dev->features;
1194 if (sk->sk_route_caps & NETIF_F_GSO)
1195 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1196 if (sk_can_gso(sk)) {
1197 if (dst->header_len) {
1198 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1199 } else {
1200 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1201 sk->sk_gso_max_size = dst->dev->gso_max_size;
1205 EXPORT_SYMBOL_GPL(sk_setup_caps);
1207 void __init sk_init(void)
1209 if (totalram_pages <= 4096) {
1210 sysctl_wmem_max = 32767;
1211 sysctl_rmem_max = 32767;
1212 sysctl_wmem_default = 32767;
1213 sysctl_rmem_default = 32767;
1214 } else if (totalram_pages >= 131072) {
1215 sysctl_wmem_max = 131071;
1216 sysctl_rmem_max = 131071;
1221 * Simple resource managers for sockets.
1226 * Write buffer destructor automatically called from kfree_skb.
1228 void sock_wfree(struct sk_buff *skb)
1230 struct sock *sk = skb->sk;
1231 unsigned int len = skb->truesize;
1233 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1235 * Keep a reference on sk_wmem_alloc, this will be released
1236 * after sk_write_space() call
1238 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1239 sk->sk_write_space(sk);
1240 len = 1;
1243 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1244 * could not do because of in-flight packets
1246 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1247 __sk_free(sk);
1249 EXPORT_SYMBOL(sock_wfree);
1252 * Read buffer destructor automatically called from kfree_skb.
1254 void sock_rfree(struct sk_buff *skb)
1256 struct sock *sk = skb->sk;
1258 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1259 sk_mem_uncharge(skb->sk, skb->truesize);
1261 EXPORT_SYMBOL(sock_rfree);
1264 int sock_i_uid(struct sock *sk)
1266 int uid;
1268 read_lock(&sk->sk_callback_lock);
1269 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1270 read_unlock(&sk->sk_callback_lock);
1271 return uid;
1273 EXPORT_SYMBOL(sock_i_uid);
1275 unsigned long sock_i_ino(struct sock *sk)
1277 unsigned long ino;
1279 read_lock(&sk->sk_callback_lock);
1280 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1281 read_unlock(&sk->sk_callback_lock);
1282 return ino;
1284 EXPORT_SYMBOL(sock_i_ino);
1287 * Allocate a skb from the socket's send buffer.
1289 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1290 gfp_t priority)
1292 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1293 struct sk_buff *skb = alloc_skb(size, priority);
1294 if (skb) {
1295 skb_set_owner_w(skb, sk);
1296 return skb;
1299 return NULL;
1301 EXPORT_SYMBOL(sock_wmalloc);
1304 * Allocate a skb from the socket's receive buffer.
1306 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1307 gfp_t priority)
1309 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1310 struct sk_buff *skb = alloc_skb(size, priority);
1311 if (skb) {
1312 skb_set_owner_r(skb, sk);
1313 return skb;
1316 return NULL;
1320 * Allocate a memory block from the socket's option memory buffer.
1322 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1324 if ((unsigned)size <= sysctl_optmem_max &&
1325 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1326 void *mem;
1327 /* First do the add, to avoid the race if kmalloc
1328 * might sleep.
1330 atomic_add(size, &sk->sk_omem_alloc);
1331 mem = kmalloc(size, priority);
1332 if (mem)
1333 return mem;
1334 atomic_sub(size, &sk->sk_omem_alloc);
1336 return NULL;
1338 EXPORT_SYMBOL(sock_kmalloc);
1341 * Free an option memory block.
1343 void sock_kfree_s(struct sock *sk, void *mem, int size)
1345 kfree(mem);
1346 atomic_sub(size, &sk->sk_omem_alloc);
1348 EXPORT_SYMBOL(sock_kfree_s);
1350 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1351 I think, these locks should be removed for datagram sockets.
1353 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1355 DEFINE_WAIT(wait);
1357 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1358 for (;;) {
1359 if (!timeo)
1360 break;
1361 if (signal_pending(current))
1362 break;
1363 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1364 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1365 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1366 break;
1367 if (sk->sk_shutdown & SEND_SHUTDOWN)
1368 break;
1369 if (sk->sk_err)
1370 break;
1371 timeo = schedule_timeout(timeo);
1373 finish_wait(sk->sk_sleep, &wait);
1374 return timeo;
1379 * Generic send/receive buffer handlers
1382 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1383 unsigned long data_len, int noblock,
1384 int *errcode)
1386 struct sk_buff *skb;
1387 gfp_t gfp_mask;
1388 long timeo;
1389 int err;
1391 gfp_mask = sk->sk_allocation;
1392 if (gfp_mask & __GFP_WAIT)
1393 gfp_mask |= __GFP_REPEAT;
1395 timeo = sock_sndtimeo(sk, noblock);
1396 while (1) {
1397 err = sock_error(sk);
1398 if (err != 0)
1399 goto failure;
1401 err = -EPIPE;
1402 if (sk->sk_shutdown & SEND_SHUTDOWN)
1403 goto failure;
1405 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1406 skb = alloc_skb(header_len, gfp_mask);
1407 if (skb) {
1408 int npages;
1409 int i;
1411 /* No pages, we're done... */
1412 if (!data_len)
1413 break;
1415 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1416 skb->truesize += data_len;
1417 skb_shinfo(skb)->nr_frags = npages;
1418 for (i = 0; i < npages; i++) {
1419 struct page *page;
1420 skb_frag_t *frag;
1422 page = alloc_pages(sk->sk_allocation, 0);
1423 if (!page) {
1424 err = -ENOBUFS;
1425 skb_shinfo(skb)->nr_frags = i;
1426 kfree_skb(skb);
1427 goto failure;
1430 frag = &skb_shinfo(skb)->frags[i];
1431 frag->page = page;
1432 frag->page_offset = 0;
1433 frag->size = (data_len >= PAGE_SIZE ?
1434 PAGE_SIZE :
1435 data_len);
1436 data_len -= PAGE_SIZE;
1439 /* Full success... */
1440 break;
1442 err = -ENOBUFS;
1443 goto failure;
1445 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1446 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1447 err = -EAGAIN;
1448 if (!timeo)
1449 goto failure;
1450 if (signal_pending(current))
1451 goto interrupted;
1452 timeo = sock_wait_for_wmem(sk, timeo);
1455 skb_set_owner_w(skb, sk);
1456 return skb;
1458 interrupted:
1459 err = sock_intr_errno(timeo);
1460 failure:
1461 *errcode = err;
1462 return NULL;
1464 EXPORT_SYMBOL(sock_alloc_send_pskb);
1466 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1467 int noblock, int *errcode)
1469 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1471 EXPORT_SYMBOL(sock_alloc_send_skb);
1473 static void __lock_sock(struct sock *sk)
1475 DEFINE_WAIT(wait);
1477 for (;;) {
1478 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1479 TASK_UNINTERRUPTIBLE);
1480 spin_unlock_bh(&sk->sk_lock.slock);
1481 schedule();
1482 spin_lock_bh(&sk->sk_lock.slock);
1483 if (!sock_owned_by_user(sk))
1484 break;
1486 finish_wait(&sk->sk_lock.wq, &wait);
1489 static void __release_sock(struct sock *sk)
1491 struct sk_buff *skb = sk->sk_backlog.head;
1493 do {
1494 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1495 bh_unlock_sock(sk);
1497 do {
1498 struct sk_buff *next = skb->next;
1500 skb->next = NULL;
1501 sk_backlog_rcv(sk, skb);
1504 * We are in process context here with softirqs
1505 * disabled, use cond_resched_softirq() to preempt.
1506 * This is safe to do because we've taken the backlog
1507 * queue private:
1509 cond_resched_softirq();
1511 skb = next;
1512 } while (skb != NULL);
1514 bh_lock_sock(sk);
1515 } while ((skb = sk->sk_backlog.head) != NULL);
1519 * sk_wait_data - wait for data to arrive at sk_receive_queue
1520 * @sk: sock to wait on
1521 * @timeo: for how long
1523 * Now socket state including sk->sk_err is changed only under lock,
1524 * hence we may omit checks after joining wait queue.
1525 * We check receive queue before schedule() only as optimization;
1526 * it is very likely that release_sock() added new data.
1528 int sk_wait_data(struct sock *sk, long *timeo)
1530 int rc;
1531 DEFINE_WAIT(wait);
1533 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1534 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1535 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1536 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1537 finish_wait(sk->sk_sleep, &wait);
1538 return rc;
1540 EXPORT_SYMBOL(sk_wait_data);
1543 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1544 * @sk: socket
1545 * @size: memory size to allocate
1546 * @kind: allocation type
1548 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1549 * rmem allocation. This function assumes that protocols which have
1550 * memory_pressure use sk_wmem_queued as write buffer accounting.
1552 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1554 struct proto *prot = sk->sk_prot;
1555 int amt = sk_mem_pages(size);
1556 int allocated;
1558 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1559 allocated = atomic_add_return(amt, prot->memory_allocated);
1561 /* Under limit. */
1562 if (allocated <= prot->sysctl_mem[0]) {
1563 if (prot->memory_pressure && *prot->memory_pressure)
1564 *prot->memory_pressure = 0;
1565 return 1;
1568 /* Under pressure. */
1569 if (allocated > prot->sysctl_mem[1])
1570 if (prot->enter_memory_pressure)
1571 prot->enter_memory_pressure(sk);
1573 /* Over hard limit. */
1574 if (allocated > prot->sysctl_mem[2])
1575 goto suppress_allocation;
1577 /* guarantee minimum buffer size under pressure */
1578 if (kind == SK_MEM_RECV) {
1579 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1580 return 1;
1581 } else { /* SK_MEM_SEND */
1582 if (sk->sk_type == SOCK_STREAM) {
1583 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1584 return 1;
1585 } else if (atomic_read(&sk->sk_wmem_alloc) <
1586 prot->sysctl_wmem[0])
1587 return 1;
1590 if (prot->memory_pressure) {
1591 int alloc;
1593 if (!*prot->memory_pressure)
1594 return 1;
1595 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1596 if (prot->sysctl_mem[2] > alloc *
1597 sk_mem_pages(sk->sk_wmem_queued +
1598 atomic_read(&sk->sk_rmem_alloc) +
1599 sk->sk_forward_alloc))
1600 return 1;
1603 suppress_allocation:
1605 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1606 sk_stream_moderate_sndbuf(sk);
1608 /* Fail only if socket is _under_ its sndbuf.
1609 * In this case we cannot block, so that we have to fail.
1611 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1612 return 1;
1615 /* Alas. Undo changes. */
1616 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1617 atomic_sub(amt, prot->memory_allocated);
1618 return 0;
1620 EXPORT_SYMBOL(__sk_mem_schedule);
1623 * __sk_reclaim - reclaim memory_allocated
1624 * @sk: socket
1626 void __sk_mem_reclaim(struct sock *sk)
1628 struct proto *prot = sk->sk_prot;
1630 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1631 prot->memory_allocated);
1632 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1634 if (prot->memory_pressure && *prot->memory_pressure &&
1635 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1636 *prot->memory_pressure = 0;
1638 EXPORT_SYMBOL(__sk_mem_reclaim);
1642 * Set of default routines for initialising struct proto_ops when
1643 * the protocol does not support a particular function. In certain
1644 * cases where it makes no sense for a protocol to have a "do nothing"
1645 * function, some default processing is provided.
1648 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1650 return -EOPNOTSUPP;
1652 EXPORT_SYMBOL(sock_no_bind);
1654 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1655 int len, int flags)
1657 return -EOPNOTSUPP;
1659 EXPORT_SYMBOL(sock_no_connect);
1661 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1663 return -EOPNOTSUPP;
1665 EXPORT_SYMBOL(sock_no_socketpair);
1667 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1669 return -EOPNOTSUPP;
1671 EXPORT_SYMBOL(sock_no_accept);
1673 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1674 int *len, int peer)
1676 return -EOPNOTSUPP;
1678 EXPORT_SYMBOL(sock_no_getname);
1680 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1682 return 0;
1684 EXPORT_SYMBOL(sock_no_poll);
1686 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1688 return -EOPNOTSUPP;
1690 EXPORT_SYMBOL(sock_no_ioctl);
1692 int sock_no_listen(struct socket *sock, int backlog)
1694 return -EOPNOTSUPP;
1696 EXPORT_SYMBOL(sock_no_listen);
1698 int sock_no_shutdown(struct socket *sock, int how)
1700 return -EOPNOTSUPP;
1702 EXPORT_SYMBOL(sock_no_shutdown);
1704 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1705 char __user *optval, unsigned int optlen)
1707 return -EOPNOTSUPP;
1709 EXPORT_SYMBOL(sock_no_setsockopt);
1711 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1712 char __user *optval, int __user *optlen)
1714 return -EOPNOTSUPP;
1716 EXPORT_SYMBOL(sock_no_getsockopt);
1718 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1719 size_t len)
1721 return -EOPNOTSUPP;
1723 EXPORT_SYMBOL(sock_no_sendmsg);
1725 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1726 size_t len, int flags)
1728 return -EOPNOTSUPP;
1730 EXPORT_SYMBOL(sock_no_recvmsg);
1732 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1734 /* Mirror missing mmap method error code */
1735 return -ENODEV;
1737 EXPORT_SYMBOL(sock_no_mmap);
1739 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1741 ssize_t res;
1742 struct msghdr msg = {.msg_flags = flags};
1743 struct kvec iov;
1744 char *kaddr = kmap(page);
1745 iov.iov_base = kaddr + offset;
1746 iov.iov_len = size;
1747 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1748 kunmap(page);
1749 return res;
1751 EXPORT_SYMBOL(sock_no_sendpage);
1754 * Default Socket Callbacks
1757 static void sock_def_wakeup(struct sock *sk)
1759 read_lock(&sk->sk_callback_lock);
1760 if (sk_has_sleeper(sk))
1761 wake_up_interruptible_all(sk->sk_sleep);
1762 read_unlock(&sk->sk_callback_lock);
1765 static void sock_def_error_report(struct sock *sk)
1767 read_lock(&sk->sk_callback_lock);
1768 if (sk_has_sleeper(sk))
1769 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1770 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1771 read_unlock(&sk->sk_callback_lock);
1774 static void sock_def_readable(struct sock *sk, int len)
1776 read_lock(&sk->sk_callback_lock);
1777 if (sk_has_sleeper(sk))
1778 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1779 POLLRDNORM | POLLRDBAND);
1780 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1781 read_unlock(&sk->sk_callback_lock);
1784 static void sock_def_write_space(struct sock *sk)
1786 read_lock(&sk->sk_callback_lock);
1788 /* Do not wake up a writer until he can make "significant"
1789 * progress. --DaveM
1791 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1792 if (sk_has_sleeper(sk))
1793 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1794 POLLWRNORM | POLLWRBAND);
1796 /* Should agree with poll, otherwise some programs break */
1797 if (sock_writeable(sk))
1798 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1801 read_unlock(&sk->sk_callback_lock);
1804 static void sock_def_destruct(struct sock *sk)
1806 kfree(sk->sk_protinfo);
1809 void sk_send_sigurg(struct sock *sk)
1811 if (sk->sk_socket && sk->sk_socket->file)
1812 if (send_sigurg(&sk->sk_socket->file->f_owner))
1813 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1815 EXPORT_SYMBOL(sk_send_sigurg);
1817 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1818 unsigned long expires)
1820 if (!mod_timer(timer, expires))
1821 sock_hold(sk);
1823 EXPORT_SYMBOL(sk_reset_timer);
1825 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1827 if (timer_pending(timer) && del_timer(timer))
1828 __sock_put(sk);
1830 EXPORT_SYMBOL(sk_stop_timer);
1832 void sock_init_data(struct socket *sock, struct sock *sk)
1834 skb_queue_head_init(&sk->sk_receive_queue);
1835 skb_queue_head_init(&sk->sk_write_queue);
1836 skb_queue_head_init(&sk->sk_error_queue);
1837 #ifdef CONFIG_NET_DMA
1838 skb_queue_head_init(&sk->sk_async_wait_queue);
1839 #endif
1841 sk->sk_send_head = NULL;
1843 init_timer(&sk->sk_timer);
1845 sk->sk_allocation = GFP_KERNEL;
1846 sk->sk_rcvbuf = sysctl_rmem_default;
1847 sk->sk_sndbuf = sysctl_wmem_default;
1848 sk->sk_state = TCP_CLOSE;
1849 sk_set_socket(sk, sock);
1851 sock_set_flag(sk, SOCK_ZAPPED);
1853 if (sock) {
1854 sk->sk_type = sock->type;
1855 sk->sk_sleep = &sock->wait;
1856 sock->sk = sk;
1857 } else
1858 sk->sk_sleep = NULL;
1860 rwlock_init(&sk->sk_dst_lock);
1861 rwlock_init(&sk->sk_callback_lock);
1862 lockdep_set_class_and_name(&sk->sk_callback_lock,
1863 af_callback_keys + sk->sk_family,
1864 af_family_clock_key_strings[sk->sk_family]);
1866 sk->sk_state_change = sock_def_wakeup;
1867 sk->sk_data_ready = sock_def_readable;
1868 sk->sk_write_space = sock_def_write_space;
1869 sk->sk_error_report = sock_def_error_report;
1870 sk->sk_destruct = sock_def_destruct;
1872 sk->sk_sndmsg_page = NULL;
1873 sk->sk_sndmsg_off = 0;
1875 sk->sk_peercred.pid = 0;
1876 sk->sk_peercred.uid = -1;
1877 sk->sk_peercred.gid = -1;
1878 sk->sk_write_pending = 0;
1879 sk->sk_rcvlowat = 1;
1880 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1881 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1883 sk->sk_stamp = ktime_set(-1L, 0);
1886 * Before updating sk_refcnt, we must commit prior changes to memory
1887 * (Documentation/RCU/rculist_nulls.txt for details)
1889 smp_wmb();
1890 atomic_set(&sk->sk_refcnt, 1);
1891 atomic_set(&sk->sk_drops, 0);
1893 EXPORT_SYMBOL(sock_init_data);
1895 void lock_sock_nested(struct sock *sk, int subclass)
1897 might_sleep();
1898 spin_lock_bh(&sk->sk_lock.slock);
1899 if (sk->sk_lock.owned)
1900 __lock_sock(sk);
1901 sk->sk_lock.owned = 1;
1902 spin_unlock(&sk->sk_lock.slock);
1904 * The sk_lock has mutex_lock() semantics here:
1906 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1907 local_bh_enable();
1909 EXPORT_SYMBOL(lock_sock_nested);
1911 void release_sock(struct sock *sk)
1914 * The sk_lock has mutex_unlock() semantics:
1916 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1918 spin_lock_bh(&sk->sk_lock.slock);
1919 if (sk->sk_backlog.tail)
1920 __release_sock(sk);
1921 sk->sk_lock.owned = 0;
1922 if (waitqueue_active(&sk->sk_lock.wq))
1923 wake_up(&sk->sk_lock.wq);
1924 spin_unlock_bh(&sk->sk_lock.slock);
1926 EXPORT_SYMBOL(release_sock);
1928 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1930 struct timeval tv;
1931 if (!sock_flag(sk, SOCK_TIMESTAMP))
1932 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1933 tv = ktime_to_timeval(sk->sk_stamp);
1934 if (tv.tv_sec == -1)
1935 return -ENOENT;
1936 if (tv.tv_sec == 0) {
1937 sk->sk_stamp = ktime_get_real();
1938 tv = ktime_to_timeval(sk->sk_stamp);
1940 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1942 EXPORT_SYMBOL(sock_get_timestamp);
1944 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1946 struct timespec ts;
1947 if (!sock_flag(sk, SOCK_TIMESTAMP))
1948 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1949 ts = ktime_to_timespec(sk->sk_stamp);
1950 if (ts.tv_sec == -1)
1951 return -ENOENT;
1952 if (ts.tv_sec == 0) {
1953 sk->sk_stamp = ktime_get_real();
1954 ts = ktime_to_timespec(sk->sk_stamp);
1956 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1958 EXPORT_SYMBOL(sock_get_timestampns);
1960 void sock_enable_timestamp(struct sock *sk, int flag)
1962 if (!sock_flag(sk, flag)) {
1963 sock_set_flag(sk, flag);
1965 * we just set one of the two flags which require net
1966 * time stamping, but time stamping might have been on
1967 * already because of the other one
1969 if (!sock_flag(sk,
1970 flag == SOCK_TIMESTAMP ?
1971 SOCK_TIMESTAMPING_RX_SOFTWARE :
1972 SOCK_TIMESTAMP))
1973 net_enable_timestamp();
1978 * Get a socket option on an socket.
1980 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1981 * asynchronous errors should be reported by getsockopt. We assume
1982 * this means if you specify SO_ERROR (otherwise whats the point of it).
1984 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1985 char __user *optval, int __user *optlen)
1987 struct sock *sk = sock->sk;
1989 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1991 EXPORT_SYMBOL(sock_common_getsockopt);
1993 #ifdef CONFIG_COMPAT
1994 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1995 char __user *optval, int __user *optlen)
1997 struct sock *sk = sock->sk;
1999 if (sk->sk_prot->compat_getsockopt != NULL)
2000 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2001 optval, optlen);
2002 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2004 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2005 #endif
2007 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2008 struct msghdr *msg, size_t size, int flags)
2010 struct sock *sk = sock->sk;
2011 int addr_len = 0;
2012 int err;
2014 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2015 flags & ~MSG_DONTWAIT, &addr_len);
2016 if (err >= 0)
2017 msg->msg_namelen = addr_len;
2018 return err;
2020 EXPORT_SYMBOL(sock_common_recvmsg);
2023 * Set socket options on an inet socket.
2025 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2026 char __user *optval, unsigned int optlen)
2028 struct sock *sk = sock->sk;
2030 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2032 EXPORT_SYMBOL(sock_common_setsockopt);
2034 #ifdef CONFIG_COMPAT
2035 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2036 char __user *optval, unsigned int optlen)
2038 struct sock *sk = sock->sk;
2040 if (sk->sk_prot->compat_setsockopt != NULL)
2041 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2042 optval, optlen);
2043 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2045 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2046 #endif
2048 void sk_common_release(struct sock *sk)
2050 if (sk->sk_prot->destroy)
2051 sk->sk_prot->destroy(sk);
2054 * Observation: when sock_common_release is called, processes have
2055 * no access to socket. But net still has.
2056 * Step one, detach it from networking:
2058 * A. Remove from hash tables.
2061 sk->sk_prot->unhash(sk);
2064 * In this point socket cannot receive new packets, but it is possible
2065 * that some packets are in flight because some CPU runs receiver and
2066 * did hash table lookup before we unhashed socket. They will achieve
2067 * receive queue and will be purged by socket destructor.
2069 * Also we still have packets pending on receive queue and probably,
2070 * our own packets waiting in device queues. sock_destroy will drain
2071 * receive queue, but transmitted packets will delay socket destruction
2072 * until the last reference will be released.
2075 sock_orphan(sk);
2077 xfrm_sk_free_policy(sk);
2079 sk_refcnt_debug_release(sk);
2080 sock_put(sk);
2082 EXPORT_SYMBOL(sk_common_release);
2084 static DEFINE_RWLOCK(proto_list_lock);
2085 static LIST_HEAD(proto_list);
2087 #ifdef CONFIG_PROC_FS
2088 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2089 struct prot_inuse {
2090 int val[PROTO_INUSE_NR];
2093 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2095 #ifdef CONFIG_NET_NS
2096 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2098 int cpu = smp_processor_id();
2099 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2101 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2103 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2105 int cpu, idx = prot->inuse_idx;
2106 int res = 0;
2108 for_each_possible_cpu(cpu)
2109 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2111 return res >= 0 ? res : 0;
2113 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2115 static int sock_inuse_init_net(struct net *net)
2117 net->core.inuse = alloc_percpu(struct prot_inuse);
2118 return net->core.inuse ? 0 : -ENOMEM;
2121 static void sock_inuse_exit_net(struct net *net)
2123 free_percpu(net->core.inuse);
2126 static struct pernet_operations net_inuse_ops = {
2127 .init = sock_inuse_init_net,
2128 .exit = sock_inuse_exit_net,
2131 static __init int net_inuse_init(void)
2133 if (register_pernet_subsys(&net_inuse_ops))
2134 panic("Cannot initialize net inuse counters");
2136 return 0;
2139 core_initcall(net_inuse_init);
2140 #else
2141 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2143 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2145 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2147 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2149 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2151 int cpu, idx = prot->inuse_idx;
2152 int res = 0;
2154 for_each_possible_cpu(cpu)
2155 res += per_cpu(prot_inuse, cpu).val[idx];
2157 return res >= 0 ? res : 0;
2159 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2160 #endif
2162 static void assign_proto_idx(struct proto *prot)
2164 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2166 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2167 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2168 return;
2171 set_bit(prot->inuse_idx, proto_inuse_idx);
2174 static void release_proto_idx(struct proto *prot)
2176 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2177 clear_bit(prot->inuse_idx, proto_inuse_idx);
2179 #else
2180 static inline void assign_proto_idx(struct proto *prot)
2184 static inline void release_proto_idx(struct proto *prot)
2187 #endif
2189 int proto_register(struct proto *prot, int alloc_slab)
2191 if (alloc_slab) {
2192 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2193 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2194 NULL);
2196 if (prot->slab == NULL) {
2197 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2198 prot->name);
2199 goto out;
2202 if (prot->rsk_prot != NULL) {
2203 static const char mask[] = "request_sock_%s";
2205 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2206 if (prot->rsk_prot->slab_name == NULL)
2207 goto out_free_sock_slab;
2209 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2210 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2211 prot->rsk_prot->obj_size, 0,
2212 SLAB_HWCACHE_ALIGN, NULL);
2214 if (prot->rsk_prot->slab == NULL) {
2215 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2216 prot->name);
2217 goto out_free_request_sock_slab_name;
2221 if (prot->twsk_prot != NULL) {
2222 static const char mask[] = "tw_sock_%s";
2224 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2226 if (prot->twsk_prot->twsk_slab_name == NULL)
2227 goto out_free_request_sock_slab;
2229 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2230 prot->twsk_prot->twsk_slab =
2231 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2232 prot->twsk_prot->twsk_obj_size,
2234 SLAB_HWCACHE_ALIGN |
2235 prot->slab_flags,
2236 NULL);
2237 if (prot->twsk_prot->twsk_slab == NULL)
2238 goto out_free_timewait_sock_slab_name;
2242 write_lock(&proto_list_lock);
2243 list_add(&prot->node, &proto_list);
2244 assign_proto_idx(prot);
2245 write_unlock(&proto_list_lock);
2246 return 0;
2248 out_free_timewait_sock_slab_name:
2249 kfree(prot->twsk_prot->twsk_slab_name);
2250 out_free_request_sock_slab:
2251 if (prot->rsk_prot && prot->rsk_prot->slab) {
2252 kmem_cache_destroy(prot->rsk_prot->slab);
2253 prot->rsk_prot->slab = NULL;
2255 out_free_request_sock_slab_name:
2256 kfree(prot->rsk_prot->slab_name);
2257 out_free_sock_slab:
2258 kmem_cache_destroy(prot->slab);
2259 prot->slab = NULL;
2260 out:
2261 return -ENOBUFS;
2263 EXPORT_SYMBOL(proto_register);
2265 void proto_unregister(struct proto *prot)
2267 write_lock(&proto_list_lock);
2268 release_proto_idx(prot);
2269 list_del(&prot->node);
2270 write_unlock(&proto_list_lock);
2272 if (prot->slab != NULL) {
2273 kmem_cache_destroy(prot->slab);
2274 prot->slab = NULL;
2277 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2278 kmem_cache_destroy(prot->rsk_prot->slab);
2279 kfree(prot->rsk_prot->slab_name);
2280 prot->rsk_prot->slab = NULL;
2283 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2284 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2285 kfree(prot->twsk_prot->twsk_slab_name);
2286 prot->twsk_prot->twsk_slab = NULL;
2289 EXPORT_SYMBOL(proto_unregister);
2291 #ifdef CONFIG_PROC_FS
2292 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2293 __acquires(proto_list_lock)
2295 read_lock(&proto_list_lock);
2296 return seq_list_start_head(&proto_list, *pos);
2299 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2301 return seq_list_next(v, &proto_list, pos);
2304 static void proto_seq_stop(struct seq_file *seq, void *v)
2305 __releases(proto_list_lock)
2307 read_unlock(&proto_list_lock);
2310 static char proto_method_implemented(const void *method)
2312 return method == NULL ? 'n' : 'y';
2315 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2317 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2318 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2319 proto->name,
2320 proto->obj_size,
2321 sock_prot_inuse_get(seq_file_net(seq), proto),
2322 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2323 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2324 proto->max_header,
2325 proto->slab == NULL ? "no" : "yes",
2326 module_name(proto->owner),
2327 proto_method_implemented(proto->close),
2328 proto_method_implemented(proto->connect),
2329 proto_method_implemented(proto->disconnect),
2330 proto_method_implemented(proto->accept),
2331 proto_method_implemented(proto->ioctl),
2332 proto_method_implemented(proto->init),
2333 proto_method_implemented(proto->destroy),
2334 proto_method_implemented(proto->shutdown),
2335 proto_method_implemented(proto->setsockopt),
2336 proto_method_implemented(proto->getsockopt),
2337 proto_method_implemented(proto->sendmsg),
2338 proto_method_implemented(proto->recvmsg),
2339 proto_method_implemented(proto->sendpage),
2340 proto_method_implemented(proto->bind),
2341 proto_method_implemented(proto->backlog_rcv),
2342 proto_method_implemented(proto->hash),
2343 proto_method_implemented(proto->unhash),
2344 proto_method_implemented(proto->get_port),
2345 proto_method_implemented(proto->enter_memory_pressure));
2348 static int proto_seq_show(struct seq_file *seq, void *v)
2350 if (v == &proto_list)
2351 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2352 "protocol",
2353 "size",
2354 "sockets",
2355 "memory",
2356 "press",
2357 "maxhdr",
2358 "slab",
2359 "module",
2360 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2361 else
2362 proto_seq_printf(seq, list_entry(v, struct proto, node));
2363 return 0;
2366 static const struct seq_operations proto_seq_ops = {
2367 .start = proto_seq_start,
2368 .next = proto_seq_next,
2369 .stop = proto_seq_stop,
2370 .show = proto_seq_show,
2373 static int proto_seq_open(struct inode *inode, struct file *file)
2375 return seq_open_net(inode, file, &proto_seq_ops,
2376 sizeof(struct seq_net_private));
2379 static const struct file_operations proto_seq_fops = {
2380 .owner = THIS_MODULE,
2381 .open = proto_seq_open,
2382 .read = seq_read,
2383 .llseek = seq_lseek,
2384 .release = seq_release_net,
2387 static __net_init int proto_init_net(struct net *net)
2389 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2390 return -ENOMEM;
2392 return 0;
2395 static __net_exit void proto_exit_net(struct net *net)
2397 proc_net_remove(net, "protocols");
2401 static __net_initdata struct pernet_operations proto_net_ops = {
2402 .init = proto_init_net,
2403 .exit = proto_exit_net,
2406 static int __init proto_init(void)
2408 return register_pernet_subsys(&proto_net_ops);
2411 subsys_initcall(proto_init);
2413 #endif /* PROC_FS */