First Support on Ginger and OMAP TI
[linux-ginger.git] / sound / soc / fsl / fsl_ssi.c
blob93f0f38a32c99fb26299c288d3ce0ca442f55914
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/delay.h>
18 #include <sound/core.h>
19 #include <sound/pcm.h>
20 #include <sound/pcm_params.h>
21 #include <sound/initval.h>
22 #include <sound/soc.h>
24 #include <asm/immap_86xx.h>
26 #include "fsl_ssi.h"
28 /**
29 * FSLSSI_I2S_RATES: sample rates supported by the I2S
31 * This driver currently only supports the SSI running in I2S slave mode,
32 * which means the codec determines the sample rate. Therefore, we tell
33 * ALSA that we support all rates and let the codec driver decide what rates
34 * are really supported.
36 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
37 SNDRV_PCM_RATE_CONTINUOUS)
39 /**
40 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
42 * This driver currently only supports the SSI running in I2S slave mode.
44 * The SSI has a limitation in that the samples must be in the same byte
45 * order as the host CPU. This is because when multiple bytes are written
46 * to the STX register, the bytes and bits must be written in the same
47 * order. The STX is a shift register, so all the bits need to be aligned
48 * (bit-endianness must match byte-endianness). Processors typically write
49 * the bits within a byte in the same order that the bytes of a word are
50 * written in. So if the host CPU is big-endian, then only big-endian
51 * samples will be written to STX properly.
53 #ifdef __BIG_ENDIAN
54 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
55 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
56 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
57 #else
58 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
59 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
60 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
61 #endif
63 /* SIER bitflag of interrupts to enable */
64 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
65 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
66 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
67 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
68 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
70 /**
71 * fsl_ssi_private: per-SSI private data
73 * @name: short name for this device ("SSI0", "SSI1", etc)
74 * @ssi: pointer to the SSI's registers
75 * @ssi_phys: physical address of the SSI registers
76 * @irq: IRQ of this SSI
77 * @first_stream: pointer to the stream that was opened first
78 * @second_stream: pointer to second stream
79 * @dev: struct device pointer
80 * @playback: the number of playback streams opened
81 * @capture: the number of capture streams opened
82 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
83 * @cpu_dai: the CPU DAI for this device
84 * @dev_attr: the sysfs device attribute structure
85 * @stats: SSI statistics
87 struct fsl_ssi_private {
88 char name[8];
89 struct ccsr_ssi __iomem *ssi;
90 dma_addr_t ssi_phys;
91 unsigned int irq;
92 struct snd_pcm_substream *first_stream;
93 struct snd_pcm_substream *second_stream;
94 struct device *dev;
95 unsigned int playback;
96 unsigned int capture;
97 int asynchronous;
98 struct snd_soc_dai cpu_dai;
99 struct device_attribute dev_attr;
101 struct {
102 unsigned int rfrc;
103 unsigned int tfrc;
104 unsigned int cmdau;
105 unsigned int cmddu;
106 unsigned int rxt;
107 unsigned int rdr1;
108 unsigned int rdr0;
109 unsigned int tde1;
110 unsigned int tde0;
111 unsigned int roe1;
112 unsigned int roe0;
113 unsigned int tue1;
114 unsigned int tue0;
115 unsigned int tfs;
116 unsigned int rfs;
117 unsigned int tls;
118 unsigned int rls;
119 unsigned int rff1;
120 unsigned int rff0;
121 unsigned int tfe1;
122 unsigned int tfe0;
123 } stats;
127 * fsl_ssi_isr: SSI interrupt handler
129 * Although it's possible to use the interrupt handler to send and receive
130 * data to/from the SSI, we use the DMA instead. Programming is more
131 * complicated, but the performance is much better.
133 * This interrupt handler is used only to gather statistics.
135 * @irq: IRQ of the SSI device
136 * @dev_id: pointer to the ssi_private structure for this SSI device
138 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
140 struct fsl_ssi_private *ssi_private = dev_id;
141 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
142 irqreturn_t ret = IRQ_NONE;
143 __be32 sisr;
144 __be32 sisr2 = 0;
146 /* We got an interrupt, so read the status register to see what we
147 were interrupted for. We mask it with the Interrupt Enable register
148 so that we only check for events that we're interested in.
150 sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
152 if (sisr & CCSR_SSI_SISR_RFRC) {
153 ssi_private->stats.rfrc++;
154 sisr2 |= CCSR_SSI_SISR_RFRC;
155 ret = IRQ_HANDLED;
158 if (sisr & CCSR_SSI_SISR_TFRC) {
159 ssi_private->stats.tfrc++;
160 sisr2 |= CCSR_SSI_SISR_TFRC;
161 ret = IRQ_HANDLED;
164 if (sisr & CCSR_SSI_SISR_CMDAU) {
165 ssi_private->stats.cmdau++;
166 ret = IRQ_HANDLED;
169 if (sisr & CCSR_SSI_SISR_CMDDU) {
170 ssi_private->stats.cmddu++;
171 ret = IRQ_HANDLED;
174 if (sisr & CCSR_SSI_SISR_RXT) {
175 ssi_private->stats.rxt++;
176 ret = IRQ_HANDLED;
179 if (sisr & CCSR_SSI_SISR_RDR1) {
180 ssi_private->stats.rdr1++;
181 ret = IRQ_HANDLED;
184 if (sisr & CCSR_SSI_SISR_RDR0) {
185 ssi_private->stats.rdr0++;
186 ret = IRQ_HANDLED;
189 if (sisr & CCSR_SSI_SISR_TDE1) {
190 ssi_private->stats.tde1++;
191 ret = IRQ_HANDLED;
194 if (sisr & CCSR_SSI_SISR_TDE0) {
195 ssi_private->stats.tde0++;
196 ret = IRQ_HANDLED;
199 if (sisr & CCSR_SSI_SISR_ROE1) {
200 ssi_private->stats.roe1++;
201 sisr2 |= CCSR_SSI_SISR_ROE1;
202 ret = IRQ_HANDLED;
205 if (sisr & CCSR_SSI_SISR_ROE0) {
206 ssi_private->stats.roe0++;
207 sisr2 |= CCSR_SSI_SISR_ROE0;
208 ret = IRQ_HANDLED;
211 if (sisr & CCSR_SSI_SISR_TUE1) {
212 ssi_private->stats.tue1++;
213 sisr2 |= CCSR_SSI_SISR_TUE1;
214 ret = IRQ_HANDLED;
217 if (sisr & CCSR_SSI_SISR_TUE0) {
218 ssi_private->stats.tue0++;
219 sisr2 |= CCSR_SSI_SISR_TUE0;
220 ret = IRQ_HANDLED;
223 if (sisr & CCSR_SSI_SISR_TFS) {
224 ssi_private->stats.tfs++;
225 ret = IRQ_HANDLED;
228 if (sisr & CCSR_SSI_SISR_RFS) {
229 ssi_private->stats.rfs++;
230 ret = IRQ_HANDLED;
233 if (sisr & CCSR_SSI_SISR_TLS) {
234 ssi_private->stats.tls++;
235 ret = IRQ_HANDLED;
238 if (sisr & CCSR_SSI_SISR_RLS) {
239 ssi_private->stats.rls++;
240 ret = IRQ_HANDLED;
243 if (sisr & CCSR_SSI_SISR_RFF1) {
244 ssi_private->stats.rff1++;
245 ret = IRQ_HANDLED;
248 if (sisr & CCSR_SSI_SISR_RFF0) {
249 ssi_private->stats.rff0++;
250 ret = IRQ_HANDLED;
253 if (sisr & CCSR_SSI_SISR_TFE1) {
254 ssi_private->stats.tfe1++;
255 ret = IRQ_HANDLED;
258 if (sisr & CCSR_SSI_SISR_TFE0) {
259 ssi_private->stats.tfe0++;
260 ret = IRQ_HANDLED;
263 /* Clear the bits that we set */
264 if (sisr2)
265 out_be32(&ssi->sisr, sisr2);
267 return ret;
271 * fsl_ssi_startup: create a new substream
273 * This is the first function called when a stream is opened.
275 * If this is the first stream open, then grab the IRQ and program most of
276 * the SSI registers.
278 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
279 struct snd_soc_dai *dai)
281 struct snd_soc_pcm_runtime *rtd = substream->private_data;
282 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
285 * If this is the first stream opened, then request the IRQ
286 * and initialize the SSI registers.
288 if (!ssi_private->playback && !ssi_private->capture) {
289 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
290 int ret;
292 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
293 ssi_private->name, ssi_private);
294 if (ret < 0) {
295 dev_err(substream->pcm->card->dev,
296 "could not claim irq %u\n", ssi_private->irq);
297 return ret;
301 * Section 16.5 of the MPC8610 reference manual says that the
302 * SSI needs to be disabled before updating the registers we set
303 * here.
305 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
308 * Program the SSI into I2S Slave Non-Network Synchronous mode.
309 * Also enable the transmit and receive FIFO.
311 * FIXME: Little-endian samples require a different shift dir
313 clrsetbits_be32(&ssi->scr,
314 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
315 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
316 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
318 out_be32(&ssi->stcr,
319 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
320 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
321 CCSR_SSI_STCR_TSCKP);
323 out_be32(&ssi->srcr,
324 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
325 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
326 CCSR_SSI_SRCR_RSCKP);
329 * The DC and PM bits are only used if the SSI is the clock
330 * master.
333 /* 4. Enable the interrupts and DMA requests */
334 out_be32(&ssi->sier, SIER_FLAGS);
337 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
338 * don't use FIFO 1. Since the SSI only supports stereo, the
339 * watermark should never be an odd number.
341 out_be32(&ssi->sfcsr,
342 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
345 * We keep the SSI disabled because if we enable it, then the
346 * DMA controller will start. It's not supposed to start until
347 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
348 * DMA controller will transfer one "BWC" of data (i.e. the
349 * amount of data that the MR.BWC bits are set to). The reason
350 * this is bad is because at this point, the PCM driver has not
351 * finished initializing the DMA controller.
355 if (!ssi_private->first_stream)
356 ssi_private->first_stream = substream;
357 else {
358 /* This is the second stream open, so we need to impose sample
359 * rate and maybe sample size constraints. Note that this can
360 * cause a race condition if the second stream is opened before
361 * the first stream is fully initialized.
363 * We provide some protection by checking to make sure the first
364 * stream is initialized, but it's not perfect. ALSA sometimes
365 * re-initializes the driver with a different sample rate or
366 * size. If the second stream is opened before the first stream
367 * has received its final parameters, then the second stream may
368 * be constrained to the wrong sample rate or size.
370 * FIXME: This code does not handle opening and closing streams
371 * repeatedly. If you open two streams and then close the first
372 * one, you may not be able to open another stream until you
373 * close the second one as well.
375 struct snd_pcm_runtime *first_runtime =
376 ssi_private->first_stream->runtime;
378 if (!first_runtime->sample_bits) {
379 dev_err(substream->pcm->card->dev,
380 "set sample size in %s stream first\n",
381 substream->stream == SNDRV_PCM_STREAM_PLAYBACK
382 ? "capture" : "playback");
383 return -EAGAIN;
386 /* If we're in synchronous mode, then we need to constrain
387 * the sample size as well. We don't support independent sample
388 * rates in asynchronous mode.
390 if (!ssi_private->asynchronous)
391 snd_pcm_hw_constraint_minmax(substream->runtime,
392 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
393 first_runtime->sample_bits,
394 first_runtime->sample_bits);
396 ssi_private->second_stream = substream;
399 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
400 ssi_private->playback++;
402 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
403 ssi_private->capture++;
405 return 0;
409 * fsl_ssi_hw_params - program the sample size
411 * Most of the SSI registers have been programmed in the startup function,
412 * but the word length must be programmed here. Unfortunately, programming
413 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
414 * cause a problem with supporting simultaneous playback and capture. If
415 * the SSI is already playing a stream, then that stream may be temporarily
416 * stopped when you start capture.
418 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
419 * clock master.
421 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
422 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
424 struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
426 if (substream == ssi_private->first_stream) {
427 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
428 unsigned int sample_size =
429 snd_pcm_format_width(params_format(hw_params));
430 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
432 /* The SSI should always be disabled at this points (SSIEN=0) */
434 /* In synchronous mode, the SSI uses STCCR for capture */
435 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
436 !ssi_private->asynchronous)
437 clrsetbits_be32(&ssi->stccr,
438 CCSR_SSI_SxCCR_WL_MASK, wl);
439 else
440 clrsetbits_be32(&ssi->srccr,
441 CCSR_SSI_SxCCR_WL_MASK, wl);
444 return 0;
448 * fsl_ssi_trigger: start and stop the DMA transfer.
450 * This function is called by ALSA to start, stop, pause, and resume the DMA
451 * transfer of data.
453 * The DMA channel is in external master start and pause mode, which
454 * means the SSI completely controls the flow of data.
456 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
457 struct snd_soc_dai *dai)
459 struct snd_soc_pcm_runtime *rtd = substream->private_data;
460 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
461 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
463 switch (cmd) {
464 case SNDRV_PCM_TRIGGER_START:
465 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
466 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
468 setbits32(&ssi->scr,
469 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
470 else
471 setbits32(&ssi->scr,
472 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
473 break;
475 case SNDRV_PCM_TRIGGER_STOP:
476 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
477 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
478 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
479 else
480 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
481 break;
483 default:
484 return -EINVAL;
487 return 0;
491 * fsl_ssi_shutdown: shutdown the SSI
493 * Shutdown the SSI if there are no other substreams open.
495 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
496 struct snd_soc_dai *dai)
498 struct snd_soc_pcm_runtime *rtd = substream->private_data;
499 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
501 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
502 ssi_private->playback--;
504 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
505 ssi_private->capture--;
507 if (ssi_private->first_stream == substream)
508 ssi_private->first_stream = ssi_private->second_stream;
510 ssi_private->second_stream = NULL;
513 * If this is the last active substream, disable the SSI and release
514 * the IRQ.
516 if (!ssi_private->playback && !ssi_private->capture) {
517 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
519 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
521 free_irq(ssi_private->irq, ssi_private);
526 * fsl_ssi_set_sysclk: set the clock frequency and direction
528 * This function is called by the machine driver to tell us what the clock
529 * frequency and direction are.
531 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
532 * and we don't care about the frequency. Return an error if the direction
533 * is not SND_SOC_CLOCK_IN.
535 * @clk_id: reserved, should be zero
536 * @freq: the frequency of the given clock ID, currently ignored
537 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
539 static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
540 int clk_id, unsigned int freq, int dir)
543 return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
547 * fsl_ssi_set_fmt: set the serial format.
549 * This function is called by the machine driver to tell us what serial
550 * format to use.
552 * Currently, we only support I2S mode. Return an error if the format is
553 * not SND_SOC_DAIFMT_I2S.
555 * @format: one of SND_SOC_DAIFMT_xxx
557 static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
559 return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
563 * fsl_ssi_dai_template: template CPU DAI for the SSI
565 static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
566 .startup = fsl_ssi_startup,
567 .hw_params = fsl_ssi_hw_params,
568 .shutdown = fsl_ssi_shutdown,
569 .trigger = fsl_ssi_trigger,
570 .set_sysclk = fsl_ssi_set_sysclk,
571 .set_fmt = fsl_ssi_set_fmt,
574 static struct snd_soc_dai fsl_ssi_dai_template = {
575 .playback = {
576 /* The SSI does not support monaural audio. */
577 .channels_min = 2,
578 .channels_max = 2,
579 .rates = FSLSSI_I2S_RATES,
580 .formats = FSLSSI_I2S_FORMATS,
582 .capture = {
583 .channels_min = 2,
584 .channels_max = 2,
585 .rates = FSLSSI_I2S_RATES,
586 .formats = FSLSSI_I2S_FORMATS,
588 .ops = &fsl_ssi_dai_ops,
591 /* Show the statistics of a flag only if its interrupt is enabled. The
592 * compiler will optimze this code to a no-op if the interrupt is not
593 * enabled.
595 #define SIER_SHOW(flag, name) \
596 do { \
597 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
598 length += sprintf(buf + length, #name "=%u\n", \
599 ssi_private->stats.name); \
600 } while (0)
604 * fsl_sysfs_ssi_show: display SSI statistics
606 * Display the statistics for the current SSI device. To avoid confusion,
607 * we only show those counts that are enabled.
609 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
612 struct fsl_ssi_private *ssi_private =
613 container_of(attr, struct fsl_ssi_private, dev_attr);
614 ssize_t length = 0;
616 SIER_SHOW(RFRC_EN, rfrc);
617 SIER_SHOW(TFRC_EN, tfrc);
618 SIER_SHOW(CMDAU_EN, cmdau);
619 SIER_SHOW(CMDDU_EN, cmddu);
620 SIER_SHOW(RXT_EN, rxt);
621 SIER_SHOW(RDR1_EN, rdr1);
622 SIER_SHOW(RDR0_EN, rdr0);
623 SIER_SHOW(TDE1_EN, tde1);
624 SIER_SHOW(TDE0_EN, tde0);
625 SIER_SHOW(ROE1_EN, roe1);
626 SIER_SHOW(ROE0_EN, roe0);
627 SIER_SHOW(TUE1_EN, tue1);
628 SIER_SHOW(TUE0_EN, tue0);
629 SIER_SHOW(TFS_EN, tfs);
630 SIER_SHOW(RFS_EN, rfs);
631 SIER_SHOW(TLS_EN, tls);
632 SIER_SHOW(RLS_EN, rls);
633 SIER_SHOW(RFF1_EN, rff1);
634 SIER_SHOW(RFF0_EN, rff0);
635 SIER_SHOW(TFE1_EN, tfe1);
636 SIER_SHOW(TFE0_EN, tfe0);
638 return length;
642 * fsl_ssi_create_dai: create a snd_soc_dai structure
644 * This function is called by the machine driver to create a snd_soc_dai
645 * structure. The function creates an ssi_private object, which contains
646 * the snd_soc_dai. It also creates the sysfs statistics device.
648 struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
650 struct snd_soc_dai *fsl_ssi_dai;
651 struct fsl_ssi_private *ssi_private;
652 int ret = 0;
653 struct device_attribute *dev_attr;
655 ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
656 if (!ssi_private) {
657 dev_err(ssi_info->dev, "could not allocate DAI object\n");
658 return NULL;
660 memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
661 sizeof(struct snd_soc_dai));
663 fsl_ssi_dai = &ssi_private->cpu_dai;
664 dev_attr = &ssi_private->dev_attr;
666 sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
667 ssi_private->ssi = ssi_info->ssi;
668 ssi_private->ssi_phys = ssi_info->ssi_phys;
669 ssi_private->irq = ssi_info->irq;
670 ssi_private->dev = ssi_info->dev;
671 ssi_private->asynchronous = ssi_info->asynchronous;
673 dev_set_drvdata(ssi_private->dev, fsl_ssi_dai);
675 /* Initialize the the device_attribute structure */
676 dev_attr->attr.name = "ssi-stats";
677 dev_attr->attr.mode = S_IRUGO;
678 dev_attr->show = fsl_sysfs_ssi_show;
680 ret = device_create_file(ssi_private->dev, dev_attr);
681 if (ret) {
682 dev_err(ssi_info->dev, "could not create sysfs %s file\n",
683 ssi_private->dev_attr.attr.name);
684 kfree(fsl_ssi_dai);
685 return NULL;
688 fsl_ssi_dai->private_data = ssi_private;
689 fsl_ssi_dai->name = ssi_private->name;
690 fsl_ssi_dai->id = ssi_info->id;
691 fsl_ssi_dai->dev = ssi_info->dev;
692 fsl_ssi_dai->symmetric_rates = 1;
694 ret = snd_soc_register_dai(fsl_ssi_dai);
695 if (ret != 0) {
696 dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret);
697 kfree(fsl_ssi_dai);
698 return NULL;
701 return fsl_ssi_dai;
703 EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
706 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
708 * This function undoes the operations of fsl_ssi_create_dai()
710 void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
712 struct fsl_ssi_private *ssi_private =
713 container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
715 device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
717 snd_soc_unregister_dai(&ssi_private->cpu_dai);
719 kfree(ssi_private);
721 EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
723 static int __init fsl_ssi_init(void)
725 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
727 return 0;
729 module_init(fsl_ssi_init);
731 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
732 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
733 MODULE_LICENSE("GPL");