OMAP3: PM: CPUidle: only scale voltage for deeper C-states
[linux-ginger.git] / sound / soc / soc-core.c
blob7ff04ad2a97e0511d7b31d49cb7b481c9c0214ed
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
39 static DEFINE_MUTEX(pcm_mutex);
40 static DEFINE_MUTEX(io_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
57 * This is a timeout to do a DAPM powerdown after a stream is closed().
58 * It can be used to eliminate pops between different playback streams, e.g.
59 * between two audio tracks.
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
66 * This function forces any delayed work to be queued and run.
68 static int run_delayed_work(struct delayed_work *dwork)
70 int ret;
72 /* cancel any work waiting to be queued. */
73 ret = cancel_delayed_work(dwork);
75 /* if there was any work waiting then we run it now and
76 * wait for it's completion */
77 if (ret) {
78 schedule_delayed_work(dwork, 0);
79 flush_scheduled_work();
81 return ret;
84 #ifdef CONFIG_SND_SOC_AC97_BUS
85 /* unregister ac97 codec */
86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
88 if (codec->ac97->dev.bus)
89 device_unregister(&codec->ac97->dev);
90 return 0;
93 /* stop no dev release warning */
94 static void soc_ac97_device_release(struct device *dev){}
96 /* register ac97 codec to bus */
97 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
99 int err;
101 codec->ac97->dev.bus = &ac97_bus_type;
102 codec->ac97->dev.parent = codec->card->dev;
103 codec->ac97->dev.release = soc_ac97_device_release;
105 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
106 codec->card->number, 0, codec->name);
107 err = device_register(&codec->ac97->dev);
108 if (err < 0) {
109 snd_printk(KERN_ERR "Can't register ac97 bus\n");
110 codec->ac97->dev.bus = NULL;
111 return err;
113 return 0;
115 #endif
117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
119 struct snd_soc_pcm_runtime *rtd = substream->private_data;
120 struct snd_soc_device *socdev = rtd->socdev;
121 struct snd_soc_card *card = socdev->card;
122 struct snd_soc_dai_link *machine = rtd->dai;
123 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
124 struct snd_soc_dai *codec_dai = machine->codec_dai;
125 int ret;
127 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
128 machine->symmetric_rates) {
129 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
130 machine->rate);
132 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
133 SNDRV_PCM_HW_PARAM_RATE,
134 machine->rate,
135 machine->rate);
136 if (ret < 0) {
137 dev_err(card->dev,
138 "Unable to apply rate symmetry constraint: %d\n", ret);
139 return ret;
143 return 0;
147 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
148 * then initialized and any private data can be allocated. This also calls
149 * startup for the cpu DAI, platform, machine and codec DAI.
151 static int soc_pcm_open(struct snd_pcm_substream *substream)
153 struct snd_soc_pcm_runtime *rtd = substream->private_data;
154 struct snd_soc_device *socdev = rtd->socdev;
155 struct snd_soc_card *card = socdev->card;
156 struct snd_pcm_runtime *runtime = substream->runtime;
157 struct snd_soc_dai_link *machine = rtd->dai;
158 struct snd_soc_platform *platform = card->platform;
159 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
160 struct snd_soc_dai *codec_dai = machine->codec_dai;
161 int ret = 0;
163 mutex_lock(&pcm_mutex);
165 /* startup the audio subsystem */
166 if (cpu_dai->ops->startup) {
167 ret = cpu_dai->ops->startup(substream, cpu_dai);
168 if (ret < 0) {
169 printk(KERN_ERR "asoc: can't open interface %s\n",
170 cpu_dai->name);
171 goto out;
175 if (platform->pcm_ops->open) {
176 ret = platform->pcm_ops->open(substream);
177 if (ret < 0) {
178 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
179 goto platform_err;
183 if (codec_dai->ops->startup) {
184 ret = codec_dai->ops->startup(substream, codec_dai);
185 if (ret < 0) {
186 printk(KERN_ERR "asoc: can't open codec %s\n",
187 codec_dai->name);
188 goto codec_dai_err;
192 if (machine->ops && machine->ops->startup) {
193 ret = machine->ops->startup(substream);
194 if (ret < 0) {
195 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
196 goto machine_err;
200 /* Check that the codec and cpu DAI's are compatible */
201 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
202 runtime->hw.rate_min =
203 max(codec_dai->playback.rate_min,
204 cpu_dai->playback.rate_min);
205 runtime->hw.rate_max =
206 min(codec_dai->playback.rate_max,
207 cpu_dai->playback.rate_max);
208 runtime->hw.channels_min =
209 max(codec_dai->playback.channels_min,
210 cpu_dai->playback.channels_min);
211 runtime->hw.channels_max =
212 min(codec_dai->playback.channels_max,
213 cpu_dai->playback.channels_max);
214 runtime->hw.formats =
215 codec_dai->playback.formats & cpu_dai->playback.formats;
216 runtime->hw.rates =
217 codec_dai->playback.rates & cpu_dai->playback.rates;
218 } else {
219 runtime->hw.rate_min =
220 max(codec_dai->capture.rate_min,
221 cpu_dai->capture.rate_min);
222 runtime->hw.rate_max =
223 min(codec_dai->capture.rate_max,
224 cpu_dai->capture.rate_max);
225 runtime->hw.channels_min =
226 max(codec_dai->capture.channels_min,
227 cpu_dai->capture.channels_min);
228 runtime->hw.channels_max =
229 min(codec_dai->capture.channels_max,
230 cpu_dai->capture.channels_max);
231 runtime->hw.formats =
232 codec_dai->capture.formats & cpu_dai->capture.formats;
233 runtime->hw.rates =
234 codec_dai->capture.rates & cpu_dai->capture.rates;
237 snd_pcm_limit_hw_rates(runtime);
238 if (!runtime->hw.rates) {
239 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
240 codec_dai->name, cpu_dai->name);
241 goto machine_err;
243 if (!runtime->hw.formats) {
244 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
245 codec_dai->name, cpu_dai->name);
246 goto machine_err;
248 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
249 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
250 codec_dai->name, cpu_dai->name);
251 goto machine_err;
254 /* Symmetry only applies if we've already got an active stream. */
255 if (cpu_dai->active || codec_dai->active) {
256 ret = soc_pcm_apply_symmetry(substream);
257 if (ret != 0)
258 goto machine_err;
261 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
262 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
263 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
264 runtime->hw.channels_max);
265 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
266 runtime->hw.rate_max);
268 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
269 cpu_dai->playback.active = codec_dai->playback.active = 1;
270 else
271 cpu_dai->capture.active = codec_dai->capture.active = 1;
272 cpu_dai->active = codec_dai->active = 1;
273 cpu_dai->runtime = runtime;
274 card->codec->active++;
275 mutex_unlock(&pcm_mutex);
276 return 0;
278 machine_err:
279 if (machine->ops && machine->ops->shutdown)
280 machine->ops->shutdown(substream);
282 codec_dai_err:
283 if (platform->pcm_ops->close)
284 platform->pcm_ops->close(substream);
286 platform_err:
287 if (cpu_dai->ops->shutdown)
288 cpu_dai->ops->shutdown(substream, cpu_dai);
289 out:
290 mutex_unlock(&pcm_mutex);
291 return ret;
295 * Power down the audio subsystem pmdown_time msecs after close is called.
296 * This is to ensure there are no pops or clicks in between any music tracks
297 * due to DAPM power cycling.
299 static void close_delayed_work(struct work_struct *work)
301 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
302 delayed_work.work);
303 struct snd_soc_codec *codec = card->codec;
304 struct snd_soc_dai *codec_dai;
305 int i;
307 mutex_lock(&pcm_mutex);
308 for (i = 0; i < codec->num_dai; i++) {
309 codec_dai = &codec->dai[i];
311 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
312 codec_dai->playback.stream_name,
313 codec_dai->playback.active ? "active" : "inactive",
314 codec_dai->pop_wait ? "yes" : "no");
316 /* are we waiting on this codec DAI stream */
317 if (codec_dai->pop_wait == 1) {
318 codec_dai->pop_wait = 0;
319 snd_soc_dapm_stream_event(codec,
320 codec_dai->playback.stream_name,
321 SND_SOC_DAPM_STREAM_STOP);
324 mutex_unlock(&pcm_mutex);
328 * Called by ALSA when a PCM substream is closed. Private data can be
329 * freed here. The cpu DAI, codec DAI, machine and platform are also
330 * shutdown.
332 static int soc_codec_close(struct snd_pcm_substream *substream)
334 struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 struct snd_soc_device *socdev = rtd->socdev;
336 struct snd_soc_card *card = socdev->card;
337 struct snd_soc_dai_link *machine = rtd->dai;
338 struct snd_soc_platform *platform = card->platform;
339 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
340 struct snd_soc_dai *codec_dai = machine->codec_dai;
341 struct snd_soc_codec *codec = card->codec;
343 mutex_lock(&pcm_mutex);
345 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 cpu_dai->playback.active = codec_dai->playback.active = 0;
347 else
348 cpu_dai->capture.active = codec_dai->capture.active = 0;
350 if (codec_dai->playback.active == 0 &&
351 codec_dai->capture.active == 0) {
352 cpu_dai->active = codec_dai->active = 0;
354 codec->active--;
356 /* Muting the DAC suppresses artifacts caused during digital
357 * shutdown, for example from stopping clocks.
359 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
360 snd_soc_dai_digital_mute(codec_dai, 1);
362 if (cpu_dai->ops->shutdown)
363 cpu_dai->ops->shutdown(substream, cpu_dai);
365 if (codec_dai->ops->shutdown)
366 codec_dai->ops->shutdown(substream, codec_dai);
368 if (machine->ops && machine->ops->shutdown)
369 machine->ops->shutdown(substream);
371 if (platform->pcm_ops->close)
372 platform->pcm_ops->close(substream);
373 cpu_dai->runtime = NULL;
375 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
376 /* start delayed pop wq here for playback streams */
377 codec_dai->pop_wait = 1;
378 schedule_delayed_work(&card->delayed_work,
379 msecs_to_jiffies(pmdown_time));
380 } else {
381 /* capture streams can be powered down now */
382 snd_soc_dapm_stream_event(codec,
383 codec_dai->capture.stream_name,
384 SND_SOC_DAPM_STREAM_STOP);
387 mutex_unlock(&pcm_mutex);
388 return 0;
392 * Called by ALSA when the PCM substream is prepared, can set format, sample
393 * rate, etc. This function is non atomic and can be called multiple times,
394 * it can refer to the runtime info.
396 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
398 struct snd_soc_pcm_runtime *rtd = substream->private_data;
399 struct snd_soc_device *socdev = rtd->socdev;
400 struct snd_soc_card *card = socdev->card;
401 struct snd_soc_dai_link *machine = rtd->dai;
402 struct snd_soc_platform *platform = card->platform;
403 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
404 struct snd_soc_dai *codec_dai = machine->codec_dai;
405 struct snd_soc_codec *codec = card->codec;
406 int ret = 0;
408 mutex_lock(&pcm_mutex);
410 if (machine->ops && machine->ops->prepare) {
411 ret = machine->ops->prepare(substream);
412 if (ret < 0) {
413 printk(KERN_ERR "asoc: machine prepare error\n");
414 goto out;
418 if (platform->pcm_ops->prepare) {
419 ret = platform->pcm_ops->prepare(substream);
420 if (ret < 0) {
421 printk(KERN_ERR "asoc: platform prepare error\n");
422 goto out;
426 if (codec_dai->ops->prepare) {
427 ret = codec_dai->ops->prepare(substream, codec_dai);
428 if (ret < 0) {
429 printk(KERN_ERR "asoc: codec DAI prepare error\n");
430 goto out;
434 if (cpu_dai->ops->prepare) {
435 ret = cpu_dai->ops->prepare(substream, cpu_dai);
436 if (ret < 0) {
437 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
438 goto out;
442 /* cancel any delayed stream shutdown that is pending */
443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 codec_dai->pop_wait) {
445 codec_dai->pop_wait = 0;
446 cancel_delayed_work(&card->delayed_work);
449 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
450 snd_soc_dapm_stream_event(codec,
451 codec_dai->playback.stream_name,
452 SND_SOC_DAPM_STREAM_START);
453 else
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->capture.stream_name,
456 SND_SOC_DAPM_STREAM_START);
458 snd_soc_dai_digital_mute(codec_dai, 0);
460 out:
461 mutex_unlock(&pcm_mutex);
462 return ret;
466 * Called by ALSA when the hardware params are set by application. This
467 * function can also be called multiple times and can allocate buffers
468 * (using snd_pcm_lib_* ). It's non-atomic.
470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
471 struct snd_pcm_hw_params *params)
473 struct snd_soc_pcm_runtime *rtd = substream->private_data;
474 struct snd_soc_device *socdev = rtd->socdev;
475 struct snd_soc_dai_link *machine = rtd->dai;
476 struct snd_soc_card *card = socdev->card;
477 struct snd_soc_platform *platform = card->platform;
478 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
479 struct snd_soc_dai *codec_dai = machine->codec_dai;
480 int ret = 0;
482 mutex_lock(&pcm_mutex);
484 if (machine->ops && machine->ops->hw_params) {
485 ret = machine->ops->hw_params(substream, params);
486 if (ret < 0) {
487 printk(KERN_ERR "asoc: machine hw_params failed\n");
488 goto out;
492 if (codec_dai->ops->hw_params) {
493 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
494 if (ret < 0) {
495 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
496 codec_dai->name);
497 goto codec_err;
501 if (cpu_dai->ops->hw_params) {
502 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
503 if (ret < 0) {
504 printk(KERN_ERR "asoc: interface %s hw params failed\n",
505 cpu_dai->name);
506 goto interface_err;
510 if (platform->pcm_ops->hw_params) {
511 ret = platform->pcm_ops->hw_params(substream, params);
512 if (ret < 0) {
513 printk(KERN_ERR "asoc: platform %s hw params failed\n",
514 platform->name);
515 goto platform_err;
519 machine->rate = params_rate(params);
521 out:
522 mutex_unlock(&pcm_mutex);
523 return ret;
525 platform_err:
526 if (cpu_dai->ops->hw_free)
527 cpu_dai->ops->hw_free(substream, cpu_dai);
529 interface_err:
530 if (codec_dai->ops->hw_free)
531 codec_dai->ops->hw_free(substream, codec_dai);
533 codec_err:
534 if (machine->ops && machine->ops->hw_free)
535 machine->ops->hw_free(substream);
537 mutex_unlock(&pcm_mutex);
538 return ret;
542 * Free's resources allocated by hw_params, can be called multiple times
544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
546 struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 struct snd_soc_device *socdev = rtd->socdev;
548 struct snd_soc_dai_link *machine = rtd->dai;
549 struct snd_soc_card *card = socdev->card;
550 struct snd_soc_platform *platform = card->platform;
551 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
552 struct snd_soc_dai *codec_dai = machine->codec_dai;
553 struct snd_soc_codec *codec = card->codec;
555 mutex_lock(&pcm_mutex);
557 /* apply codec digital mute */
558 if (!codec->active)
559 snd_soc_dai_digital_mute(codec_dai, 1);
561 /* free any machine hw params */
562 if (machine->ops && machine->ops->hw_free)
563 machine->ops->hw_free(substream);
565 /* free any DMA resources */
566 if (platform->pcm_ops->hw_free)
567 platform->pcm_ops->hw_free(substream);
569 /* now free hw params for the DAI's */
570 if (codec_dai->ops->hw_free)
571 codec_dai->ops->hw_free(substream, codec_dai);
573 if (cpu_dai->ops->hw_free)
574 cpu_dai->ops->hw_free(substream, cpu_dai);
576 mutex_unlock(&pcm_mutex);
577 return 0;
580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
582 struct snd_soc_pcm_runtime *rtd = substream->private_data;
583 struct snd_soc_device *socdev = rtd->socdev;
584 struct snd_soc_card *card= socdev->card;
585 struct snd_soc_dai_link *machine = rtd->dai;
586 struct snd_soc_platform *platform = card->platform;
587 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
588 struct snd_soc_dai *codec_dai = machine->codec_dai;
589 int ret;
591 if (codec_dai->ops->trigger) {
592 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
593 if (ret < 0)
594 return ret;
597 if (platform->pcm_ops->trigger) {
598 ret = platform->pcm_ops->trigger(substream, cmd);
599 if (ret < 0)
600 return ret;
603 if (cpu_dai->ops->trigger) {
604 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
605 if (ret < 0)
606 return ret;
608 return 0;
611 /* ASoC PCM operations */
612 static struct snd_pcm_ops soc_pcm_ops = {
613 .open = soc_pcm_open,
614 .close = soc_codec_close,
615 .hw_params = soc_pcm_hw_params,
616 .hw_free = soc_pcm_hw_free,
617 .prepare = soc_pcm_prepare,
618 .trigger = soc_pcm_trigger,
621 #ifdef CONFIG_PM
622 /* powers down audio subsystem for suspend */
623 static int soc_suspend(struct device *dev)
625 struct platform_device *pdev = to_platform_device(dev);
626 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
627 struct snd_soc_card *card = socdev->card;
628 struct snd_soc_platform *platform = card->platform;
629 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
630 struct snd_soc_codec *codec = card->codec;
631 int i;
633 /* If the initialization of this soc device failed, there is no codec
634 * associated with it. Just bail out in this case.
636 if (!codec)
637 return 0;
639 /* Due to the resume being scheduled into a workqueue we could
640 * suspend before that's finished - wait for it to complete.
642 snd_power_lock(codec->card);
643 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
644 snd_power_unlock(codec->card);
646 /* we're going to block userspace touching us until resume completes */
647 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
649 /* mute any active DAC's */
650 for (i = 0; i < card->num_links; i++) {
651 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
652 if (dai->ops->digital_mute && dai->playback.active)
653 dai->ops->digital_mute(dai, 1);
656 /* suspend all pcms */
657 for (i = 0; i < card->num_links; i++)
658 snd_pcm_suspend_all(card->dai_link[i].pcm);
660 if (card->suspend_pre)
661 card->suspend_pre(pdev, PMSG_SUSPEND);
663 for (i = 0; i < card->num_links; i++) {
664 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
665 if (cpu_dai->suspend && !cpu_dai->ac97_control)
666 cpu_dai->suspend(cpu_dai);
667 if (platform->suspend)
668 platform->suspend(cpu_dai);
671 /* close any waiting streams and save state */
672 run_delayed_work(&card->delayed_work);
673 codec->suspend_bias_level = codec->bias_level;
675 for (i = 0; i < codec->num_dai; i++) {
676 char *stream = codec->dai[i].playback.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 stream = codec->dai[i].capture.stream_name;
681 if (stream != NULL)
682 snd_soc_dapm_stream_event(codec, stream,
683 SND_SOC_DAPM_STREAM_SUSPEND);
686 if (codec_dev->suspend)
687 codec_dev->suspend(pdev, PMSG_SUSPEND);
689 for (i = 0; i < card->num_links; i++) {
690 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
691 if (cpu_dai->suspend && cpu_dai->ac97_control)
692 cpu_dai->suspend(cpu_dai);
695 if (card->suspend_post)
696 card->suspend_post(pdev, PMSG_SUSPEND);
698 return 0;
701 /* deferred resume work, so resume can complete before we finished
702 * setting our codec back up, which can be very slow on I2C
704 static void soc_resume_deferred(struct work_struct *work)
706 struct snd_soc_card *card = container_of(work,
707 struct snd_soc_card,
708 deferred_resume_work);
709 struct snd_soc_device *socdev = card->socdev;
710 struct snd_soc_platform *platform = card->platform;
711 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
712 struct snd_soc_codec *codec = card->codec;
713 struct platform_device *pdev = to_platform_device(socdev->dev);
714 int i;
716 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
717 * so userspace apps are blocked from touching us
720 dev_dbg(socdev->dev, "starting resume work\n");
722 if (card->resume_pre)
723 card->resume_pre(pdev);
725 for (i = 0; i < card->num_links; i++) {
726 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
727 if (cpu_dai->resume && cpu_dai->ac97_control)
728 cpu_dai->resume(cpu_dai);
731 if (codec_dev->resume)
732 codec_dev->resume(pdev);
734 for (i = 0; i < codec->num_dai; i++) {
735 char *stream = codec->dai[i].playback.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 stream = codec->dai[i].capture.stream_name;
740 if (stream != NULL)
741 snd_soc_dapm_stream_event(codec, stream,
742 SND_SOC_DAPM_STREAM_RESUME);
745 /* unmute any active DACs */
746 for (i = 0; i < card->num_links; i++) {
747 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
748 if (dai->ops->digital_mute && dai->playback.active)
749 dai->ops->digital_mute(dai, 0);
752 for (i = 0; i < card->num_links; i++) {
753 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
754 if (cpu_dai->resume && !cpu_dai->ac97_control)
755 cpu_dai->resume(cpu_dai);
756 if (platform->resume)
757 platform->resume(cpu_dai);
760 if (card->resume_post)
761 card->resume_post(pdev);
763 dev_dbg(socdev->dev, "resume work completed\n");
765 /* userspace can access us now we are back as we were before */
766 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
769 /* powers up audio subsystem after a suspend */
770 static int soc_resume(struct device *dev)
772 struct platform_device *pdev = to_platform_device(dev);
773 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 struct snd_soc_card *card = socdev->card;
775 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
777 /* AC97 devices might have other drivers hanging off them so
778 * need to resume immediately. Other drivers don't have that
779 * problem and may take a substantial amount of time to resume
780 * due to I/O costs and anti-pop so handle them out of line.
782 if (cpu_dai->ac97_control) {
783 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
784 soc_resume_deferred(&card->deferred_resume_work);
785 } else {
786 dev_dbg(socdev->dev, "Scheduling resume work\n");
787 if (!schedule_work(&card->deferred_resume_work))
788 dev_err(socdev->dev, "resume work item may be lost\n");
791 return 0;
795 * snd_soc_suspend_device: Notify core of device suspend
797 * @dev: Device being suspended.
799 * In order to ensure that the entire audio subsystem is suspended in a
800 * coordinated fashion ASoC devices should suspend themselves when
801 * called by ASoC. When the standard kernel suspend process asks the
802 * device to suspend it should call this function to initiate a suspend
803 * of the entire ASoC card.
805 * \note Currently this function is stubbed out.
807 int snd_soc_suspend_device(struct device *dev)
809 return 0;
811 EXPORT_SYMBOL_GPL(snd_soc_suspend_device);
814 * snd_soc_resume_device: Notify core of device resume
816 * @dev: Device being resumed.
818 * In order to ensure that the entire audio subsystem is resumed in a
819 * coordinated fashion ASoC devices should resume themselves when called
820 * by ASoC. When the standard kernel resume process asks the device
821 * to resume it should call this function. Once all the components of
822 * the card have notified that they are ready to be resumed the card
823 * will be resumed.
825 * \note Currently this function is stubbed out.
827 int snd_soc_resume_device(struct device *dev)
829 return 0;
831 EXPORT_SYMBOL_GPL(snd_soc_resume_device);
832 #else
833 #define soc_suspend NULL
834 #define soc_resume NULL
835 #endif
837 static void snd_soc_instantiate_card(struct snd_soc_card *card)
839 struct platform_device *pdev = container_of(card->dev,
840 struct platform_device,
841 dev);
842 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
843 struct snd_soc_platform *platform;
844 struct snd_soc_dai *dai;
845 int i, found, ret, ac97;
847 if (card->instantiated)
848 return;
850 found = 0;
851 list_for_each_entry(platform, &platform_list, list)
852 if (card->platform == platform) {
853 found = 1;
854 break;
856 if (!found) {
857 dev_dbg(card->dev, "Platform %s not registered\n",
858 card->platform->name);
859 return;
862 ac97 = 0;
863 for (i = 0; i < card->num_links; i++) {
864 found = 0;
865 list_for_each_entry(dai, &dai_list, list)
866 if (card->dai_link[i].cpu_dai == dai) {
867 found = 1;
868 break;
870 if (!found) {
871 dev_dbg(card->dev, "DAI %s not registered\n",
872 card->dai_link[i].cpu_dai->name);
873 return;
876 if (card->dai_link[i].cpu_dai->ac97_control)
877 ac97 = 1;
880 /* If we have AC97 in the system then don't wait for the
881 * codec. This will need revisiting if we have to handle
882 * systems with mixed AC97 and non-AC97 parts. Only check for
883 * DAIs currently; we can't do this per link since some AC97
884 * codecs have non-AC97 DAIs.
886 if (!ac97)
887 for (i = 0; i < card->num_links; i++) {
888 found = 0;
889 list_for_each_entry(dai, &dai_list, list)
890 if (card->dai_link[i].codec_dai == dai) {
891 found = 1;
892 break;
894 if (!found) {
895 dev_dbg(card->dev, "DAI %s not registered\n",
896 card->dai_link[i].codec_dai->name);
897 return;
901 /* Note that we do not current check for codec components */
903 dev_dbg(card->dev, "All components present, instantiating\n");
905 /* Found everything, bring it up */
906 if (card->probe) {
907 ret = card->probe(pdev);
908 if (ret < 0)
909 return;
912 for (i = 0; i < card->num_links; i++) {
913 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
914 if (cpu_dai->probe) {
915 ret = cpu_dai->probe(pdev, cpu_dai);
916 if (ret < 0)
917 goto cpu_dai_err;
921 if (codec_dev->probe) {
922 ret = codec_dev->probe(pdev);
923 if (ret < 0)
924 goto cpu_dai_err;
927 if (platform->probe) {
928 ret = platform->probe(pdev);
929 if (ret < 0)
930 goto platform_err;
933 /* DAPM stream work */
934 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
935 #ifdef CONFIG_PM
936 /* deferred resume work */
937 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
938 #endif
940 card->instantiated = 1;
942 return;
944 platform_err:
945 if (codec_dev->remove)
946 codec_dev->remove(pdev);
948 cpu_dai_err:
949 for (i--; i >= 0; i--) {
950 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
951 if (cpu_dai->remove)
952 cpu_dai->remove(pdev, cpu_dai);
955 if (card->remove)
956 card->remove(pdev);
960 * Attempt to initialise any uninitalised cards. Must be called with
961 * client_mutex.
963 static void snd_soc_instantiate_cards(void)
965 struct snd_soc_card *card;
966 list_for_each_entry(card, &card_list, list)
967 snd_soc_instantiate_card(card);
970 /* probes a new socdev */
971 static int soc_probe(struct platform_device *pdev)
973 int ret = 0;
974 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
975 struct snd_soc_card *card = socdev->card;
977 /* Bodge while we push things out of socdev */
978 card->socdev = socdev;
980 /* Bodge while we unpick instantiation */
981 card->dev = &pdev->dev;
982 ret = snd_soc_register_card(card);
983 if (ret != 0) {
984 dev_err(&pdev->dev, "Failed to register card\n");
985 return ret;
988 return 0;
991 /* removes a socdev */
992 static int soc_remove(struct platform_device *pdev)
994 int i;
995 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
996 struct snd_soc_card *card = socdev->card;
997 struct snd_soc_platform *platform = card->platform;
998 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1000 if (!card->instantiated)
1001 return 0;
1003 run_delayed_work(&card->delayed_work);
1005 if (platform->remove)
1006 platform->remove(pdev);
1008 if (codec_dev->remove)
1009 codec_dev->remove(pdev);
1011 for (i = 0; i < card->num_links; i++) {
1012 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1013 if (cpu_dai->remove)
1014 cpu_dai->remove(pdev, cpu_dai);
1017 if (card->remove)
1018 card->remove(pdev);
1020 snd_soc_unregister_card(card);
1022 return 0;
1025 static int soc_poweroff(struct device *dev)
1027 struct platform_device *pdev = to_platform_device(dev);
1028 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1029 struct snd_soc_card *card = socdev->card;
1031 if (!card->instantiated)
1032 return 0;
1034 /* Flush out pmdown_time work - we actually do want to run it
1035 * now, we're shutting down so no imminent restart. */
1036 run_delayed_work(&card->delayed_work);
1038 snd_soc_dapm_shutdown(socdev);
1040 return 0;
1043 static struct dev_pm_ops soc_pm_ops = {
1044 .suspend = soc_suspend,
1045 .resume = soc_resume,
1046 .poweroff = soc_poweroff,
1049 /* ASoC platform driver */
1050 static struct platform_driver soc_driver = {
1051 .driver = {
1052 .name = "soc-audio",
1053 .owner = THIS_MODULE,
1054 .pm = &soc_pm_ops,
1056 .probe = soc_probe,
1057 .remove = soc_remove,
1060 /* create a new pcm */
1061 static int soc_new_pcm(struct snd_soc_device *socdev,
1062 struct snd_soc_dai_link *dai_link, int num)
1064 struct snd_soc_card *card = socdev->card;
1065 struct snd_soc_codec *codec = card->codec;
1066 struct snd_soc_platform *platform = card->platform;
1067 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1068 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1069 struct snd_soc_pcm_runtime *rtd;
1070 struct snd_pcm *pcm;
1071 char new_name[64];
1072 int ret = 0, playback = 0, capture = 0;
1074 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1075 if (rtd == NULL)
1076 return -ENOMEM;
1078 rtd->dai = dai_link;
1079 rtd->socdev = socdev;
1080 codec_dai->codec = card->codec;
1082 /* check client and interface hw capabilities */
1083 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1084 num);
1086 if (codec_dai->playback.channels_min)
1087 playback = 1;
1088 if (codec_dai->capture.channels_min)
1089 capture = 1;
1091 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1092 capture, &pcm);
1093 if (ret < 0) {
1094 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1095 codec->name);
1096 kfree(rtd);
1097 return ret;
1100 dai_link->pcm = pcm;
1101 pcm->private_data = rtd;
1102 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1103 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1104 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1105 soc_pcm_ops.copy = platform->pcm_ops->copy;
1106 soc_pcm_ops.silence = platform->pcm_ops->silence;
1107 soc_pcm_ops.ack = platform->pcm_ops->ack;
1108 soc_pcm_ops.page = platform->pcm_ops->page;
1110 if (playback)
1111 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1113 if (capture)
1114 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1116 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1117 if (ret < 0) {
1118 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1119 kfree(rtd);
1120 return ret;
1123 pcm->private_free = platform->pcm_free;
1124 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1125 cpu_dai->name);
1126 return ret;
1130 * snd_soc_codec_volatile_register: Report if a register is volatile.
1132 * @codec: CODEC to query.
1133 * @reg: Register to query.
1135 * Boolean function indiciating if a CODEC register is volatile.
1137 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1139 if (codec->volatile_register)
1140 return codec->volatile_register(reg);
1141 else
1142 return 0;
1144 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1146 /* codec register dump */
1147 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1149 int i, step = 1, count = 0;
1151 if (!codec->reg_cache_size)
1152 return 0;
1154 if (codec->reg_cache_step)
1155 step = codec->reg_cache_step;
1157 count += sprintf(buf, "%s registers\n", codec->name);
1158 for (i = 0; i < codec->reg_cache_size; i += step) {
1159 if (codec->readable_register && !codec->readable_register(i))
1160 continue;
1162 count += sprintf(buf + count, "%2x: ", i);
1163 if (count >= PAGE_SIZE - 1)
1164 break;
1166 if (codec->display_register)
1167 count += codec->display_register(codec, buf + count,
1168 PAGE_SIZE - count, i);
1169 else
1170 count += snprintf(buf + count, PAGE_SIZE - count,
1171 "%4x", codec->read(codec, i));
1173 if (count >= PAGE_SIZE - 1)
1174 break;
1176 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1177 if (count >= PAGE_SIZE - 1)
1178 break;
1181 /* Truncate count; min() would cause a warning */
1182 if (count >= PAGE_SIZE)
1183 count = PAGE_SIZE - 1;
1185 return count;
1187 static ssize_t codec_reg_show(struct device *dev,
1188 struct device_attribute *attr, char *buf)
1190 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1191 return soc_codec_reg_show(devdata->card->codec, buf);
1194 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1196 #ifdef CONFIG_DEBUG_FS
1197 static int codec_reg_open_file(struct inode *inode, struct file *file)
1199 file->private_data = inode->i_private;
1200 return 0;
1203 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1204 size_t count, loff_t *ppos)
1206 ssize_t ret;
1207 struct snd_soc_codec *codec = file->private_data;
1208 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1209 if (!buf)
1210 return -ENOMEM;
1211 ret = soc_codec_reg_show(codec, buf);
1212 if (ret >= 0)
1213 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1214 kfree(buf);
1215 return ret;
1218 static ssize_t codec_reg_write_file(struct file *file,
1219 const char __user *user_buf, size_t count, loff_t *ppos)
1221 char buf[32];
1222 int buf_size;
1223 char *start = buf;
1224 unsigned long reg, value;
1225 int step = 1;
1226 struct snd_soc_codec *codec = file->private_data;
1228 buf_size = min(count, (sizeof(buf)-1));
1229 if (copy_from_user(buf, user_buf, buf_size))
1230 return -EFAULT;
1231 buf[buf_size] = 0;
1233 if (codec->reg_cache_step)
1234 step = codec->reg_cache_step;
1236 while (*start == ' ')
1237 start++;
1238 reg = simple_strtoul(start, &start, 16);
1239 if ((reg >= codec->reg_cache_size) || (reg % step))
1240 return -EINVAL;
1241 while (*start == ' ')
1242 start++;
1243 if (strict_strtoul(start, 16, &value))
1244 return -EINVAL;
1245 codec->write(codec, reg, value);
1246 return buf_size;
1249 static const struct file_operations codec_reg_fops = {
1250 .open = codec_reg_open_file,
1251 .read = codec_reg_read_file,
1252 .write = codec_reg_write_file,
1255 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1257 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1258 debugfs_root, codec,
1259 &codec_reg_fops);
1260 if (!codec->debugfs_reg)
1261 printk(KERN_WARNING
1262 "ASoC: Failed to create codec register debugfs file\n");
1264 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1265 debugfs_root,
1266 &codec->pop_time);
1267 if (!codec->debugfs_pop_time)
1268 printk(KERN_WARNING
1269 "Failed to create pop time debugfs file\n");
1271 codec->debugfs_dapm = debugfs_create_dir("dapm", debugfs_root);
1272 if (!codec->debugfs_dapm)
1273 printk(KERN_WARNING
1274 "Failed to create DAPM debugfs directory\n");
1276 snd_soc_dapm_debugfs_init(codec);
1279 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1281 debugfs_remove_recursive(codec->debugfs_dapm);
1282 debugfs_remove(codec->debugfs_pop_time);
1283 debugfs_remove(codec->debugfs_reg);
1286 #else
1288 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1292 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1295 #endif
1298 * snd_soc_new_ac97_codec - initailise AC97 device
1299 * @codec: audio codec
1300 * @ops: AC97 bus operations
1301 * @num: AC97 codec number
1303 * Initialises AC97 codec resources for use by ad-hoc devices only.
1305 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1306 struct snd_ac97_bus_ops *ops, int num)
1308 mutex_lock(&codec->mutex);
1310 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1311 if (codec->ac97 == NULL) {
1312 mutex_unlock(&codec->mutex);
1313 return -ENOMEM;
1316 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1317 if (codec->ac97->bus == NULL) {
1318 kfree(codec->ac97);
1319 codec->ac97 = NULL;
1320 mutex_unlock(&codec->mutex);
1321 return -ENOMEM;
1324 codec->ac97->bus->ops = ops;
1325 codec->ac97->num = num;
1326 mutex_unlock(&codec->mutex);
1327 return 0;
1329 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1332 * snd_soc_free_ac97_codec - free AC97 codec device
1333 * @codec: audio codec
1335 * Frees AC97 codec device resources.
1337 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1339 mutex_lock(&codec->mutex);
1340 kfree(codec->ac97->bus);
1341 kfree(codec->ac97);
1342 codec->ac97 = NULL;
1343 mutex_unlock(&codec->mutex);
1345 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1348 * snd_soc_update_bits - update codec register bits
1349 * @codec: audio codec
1350 * @reg: codec register
1351 * @mask: register mask
1352 * @value: new value
1354 * Writes new register value.
1356 * Returns 1 for change else 0.
1358 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1359 unsigned int mask, unsigned int value)
1361 int change;
1362 unsigned int old, new;
1364 mutex_lock(&io_mutex);
1365 old = snd_soc_read(codec, reg);
1366 new = (old & ~mask) | value;
1367 change = old != new;
1368 if (change)
1369 snd_soc_write(codec, reg, new);
1371 mutex_unlock(&io_mutex);
1372 return change;
1374 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1377 * snd_soc_test_bits - test register for change
1378 * @codec: audio codec
1379 * @reg: codec register
1380 * @mask: register mask
1381 * @value: new value
1383 * Tests a register with a new value and checks if the new value is
1384 * different from the old value.
1386 * Returns 1 for change else 0.
1388 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1389 unsigned int mask, unsigned int value)
1391 int change;
1392 unsigned int old, new;
1394 mutex_lock(&io_mutex);
1395 old = snd_soc_read(codec, reg);
1396 new = (old & ~mask) | value;
1397 change = old != new;
1398 mutex_unlock(&io_mutex);
1400 return change;
1402 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1405 * snd_soc_new_pcms - create new sound card and pcms
1406 * @socdev: the SoC audio device
1407 * @idx: ALSA card index
1408 * @xid: card identification
1410 * Create a new sound card based upon the codec and interface pcms.
1412 * Returns 0 for success, else error.
1414 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1416 struct snd_soc_card *card = socdev->card;
1417 struct snd_soc_codec *codec = card->codec;
1418 int ret, i;
1420 mutex_lock(&codec->mutex);
1422 /* register a sound card */
1423 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1424 if (ret < 0) {
1425 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1426 codec->name);
1427 mutex_unlock(&codec->mutex);
1428 return ret;
1431 codec->socdev = socdev;
1432 codec->card->dev = socdev->dev;
1433 codec->card->private_data = codec;
1434 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1436 /* create the pcms */
1437 for (i = 0; i < card->num_links; i++) {
1438 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1439 if (ret < 0) {
1440 printk(KERN_ERR "asoc: can't create pcm %s\n",
1441 card->dai_link[i].stream_name);
1442 mutex_unlock(&codec->mutex);
1443 return ret;
1447 mutex_unlock(&codec->mutex);
1448 return ret;
1450 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1453 * snd_soc_init_card - register sound card
1454 * @socdev: the SoC audio device
1456 * Register a SoC sound card. Also registers an AC97 device if the
1457 * codec is AC97 for ad hoc devices.
1459 * Returns 0 for success, else error.
1461 int snd_soc_init_card(struct snd_soc_device *socdev)
1463 struct snd_soc_card *card = socdev->card;
1464 struct snd_soc_codec *codec = card->codec;
1465 int ret = 0, i, ac97 = 0, err = 0;
1467 for (i = 0; i < card->num_links; i++) {
1468 if (card->dai_link[i].init) {
1469 err = card->dai_link[i].init(codec);
1470 if (err < 0) {
1471 printk(KERN_ERR "asoc: failed to init %s\n",
1472 card->dai_link[i].stream_name);
1473 continue;
1476 if (card->dai_link[i].codec_dai->ac97_control) {
1477 ac97 = 1;
1478 snd_ac97_dev_add_pdata(codec->ac97,
1479 card->dai_link[i].cpu_dai->ac97_pdata);
1482 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1483 "%s", card->name);
1484 snprintf(codec->card->longname, sizeof(codec->card->longname),
1485 "%s (%s)", card->name, codec->name);
1487 /* Make sure all DAPM widgets are instantiated */
1488 snd_soc_dapm_new_widgets(codec);
1490 ret = snd_card_register(codec->card);
1491 if (ret < 0) {
1492 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1493 codec->name);
1494 goto out;
1497 mutex_lock(&codec->mutex);
1498 #ifdef CONFIG_SND_SOC_AC97_BUS
1499 /* Only instantiate AC97 if not already done by the adaptor
1500 * for the generic AC97 subsystem.
1502 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1503 ret = soc_ac97_dev_register(codec);
1504 if (ret < 0) {
1505 printk(KERN_ERR "asoc: AC97 device register failed\n");
1506 snd_card_free(codec->card);
1507 mutex_unlock(&codec->mutex);
1508 goto out;
1511 #endif
1513 err = snd_soc_dapm_sys_add(socdev->dev);
1514 if (err < 0)
1515 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1517 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1518 if (err < 0)
1519 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1521 soc_init_codec_debugfs(codec);
1522 mutex_unlock(&codec->mutex);
1524 out:
1525 return ret;
1527 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1530 * snd_soc_free_pcms - free sound card and pcms
1531 * @socdev: the SoC audio device
1533 * Frees sound card and pcms associated with the socdev.
1534 * Also unregister the codec if it is an AC97 device.
1536 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1538 struct snd_soc_codec *codec = socdev->card->codec;
1539 #ifdef CONFIG_SND_SOC_AC97_BUS
1540 struct snd_soc_dai *codec_dai;
1541 int i;
1542 #endif
1544 mutex_lock(&codec->mutex);
1545 soc_cleanup_codec_debugfs(codec);
1546 #ifdef CONFIG_SND_SOC_AC97_BUS
1547 for (i = 0; i < codec->num_dai; i++) {
1548 codec_dai = &codec->dai[i];
1549 if (codec_dai->ac97_control && codec->ac97 &&
1550 strcmp(codec->name, "AC97") != 0) {
1551 soc_ac97_dev_unregister(codec);
1552 goto free_card;
1555 free_card:
1556 #endif
1558 if (codec->card)
1559 snd_card_free(codec->card);
1560 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1561 mutex_unlock(&codec->mutex);
1563 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1566 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1567 * @substream: the pcm substream
1568 * @hw: the hardware parameters
1570 * Sets the substream runtime hardware parameters.
1572 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1573 const struct snd_pcm_hardware *hw)
1575 struct snd_pcm_runtime *runtime = substream->runtime;
1576 runtime->hw.info = hw->info;
1577 runtime->hw.formats = hw->formats;
1578 runtime->hw.period_bytes_min = hw->period_bytes_min;
1579 runtime->hw.period_bytes_max = hw->period_bytes_max;
1580 runtime->hw.periods_min = hw->periods_min;
1581 runtime->hw.periods_max = hw->periods_max;
1582 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1583 runtime->hw.fifo_size = hw->fifo_size;
1584 return 0;
1586 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1589 * snd_soc_cnew - create new control
1590 * @_template: control template
1591 * @data: control private data
1592 * @long_name: control long name
1594 * Create a new mixer control from a template control.
1596 * Returns 0 for success, else error.
1598 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1599 void *data, char *long_name)
1601 struct snd_kcontrol_new template;
1603 memcpy(&template, _template, sizeof(template));
1604 if (long_name)
1605 template.name = long_name;
1606 template.index = 0;
1608 return snd_ctl_new1(&template, data);
1610 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1613 * snd_soc_add_controls - add an array of controls to a codec.
1614 * Convienience function to add a list of controls. Many codecs were
1615 * duplicating this code.
1617 * @codec: codec to add controls to
1618 * @controls: array of controls to add
1619 * @num_controls: number of elements in the array
1621 * Return 0 for success, else error.
1623 int snd_soc_add_controls(struct snd_soc_codec *codec,
1624 const struct snd_kcontrol_new *controls, int num_controls)
1626 struct snd_card *card = codec->card;
1627 int err, i;
1629 for (i = 0; i < num_controls; i++) {
1630 const struct snd_kcontrol_new *control = &controls[i];
1631 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1632 if (err < 0) {
1633 dev_err(codec->dev, "%s: Failed to add %s\n",
1634 codec->name, control->name);
1635 return err;
1639 return 0;
1641 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1644 * snd_soc_info_enum_double - enumerated double mixer info callback
1645 * @kcontrol: mixer control
1646 * @uinfo: control element information
1648 * Callback to provide information about a double enumerated
1649 * mixer control.
1651 * Returns 0 for success.
1653 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1654 struct snd_ctl_elem_info *uinfo)
1656 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1658 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1659 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1660 uinfo->value.enumerated.items = e->max;
1662 if (uinfo->value.enumerated.item > e->max - 1)
1663 uinfo->value.enumerated.item = e->max - 1;
1664 strcpy(uinfo->value.enumerated.name,
1665 e->texts[uinfo->value.enumerated.item]);
1666 return 0;
1668 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1671 * snd_soc_get_enum_double - enumerated double mixer get callback
1672 * @kcontrol: mixer control
1673 * @ucontrol: control element information
1675 * Callback to get the value of a double enumerated mixer.
1677 * Returns 0 for success.
1679 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1680 struct snd_ctl_elem_value *ucontrol)
1682 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1683 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1684 unsigned int val, bitmask;
1686 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1688 val = snd_soc_read(codec, e->reg);
1689 ucontrol->value.enumerated.item[0]
1690 = (val >> e->shift_l) & (bitmask - 1);
1691 if (e->shift_l != e->shift_r)
1692 ucontrol->value.enumerated.item[1] =
1693 (val >> e->shift_r) & (bitmask - 1);
1695 return 0;
1697 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1700 * snd_soc_put_enum_double - enumerated double mixer put callback
1701 * @kcontrol: mixer control
1702 * @ucontrol: control element information
1704 * Callback to set the value of a double enumerated mixer.
1706 * Returns 0 for success.
1708 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1709 struct snd_ctl_elem_value *ucontrol)
1711 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1712 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1713 unsigned int val;
1714 unsigned int mask, bitmask;
1716 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1718 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1719 return -EINVAL;
1720 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1721 mask = (bitmask - 1) << e->shift_l;
1722 if (e->shift_l != e->shift_r) {
1723 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1724 return -EINVAL;
1725 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1726 mask |= (bitmask - 1) << e->shift_r;
1729 return snd_soc_update_bits(codec, e->reg, mask, val);
1731 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1734 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1735 * @kcontrol: mixer control
1736 * @ucontrol: control element information
1738 * Callback to get the value of a double semi enumerated mixer.
1740 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1741 * used for handling bitfield coded enumeration for example.
1743 * Returns 0 for success.
1745 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1746 struct snd_ctl_elem_value *ucontrol)
1748 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1749 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1750 unsigned int reg_val, val, mux;
1752 reg_val = snd_soc_read(codec, e->reg);
1753 val = (reg_val >> e->shift_l) & e->mask;
1754 for (mux = 0; mux < e->max; mux++) {
1755 if (val == e->values[mux])
1756 break;
1758 ucontrol->value.enumerated.item[0] = mux;
1759 if (e->shift_l != e->shift_r) {
1760 val = (reg_val >> e->shift_r) & e->mask;
1761 for (mux = 0; mux < e->max; mux++) {
1762 if (val == e->values[mux])
1763 break;
1765 ucontrol->value.enumerated.item[1] = mux;
1768 return 0;
1770 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1773 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1774 * @kcontrol: mixer control
1775 * @ucontrol: control element information
1777 * Callback to set the value of a double semi enumerated mixer.
1779 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1780 * used for handling bitfield coded enumeration for example.
1782 * Returns 0 for success.
1784 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1785 struct snd_ctl_elem_value *ucontrol)
1787 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1788 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1789 unsigned int val;
1790 unsigned int mask;
1792 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1793 return -EINVAL;
1794 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1795 mask = e->mask << e->shift_l;
1796 if (e->shift_l != e->shift_r) {
1797 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1798 return -EINVAL;
1799 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1800 mask |= e->mask << e->shift_r;
1803 return snd_soc_update_bits(codec, e->reg, mask, val);
1805 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1808 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1809 * @kcontrol: mixer control
1810 * @uinfo: control element information
1812 * Callback to provide information about an external enumerated
1813 * single mixer.
1815 * Returns 0 for success.
1817 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1818 struct snd_ctl_elem_info *uinfo)
1820 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1822 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1823 uinfo->count = 1;
1824 uinfo->value.enumerated.items = e->max;
1826 if (uinfo->value.enumerated.item > e->max - 1)
1827 uinfo->value.enumerated.item = e->max - 1;
1828 strcpy(uinfo->value.enumerated.name,
1829 e->texts[uinfo->value.enumerated.item]);
1830 return 0;
1832 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1835 * snd_soc_info_volsw_ext - external single mixer info callback
1836 * @kcontrol: mixer control
1837 * @uinfo: control element information
1839 * Callback to provide information about a single external mixer control.
1841 * Returns 0 for success.
1843 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1844 struct snd_ctl_elem_info *uinfo)
1846 int max = kcontrol->private_value;
1848 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1849 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1850 else
1851 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1853 uinfo->count = 1;
1854 uinfo->value.integer.min = 0;
1855 uinfo->value.integer.max = max;
1856 return 0;
1858 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1861 * snd_soc_info_volsw - single mixer info callback
1862 * @kcontrol: mixer control
1863 * @uinfo: control element information
1865 * Callback to provide information about a single mixer control.
1867 * Returns 0 for success.
1869 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1870 struct snd_ctl_elem_info *uinfo)
1872 struct soc_mixer_control *mc =
1873 (struct soc_mixer_control *)kcontrol->private_value;
1874 int max = mc->max;
1875 unsigned int shift = mc->shift;
1876 unsigned int rshift = mc->rshift;
1878 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1879 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1880 else
1881 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1883 uinfo->count = shift == rshift ? 1 : 2;
1884 uinfo->value.integer.min = 0;
1885 uinfo->value.integer.max = max;
1886 return 0;
1888 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1891 * snd_soc_get_volsw - single mixer get callback
1892 * @kcontrol: mixer control
1893 * @ucontrol: control element information
1895 * Callback to get the value of a single mixer control.
1897 * Returns 0 for success.
1899 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1900 struct snd_ctl_elem_value *ucontrol)
1902 struct soc_mixer_control *mc =
1903 (struct soc_mixer_control *)kcontrol->private_value;
1904 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1905 unsigned int reg = mc->reg;
1906 unsigned int shift = mc->shift;
1907 unsigned int rshift = mc->rshift;
1908 int max = mc->max;
1909 unsigned int mask = (1 << fls(max)) - 1;
1910 unsigned int invert = mc->invert;
1912 ucontrol->value.integer.value[0] =
1913 (snd_soc_read(codec, reg) >> shift) & mask;
1914 if (shift != rshift)
1915 ucontrol->value.integer.value[1] =
1916 (snd_soc_read(codec, reg) >> rshift) & mask;
1917 if (invert) {
1918 ucontrol->value.integer.value[0] =
1919 max - ucontrol->value.integer.value[0];
1920 if (shift != rshift)
1921 ucontrol->value.integer.value[1] =
1922 max - ucontrol->value.integer.value[1];
1925 return 0;
1927 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1930 * snd_soc_put_volsw - single mixer put callback
1931 * @kcontrol: mixer control
1932 * @ucontrol: control element information
1934 * Callback to set the value of a single mixer control.
1936 * Returns 0 for success.
1938 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1939 struct snd_ctl_elem_value *ucontrol)
1941 struct soc_mixer_control *mc =
1942 (struct soc_mixer_control *)kcontrol->private_value;
1943 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1944 unsigned int reg = mc->reg;
1945 unsigned int shift = mc->shift;
1946 unsigned int rshift = mc->rshift;
1947 int max = mc->max;
1948 unsigned int mask = (1 << fls(max)) - 1;
1949 unsigned int invert = mc->invert;
1950 unsigned int val, val2, val_mask;
1952 val = (ucontrol->value.integer.value[0] & mask);
1953 if (invert)
1954 val = max - val;
1955 val_mask = mask << shift;
1956 val = val << shift;
1957 if (shift != rshift) {
1958 val2 = (ucontrol->value.integer.value[1] & mask);
1959 if (invert)
1960 val2 = max - val2;
1961 val_mask |= mask << rshift;
1962 val |= val2 << rshift;
1964 return snd_soc_update_bits(codec, reg, val_mask, val);
1966 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1969 * snd_soc_info_volsw_2r - double mixer info callback
1970 * @kcontrol: mixer control
1971 * @uinfo: control element information
1973 * Callback to provide information about a double mixer control that
1974 * spans 2 codec registers.
1976 * Returns 0 for success.
1978 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1979 struct snd_ctl_elem_info *uinfo)
1981 struct soc_mixer_control *mc =
1982 (struct soc_mixer_control *)kcontrol->private_value;
1983 int max = mc->max;
1985 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1986 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1987 else
1988 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1990 uinfo->count = 2;
1991 uinfo->value.integer.min = 0;
1992 uinfo->value.integer.max = max;
1993 return 0;
1995 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1998 * snd_soc_get_volsw_2r - double mixer get callback
1999 * @kcontrol: mixer control
2000 * @ucontrol: control element information
2002 * Callback to get the value of a double mixer control that spans 2 registers.
2004 * Returns 0 for success.
2006 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2007 struct snd_ctl_elem_value *ucontrol)
2009 struct soc_mixer_control *mc =
2010 (struct soc_mixer_control *)kcontrol->private_value;
2011 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2012 unsigned int reg = mc->reg;
2013 unsigned int reg2 = mc->rreg;
2014 unsigned int shift = mc->shift;
2015 int max = mc->max;
2016 unsigned int mask = (1 << fls(max)) - 1;
2017 unsigned int invert = mc->invert;
2019 ucontrol->value.integer.value[0] =
2020 (snd_soc_read(codec, reg) >> shift) & mask;
2021 ucontrol->value.integer.value[1] =
2022 (snd_soc_read(codec, reg2) >> shift) & mask;
2023 if (invert) {
2024 ucontrol->value.integer.value[0] =
2025 max - ucontrol->value.integer.value[0];
2026 ucontrol->value.integer.value[1] =
2027 max - ucontrol->value.integer.value[1];
2030 return 0;
2032 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2035 * snd_soc_put_volsw_2r - double mixer set callback
2036 * @kcontrol: mixer control
2037 * @ucontrol: control element information
2039 * Callback to set the value of a double mixer control that spans 2 registers.
2041 * Returns 0 for success.
2043 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2044 struct snd_ctl_elem_value *ucontrol)
2046 struct soc_mixer_control *mc =
2047 (struct soc_mixer_control *)kcontrol->private_value;
2048 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2049 unsigned int reg = mc->reg;
2050 unsigned int reg2 = mc->rreg;
2051 unsigned int shift = mc->shift;
2052 int max = mc->max;
2053 unsigned int mask = (1 << fls(max)) - 1;
2054 unsigned int invert = mc->invert;
2055 int err;
2056 unsigned int val, val2, val_mask;
2058 val_mask = mask << shift;
2059 val = (ucontrol->value.integer.value[0] & mask);
2060 val2 = (ucontrol->value.integer.value[1] & mask);
2062 if (invert) {
2063 val = max - val;
2064 val2 = max - val2;
2067 val = val << shift;
2068 val2 = val2 << shift;
2070 err = snd_soc_update_bits(codec, reg, val_mask, val);
2071 if (err < 0)
2072 return err;
2074 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2075 return err;
2077 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2080 * snd_soc_info_volsw_s8 - signed mixer info callback
2081 * @kcontrol: mixer control
2082 * @uinfo: control element information
2084 * Callback to provide information about a signed mixer control.
2086 * Returns 0 for success.
2088 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2089 struct snd_ctl_elem_info *uinfo)
2091 struct soc_mixer_control *mc =
2092 (struct soc_mixer_control *)kcontrol->private_value;
2093 int max = mc->max;
2094 int min = mc->min;
2096 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2097 uinfo->count = 2;
2098 uinfo->value.integer.min = 0;
2099 uinfo->value.integer.max = max-min;
2100 return 0;
2102 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2105 * snd_soc_get_volsw_s8 - signed mixer get callback
2106 * @kcontrol: mixer control
2107 * @ucontrol: control element information
2109 * Callback to get the value of a signed mixer control.
2111 * Returns 0 for success.
2113 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2114 struct snd_ctl_elem_value *ucontrol)
2116 struct soc_mixer_control *mc =
2117 (struct soc_mixer_control *)kcontrol->private_value;
2118 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2119 unsigned int reg = mc->reg;
2120 int min = mc->min;
2121 int val = snd_soc_read(codec, reg);
2123 ucontrol->value.integer.value[0] =
2124 ((signed char)(val & 0xff))-min;
2125 ucontrol->value.integer.value[1] =
2126 ((signed char)((val >> 8) & 0xff))-min;
2127 return 0;
2129 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2132 * snd_soc_put_volsw_sgn - signed mixer put callback
2133 * @kcontrol: mixer control
2134 * @ucontrol: control element information
2136 * Callback to set the value of a signed mixer control.
2138 * Returns 0 for success.
2140 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2141 struct snd_ctl_elem_value *ucontrol)
2143 struct soc_mixer_control *mc =
2144 (struct soc_mixer_control *)kcontrol->private_value;
2145 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2146 unsigned int reg = mc->reg;
2147 int min = mc->min;
2148 unsigned int val;
2150 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2151 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2153 return snd_soc_update_bits(codec, reg, 0xffff, val);
2155 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2158 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2159 * @dai: DAI
2160 * @clk_id: DAI specific clock ID
2161 * @freq: new clock frequency in Hz
2162 * @dir: new clock direction - input/output.
2164 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2166 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2167 unsigned int freq, int dir)
2169 if (dai->ops && dai->ops->set_sysclk)
2170 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2171 else
2172 return -EINVAL;
2174 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2177 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2178 * @dai: DAI
2179 * @div_id: DAI specific clock divider ID
2180 * @div: new clock divisor.
2182 * Configures the clock dividers. This is used to derive the best DAI bit and
2183 * frame clocks from the system or master clock. It's best to set the DAI bit
2184 * and frame clocks as low as possible to save system power.
2186 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2187 int div_id, int div)
2189 if (dai->ops && dai->ops->set_clkdiv)
2190 return dai->ops->set_clkdiv(dai, div_id, div);
2191 else
2192 return -EINVAL;
2194 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2197 * snd_soc_dai_set_pll - configure DAI PLL.
2198 * @dai: DAI
2199 * @pll_id: DAI specific PLL ID
2200 * @freq_in: PLL input clock frequency in Hz
2201 * @freq_out: requested PLL output clock frequency in Hz
2203 * Configures and enables PLL to generate output clock based on input clock.
2205 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2206 int pll_id, unsigned int freq_in, unsigned int freq_out)
2208 if (dai->ops && dai->ops->set_pll)
2209 return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2210 else
2211 return -EINVAL;
2213 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2216 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2217 * @dai: DAI
2218 * @fmt: SND_SOC_DAIFMT_ format value.
2220 * Configures the DAI hardware format and clocking.
2222 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2224 if (dai->ops && dai->ops->set_fmt)
2225 return dai->ops->set_fmt(dai, fmt);
2226 else
2227 return -EINVAL;
2229 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2232 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2233 * @dai: DAI
2234 * @tx_mask: bitmask representing active TX slots.
2235 * @rx_mask: bitmask representing active RX slots.
2236 * @slots: Number of slots in use.
2237 * @slot_width: Width in bits for each slot.
2239 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2240 * specific.
2242 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2243 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2245 if (dai->ops && dai->ops->set_tdm_slot)
2246 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2247 slots, slot_width);
2248 else
2249 return -EINVAL;
2251 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2254 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2255 * @dai: DAI
2256 * @tristate: tristate enable
2258 * Tristates the DAI so that others can use it.
2260 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2262 if (dai->ops && dai->ops->set_tristate)
2263 return dai->ops->set_tristate(dai, tristate);
2264 else
2265 return -EINVAL;
2267 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2270 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2271 * @dai: DAI
2272 * @mute: mute enable
2274 * Mutes the DAI DAC.
2276 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2278 if (dai->ops && dai->ops->digital_mute)
2279 return dai->ops->digital_mute(dai, mute);
2280 else
2281 return -EINVAL;
2283 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2286 * snd_soc_register_card - Register a card with the ASoC core
2288 * @card: Card to register
2290 * Note that currently this is an internal only function: it will be
2291 * exposed to machine drivers after further backporting of ASoC v2
2292 * registration APIs.
2294 static int snd_soc_register_card(struct snd_soc_card *card)
2296 if (!card->name || !card->dev)
2297 return -EINVAL;
2299 INIT_LIST_HEAD(&card->list);
2300 card->instantiated = 0;
2302 mutex_lock(&client_mutex);
2303 list_add(&card->list, &card_list);
2304 snd_soc_instantiate_cards();
2305 mutex_unlock(&client_mutex);
2307 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2309 return 0;
2313 * snd_soc_unregister_card - Unregister a card with the ASoC core
2315 * @card: Card to unregister
2317 * Note that currently this is an internal only function: it will be
2318 * exposed to machine drivers after further backporting of ASoC v2
2319 * registration APIs.
2321 static int snd_soc_unregister_card(struct snd_soc_card *card)
2323 mutex_lock(&client_mutex);
2324 list_del(&card->list);
2325 mutex_unlock(&client_mutex);
2327 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2329 return 0;
2332 static struct snd_soc_dai_ops null_dai_ops = {
2336 * snd_soc_register_dai - Register a DAI with the ASoC core
2338 * @dai: DAI to register
2340 int snd_soc_register_dai(struct snd_soc_dai *dai)
2342 if (!dai->name)
2343 return -EINVAL;
2345 /* The device should become mandatory over time */
2346 if (!dai->dev)
2347 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2349 if (!dai->ops)
2350 dai->ops = &null_dai_ops;
2352 INIT_LIST_HEAD(&dai->list);
2354 mutex_lock(&client_mutex);
2355 list_add(&dai->list, &dai_list);
2356 snd_soc_instantiate_cards();
2357 mutex_unlock(&client_mutex);
2359 pr_debug("Registered DAI '%s'\n", dai->name);
2361 return 0;
2363 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2366 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2368 * @dai: DAI to unregister
2370 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2372 mutex_lock(&client_mutex);
2373 list_del(&dai->list);
2374 mutex_unlock(&client_mutex);
2376 pr_debug("Unregistered DAI '%s'\n", dai->name);
2378 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2381 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2383 * @dai: Array of DAIs to register
2384 * @count: Number of DAIs
2386 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2388 int i, ret;
2390 for (i = 0; i < count; i++) {
2391 ret = snd_soc_register_dai(&dai[i]);
2392 if (ret != 0)
2393 goto err;
2396 return 0;
2398 err:
2399 for (i--; i >= 0; i--)
2400 snd_soc_unregister_dai(&dai[i]);
2402 return ret;
2404 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2407 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2409 * @dai: Array of DAIs to unregister
2410 * @count: Number of DAIs
2412 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2414 int i;
2416 for (i = 0; i < count; i++)
2417 snd_soc_unregister_dai(&dai[i]);
2419 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2422 * snd_soc_register_platform - Register a platform with the ASoC core
2424 * @platform: platform to register
2426 int snd_soc_register_platform(struct snd_soc_platform *platform)
2428 if (!platform->name)
2429 return -EINVAL;
2431 INIT_LIST_HEAD(&platform->list);
2433 mutex_lock(&client_mutex);
2434 list_add(&platform->list, &platform_list);
2435 snd_soc_instantiate_cards();
2436 mutex_unlock(&client_mutex);
2438 pr_debug("Registered platform '%s'\n", platform->name);
2440 return 0;
2442 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2445 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2447 * @platform: platform to unregister
2449 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2451 mutex_lock(&client_mutex);
2452 list_del(&platform->list);
2453 mutex_unlock(&client_mutex);
2455 pr_debug("Unregistered platform '%s'\n", platform->name);
2457 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2459 static u64 codec_format_map[] = {
2460 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2461 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2462 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2463 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2464 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2465 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2466 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2467 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2468 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2469 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2470 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2471 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2472 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2473 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2474 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2475 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2478 /* Fix up the DAI formats for endianness: codecs don't actually see
2479 * the endianness of the data but we're using the CPU format
2480 * definitions which do need to include endianness so we ensure that
2481 * codec DAIs always have both big and little endian variants set.
2483 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2485 int i;
2487 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2488 if (stream->formats & codec_format_map[i])
2489 stream->formats |= codec_format_map[i];
2493 * snd_soc_register_codec - Register a codec with the ASoC core
2495 * @codec: codec to register
2497 int snd_soc_register_codec(struct snd_soc_codec *codec)
2499 int i;
2501 if (!codec->name)
2502 return -EINVAL;
2504 /* The device should become mandatory over time */
2505 if (!codec->dev)
2506 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2508 INIT_LIST_HEAD(&codec->list);
2510 for (i = 0; i < codec->num_dai; i++) {
2511 fixup_codec_formats(&codec->dai[i].playback);
2512 fixup_codec_formats(&codec->dai[i].capture);
2515 mutex_lock(&client_mutex);
2516 list_add(&codec->list, &codec_list);
2517 snd_soc_instantiate_cards();
2518 mutex_unlock(&client_mutex);
2520 pr_debug("Registered codec '%s'\n", codec->name);
2522 return 0;
2524 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2527 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2529 * @codec: codec to unregister
2531 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2533 mutex_lock(&client_mutex);
2534 list_del(&codec->list);
2535 mutex_unlock(&client_mutex);
2537 pr_debug("Unregistered codec '%s'\n", codec->name);
2539 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2541 static int __init snd_soc_init(void)
2543 #ifdef CONFIG_DEBUG_FS
2544 debugfs_root = debugfs_create_dir("asoc", NULL);
2545 if (IS_ERR(debugfs_root) || !debugfs_root) {
2546 printk(KERN_WARNING
2547 "ASoC: Failed to create debugfs directory\n");
2548 debugfs_root = NULL;
2550 #endif
2552 return platform_driver_register(&soc_driver);
2555 static void __exit snd_soc_exit(void)
2557 #ifdef CONFIG_DEBUG_FS
2558 debugfs_remove_recursive(debugfs_root);
2559 #endif
2560 platform_driver_unregister(&soc_driver);
2563 module_init(snd_soc_init);
2564 module_exit(snd_soc_exit);
2566 /* Module information */
2567 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2568 MODULE_DESCRIPTION("ALSA SoC Core");
2569 MODULE_LICENSE("GPL");
2570 MODULE_ALIAS("platform:soc-audio");