OMAP3: PM: per board prm timings
[linux-ginger.git] / fs / aio.c
blob02a2c9340573cf5946e0083187353d4517319844
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
20 #define DEBUG 0
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/mmu_context.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/aio.h>
31 #include <linux/highmem.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/eventfd.h>
36 #include <asm/kmap_types.h>
37 #include <asm/uaccess.h>
39 #if DEBUG > 1
40 #define dprintk printk
41 #else
42 #define dprintk(x...) do { ; } while (0)
43 #endif
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
54 static struct workqueue_struct *aio_wq;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init aio_setup(void)
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 return 0;
81 __initcall(aio_setup);
83 static void aio_free_ring(struct kioctx *ctx)
85 struct aio_ring_info *info = &ctx->ring_info;
86 long i;
88 for (i=0; i<info->nr_pages; i++)
89 put_page(info->ring_pages[i]);
91 if (info->mmap_size) {
92 down_write(&ctx->mm->mmap_sem);
93 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 up_write(&ctx->mm->mmap_sem);
97 if (info->ring_pages && info->ring_pages != info->internal_pages)
98 kfree(info->ring_pages);
99 info->ring_pages = NULL;
100 info->nr = 0;
103 static int aio_setup_ring(struct kioctx *ctx)
105 struct aio_ring *ring;
106 struct aio_ring_info *info = &ctx->ring_info;
107 unsigned nr_events = ctx->max_reqs;
108 unsigned long size;
109 int nr_pages;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events += 2; /* 1 is required, 2 for good luck */
114 size = sizeof(struct aio_ring);
115 size += sizeof(struct io_event) * nr_events;
116 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
118 if (nr_pages < 0)
119 return -EINVAL;
121 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
123 info->nr = 0;
124 info->ring_pages = info->internal_pages;
125 if (nr_pages > AIO_RING_PAGES) {
126 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 if (!info->ring_pages)
128 return -ENOMEM;
131 info->mmap_size = nr_pages * PAGE_SIZE;
132 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 down_write(&ctx->mm->mmap_sem);
134 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
137 if (IS_ERR((void *)info->mmap_base)) {
138 up_write(&ctx->mm->mmap_sem);
139 info->mmap_size = 0;
140 aio_free_ring(ctx);
141 return -EAGAIN;
144 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
145 info->nr_pages = get_user_pages(current, ctx->mm,
146 info->mmap_base, nr_pages,
147 1, 0, info->ring_pages, NULL);
148 up_write(&ctx->mm->mmap_sem);
150 if (unlikely(info->nr_pages != nr_pages)) {
151 aio_free_ring(ctx);
152 return -EAGAIN;
155 ctx->user_id = info->mmap_base;
157 info->nr = nr_events; /* trusted copy */
159 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
160 ring->nr = nr_events; /* user copy */
161 ring->id = ctx->user_id;
162 ring->head = ring->tail = 0;
163 ring->magic = AIO_RING_MAGIC;
164 ring->compat_features = AIO_RING_COMPAT_FEATURES;
165 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
166 ring->header_length = sizeof(struct aio_ring);
167 kunmap_atomic(ring, KM_USER0);
169 return 0;
173 /* aio_ring_event: returns a pointer to the event at the given index from
174 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
176 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 #define aio_ring_event(info, nr, km) ({ \
181 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
182 struct io_event *__event; \
183 __event = kmap_atomic( \
184 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 __event += pos % AIO_EVENTS_PER_PAGE; \
186 __event; \
189 #define put_aio_ring_event(event, km) do { \
190 struct io_event *__event = (event); \
191 (void)__event; \
192 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
193 } while(0)
195 static void ctx_rcu_free(struct rcu_head *head)
197 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
198 unsigned nr_events = ctx->max_reqs;
200 kmem_cache_free(kioctx_cachep, ctx);
202 if (nr_events) {
203 spin_lock(&aio_nr_lock);
204 BUG_ON(aio_nr - nr_events > aio_nr);
205 aio_nr -= nr_events;
206 spin_unlock(&aio_nr_lock);
210 /* __put_ioctx
211 * Called when the last user of an aio context has gone away,
212 * and the struct needs to be freed.
214 static void __put_ioctx(struct kioctx *ctx)
216 BUG_ON(ctx->reqs_active);
218 cancel_delayed_work(&ctx->wq);
219 cancel_work_sync(&ctx->wq.work);
220 aio_free_ring(ctx);
221 mmdrop(ctx->mm);
222 ctx->mm = NULL;
223 pr_debug("__put_ioctx: freeing %p\n", ctx);
224 call_rcu(&ctx->rcu_head, ctx_rcu_free);
227 #define get_ioctx(kioctx) do { \
228 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
229 atomic_inc(&(kioctx)->users); \
230 } while (0)
231 #define put_ioctx(kioctx) do { \
232 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
233 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
234 __put_ioctx(kioctx); \
235 } while (0)
237 /* ioctx_alloc
238 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
240 static struct kioctx *ioctx_alloc(unsigned nr_events)
242 struct mm_struct *mm;
243 struct kioctx *ctx;
244 int did_sync = 0;
246 /* Prevent overflows */
247 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
248 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
249 pr_debug("ENOMEM: nr_events too high\n");
250 return ERR_PTR(-EINVAL);
253 if ((unsigned long)nr_events > aio_max_nr)
254 return ERR_PTR(-EAGAIN);
256 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
257 if (!ctx)
258 return ERR_PTR(-ENOMEM);
260 ctx->max_reqs = nr_events;
261 mm = ctx->mm = current->mm;
262 atomic_inc(&mm->mm_count);
264 atomic_set(&ctx->users, 1);
265 spin_lock_init(&ctx->ctx_lock);
266 spin_lock_init(&ctx->ring_info.ring_lock);
267 init_waitqueue_head(&ctx->wait);
269 INIT_LIST_HEAD(&ctx->active_reqs);
270 INIT_LIST_HEAD(&ctx->run_list);
271 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
273 if (aio_setup_ring(ctx) < 0)
274 goto out_freectx;
276 /* limit the number of system wide aios */
277 do {
278 spin_lock_bh(&aio_nr_lock);
279 if (aio_nr + nr_events > aio_max_nr ||
280 aio_nr + nr_events < aio_nr)
281 ctx->max_reqs = 0;
282 else
283 aio_nr += ctx->max_reqs;
284 spin_unlock_bh(&aio_nr_lock);
285 if (ctx->max_reqs || did_sync)
286 break;
288 /* wait for rcu callbacks to have completed before giving up */
289 synchronize_rcu();
290 did_sync = 1;
291 ctx->max_reqs = nr_events;
292 } while (1);
294 if (ctx->max_reqs == 0)
295 goto out_cleanup;
297 /* now link into global list. */
298 spin_lock(&mm->ioctx_lock);
299 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
300 spin_unlock(&mm->ioctx_lock);
302 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
303 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
304 return ctx;
306 out_cleanup:
307 __put_ioctx(ctx);
308 return ERR_PTR(-EAGAIN);
310 out_freectx:
311 mmdrop(mm);
312 kmem_cache_free(kioctx_cachep, ctx);
313 ctx = ERR_PTR(-ENOMEM);
315 dprintk("aio: error allocating ioctx %p\n", ctx);
316 return ctx;
319 /* aio_cancel_all
320 * Cancels all outstanding aio requests on an aio context. Used
321 * when the processes owning a context have all exited to encourage
322 * the rapid destruction of the kioctx.
324 static void aio_cancel_all(struct kioctx *ctx)
326 int (*cancel)(struct kiocb *, struct io_event *);
327 struct io_event res;
328 spin_lock_irq(&ctx->ctx_lock);
329 ctx->dead = 1;
330 while (!list_empty(&ctx->active_reqs)) {
331 struct list_head *pos = ctx->active_reqs.next;
332 struct kiocb *iocb = list_kiocb(pos);
333 list_del_init(&iocb->ki_list);
334 cancel = iocb->ki_cancel;
335 kiocbSetCancelled(iocb);
336 if (cancel) {
337 iocb->ki_users++;
338 spin_unlock_irq(&ctx->ctx_lock);
339 cancel(iocb, &res);
340 spin_lock_irq(&ctx->ctx_lock);
343 spin_unlock_irq(&ctx->ctx_lock);
346 static void wait_for_all_aios(struct kioctx *ctx)
348 struct task_struct *tsk = current;
349 DECLARE_WAITQUEUE(wait, tsk);
351 spin_lock_irq(&ctx->ctx_lock);
352 if (!ctx->reqs_active)
353 goto out;
355 add_wait_queue(&ctx->wait, &wait);
356 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
357 while (ctx->reqs_active) {
358 spin_unlock_irq(&ctx->ctx_lock);
359 io_schedule();
360 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
361 spin_lock_irq(&ctx->ctx_lock);
363 __set_task_state(tsk, TASK_RUNNING);
364 remove_wait_queue(&ctx->wait, &wait);
366 out:
367 spin_unlock_irq(&ctx->ctx_lock);
370 /* wait_on_sync_kiocb:
371 * Waits on the given sync kiocb to complete.
373 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
375 while (iocb->ki_users) {
376 set_current_state(TASK_UNINTERRUPTIBLE);
377 if (!iocb->ki_users)
378 break;
379 io_schedule();
381 __set_current_state(TASK_RUNNING);
382 return iocb->ki_user_data;
384 EXPORT_SYMBOL(wait_on_sync_kiocb);
386 /* exit_aio: called when the last user of mm goes away. At this point,
387 * there is no way for any new requests to be submited or any of the
388 * io_* syscalls to be called on the context. However, there may be
389 * outstanding requests which hold references to the context; as they
390 * go away, they will call put_ioctx and release any pinned memory
391 * associated with the request (held via struct page * references).
393 void exit_aio(struct mm_struct *mm)
395 struct kioctx *ctx;
397 while (!hlist_empty(&mm->ioctx_list)) {
398 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
399 hlist_del_rcu(&ctx->list);
401 aio_cancel_all(ctx);
403 wait_for_all_aios(ctx);
405 * Ensure we don't leave the ctx on the aio_wq
407 cancel_work_sync(&ctx->wq.work);
409 if (1 != atomic_read(&ctx->users))
410 printk(KERN_DEBUG
411 "exit_aio:ioctx still alive: %d %d %d\n",
412 atomic_read(&ctx->users), ctx->dead,
413 ctx->reqs_active);
414 put_ioctx(ctx);
418 /* aio_get_req
419 * Allocate a slot for an aio request. Increments the users count
420 * of the kioctx so that the kioctx stays around until all requests are
421 * complete. Returns NULL if no requests are free.
423 * Returns with kiocb->users set to 2. The io submit code path holds
424 * an extra reference while submitting the i/o.
425 * This prevents races between the aio code path referencing the
426 * req (after submitting it) and aio_complete() freeing the req.
428 static struct kiocb *__aio_get_req(struct kioctx *ctx)
430 struct kiocb *req = NULL;
431 struct aio_ring *ring;
432 int okay = 0;
434 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
435 if (unlikely(!req))
436 return NULL;
438 req->ki_flags = 0;
439 req->ki_users = 2;
440 req->ki_key = 0;
441 req->ki_ctx = ctx;
442 req->ki_cancel = NULL;
443 req->ki_retry = NULL;
444 req->ki_dtor = NULL;
445 req->private = NULL;
446 req->ki_iovec = NULL;
447 INIT_LIST_HEAD(&req->ki_run_list);
448 req->ki_eventfd = NULL;
450 /* Check if the completion queue has enough free space to
451 * accept an event from this io.
453 spin_lock_irq(&ctx->ctx_lock);
454 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
455 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
456 list_add(&req->ki_list, &ctx->active_reqs);
457 ctx->reqs_active++;
458 okay = 1;
460 kunmap_atomic(ring, KM_USER0);
461 spin_unlock_irq(&ctx->ctx_lock);
463 if (!okay) {
464 kmem_cache_free(kiocb_cachep, req);
465 req = NULL;
468 return req;
471 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
473 struct kiocb *req;
474 /* Handle a potential starvation case -- should be exceedingly rare as
475 * requests will be stuck on fput_head only if the aio_fput_routine is
476 * delayed and the requests were the last user of the struct file.
478 req = __aio_get_req(ctx);
479 if (unlikely(NULL == req)) {
480 aio_fput_routine(NULL);
481 req = __aio_get_req(ctx);
483 return req;
486 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
488 assert_spin_locked(&ctx->ctx_lock);
490 if (req->ki_eventfd != NULL)
491 eventfd_ctx_put(req->ki_eventfd);
492 if (req->ki_dtor)
493 req->ki_dtor(req);
494 if (req->ki_iovec != &req->ki_inline_vec)
495 kfree(req->ki_iovec);
496 kmem_cache_free(kiocb_cachep, req);
497 ctx->reqs_active--;
499 if (unlikely(!ctx->reqs_active && ctx->dead))
500 wake_up(&ctx->wait);
503 static void aio_fput_routine(struct work_struct *data)
505 spin_lock_irq(&fput_lock);
506 while (likely(!list_empty(&fput_head))) {
507 struct kiocb *req = list_kiocb(fput_head.next);
508 struct kioctx *ctx = req->ki_ctx;
510 list_del(&req->ki_list);
511 spin_unlock_irq(&fput_lock);
513 /* Complete the fput(s) */
514 if (req->ki_filp != NULL)
515 __fput(req->ki_filp);
517 /* Link the iocb into the context's free list */
518 spin_lock_irq(&ctx->ctx_lock);
519 really_put_req(ctx, req);
520 spin_unlock_irq(&ctx->ctx_lock);
522 put_ioctx(ctx);
523 spin_lock_irq(&fput_lock);
525 spin_unlock_irq(&fput_lock);
528 /* __aio_put_req
529 * Returns true if this put was the last user of the request.
531 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
533 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
534 req, atomic_long_read(&req->ki_filp->f_count));
536 assert_spin_locked(&ctx->ctx_lock);
538 req->ki_users--;
539 BUG_ON(req->ki_users < 0);
540 if (likely(req->ki_users))
541 return 0;
542 list_del(&req->ki_list); /* remove from active_reqs */
543 req->ki_cancel = NULL;
544 req->ki_retry = NULL;
547 * Try to optimize the aio and eventfd file* puts, by avoiding to
548 * schedule work in case it is not __fput() time. In normal cases,
549 * we would not be holding the last reference to the file*, so
550 * this function will be executed w/out any aio kthread wakeup.
552 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
553 get_ioctx(ctx);
554 spin_lock(&fput_lock);
555 list_add(&req->ki_list, &fput_head);
556 spin_unlock(&fput_lock);
557 queue_work(aio_wq, &fput_work);
558 } else {
559 req->ki_filp = NULL;
560 really_put_req(ctx, req);
562 return 1;
565 /* aio_put_req
566 * Returns true if this put was the last user of the kiocb,
567 * false if the request is still in use.
569 int aio_put_req(struct kiocb *req)
571 struct kioctx *ctx = req->ki_ctx;
572 int ret;
573 spin_lock_irq(&ctx->ctx_lock);
574 ret = __aio_put_req(ctx, req);
575 spin_unlock_irq(&ctx->ctx_lock);
576 return ret;
578 EXPORT_SYMBOL(aio_put_req);
580 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
582 struct mm_struct *mm = current->mm;
583 struct kioctx *ctx, *ret = NULL;
584 struct hlist_node *n;
586 rcu_read_lock();
588 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
589 if (ctx->user_id == ctx_id && !ctx->dead) {
590 get_ioctx(ctx);
591 ret = ctx;
592 break;
596 rcu_read_unlock();
597 return ret;
601 * Queue up a kiocb to be retried. Assumes that the kiocb
602 * has already been marked as kicked, and places it on
603 * the retry run list for the corresponding ioctx, if it
604 * isn't already queued. Returns 1 if it actually queued
605 * the kiocb (to tell the caller to activate the work
606 * queue to process it), or 0, if it found that it was
607 * already queued.
609 static inline int __queue_kicked_iocb(struct kiocb *iocb)
611 struct kioctx *ctx = iocb->ki_ctx;
613 assert_spin_locked(&ctx->ctx_lock);
615 if (list_empty(&iocb->ki_run_list)) {
616 list_add_tail(&iocb->ki_run_list,
617 &ctx->run_list);
618 return 1;
620 return 0;
623 /* aio_run_iocb
624 * This is the core aio execution routine. It is
625 * invoked both for initial i/o submission and
626 * subsequent retries via the aio_kick_handler.
627 * Expects to be invoked with iocb->ki_ctx->lock
628 * already held. The lock is released and reacquired
629 * as needed during processing.
631 * Calls the iocb retry method (already setup for the
632 * iocb on initial submission) for operation specific
633 * handling, but takes care of most of common retry
634 * execution details for a given iocb. The retry method
635 * needs to be non-blocking as far as possible, to avoid
636 * holding up other iocbs waiting to be serviced by the
637 * retry kernel thread.
639 * The trickier parts in this code have to do with
640 * ensuring that only one retry instance is in progress
641 * for a given iocb at any time. Providing that guarantee
642 * simplifies the coding of individual aio operations as
643 * it avoids various potential races.
645 static ssize_t aio_run_iocb(struct kiocb *iocb)
647 struct kioctx *ctx = iocb->ki_ctx;
648 ssize_t (*retry)(struct kiocb *);
649 ssize_t ret;
651 if (!(retry = iocb->ki_retry)) {
652 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
653 return 0;
657 * We don't want the next retry iteration for this
658 * operation to start until this one has returned and
659 * updated the iocb state. However, wait_queue functions
660 * can trigger a kick_iocb from interrupt context in the
661 * meantime, indicating that data is available for the next
662 * iteration. We want to remember that and enable the
663 * next retry iteration _after_ we are through with
664 * this one.
666 * So, in order to be able to register a "kick", but
667 * prevent it from being queued now, we clear the kick
668 * flag, but make the kick code *think* that the iocb is
669 * still on the run list until we are actually done.
670 * When we are done with this iteration, we check if
671 * the iocb was kicked in the meantime and if so, queue
672 * it up afresh.
675 kiocbClearKicked(iocb);
678 * This is so that aio_complete knows it doesn't need to
679 * pull the iocb off the run list (We can't just call
680 * INIT_LIST_HEAD because we don't want a kick_iocb to
681 * queue this on the run list yet)
683 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
684 spin_unlock_irq(&ctx->ctx_lock);
686 /* Quit retrying if the i/o has been cancelled */
687 if (kiocbIsCancelled(iocb)) {
688 ret = -EINTR;
689 aio_complete(iocb, ret, 0);
690 /* must not access the iocb after this */
691 goto out;
695 * Now we are all set to call the retry method in async
696 * context.
698 ret = retry(iocb);
700 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
701 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
702 aio_complete(iocb, ret, 0);
704 out:
705 spin_lock_irq(&ctx->ctx_lock);
707 if (-EIOCBRETRY == ret) {
709 * OK, now that we are done with this iteration
710 * and know that there is more left to go,
711 * this is where we let go so that a subsequent
712 * "kick" can start the next iteration
715 /* will make __queue_kicked_iocb succeed from here on */
716 INIT_LIST_HEAD(&iocb->ki_run_list);
717 /* we must queue the next iteration ourselves, if it
718 * has already been kicked */
719 if (kiocbIsKicked(iocb)) {
720 __queue_kicked_iocb(iocb);
723 * __queue_kicked_iocb will always return 1 here, because
724 * iocb->ki_run_list is empty at this point so it should
725 * be safe to unconditionally queue the context into the
726 * work queue.
728 aio_queue_work(ctx);
731 return ret;
735 * __aio_run_iocbs:
736 * Process all pending retries queued on the ioctx
737 * run list.
738 * Assumes it is operating within the aio issuer's mm
739 * context.
741 static int __aio_run_iocbs(struct kioctx *ctx)
743 struct kiocb *iocb;
744 struct list_head run_list;
746 assert_spin_locked(&ctx->ctx_lock);
748 list_replace_init(&ctx->run_list, &run_list);
749 while (!list_empty(&run_list)) {
750 iocb = list_entry(run_list.next, struct kiocb,
751 ki_run_list);
752 list_del(&iocb->ki_run_list);
754 * Hold an extra reference while retrying i/o.
756 iocb->ki_users++; /* grab extra reference */
757 aio_run_iocb(iocb);
758 __aio_put_req(ctx, iocb);
760 if (!list_empty(&ctx->run_list))
761 return 1;
762 return 0;
765 static void aio_queue_work(struct kioctx * ctx)
767 unsigned long timeout;
769 * if someone is waiting, get the work started right
770 * away, otherwise, use a longer delay
772 smp_mb();
773 if (waitqueue_active(&ctx->wait))
774 timeout = 1;
775 else
776 timeout = HZ/10;
777 queue_delayed_work(aio_wq, &ctx->wq, timeout);
782 * aio_run_iocbs:
783 * Process all pending retries queued on the ioctx
784 * run list.
785 * Assumes it is operating within the aio issuer's mm
786 * context.
788 static inline void aio_run_iocbs(struct kioctx *ctx)
790 int requeue;
792 spin_lock_irq(&ctx->ctx_lock);
794 requeue = __aio_run_iocbs(ctx);
795 spin_unlock_irq(&ctx->ctx_lock);
796 if (requeue)
797 aio_queue_work(ctx);
801 * just like aio_run_iocbs, but keeps running them until
802 * the list stays empty
804 static inline void aio_run_all_iocbs(struct kioctx *ctx)
806 spin_lock_irq(&ctx->ctx_lock);
807 while (__aio_run_iocbs(ctx))
809 spin_unlock_irq(&ctx->ctx_lock);
813 * aio_kick_handler:
814 * Work queue handler triggered to process pending
815 * retries on an ioctx. Takes on the aio issuer's
816 * mm context before running the iocbs, so that
817 * copy_xxx_user operates on the issuer's address
818 * space.
819 * Run on aiod's context.
821 static void aio_kick_handler(struct work_struct *work)
823 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
824 mm_segment_t oldfs = get_fs();
825 struct mm_struct *mm;
826 int requeue;
828 set_fs(USER_DS);
829 use_mm(ctx->mm);
830 spin_lock_irq(&ctx->ctx_lock);
831 requeue =__aio_run_iocbs(ctx);
832 mm = ctx->mm;
833 spin_unlock_irq(&ctx->ctx_lock);
834 unuse_mm(mm);
835 set_fs(oldfs);
837 * we're in a worker thread already, don't use queue_delayed_work,
839 if (requeue)
840 queue_delayed_work(aio_wq, &ctx->wq, 0);
845 * Called by kick_iocb to queue the kiocb for retry
846 * and if required activate the aio work queue to process
847 * it
849 static void try_queue_kicked_iocb(struct kiocb *iocb)
851 struct kioctx *ctx = iocb->ki_ctx;
852 unsigned long flags;
853 int run = 0;
855 /* We're supposed to be the only path putting the iocb back on the run
856 * list. If we find that the iocb is *back* on a wait queue already
857 * than retry has happened before we could queue the iocb. This also
858 * means that the retry could have completed and freed our iocb, no
859 * good. */
860 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
862 spin_lock_irqsave(&ctx->ctx_lock, flags);
863 /* set this inside the lock so that we can't race with aio_run_iocb()
864 * testing it and putting the iocb on the run list under the lock */
865 if (!kiocbTryKick(iocb))
866 run = __queue_kicked_iocb(iocb);
867 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
868 if (run)
869 aio_queue_work(ctx);
873 * kick_iocb:
874 * Called typically from a wait queue callback context
875 * (aio_wake_function) to trigger a retry of the iocb.
876 * The retry is usually executed by aio workqueue
877 * threads (See aio_kick_handler).
879 void kick_iocb(struct kiocb *iocb)
881 /* sync iocbs are easy: they can only ever be executing from a
882 * single context. */
883 if (is_sync_kiocb(iocb)) {
884 kiocbSetKicked(iocb);
885 wake_up_process(iocb->ki_obj.tsk);
886 return;
889 try_queue_kicked_iocb(iocb);
891 EXPORT_SYMBOL(kick_iocb);
893 /* aio_complete
894 * Called when the io request on the given iocb is complete.
895 * Returns true if this is the last user of the request. The
896 * only other user of the request can be the cancellation code.
898 int aio_complete(struct kiocb *iocb, long res, long res2)
900 struct kioctx *ctx = iocb->ki_ctx;
901 struct aio_ring_info *info;
902 struct aio_ring *ring;
903 struct io_event *event;
904 unsigned long flags;
905 unsigned long tail;
906 int ret;
909 * Special case handling for sync iocbs:
910 * - events go directly into the iocb for fast handling
911 * - the sync task with the iocb in its stack holds the single iocb
912 * ref, no other paths have a way to get another ref
913 * - the sync task helpfully left a reference to itself in the iocb
915 if (is_sync_kiocb(iocb)) {
916 BUG_ON(iocb->ki_users != 1);
917 iocb->ki_user_data = res;
918 iocb->ki_users = 0;
919 wake_up_process(iocb->ki_obj.tsk);
920 return 1;
923 info = &ctx->ring_info;
925 /* add a completion event to the ring buffer.
926 * must be done holding ctx->ctx_lock to prevent
927 * other code from messing with the tail
928 * pointer since we might be called from irq
929 * context.
931 spin_lock_irqsave(&ctx->ctx_lock, flags);
933 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
934 list_del_init(&iocb->ki_run_list);
937 * cancelled requests don't get events, userland was given one
938 * when the event got cancelled.
940 if (kiocbIsCancelled(iocb))
941 goto put_rq;
943 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
945 tail = info->tail;
946 event = aio_ring_event(info, tail, KM_IRQ0);
947 if (++tail >= info->nr)
948 tail = 0;
950 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
951 event->data = iocb->ki_user_data;
952 event->res = res;
953 event->res2 = res2;
955 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
956 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
957 res, res2);
959 /* after flagging the request as done, we
960 * must never even look at it again
962 smp_wmb(); /* make event visible before updating tail */
964 info->tail = tail;
965 ring->tail = tail;
967 put_aio_ring_event(event, KM_IRQ0);
968 kunmap_atomic(ring, KM_IRQ1);
970 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
973 * Check if the user asked us to deliver the result through an
974 * eventfd. The eventfd_signal() function is safe to be called
975 * from IRQ context.
977 if (iocb->ki_eventfd != NULL)
978 eventfd_signal(iocb->ki_eventfd, 1);
980 put_rq:
981 /* everything turned out well, dispose of the aiocb. */
982 ret = __aio_put_req(ctx, iocb);
985 * We have to order our ring_info tail store above and test
986 * of the wait list below outside the wait lock. This is
987 * like in wake_up_bit() where clearing a bit has to be
988 * ordered with the unlocked test.
990 smp_mb();
992 if (waitqueue_active(&ctx->wait))
993 wake_up(&ctx->wait);
995 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
996 return ret;
998 EXPORT_SYMBOL(aio_complete);
1000 /* aio_read_evt
1001 * Pull an event off of the ioctx's event ring. Returns the number of
1002 * events fetched (0 or 1 ;-)
1003 * FIXME: make this use cmpxchg.
1004 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1006 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1008 struct aio_ring_info *info = &ioctx->ring_info;
1009 struct aio_ring *ring;
1010 unsigned long head;
1011 int ret = 0;
1013 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1014 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1015 (unsigned long)ring->head, (unsigned long)ring->tail,
1016 (unsigned long)ring->nr);
1018 if (ring->head == ring->tail)
1019 goto out;
1021 spin_lock(&info->ring_lock);
1023 head = ring->head % info->nr;
1024 if (head != ring->tail) {
1025 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1026 *ent = *evp;
1027 head = (head + 1) % info->nr;
1028 smp_mb(); /* finish reading the event before updatng the head */
1029 ring->head = head;
1030 ret = 1;
1031 put_aio_ring_event(evp, KM_USER1);
1033 spin_unlock(&info->ring_lock);
1035 out:
1036 kunmap_atomic(ring, KM_USER0);
1037 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1038 (unsigned long)ring->head, (unsigned long)ring->tail);
1039 return ret;
1042 struct aio_timeout {
1043 struct timer_list timer;
1044 int timed_out;
1045 struct task_struct *p;
1048 static void timeout_func(unsigned long data)
1050 struct aio_timeout *to = (struct aio_timeout *)data;
1052 to->timed_out = 1;
1053 wake_up_process(to->p);
1056 static inline void init_timeout(struct aio_timeout *to)
1058 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1059 to->timed_out = 0;
1060 to->p = current;
1063 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1064 const struct timespec *ts)
1066 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1067 if (time_after(to->timer.expires, jiffies))
1068 add_timer(&to->timer);
1069 else
1070 to->timed_out = 1;
1073 static inline void clear_timeout(struct aio_timeout *to)
1075 del_singleshot_timer_sync(&to->timer);
1078 static int read_events(struct kioctx *ctx,
1079 long min_nr, long nr,
1080 struct io_event __user *event,
1081 struct timespec __user *timeout)
1083 long start_jiffies = jiffies;
1084 struct task_struct *tsk = current;
1085 DECLARE_WAITQUEUE(wait, tsk);
1086 int ret;
1087 int i = 0;
1088 struct io_event ent;
1089 struct aio_timeout to;
1090 int retry = 0;
1092 /* needed to zero any padding within an entry (there shouldn't be
1093 * any, but C is fun!
1095 memset(&ent, 0, sizeof(ent));
1096 retry:
1097 ret = 0;
1098 while (likely(i < nr)) {
1099 ret = aio_read_evt(ctx, &ent);
1100 if (unlikely(ret <= 0))
1101 break;
1103 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1104 ent.data, ent.obj, ent.res, ent.res2);
1106 /* Could we split the check in two? */
1107 ret = -EFAULT;
1108 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1109 dprintk("aio: lost an event due to EFAULT.\n");
1110 break;
1112 ret = 0;
1114 /* Good, event copied to userland, update counts. */
1115 event ++;
1116 i ++;
1119 if (min_nr <= i)
1120 return i;
1121 if (ret)
1122 return ret;
1124 /* End fast path */
1126 /* racey check, but it gets redone */
1127 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1128 retry = 1;
1129 aio_run_all_iocbs(ctx);
1130 goto retry;
1133 init_timeout(&to);
1134 if (timeout) {
1135 struct timespec ts;
1136 ret = -EFAULT;
1137 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1138 goto out;
1140 set_timeout(start_jiffies, &to, &ts);
1143 while (likely(i < nr)) {
1144 add_wait_queue_exclusive(&ctx->wait, &wait);
1145 do {
1146 set_task_state(tsk, TASK_INTERRUPTIBLE);
1147 ret = aio_read_evt(ctx, &ent);
1148 if (ret)
1149 break;
1150 if (min_nr <= i)
1151 break;
1152 if (unlikely(ctx->dead)) {
1153 ret = -EINVAL;
1154 break;
1156 if (to.timed_out) /* Only check after read evt */
1157 break;
1158 /* Try to only show up in io wait if there are ops
1159 * in flight */
1160 if (ctx->reqs_active)
1161 io_schedule();
1162 else
1163 schedule();
1164 if (signal_pending(tsk)) {
1165 ret = -EINTR;
1166 break;
1168 /*ret = aio_read_evt(ctx, &ent);*/
1169 } while (1) ;
1171 set_task_state(tsk, TASK_RUNNING);
1172 remove_wait_queue(&ctx->wait, &wait);
1174 if (unlikely(ret <= 0))
1175 break;
1177 ret = -EFAULT;
1178 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1179 dprintk("aio: lost an event due to EFAULT.\n");
1180 break;
1183 /* Good, event copied to userland, update counts. */
1184 event ++;
1185 i ++;
1188 if (timeout)
1189 clear_timeout(&to);
1190 out:
1191 destroy_timer_on_stack(&to.timer);
1192 return i ? i : ret;
1195 /* Take an ioctx and remove it from the list of ioctx's. Protects
1196 * against races with itself via ->dead.
1198 static void io_destroy(struct kioctx *ioctx)
1200 struct mm_struct *mm = current->mm;
1201 int was_dead;
1203 /* delete the entry from the list is someone else hasn't already */
1204 spin_lock(&mm->ioctx_lock);
1205 was_dead = ioctx->dead;
1206 ioctx->dead = 1;
1207 hlist_del_rcu(&ioctx->list);
1208 spin_unlock(&mm->ioctx_lock);
1210 dprintk("aio_release(%p)\n", ioctx);
1211 if (likely(!was_dead))
1212 put_ioctx(ioctx); /* twice for the list */
1214 aio_cancel_all(ioctx);
1215 wait_for_all_aios(ioctx);
1218 * Wake up any waiters. The setting of ctx->dead must be seen
1219 * by other CPUs at this point. Right now, we rely on the
1220 * locking done by the above calls to ensure this consistency.
1222 wake_up(&ioctx->wait);
1223 put_ioctx(ioctx); /* once for the lookup */
1226 /* sys_io_setup:
1227 * Create an aio_context capable of receiving at least nr_events.
1228 * ctxp must not point to an aio_context that already exists, and
1229 * must be initialized to 0 prior to the call. On successful
1230 * creation of the aio_context, *ctxp is filled in with the resulting
1231 * handle. May fail with -EINVAL if *ctxp is not initialized,
1232 * if the specified nr_events exceeds internal limits. May fail
1233 * with -EAGAIN if the specified nr_events exceeds the user's limit
1234 * of available events. May fail with -ENOMEM if insufficient kernel
1235 * resources are available. May fail with -EFAULT if an invalid
1236 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1237 * implemented.
1239 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1241 struct kioctx *ioctx = NULL;
1242 unsigned long ctx;
1243 long ret;
1245 ret = get_user(ctx, ctxp);
1246 if (unlikely(ret))
1247 goto out;
1249 ret = -EINVAL;
1250 if (unlikely(ctx || nr_events == 0)) {
1251 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1252 ctx, nr_events);
1253 goto out;
1256 ioctx = ioctx_alloc(nr_events);
1257 ret = PTR_ERR(ioctx);
1258 if (!IS_ERR(ioctx)) {
1259 ret = put_user(ioctx->user_id, ctxp);
1260 if (!ret)
1261 return 0;
1263 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1264 io_destroy(ioctx);
1267 out:
1268 return ret;
1271 /* sys_io_destroy:
1272 * Destroy the aio_context specified. May cancel any outstanding
1273 * AIOs and block on completion. Will fail with -ENOSYS if not
1274 * implemented. May fail with -EFAULT if the context pointed to
1275 * is invalid.
1277 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1279 struct kioctx *ioctx = lookup_ioctx(ctx);
1280 if (likely(NULL != ioctx)) {
1281 io_destroy(ioctx);
1282 return 0;
1284 pr_debug("EINVAL: io_destroy: invalid context id\n");
1285 return -EINVAL;
1288 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1290 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1292 BUG_ON(ret <= 0);
1294 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1295 ssize_t this = min((ssize_t)iov->iov_len, ret);
1296 iov->iov_base += this;
1297 iov->iov_len -= this;
1298 iocb->ki_left -= this;
1299 ret -= this;
1300 if (iov->iov_len == 0) {
1301 iocb->ki_cur_seg++;
1302 iov++;
1306 /* the caller should not have done more io than what fit in
1307 * the remaining iovecs */
1308 BUG_ON(ret > 0 && iocb->ki_left == 0);
1311 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1313 struct file *file = iocb->ki_filp;
1314 struct address_space *mapping = file->f_mapping;
1315 struct inode *inode = mapping->host;
1316 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1317 unsigned long, loff_t);
1318 ssize_t ret = 0;
1319 unsigned short opcode;
1321 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1322 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1323 rw_op = file->f_op->aio_read;
1324 opcode = IOCB_CMD_PREADV;
1325 } else {
1326 rw_op = file->f_op->aio_write;
1327 opcode = IOCB_CMD_PWRITEV;
1330 /* This matches the pread()/pwrite() logic */
1331 if (iocb->ki_pos < 0)
1332 return -EINVAL;
1334 do {
1335 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1336 iocb->ki_nr_segs - iocb->ki_cur_seg,
1337 iocb->ki_pos);
1338 if (ret > 0)
1339 aio_advance_iovec(iocb, ret);
1341 /* retry all partial writes. retry partial reads as long as its a
1342 * regular file. */
1343 } while (ret > 0 && iocb->ki_left > 0 &&
1344 (opcode == IOCB_CMD_PWRITEV ||
1345 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1347 /* This means we must have transferred all that we could */
1348 /* No need to retry anymore */
1349 if ((ret == 0) || (iocb->ki_left == 0))
1350 ret = iocb->ki_nbytes - iocb->ki_left;
1352 /* If we managed to write some out we return that, rather than
1353 * the eventual error. */
1354 if (opcode == IOCB_CMD_PWRITEV
1355 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1356 && iocb->ki_nbytes - iocb->ki_left)
1357 ret = iocb->ki_nbytes - iocb->ki_left;
1359 return ret;
1362 static ssize_t aio_fdsync(struct kiocb *iocb)
1364 struct file *file = iocb->ki_filp;
1365 ssize_t ret = -EINVAL;
1367 if (file->f_op->aio_fsync)
1368 ret = file->f_op->aio_fsync(iocb, 1);
1369 return ret;
1372 static ssize_t aio_fsync(struct kiocb *iocb)
1374 struct file *file = iocb->ki_filp;
1375 ssize_t ret = -EINVAL;
1377 if (file->f_op->aio_fsync)
1378 ret = file->f_op->aio_fsync(iocb, 0);
1379 return ret;
1382 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1384 ssize_t ret;
1386 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1387 kiocb->ki_nbytes, 1,
1388 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1389 if (ret < 0)
1390 goto out;
1392 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1393 kiocb->ki_cur_seg = 0;
1394 /* ki_nbytes/left now reflect bytes instead of segs */
1395 kiocb->ki_nbytes = ret;
1396 kiocb->ki_left = ret;
1398 ret = 0;
1399 out:
1400 return ret;
1403 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1405 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1406 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1407 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1408 kiocb->ki_nr_segs = 1;
1409 kiocb->ki_cur_seg = 0;
1410 return 0;
1414 * aio_setup_iocb:
1415 * Performs the initial checks and aio retry method
1416 * setup for the kiocb at the time of io submission.
1418 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1420 struct file *file = kiocb->ki_filp;
1421 ssize_t ret = 0;
1423 switch (kiocb->ki_opcode) {
1424 case IOCB_CMD_PREAD:
1425 ret = -EBADF;
1426 if (unlikely(!(file->f_mode & FMODE_READ)))
1427 break;
1428 ret = -EFAULT;
1429 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1430 kiocb->ki_left)))
1431 break;
1432 ret = security_file_permission(file, MAY_READ);
1433 if (unlikely(ret))
1434 break;
1435 ret = aio_setup_single_vector(kiocb);
1436 if (ret)
1437 break;
1438 ret = -EINVAL;
1439 if (file->f_op->aio_read)
1440 kiocb->ki_retry = aio_rw_vect_retry;
1441 break;
1442 case IOCB_CMD_PWRITE:
1443 ret = -EBADF;
1444 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1445 break;
1446 ret = -EFAULT;
1447 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1448 kiocb->ki_left)))
1449 break;
1450 ret = security_file_permission(file, MAY_WRITE);
1451 if (unlikely(ret))
1452 break;
1453 ret = aio_setup_single_vector(kiocb);
1454 if (ret)
1455 break;
1456 ret = -EINVAL;
1457 if (file->f_op->aio_write)
1458 kiocb->ki_retry = aio_rw_vect_retry;
1459 break;
1460 case IOCB_CMD_PREADV:
1461 ret = -EBADF;
1462 if (unlikely(!(file->f_mode & FMODE_READ)))
1463 break;
1464 ret = security_file_permission(file, MAY_READ);
1465 if (unlikely(ret))
1466 break;
1467 ret = aio_setup_vectored_rw(READ, kiocb);
1468 if (ret)
1469 break;
1470 ret = -EINVAL;
1471 if (file->f_op->aio_read)
1472 kiocb->ki_retry = aio_rw_vect_retry;
1473 break;
1474 case IOCB_CMD_PWRITEV:
1475 ret = -EBADF;
1476 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1477 break;
1478 ret = security_file_permission(file, MAY_WRITE);
1479 if (unlikely(ret))
1480 break;
1481 ret = aio_setup_vectored_rw(WRITE, kiocb);
1482 if (ret)
1483 break;
1484 ret = -EINVAL;
1485 if (file->f_op->aio_write)
1486 kiocb->ki_retry = aio_rw_vect_retry;
1487 break;
1488 case IOCB_CMD_FDSYNC:
1489 ret = -EINVAL;
1490 if (file->f_op->aio_fsync)
1491 kiocb->ki_retry = aio_fdsync;
1492 break;
1493 case IOCB_CMD_FSYNC:
1494 ret = -EINVAL;
1495 if (file->f_op->aio_fsync)
1496 kiocb->ki_retry = aio_fsync;
1497 break;
1498 default:
1499 dprintk("EINVAL: io_submit: no operation provided\n");
1500 ret = -EINVAL;
1503 if (!kiocb->ki_retry)
1504 return ret;
1506 return 0;
1510 * aio_wake_function:
1511 * wait queue callback function for aio notification,
1512 * Simply triggers a retry of the operation via kick_iocb.
1514 * This callback is specified in the wait queue entry in
1515 * a kiocb.
1517 * Note:
1518 * This routine is executed with the wait queue lock held.
1519 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1520 * the ioctx lock inside the wait queue lock. This is safe
1521 * because this callback isn't used for wait queues which
1522 * are nested inside ioctx lock (i.e. ctx->wait)
1524 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1525 int sync, void *key)
1527 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1529 list_del_init(&wait->task_list);
1530 kick_iocb(iocb);
1531 return 1;
1534 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1535 struct iocb *iocb)
1537 struct kiocb *req;
1538 struct file *file;
1539 ssize_t ret;
1541 /* enforce forwards compatibility on users */
1542 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1543 pr_debug("EINVAL: io_submit: reserve field set\n");
1544 return -EINVAL;
1547 /* prevent overflows */
1548 if (unlikely(
1549 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1550 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1551 ((ssize_t)iocb->aio_nbytes < 0)
1552 )) {
1553 pr_debug("EINVAL: io_submit: overflow check\n");
1554 return -EINVAL;
1557 file = fget(iocb->aio_fildes);
1558 if (unlikely(!file))
1559 return -EBADF;
1561 req = aio_get_req(ctx); /* returns with 2 references to req */
1562 if (unlikely(!req)) {
1563 fput(file);
1564 return -EAGAIN;
1566 req->ki_filp = file;
1567 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1569 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1570 * instance of the file* now. The file descriptor must be
1571 * an eventfd() fd, and will be signaled for each completed
1572 * event using the eventfd_signal() function.
1574 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1575 if (IS_ERR(req->ki_eventfd)) {
1576 ret = PTR_ERR(req->ki_eventfd);
1577 req->ki_eventfd = NULL;
1578 goto out_put_req;
1582 ret = put_user(req->ki_key, &user_iocb->aio_key);
1583 if (unlikely(ret)) {
1584 dprintk("EFAULT: aio_key\n");
1585 goto out_put_req;
1588 req->ki_obj.user = user_iocb;
1589 req->ki_user_data = iocb->aio_data;
1590 req->ki_pos = iocb->aio_offset;
1592 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1593 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1594 req->ki_opcode = iocb->aio_lio_opcode;
1595 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1596 INIT_LIST_HEAD(&req->ki_wait.task_list);
1598 ret = aio_setup_iocb(req);
1600 if (ret)
1601 goto out_put_req;
1603 spin_lock_irq(&ctx->ctx_lock);
1604 aio_run_iocb(req);
1605 if (!list_empty(&ctx->run_list)) {
1606 /* drain the run list */
1607 while (__aio_run_iocbs(ctx))
1610 spin_unlock_irq(&ctx->ctx_lock);
1611 aio_put_req(req); /* drop extra ref to req */
1612 return 0;
1614 out_put_req:
1615 aio_put_req(req); /* drop extra ref to req */
1616 aio_put_req(req); /* drop i/o ref to req */
1617 return ret;
1620 /* sys_io_submit:
1621 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1622 * the number of iocbs queued. May return -EINVAL if the aio_context
1623 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1624 * *iocbpp[0] is not properly initialized, if the operation specified
1625 * is invalid for the file descriptor in the iocb. May fail with
1626 * -EFAULT if any of the data structures point to invalid data. May
1627 * fail with -EBADF if the file descriptor specified in the first
1628 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1629 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1630 * fail with -ENOSYS if not implemented.
1632 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1633 struct iocb __user * __user *, iocbpp)
1635 struct kioctx *ctx;
1636 long ret = 0;
1637 int i;
1639 if (unlikely(nr < 0))
1640 return -EINVAL;
1642 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1643 return -EFAULT;
1645 ctx = lookup_ioctx(ctx_id);
1646 if (unlikely(!ctx)) {
1647 pr_debug("EINVAL: io_submit: invalid context id\n");
1648 return -EINVAL;
1652 * AKPM: should this return a partial result if some of the IOs were
1653 * successfully submitted?
1655 for (i=0; i<nr; i++) {
1656 struct iocb __user *user_iocb;
1657 struct iocb tmp;
1659 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1660 ret = -EFAULT;
1661 break;
1664 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1665 ret = -EFAULT;
1666 break;
1669 ret = io_submit_one(ctx, user_iocb, &tmp);
1670 if (ret)
1671 break;
1674 put_ioctx(ctx);
1675 return i ? i : ret;
1678 /* lookup_kiocb
1679 * Finds a given iocb for cancellation.
1681 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1682 u32 key)
1684 struct list_head *pos;
1686 assert_spin_locked(&ctx->ctx_lock);
1688 /* TODO: use a hash or array, this sucks. */
1689 list_for_each(pos, &ctx->active_reqs) {
1690 struct kiocb *kiocb = list_kiocb(pos);
1691 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1692 return kiocb;
1694 return NULL;
1697 /* sys_io_cancel:
1698 * Attempts to cancel an iocb previously passed to io_submit. If
1699 * the operation is successfully cancelled, the resulting event is
1700 * copied into the memory pointed to by result without being placed
1701 * into the completion queue and 0 is returned. May fail with
1702 * -EFAULT if any of the data structures pointed to are invalid.
1703 * May fail with -EINVAL if aio_context specified by ctx_id is
1704 * invalid. May fail with -EAGAIN if the iocb specified was not
1705 * cancelled. Will fail with -ENOSYS if not implemented.
1707 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1708 struct io_event __user *, result)
1710 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1711 struct kioctx *ctx;
1712 struct kiocb *kiocb;
1713 u32 key;
1714 int ret;
1716 ret = get_user(key, &iocb->aio_key);
1717 if (unlikely(ret))
1718 return -EFAULT;
1720 ctx = lookup_ioctx(ctx_id);
1721 if (unlikely(!ctx))
1722 return -EINVAL;
1724 spin_lock_irq(&ctx->ctx_lock);
1725 ret = -EAGAIN;
1726 kiocb = lookup_kiocb(ctx, iocb, key);
1727 if (kiocb && kiocb->ki_cancel) {
1728 cancel = kiocb->ki_cancel;
1729 kiocb->ki_users ++;
1730 kiocbSetCancelled(kiocb);
1731 } else
1732 cancel = NULL;
1733 spin_unlock_irq(&ctx->ctx_lock);
1735 if (NULL != cancel) {
1736 struct io_event tmp;
1737 pr_debug("calling cancel\n");
1738 memset(&tmp, 0, sizeof(tmp));
1739 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1740 tmp.data = kiocb->ki_user_data;
1741 ret = cancel(kiocb, &tmp);
1742 if (!ret) {
1743 /* Cancellation succeeded -- copy the result
1744 * into the user's buffer.
1746 if (copy_to_user(result, &tmp, sizeof(tmp)))
1747 ret = -EFAULT;
1749 } else
1750 ret = -EINVAL;
1752 put_ioctx(ctx);
1754 return ret;
1757 /* io_getevents:
1758 * Attempts to read at least min_nr events and up to nr events from
1759 * the completion queue for the aio_context specified by ctx_id. May
1760 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1761 * if nr is out of range, if when is out of range. May fail with
1762 * -EFAULT if any of the memory specified to is invalid. May return
1763 * 0 or < min_nr if no events are available and the timeout specified
1764 * by when has elapsed, where when == NULL specifies an infinite
1765 * timeout. Note that the timeout pointed to by when is relative and
1766 * will be updated if not NULL and the operation blocks. Will fail
1767 * with -ENOSYS if not implemented.
1769 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1770 long, min_nr,
1771 long, nr,
1772 struct io_event __user *, events,
1773 struct timespec __user *, timeout)
1775 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1776 long ret = -EINVAL;
1778 if (likely(ioctx)) {
1779 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1780 ret = read_events(ioctx, min_nr, nr, events, timeout);
1781 put_ioctx(ioctx);
1784 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1785 return ret;