OMAP3: PM: per board prm timings
[linux-ginger.git] / fs / exec.c
blobd49be6bc1793b57fdbfb5efc958311dd8f94801e
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 return 0;
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct file *file;
111 char *tmp = getname(library);
112 int error = PTR_ERR(tmp);
114 if (IS_ERR(tmp))
115 goto out;
117 file = do_filp_open(AT_FDCWD, tmp,
118 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119 MAY_READ | MAY_EXEC | MAY_OPEN);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
125 error = -EINVAL;
126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 goto exit;
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
133 fsnotify_open(file->f_path.dentry);
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
152 read_unlock(&binfmt_lock);
154 exit:
155 fput(file);
156 out:
157 return error;
160 #ifdef CONFIG_MMU
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163 int write)
165 struct page *page;
166 int ret;
168 #ifdef CONFIG_STACK_GROWSUP
169 if (write) {
170 ret = expand_stack_downwards(bprm->vma, pos);
171 if (ret < 0)
172 return NULL;
174 #endif
175 ret = get_user_pages(current, bprm->mm, pos,
176 1, write, 1, &page, NULL);
177 if (ret <= 0)
178 return NULL;
180 if (write) {
181 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182 struct rlimit *rlim;
185 * We've historically supported up to 32 pages (ARG_MAX)
186 * of argument strings even with small stacks
188 if (size <= ARG_MAX)
189 return page;
192 * Limit to 1/4-th the stack size for the argv+env strings.
193 * This ensures that:
194 * - the remaining binfmt code will not run out of stack space,
195 * - the program will have a reasonable amount of stack left
196 * to work from.
198 rlim = current->signal->rlim;
199 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200 put_page(page);
201 return NULL;
205 return page;
208 static void put_arg_page(struct page *page)
210 put_page(page);
213 static void free_arg_page(struct linux_binprm *bprm, int i)
217 static void free_arg_pages(struct linux_binprm *bprm)
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222 struct page *page)
224 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
227 static int __bprm_mm_init(struct linux_binprm *bprm)
229 int err;
230 struct vm_area_struct *vma = NULL;
231 struct mm_struct *mm = bprm->mm;
233 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234 if (!vma)
235 return -ENOMEM;
237 down_write(&mm->mmap_sem);
238 vma->vm_mm = mm;
241 * Place the stack at the largest stack address the architecture
242 * supports. Later, we'll move this to an appropriate place. We don't
243 * use STACK_TOP because that can depend on attributes which aren't
244 * configured yet.
246 vma->vm_end = STACK_TOP_MAX;
247 vma->vm_start = vma->vm_end - PAGE_SIZE;
248 vma->vm_flags = VM_STACK_FLAGS;
249 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250 err = insert_vm_struct(mm, vma);
251 if (err)
252 goto err;
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
258 err:
259 up_write(&mm->mmap_sem);
260 bprm->vma = NULL;
261 kmem_cache_free(vm_area_cachep, vma);
262 return err;
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
267 return len <= MAX_ARG_STRLEN;
270 #else
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 int write)
275 struct page *page;
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 if (!page)
281 return NULL;
282 bprm->page[pos / PAGE_SIZE] = page;
285 return page;
288 static void put_arg_page(struct page *page)
292 static void free_arg_page(struct linux_binprm *bprm, int i)
294 if (bprm->page[i]) {
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
300 static void free_arg_pages(struct linux_binprm *bprm)
302 int i;
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 struct page *page)
313 static int __bprm_mm_init(struct linux_binprm *bprm)
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 return 0;
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
321 return len <= bprm->p;
324 #endif /* CONFIG_MMU */
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
332 int bprm_mm_init(struct linux_binprm *bprm)
334 int err;
335 struct mm_struct *mm = NULL;
337 bprm->mm = mm = mm_alloc();
338 err = -ENOMEM;
339 if (!mm)
340 goto err;
342 err = init_new_context(current, mm);
343 if (err)
344 goto err;
346 err = __bprm_mm_init(bprm);
347 if (err)
348 goto err;
350 return 0;
352 err:
353 if (mm) {
354 bprm->mm = NULL;
355 mmdrop(mm);
358 return err;
362 * count() counts the number of strings in array ARGV.
364 static int count(char __user * __user * argv, int max)
366 int i = 0;
368 if (argv != NULL) {
369 for (;;) {
370 char __user * p;
372 if (get_user(p, argv))
373 return -EFAULT;
374 if (!p)
375 break;
376 argv++;
377 if (i++ >= max)
378 return -E2BIG;
379 cond_resched();
382 return i;
386 * 'copy_strings()' copies argument/environment strings from the old
387 * processes's memory to the new process's stack. The call to get_user_pages()
388 * ensures the destination page is created and not swapped out.
390 static int copy_strings(int argc, char __user * __user * argv,
391 struct linux_binprm *bprm)
393 struct page *kmapped_page = NULL;
394 char *kaddr = NULL;
395 unsigned long kpos = 0;
396 int ret;
398 while (argc-- > 0) {
399 char __user *str;
400 int len;
401 unsigned long pos;
403 if (get_user(str, argv+argc) ||
404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 ret = -EFAULT;
406 goto out;
409 if (!valid_arg_len(bprm, len)) {
410 ret = -E2BIG;
411 goto out;
414 /* We're going to work our way backwords. */
415 pos = bprm->p;
416 str += len;
417 bprm->p -= len;
419 while (len > 0) {
420 int offset, bytes_to_copy;
422 offset = pos % PAGE_SIZE;
423 if (offset == 0)
424 offset = PAGE_SIZE;
426 bytes_to_copy = offset;
427 if (bytes_to_copy > len)
428 bytes_to_copy = len;
430 offset -= bytes_to_copy;
431 pos -= bytes_to_copy;
432 str -= bytes_to_copy;
433 len -= bytes_to_copy;
435 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 struct page *page;
438 page = get_arg_page(bprm, pos, 1);
439 if (!page) {
440 ret = -E2BIG;
441 goto out;
444 if (kmapped_page) {
445 flush_kernel_dcache_page(kmapped_page);
446 kunmap(kmapped_page);
447 put_arg_page(kmapped_page);
449 kmapped_page = page;
450 kaddr = kmap(kmapped_page);
451 kpos = pos & PAGE_MASK;
452 flush_arg_page(bprm, kpos, kmapped_page);
454 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 ret = -EFAULT;
456 goto out;
460 ret = 0;
461 out:
462 if (kmapped_page) {
463 flush_kernel_dcache_page(kmapped_page);
464 kunmap(kmapped_page);
465 put_arg_page(kmapped_page);
467 return ret;
471 * Like copy_strings, but get argv and its values from kernel memory.
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
475 int r;
476 mm_segment_t oldfs = get_fs();
477 set_fs(KERNEL_DS);
478 r = copy_strings(argc, (char __user * __user *)argv, bprm);
479 set_fs(oldfs);
480 return r;
482 EXPORT_SYMBOL(copy_strings_kernel);
484 #ifdef CONFIG_MMU
487 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
488 * the binfmt code determines where the new stack should reside, we shift it to
489 * its final location. The process proceeds as follows:
491 * 1) Use shift to calculate the new vma endpoints.
492 * 2) Extend vma to cover both the old and new ranges. This ensures the
493 * arguments passed to subsequent functions are consistent.
494 * 3) Move vma's page tables to the new range.
495 * 4) Free up any cleared pgd range.
496 * 5) Shrink the vma to cover only the new range.
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
500 struct mm_struct *mm = vma->vm_mm;
501 unsigned long old_start = vma->vm_start;
502 unsigned long old_end = vma->vm_end;
503 unsigned long length = old_end - old_start;
504 unsigned long new_start = old_start - shift;
505 unsigned long new_end = old_end - shift;
506 struct mmu_gather *tlb;
508 BUG_ON(new_start > new_end);
511 * ensure there are no vmas between where we want to go
512 * and where we are
514 if (vma != find_vma(mm, new_start))
515 return -EFAULT;
518 * cover the whole range: [new_start, old_end)
520 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
523 * move the page tables downwards, on failure we rely on
524 * process cleanup to remove whatever mess we made.
526 if (length != move_page_tables(vma, old_start,
527 vma, new_start, length))
528 return -ENOMEM;
530 lru_add_drain();
531 tlb = tlb_gather_mmu(mm, 0);
532 if (new_end > old_start) {
534 * when the old and new regions overlap clear from new_end.
536 free_pgd_range(tlb, new_end, old_end, new_end,
537 vma->vm_next ? vma->vm_next->vm_start : 0);
538 } else {
540 * otherwise, clean from old_start; this is done to not touch
541 * the address space in [new_end, old_start) some architectures
542 * have constraints on va-space that make this illegal (IA64) -
543 * for the others its just a little faster.
545 free_pgd_range(tlb, old_start, old_end, new_end,
546 vma->vm_next ? vma->vm_next->vm_start : 0);
548 tlb_finish_mmu(tlb, new_end, old_end);
551 * shrink the vma to just the new range.
553 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
555 return 0;
558 #define EXTRA_STACK_VM_PAGES 20 /* random */
561 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562 * the stack is optionally relocated, and some extra space is added.
564 int setup_arg_pages(struct linux_binprm *bprm,
565 unsigned long stack_top,
566 int executable_stack)
568 unsigned long ret;
569 unsigned long stack_shift;
570 struct mm_struct *mm = current->mm;
571 struct vm_area_struct *vma = bprm->vma;
572 struct vm_area_struct *prev = NULL;
573 unsigned long vm_flags;
574 unsigned long stack_base;
576 #ifdef CONFIG_STACK_GROWSUP
577 /* Limit stack size to 1GB */
578 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
579 if (stack_base > (1 << 30))
580 stack_base = 1 << 30;
582 /* Make sure we didn't let the argument array grow too large. */
583 if (vma->vm_end - vma->vm_start > stack_base)
584 return -ENOMEM;
586 stack_base = PAGE_ALIGN(stack_top - stack_base);
588 stack_shift = vma->vm_start - stack_base;
589 mm->arg_start = bprm->p - stack_shift;
590 bprm->p = vma->vm_end - stack_shift;
591 #else
592 stack_top = arch_align_stack(stack_top);
593 stack_top = PAGE_ALIGN(stack_top);
594 stack_shift = vma->vm_end - stack_top;
596 bprm->p -= stack_shift;
597 mm->arg_start = bprm->p;
598 #endif
600 if (bprm->loader)
601 bprm->loader -= stack_shift;
602 bprm->exec -= stack_shift;
604 down_write(&mm->mmap_sem);
605 vm_flags = VM_STACK_FLAGS;
608 * Adjust stack execute permissions; explicitly enable for
609 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
610 * (arch default) otherwise.
612 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
613 vm_flags |= VM_EXEC;
614 else if (executable_stack == EXSTACK_DISABLE_X)
615 vm_flags &= ~VM_EXEC;
616 vm_flags |= mm->def_flags;
618 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
619 vm_flags);
620 if (ret)
621 goto out_unlock;
622 BUG_ON(prev != vma);
624 /* Move stack pages down in memory. */
625 if (stack_shift) {
626 ret = shift_arg_pages(vma, stack_shift);
627 if (ret) {
628 up_write(&mm->mmap_sem);
629 return ret;
633 #ifdef CONFIG_STACK_GROWSUP
634 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
635 #else
636 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
637 #endif
638 ret = expand_stack(vma, stack_base);
639 if (ret)
640 ret = -EFAULT;
642 out_unlock:
643 up_write(&mm->mmap_sem);
644 return 0;
646 EXPORT_SYMBOL(setup_arg_pages);
648 #endif /* CONFIG_MMU */
650 struct file *open_exec(const char *name)
652 struct file *file;
653 int err;
655 file = do_filp_open(AT_FDCWD, name,
656 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
657 MAY_EXEC | MAY_OPEN);
658 if (IS_ERR(file))
659 goto out;
661 err = -EACCES;
662 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
663 goto exit;
665 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
666 goto exit;
668 fsnotify_open(file->f_path.dentry);
670 err = deny_write_access(file);
671 if (err)
672 goto exit;
674 out:
675 return file;
677 exit:
678 fput(file);
679 return ERR_PTR(err);
681 EXPORT_SYMBOL(open_exec);
683 int kernel_read(struct file *file, loff_t offset,
684 char *addr, unsigned long count)
686 mm_segment_t old_fs;
687 loff_t pos = offset;
688 int result;
690 old_fs = get_fs();
691 set_fs(get_ds());
692 /* The cast to a user pointer is valid due to the set_fs() */
693 result = vfs_read(file, (void __user *)addr, count, &pos);
694 set_fs(old_fs);
695 return result;
698 EXPORT_SYMBOL(kernel_read);
700 static int exec_mmap(struct mm_struct *mm)
702 struct task_struct *tsk;
703 struct mm_struct * old_mm, *active_mm;
705 /* Notify parent that we're no longer interested in the old VM */
706 tsk = current;
707 old_mm = current->mm;
708 mm_release(tsk, old_mm);
710 if (old_mm) {
712 * Make sure that if there is a core dump in progress
713 * for the old mm, we get out and die instead of going
714 * through with the exec. We must hold mmap_sem around
715 * checking core_state and changing tsk->mm.
717 down_read(&old_mm->mmap_sem);
718 if (unlikely(old_mm->core_state)) {
719 up_read(&old_mm->mmap_sem);
720 return -EINTR;
723 task_lock(tsk);
724 active_mm = tsk->active_mm;
725 tsk->mm = mm;
726 tsk->active_mm = mm;
727 activate_mm(active_mm, mm);
728 task_unlock(tsk);
729 arch_pick_mmap_layout(mm);
730 if (old_mm) {
731 up_read(&old_mm->mmap_sem);
732 BUG_ON(active_mm != old_mm);
733 mm_update_next_owner(old_mm);
734 mmput(old_mm);
735 return 0;
737 mmdrop(active_mm);
738 return 0;
742 * This function makes sure the current process has its own signal table,
743 * so that flush_signal_handlers can later reset the handlers without
744 * disturbing other processes. (Other processes might share the signal
745 * table via the CLONE_SIGHAND option to clone().)
747 static int de_thread(struct task_struct *tsk)
749 struct signal_struct *sig = tsk->signal;
750 struct sighand_struct *oldsighand = tsk->sighand;
751 spinlock_t *lock = &oldsighand->siglock;
752 int count;
754 if (thread_group_empty(tsk))
755 goto no_thread_group;
758 * Kill all other threads in the thread group.
760 spin_lock_irq(lock);
761 if (signal_group_exit(sig)) {
763 * Another group action in progress, just
764 * return so that the signal is processed.
766 spin_unlock_irq(lock);
767 return -EAGAIN;
769 sig->group_exit_task = tsk;
770 zap_other_threads(tsk);
772 /* Account for the thread group leader hanging around: */
773 count = thread_group_leader(tsk) ? 1 : 2;
774 sig->notify_count = count;
775 while (atomic_read(&sig->count) > count) {
776 __set_current_state(TASK_UNINTERRUPTIBLE);
777 spin_unlock_irq(lock);
778 schedule();
779 spin_lock_irq(lock);
781 spin_unlock_irq(lock);
784 * At this point all other threads have exited, all we have to
785 * do is to wait for the thread group leader to become inactive,
786 * and to assume its PID:
788 if (!thread_group_leader(tsk)) {
789 struct task_struct *leader = tsk->group_leader;
791 sig->notify_count = -1; /* for exit_notify() */
792 for (;;) {
793 write_lock_irq(&tasklist_lock);
794 if (likely(leader->exit_state))
795 break;
796 __set_current_state(TASK_UNINTERRUPTIBLE);
797 write_unlock_irq(&tasklist_lock);
798 schedule();
802 * The only record we have of the real-time age of a
803 * process, regardless of execs it's done, is start_time.
804 * All the past CPU time is accumulated in signal_struct
805 * from sister threads now dead. But in this non-leader
806 * exec, nothing survives from the original leader thread,
807 * whose birth marks the true age of this process now.
808 * When we take on its identity by switching to its PID, we
809 * also take its birthdate (always earlier than our own).
811 tsk->start_time = leader->start_time;
813 BUG_ON(!same_thread_group(leader, tsk));
814 BUG_ON(has_group_leader_pid(tsk));
816 * An exec() starts a new thread group with the
817 * TGID of the previous thread group. Rehash the
818 * two threads with a switched PID, and release
819 * the former thread group leader:
822 /* Become a process group leader with the old leader's pid.
823 * The old leader becomes a thread of the this thread group.
824 * Note: The old leader also uses this pid until release_task
825 * is called. Odd but simple and correct.
827 detach_pid(tsk, PIDTYPE_PID);
828 tsk->pid = leader->pid;
829 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
830 transfer_pid(leader, tsk, PIDTYPE_PGID);
831 transfer_pid(leader, tsk, PIDTYPE_SID);
832 list_replace_rcu(&leader->tasks, &tsk->tasks);
834 tsk->group_leader = tsk;
835 leader->group_leader = tsk;
837 tsk->exit_signal = SIGCHLD;
839 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
840 leader->exit_state = EXIT_DEAD;
841 write_unlock_irq(&tasklist_lock);
843 release_task(leader);
846 sig->group_exit_task = NULL;
847 sig->notify_count = 0;
849 no_thread_group:
850 if (current->mm)
851 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
853 exit_itimers(sig);
854 flush_itimer_signals();
856 if (atomic_read(&oldsighand->count) != 1) {
857 struct sighand_struct *newsighand;
859 * This ->sighand is shared with the CLONE_SIGHAND
860 * but not CLONE_THREAD task, switch to the new one.
862 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
863 if (!newsighand)
864 return -ENOMEM;
866 atomic_set(&newsighand->count, 1);
867 memcpy(newsighand->action, oldsighand->action,
868 sizeof(newsighand->action));
870 write_lock_irq(&tasklist_lock);
871 spin_lock(&oldsighand->siglock);
872 rcu_assign_pointer(tsk->sighand, newsighand);
873 spin_unlock(&oldsighand->siglock);
874 write_unlock_irq(&tasklist_lock);
876 __cleanup_sighand(oldsighand);
879 BUG_ON(!thread_group_leader(tsk));
880 return 0;
884 * These functions flushes out all traces of the currently running executable
885 * so that a new one can be started
887 static void flush_old_files(struct files_struct * files)
889 long j = -1;
890 struct fdtable *fdt;
892 spin_lock(&files->file_lock);
893 for (;;) {
894 unsigned long set, i;
896 j++;
897 i = j * __NFDBITS;
898 fdt = files_fdtable(files);
899 if (i >= fdt->max_fds)
900 break;
901 set = fdt->close_on_exec->fds_bits[j];
902 if (!set)
903 continue;
904 fdt->close_on_exec->fds_bits[j] = 0;
905 spin_unlock(&files->file_lock);
906 for ( ; set ; i++,set >>= 1) {
907 if (set & 1) {
908 sys_close(i);
911 spin_lock(&files->file_lock);
914 spin_unlock(&files->file_lock);
917 char *get_task_comm(char *buf, struct task_struct *tsk)
919 /* buf must be at least sizeof(tsk->comm) in size */
920 task_lock(tsk);
921 strncpy(buf, tsk->comm, sizeof(tsk->comm));
922 task_unlock(tsk);
923 return buf;
926 void set_task_comm(struct task_struct *tsk, char *buf)
928 task_lock(tsk);
929 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
930 task_unlock(tsk);
931 perf_event_comm(tsk);
934 int flush_old_exec(struct linux_binprm * bprm)
936 char * name;
937 int i, ch, retval;
938 char tcomm[sizeof(current->comm)];
941 * Make sure we have a private signal table and that
942 * we are unassociated from the previous thread group.
944 retval = de_thread(current);
945 if (retval)
946 goto out;
948 set_mm_exe_file(bprm->mm, bprm->file);
951 * Release all of the old mmap stuff
953 retval = exec_mmap(bprm->mm);
954 if (retval)
955 goto out;
957 bprm->mm = NULL; /* We're using it now */
959 /* This is the point of no return */
960 current->sas_ss_sp = current->sas_ss_size = 0;
962 if (current_euid() == current_uid() && current_egid() == current_gid())
963 set_dumpable(current->mm, 1);
964 else
965 set_dumpable(current->mm, suid_dumpable);
967 name = bprm->filename;
969 /* Copies the binary name from after last slash */
970 for (i=0; (ch = *(name++)) != '\0';) {
971 if (ch == '/')
972 i = 0; /* overwrite what we wrote */
973 else
974 if (i < (sizeof(tcomm) - 1))
975 tcomm[i++] = ch;
977 tcomm[i] = '\0';
978 set_task_comm(current, tcomm);
980 current->flags &= ~PF_RANDOMIZE;
981 flush_thread();
983 /* Set the new mm task size. We have to do that late because it may
984 * depend on TIF_32BIT which is only updated in flush_thread() on
985 * some architectures like powerpc
987 current->mm->task_size = TASK_SIZE;
989 /* install the new credentials */
990 if (bprm->cred->uid != current_euid() ||
991 bprm->cred->gid != current_egid()) {
992 current->pdeath_signal = 0;
993 } else if (file_permission(bprm->file, MAY_READ) ||
994 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
995 set_dumpable(current->mm, suid_dumpable);
998 current->personality &= ~bprm->per_clear;
1001 * Flush performance counters when crossing a
1002 * security domain:
1004 if (!get_dumpable(current->mm))
1005 perf_event_exit_task(current);
1007 /* An exec changes our domain. We are no longer part of the thread
1008 group */
1010 current->self_exec_id++;
1012 flush_signal_handlers(current, 0);
1013 flush_old_files(current->files);
1015 return 0;
1017 out:
1018 return retval;
1021 EXPORT_SYMBOL(flush_old_exec);
1024 * Prepare credentials and lock ->cred_guard_mutex.
1025 * install_exec_creds() commits the new creds and drops the lock.
1026 * Or, if exec fails before, free_bprm() should release ->cred and
1027 * and unlock.
1029 int prepare_bprm_creds(struct linux_binprm *bprm)
1031 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1032 return -ERESTARTNOINTR;
1034 bprm->cred = prepare_exec_creds();
1035 if (likely(bprm->cred))
1036 return 0;
1038 mutex_unlock(&current->cred_guard_mutex);
1039 return -ENOMEM;
1042 void free_bprm(struct linux_binprm *bprm)
1044 free_arg_pages(bprm);
1045 if (bprm->cred) {
1046 mutex_unlock(&current->cred_guard_mutex);
1047 abort_creds(bprm->cred);
1049 kfree(bprm);
1053 * install the new credentials for this executable
1055 void install_exec_creds(struct linux_binprm *bprm)
1057 security_bprm_committing_creds(bprm);
1059 commit_creds(bprm->cred);
1060 bprm->cred = NULL;
1062 * cred_guard_mutex must be held at least to this point to prevent
1063 * ptrace_attach() from altering our determination of the task's
1064 * credentials; any time after this it may be unlocked.
1066 security_bprm_committed_creds(bprm);
1067 mutex_unlock(&current->cred_guard_mutex);
1069 EXPORT_SYMBOL(install_exec_creds);
1072 * determine how safe it is to execute the proposed program
1073 * - the caller must hold current->cred_guard_mutex to protect against
1074 * PTRACE_ATTACH
1076 int check_unsafe_exec(struct linux_binprm *bprm)
1078 struct task_struct *p = current, *t;
1079 unsigned n_fs;
1080 int res = 0;
1082 bprm->unsafe = tracehook_unsafe_exec(p);
1084 n_fs = 1;
1085 write_lock(&p->fs->lock);
1086 rcu_read_lock();
1087 for (t = next_thread(p); t != p; t = next_thread(t)) {
1088 if (t->fs == p->fs)
1089 n_fs++;
1091 rcu_read_unlock();
1093 if (p->fs->users > n_fs) {
1094 bprm->unsafe |= LSM_UNSAFE_SHARE;
1095 } else {
1096 res = -EAGAIN;
1097 if (!p->fs->in_exec) {
1098 p->fs->in_exec = 1;
1099 res = 1;
1102 write_unlock(&p->fs->lock);
1104 return res;
1108 * Fill the binprm structure from the inode.
1109 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1111 * This may be called multiple times for binary chains (scripts for example).
1113 int prepare_binprm(struct linux_binprm *bprm)
1115 umode_t mode;
1116 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1117 int retval;
1119 mode = inode->i_mode;
1120 if (bprm->file->f_op == NULL)
1121 return -EACCES;
1123 /* clear any previous set[ug]id data from a previous binary */
1124 bprm->cred->euid = current_euid();
1125 bprm->cred->egid = current_egid();
1127 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1128 /* Set-uid? */
1129 if (mode & S_ISUID) {
1130 bprm->per_clear |= PER_CLEAR_ON_SETID;
1131 bprm->cred->euid = inode->i_uid;
1134 /* Set-gid? */
1136 * If setgid is set but no group execute bit then this
1137 * is a candidate for mandatory locking, not a setgid
1138 * executable.
1140 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1141 bprm->per_clear |= PER_CLEAR_ON_SETID;
1142 bprm->cred->egid = inode->i_gid;
1146 /* fill in binprm security blob */
1147 retval = security_bprm_set_creds(bprm);
1148 if (retval)
1149 return retval;
1150 bprm->cred_prepared = 1;
1152 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1153 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1156 EXPORT_SYMBOL(prepare_binprm);
1159 * Arguments are '\0' separated strings found at the location bprm->p
1160 * points to; chop off the first by relocating brpm->p to right after
1161 * the first '\0' encountered.
1163 int remove_arg_zero(struct linux_binprm *bprm)
1165 int ret = 0;
1166 unsigned long offset;
1167 char *kaddr;
1168 struct page *page;
1170 if (!bprm->argc)
1171 return 0;
1173 do {
1174 offset = bprm->p & ~PAGE_MASK;
1175 page = get_arg_page(bprm, bprm->p, 0);
1176 if (!page) {
1177 ret = -EFAULT;
1178 goto out;
1180 kaddr = kmap_atomic(page, KM_USER0);
1182 for (; offset < PAGE_SIZE && kaddr[offset];
1183 offset++, bprm->p++)
1186 kunmap_atomic(kaddr, KM_USER0);
1187 put_arg_page(page);
1189 if (offset == PAGE_SIZE)
1190 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1191 } while (offset == PAGE_SIZE);
1193 bprm->p++;
1194 bprm->argc--;
1195 ret = 0;
1197 out:
1198 return ret;
1200 EXPORT_SYMBOL(remove_arg_zero);
1203 * cycle the list of binary formats handler, until one recognizes the image
1205 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1207 unsigned int depth = bprm->recursion_depth;
1208 int try,retval;
1209 struct linux_binfmt *fmt;
1211 retval = security_bprm_check(bprm);
1212 if (retval)
1213 return retval;
1214 retval = ima_bprm_check(bprm);
1215 if (retval)
1216 return retval;
1218 /* kernel module loader fixup */
1219 /* so we don't try to load run modprobe in kernel space. */
1220 set_fs(USER_DS);
1222 retval = audit_bprm(bprm);
1223 if (retval)
1224 return retval;
1226 retval = -ENOENT;
1227 for (try=0; try<2; try++) {
1228 read_lock(&binfmt_lock);
1229 list_for_each_entry(fmt, &formats, lh) {
1230 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1231 if (!fn)
1232 continue;
1233 if (!try_module_get(fmt->module))
1234 continue;
1235 read_unlock(&binfmt_lock);
1236 retval = fn(bprm, regs);
1238 * Restore the depth counter to its starting value
1239 * in this call, so we don't have to rely on every
1240 * load_binary function to restore it on return.
1242 bprm->recursion_depth = depth;
1243 if (retval >= 0) {
1244 if (depth == 0)
1245 tracehook_report_exec(fmt, bprm, regs);
1246 put_binfmt(fmt);
1247 allow_write_access(bprm->file);
1248 if (bprm->file)
1249 fput(bprm->file);
1250 bprm->file = NULL;
1251 current->did_exec = 1;
1252 proc_exec_connector(current);
1253 return retval;
1255 read_lock(&binfmt_lock);
1256 put_binfmt(fmt);
1257 if (retval != -ENOEXEC || bprm->mm == NULL)
1258 break;
1259 if (!bprm->file) {
1260 read_unlock(&binfmt_lock);
1261 return retval;
1264 read_unlock(&binfmt_lock);
1265 if (retval != -ENOEXEC || bprm->mm == NULL) {
1266 break;
1267 #ifdef CONFIG_MODULES
1268 } else {
1269 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1270 if (printable(bprm->buf[0]) &&
1271 printable(bprm->buf[1]) &&
1272 printable(bprm->buf[2]) &&
1273 printable(bprm->buf[3]))
1274 break; /* -ENOEXEC */
1275 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1276 #endif
1279 return retval;
1282 EXPORT_SYMBOL(search_binary_handler);
1285 * sys_execve() executes a new program.
1287 int do_execve(char * filename,
1288 char __user *__user *argv,
1289 char __user *__user *envp,
1290 struct pt_regs * regs)
1292 struct linux_binprm *bprm;
1293 struct file *file;
1294 struct files_struct *displaced;
1295 bool clear_in_exec;
1296 int retval;
1298 retval = unshare_files(&displaced);
1299 if (retval)
1300 goto out_ret;
1302 retval = -ENOMEM;
1303 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1304 if (!bprm)
1305 goto out_files;
1307 retval = prepare_bprm_creds(bprm);
1308 if (retval)
1309 goto out_free;
1311 retval = check_unsafe_exec(bprm);
1312 if (retval < 0)
1313 goto out_free;
1314 clear_in_exec = retval;
1315 current->in_execve = 1;
1317 file = open_exec(filename);
1318 retval = PTR_ERR(file);
1319 if (IS_ERR(file))
1320 goto out_unmark;
1322 sched_exec();
1324 bprm->file = file;
1325 bprm->filename = filename;
1326 bprm->interp = filename;
1328 retval = bprm_mm_init(bprm);
1329 if (retval)
1330 goto out_file;
1332 bprm->argc = count(argv, MAX_ARG_STRINGS);
1333 if ((retval = bprm->argc) < 0)
1334 goto out;
1336 bprm->envc = count(envp, MAX_ARG_STRINGS);
1337 if ((retval = bprm->envc) < 0)
1338 goto out;
1340 retval = prepare_binprm(bprm);
1341 if (retval < 0)
1342 goto out;
1344 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1345 if (retval < 0)
1346 goto out;
1348 bprm->exec = bprm->p;
1349 retval = copy_strings(bprm->envc, envp, bprm);
1350 if (retval < 0)
1351 goto out;
1353 retval = copy_strings(bprm->argc, argv, bprm);
1354 if (retval < 0)
1355 goto out;
1357 current->flags &= ~PF_KTHREAD;
1358 retval = search_binary_handler(bprm,regs);
1359 if (retval < 0)
1360 goto out;
1362 current->stack_start = current->mm->start_stack;
1364 /* execve succeeded */
1365 current->fs->in_exec = 0;
1366 current->in_execve = 0;
1367 acct_update_integrals(current);
1368 free_bprm(bprm);
1369 if (displaced)
1370 put_files_struct(displaced);
1371 return retval;
1373 out:
1374 if (bprm->mm)
1375 mmput (bprm->mm);
1377 out_file:
1378 if (bprm->file) {
1379 allow_write_access(bprm->file);
1380 fput(bprm->file);
1383 out_unmark:
1384 if (clear_in_exec)
1385 current->fs->in_exec = 0;
1386 current->in_execve = 0;
1388 out_free:
1389 free_bprm(bprm);
1391 out_files:
1392 if (displaced)
1393 reset_files_struct(displaced);
1394 out_ret:
1395 return retval;
1398 void set_binfmt(struct linux_binfmt *new)
1400 struct mm_struct *mm = current->mm;
1402 if (mm->binfmt)
1403 module_put(mm->binfmt->module);
1405 mm->binfmt = new;
1406 if (new)
1407 __module_get(new->module);
1410 EXPORT_SYMBOL(set_binfmt);
1412 /* format_corename will inspect the pattern parameter, and output a
1413 * name into corename, which must have space for at least
1414 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1416 static int format_corename(char *corename, long signr)
1418 const struct cred *cred = current_cred();
1419 const char *pat_ptr = core_pattern;
1420 int ispipe = (*pat_ptr == '|');
1421 char *out_ptr = corename;
1422 char *const out_end = corename + CORENAME_MAX_SIZE;
1423 int rc;
1424 int pid_in_pattern = 0;
1426 /* Repeat as long as we have more pattern to process and more output
1427 space */
1428 while (*pat_ptr) {
1429 if (*pat_ptr != '%') {
1430 if (out_ptr == out_end)
1431 goto out;
1432 *out_ptr++ = *pat_ptr++;
1433 } else {
1434 switch (*++pat_ptr) {
1435 case 0:
1436 goto out;
1437 /* Double percent, output one percent */
1438 case '%':
1439 if (out_ptr == out_end)
1440 goto out;
1441 *out_ptr++ = '%';
1442 break;
1443 /* pid */
1444 case 'p':
1445 pid_in_pattern = 1;
1446 rc = snprintf(out_ptr, out_end - out_ptr,
1447 "%d", task_tgid_vnr(current));
1448 if (rc > out_end - out_ptr)
1449 goto out;
1450 out_ptr += rc;
1451 break;
1452 /* uid */
1453 case 'u':
1454 rc = snprintf(out_ptr, out_end - out_ptr,
1455 "%d", cred->uid);
1456 if (rc > out_end - out_ptr)
1457 goto out;
1458 out_ptr += rc;
1459 break;
1460 /* gid */
1461 case 'g':
1462 rc = snprintf(out_ptr, out_end - out_ptr,
1463 "%d", cred->gid);
1464 if (rc > out_end - out_ptr)
1465 goto out;
1466 out_ptr += rc;
1467 break;
1468 /* signal that caused the coredump */
1469 case 's':
1470 rc = snprintf(out_ptr, out_end - out_ptr,
1471 "%ld", signr);
1472 if (rc > out_end - out_ptr)
1473 goto out;
1474 out_ptr += rc;
1475 break;
1476 /* UNIX time of coredump */
1477 case 't': {
1478 struct timeval tv;
1479 do_gettimeofday(&tv);
1480 rc = snprintf(out_ptr, out_end - out_ptr,
1481 "%lu", tv.tv_sec);
1482 if (rc > out_end - out_ptr)
1483 goto out;
1484 out_ptr += rc;
1485 break;
1487 /* hostname */
1488 case 'h':
1489 down_read(&uts_sem);
1490 rc = snprintf(out_ptr, out_end - out_ptr,
1491 "%s", utsname()->nodename);
1492 up_read(&uts_sem);
1493 if (rc > out_end - out_ptr)
1494 goto out;
1495 out_ptr += rc;
1496 break;
1497 /* executable */
1498 case 'e':
1499 rc = snprintf(out_ptr, out_end - out_ptr,
1500 "%s", current->comm);
1501 if (rc > out_end - out_ptr)
1502 goto out;
1503 out_ptr += rc;
1504 break;
1505 /* core limit size */
1506 case 'c':
1507 rc = snprintf(out_ptr, out_end - out_ptr,
1508 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1509 if (rc > out_end - out_ptr)
1510 goto out;
1511 out_ptr += rc;
1512 break;
1513 default:
1514 break;
1516 ++pat_ptr;
1519 /* Backward compatibility with core_uses_pid:
1521 * If core_pattern does not include a %p (as is the default)
1522 * and core_uses_pid is set, then .%pid will be appended to
1523 * the filename. Do not do this for piped commands. */
1524 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 ".%d", task_tgid_vnr(current));
1527 if (rc > out_end - out_ptr)
1528 goto out;
1529 out_ptr += rc;
1531 out:
1532 *out_ptr = 0;
1533 return ispipe;
1536 static int zap_process(struct task_struct *start)
1538 struct task_struct *t;
1539 int nr = 0;
1541 start->signal->flags = SIGNAL_GROUP_EXIT;
1542 start->signal->group_stop_count = 0;
1544 t = start;
1545 do {
1546 if (t != current && t->mm) {
1547 sigaddset(&t->pending.signal, SIGKILL);
1548 signal_wake_up(t, 1);
1549 nr++;
1551 } while_each_thread(start, t);
1553 return nr;
1556 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1557 struct core_state *core_state, int exit_code)
1559 struct task_struct *g, *p;
1560 unsigned long flags;
1561 int nr = -EAGAIN;
1563 spin_lock_irq(&tsk->sighand->siglock);
1564 if (!signal_group_exit(tsk->signal)) {
1565 mm->core_state = core_state;
1566 tsk->signal->group_exit_code = exit_code;
1567 nr = zap_process(tsk);
1569 spin_unlock_irq(&tsk->sighand->siglock);
1570 if (unlikely(nr < 0))
1571 return nr;
1573 if (atomic_read(&mm->mm_users) == nr + 1)
1574 goto done;
1576 * We should find and kill all tasks which use this mm, and we should
1577 * count them correctly into ->nr_threads. We don't take tasklist
1578 * lock, but this is safe wrt:
1580 * fork:
1581 * None of sub-threads can fork after zap_process(leader). All
1582 * processes which were created before this point should be
1583 * visible to zap_threads() because copy_process() adds the new
1584 * process to the tail of init_task.tasks list, and lock/unlock
1585 * of ->siglock provides a memory barrier.
1587 * do_exit:
1588 * The caller holds mm->mmap_sem. This means that the task which
1589 * uses this mm can't pass exit_mm(), so it can't exit or clear
1590 * its ->mm.
1592 * de_thread:
1593 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1594 * we must see either old or new leader, this does not matter.
1595 * However, it can change p->sighand, so lock_task_sighand(p)
1596 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1597 * it can't fail.
1599 * Note also that "g" can be the old leader with ->mm == NULL
1600 * and already unhashed and thus removed from ->thread_group.
1601 * This is OK, __unhash_process()->list_del_rcu() does not
1602 * clear the ->next pointer, we will find the new leader via
1603 * next_thread().
1605 rcu_read_lock();
1606 for_each_process(g) {
1607 if (g == tsk->group_leader)
1608 continue;
1609 if (g->flags & PF_KTHREAD)
1610 continue;
1611 p = g;
1612 do {
1613 if (p->mm) {
1614 if (unlikely(p->mm == mm)) {
1615 lock_task_sighand(p, &flags);
1616 nr += zap_process(p);
1617 unlock_task_sighand(p, &flags);
1619 break;
1621 } while_each_thread(g, p);
1623 rcu_read_unlock();
1624 done:
1625 atomic_set(&core_state->nr_threads, nr);
1626 return nr;
1629 static int coredump_wait(int exit_code, struct core_state *core_state)
1631 struct task_struct *tsk = current;
1632 struct mm_struct *mm = tsk->mm;
1633 struct completion *vfork_done;
1634 int core_waiters;
1636 init_completion(&core_state->startup);
1637 core_state->dumper.task = tsk;
1638 core_state->dumper.next = NULL;
1639 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1640 up_write(&mm->mmap_sem);
1642 if (unlikely(core_waiters < 0))
1643 goto fail;
1646 * Make sure nobody is waiting for us to release the VM,
1647 * otherwise we can deadlock when we wait on each other
1649 vfork_done = tsk->vfork_done;
1650 if (vfork_done) {
1651 tsk->vfork_done = NULL;
1652 complete(vfork_done);
1655 if (core_waiters)
1656 wait_for_completion(&core_state->startup);
1657 fail:
1658 return core_waiters;
1661 static void coredump_finish(struct mm_struct *mm)
1663 struct core_thread *curr, *next;
1664 struct task_struct *task;
1666 next = mm->core_state->dumper.next;
1667 while ((curr = next) != NULL) {
1668 next = curr->next;
1669 task = curr->task;
1671 * see exit_mm(), curr->task must not see
1672 * ->task == NULL before we read ->next.
1674 smp_mb();
1675 curr->task = NULL;
1676 wake_up_process(task);
1679 mm->core_state = NULL;
1683 * set_dumpable converts traditional three-value dumpable to two flags and
1684 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1685 * these bits are not changed atomically. So get_dumpable can observe the
1686 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1687 * return either old dumpable or new one by paying attention to the order of
1688 * modifying the bits.
1690 * dumpable | mm->flags (binary)
1691 * old new | initial interim final
1692 * ---------+-----------------------
1693 * 0 1 | 00 01 01
1694 * 0 2 | 00 10(*) 11
1695 * 1 0 | 01 00 00
1696 * 1 2 | 01 11 11
1697 * 2 0 | 11 10(*) 00
1698 * 2 1 | 11 11 01
1700 * (*) get_dumpable regards interim value of 10 as 11.
1702 void set_dumpable(struct mm_struct *mm, int value)
1704 switch (value) {
1705 case 0:
1706 clear_bit(MMF_DUMPABLE, &mm->flags);
1707 smp_wmb();
1708 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1709 break;
1710 case 1:
1711 set_bit(MMF_DUMPABLE, &mm->flags);
1712 smp_wmb();
1713 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1714 break;
1715 case 2:
1716 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1717 smp_wmb();
1718 set_bit(MMF_DUMPABLE, &mm->flags);
1719 break;
1723 int get_dumpable(struct mm_struct *mm)
1725 int ret;
1727 ret = mm->flags & 0x3;
1728 return (ret >= 2) ? 2 : ret;
1731 static void wait_for_dump_helpers(struct file *file)
1733 struct pipe_inode_info *pipe;
1735 pipe = file->f_path.dentry->d_inode->i_pipe;
1737 pipe_lock(pipe);
1738 pipe->readers++;
1739 pipe->writers--;
1741 while ((pipe->readers > 1) && (!signal_pending(current))) {
1742 wake_up_interruptible_sync(&pipe->wait);
1743 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1744 pipe_wait(pipe);
1747 pipe->readers--;
1748 pipe->writers++;
1749 pipe_unlock(pipe);
1754 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1756 struct core_state core_state;
1757 char corename[CORENAME_MAX_SIZE + 1];
1758 struct mm_struct *mm = current->mm;
1759 struct linux_binfmt * binfmt;
1760 struct inode * inode;
1761 struct file * file;
1762 const struct cred *old_cred;
1763 struct cred *cred;
1764 int retval = 0;
1765 int flag = 0;
1766 int ispipe = 0;
1767 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1768 char **helper_argv = NULL;
1769 int helper_argc = 0;
1770 int dump_count = 0;
1771 static atomic_t core_dump_count = ATOMIC_INIT(0);
1773 audit_core_dumps(signr);
1775 binfmt = mm->binfmt;
1776 if (!binfmt || !binfmt->core_dump)
1777 goto fail;
1779 cred = prepare_creds();
1780 if (!cred) {
1781 retval = -ENOMEM;
1782 goto fail;
1785 down_write(&mm->mmap_sem);
1787 * If another thread got here first, or we are not dumpable, bail out.
1789 if (mm->core_state || !get_dumpable(mm)) {
1790 up_write(&mm->mmap_sem);
1791 put_cred(cred);
1792 goto fail;
1796 * We cannot trust fsuid as being the "true" uid of the
1797 * process nor do we know its entire history. We only know it
1798 * was tainted so we dump it as root in mode 2.
1800 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1801 flag = O_EXCL; /* Stop rewrite attacks */
1802 cred->fsuid = 0; /* Dump root private */
1805 retval = coredump_wait(exit_code, &core_state);
1806 if (retval < 0) {
1807 put_cred(cred);
1808 goto fail;
1811 old_cred = override_creds(cred);
1814 * Clear any false indication of pending signals that might
1815 * be seen by the filesystem code called to write the core file.
1817 clear_thread_flag(TIF_SIGPENDING);
1820 * lock_kernel() because format_corename() is controlled by sysctl, which
1821 * uses lock_kernel()
1823 lock_kernel();
1824 ispipe = format_corename(corename, signr);
1825 unlock_kernel();
1827 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1828 goto fail_unlock;
1830 if (ispipe) {
1831 if (core_limit == 0) {
1833 * Normally core limits are irrelevant to pipes, since
1834 * we're not writing to the file system, but we use
1835 * core_limit of 0 here as a speacial value. Any
1836 * non-zero limit gets set to RLIM_INFINITY below, but
1837 * a limit of 0 skips the dump. This is a consistent
1838 * way to catch recursive crashes. We can still crash
1839 * if the core_pattern binary sets RLIM_CORE = !0
1840 * but it runs as root, and can do lots of stupid things
1841 * Note that we use task_tgid_vnr here to grab the pid
1842 * of the process group leader. That way we get the
1843 * right pid if a thread in a multi-threaded
1844 * core_pattern process dies.
1846 printk(KERN_WARNING
1847 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1848 task_tgid_vnr(current), current->comm);
1849 printk(KERN_WARNING "Aborting core\n");
1850 goto fail_unlock;
1853 dump_count = atomic_inc_return(&core_dump_count);
1854 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1855 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1856 task_tgid_vnr(current), current->comm);
1857 printk(KERN_WARNING "Skipping core dump\n");
1858 goto fail_dropcount;
1861 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1862 if (!helper_argv) {
1863 printk(KERN_WARNING "%s failed to allocate memory\n",
1864 __func__);
1865 goto fail_dropcount;
1868 core_limit = RLIM_INFINITY;
1870 /* SIGPIPE can happen, but it's just never processed */
1871 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1872 &file)) {
1873 printk(KERN_INFO "Core dump to %s pipe failed\n",
1874 corename);
1875 goto fail_dropcount;
1877 } else
1878 file = filp_open(corename,
1879 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1880 0600);
1881 if (IS_ERR(file))
1882 goto fail_dropcount;
1883 inode = file->f_path.dentry->d_inode;
1884 if (inode->i_nlink > 1)
1885 goto close_fail; /* multiple links - don't dump */
1886 if (!ispipe && d_unhashed(file->f_path.dentry))
1887 goto close_fail;
1889 /* AK: actually i see no reason to not allow this for named pipes etc.,
1890 but keep the previous behaviour for now. */
1891 if (!ispipe && !S_ISREG(inode->i_mode))
1892 goto close_fail;
1894 * Dont allow local users get cute and trick others to coredump
1895 * into their pre-created files:
1897 if (inode->i_uid != current_fsuid())
1898 goto close_fail;
1899 if (!file->f_op)
1900 goto close_fail;
1901 if (!file->f_op->write)
1902 goto close_fail;
1903 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1904 goto close_fail;
1906 retval = binfmt->core_dump(signr, regs, file, core_limit);
1908 if (retval)
1909 current->signal->group_exit_code |= 0x80;
1910 close_fail:
1911 if (ispipe && core_pipe_limit)
1912 wait_for_dump_helpers(file);
1913 filp_close(file, NULL);
1914 fail_dropcount:
1915 if (dump_count)
1916 atomic_dec(&core_dump_count);
1917 fail_unlock:
1918 if (helper_argv)
1919 argv_free(helper_argv);
1921 revert_creds(old_cred);
1922 put_cred(cred);
1923 coredump_finish(mm);
1924 fail:
1925 return;