OMAP3: PM: per board prm timings
[linux-ginger.git] / fs / ocfs2 / journal.c
blob54c16b66327e7bcf4ac7d057963bace3f34b9273
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * journal.c
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
37 #include "ocfs2.h"
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
54 #include "buffer_head_io.h"
56 DEFINE_SPINLOCK(trans_inc_lock);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
81 return __ocfs2_wait_on_mount(osb, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
86 return __ocfs2_wait_on_mount(osb, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
108 if (!osb->replay_map)
109 return;
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
115 osb->replay_map->rm_state = state;
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
135 spin_lock(&osb->osb_lock);
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
156 if (!replay_map)
157 return;
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
173 if (!osb->replay_map)
174 return;
176 kfree(replay_map);
177 osb->replay_map = NULL;
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
182 struct ocfs2_recovery_map *rm;
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
201 return 0;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
209 mb();
210 return osb->recovery_thread_task != NULL;
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
215 struct ocfs2_recovery_map *rm;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
236 kfree(rm);
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
245 assert_spin_locked(&osb->osb_lock);
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
252 return 0;
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
274 return 0;
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
283 spin_lock(&osb->osb_lock);
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
297 spin_unlock(&osb->osb_lock);
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
302 int status = 0;
303 unsigned int flushed;
304 unsigned long old_id;
305 struct ocfs2_journal *journal = NULL;
307 mlog_entry_void();
309 journal = osb->journal;
311 /* Flush all pending commits and checkpoint the journal. */
312 down_write(&journal->j_trans_barrier);
314 if (atomic_read(&journal->j_num_trans) == 0) {
315 up_write(&journal->j_trans_barrier);
316 mlog(0, "No transactions for me to flush!\n");
317 goto finally;
320 jbd2_journal_lock_updates(journal->j_journal);
321 status = jbd2_journal_flush(journal->j_journal);
322 jbd2_journal_unlock_updates(journal->j_journal);
323 if (status < 0) {
324 up_write(&journal->j_trans_barrier);
325 mlog_errno(status);
326 goto finally;
329 old_id = ocfs2_inc_trans_id(journal);
331 flushed = atomic_read(&journal->j_num_trans);
332 atomic_set(&journal->j_num_trans, 0);
333 up_write(&journal->j_trans_barrier);
335 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 journal->j_trans_id, flushed);
338 ocfs2_wake_downconvert_thread(osb);
339 wake_up(&journal->j_checkpointed);
340 finally:
341 mlog_exit(status);
342 return status;
345 /* pass it NULL and it will allocate a new handle object for you. If
346 * you pass it a handle however, it may still return error, in which
347 * case it has free'd the passed handle for you. */
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
353 BUG_ON(!osb || !osb->journal->j_journal);
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
365 down_read(&osb->journal->j_trans_barrier);
367 handle = jbd2_journal_start(journal, max_buffs);
368 if (IS_ERR(handle)) {
369 up_read(&osb->journal->j_trans_barrier);
371 mlog_errno(PTR_ERR(handle));
373 if (is_journal_aborted(journal)) {
374 ocfs2_abort(osb->sb, "Detected aborted journal");
375 handle = ERR_PTR(-EROFS);
377 } else {
378 if (!ocfs2_mount_local(osb))
379 atomic_inc(&(osb->journal->j_num_trans));
382 return handle;
385 int ocfs2_commit_trans(struct ocfs2_super *osb,
386 handle_t *handle)
388 int ret, nested;
389 struct ocfs2_journal *journal = osb->journal;
391 BUG_ON(!handle);
393 nested = handle->h_ref > 1;
394 ret = jbd2_journal_stop(handle);
395 if (ret < 0)
396 mlog_errno(ret);
398 if (!nested)
399 up_read(&journal->j_trans_barrier);
401 return ret;
405 * 'nblocks' is what you want to add to the current
406 * transaction. extend_trans will either extend the current handle by
407 * nblocks, or commit it and start a new one with nblocks credits.
409 * This might call jbd2_journal_restart() which will commit dirty buffers
410 * and then restart the transaction. Before calling
411 * ocfs2_extend_trans(), any changed blocks should have been
412 * dirtied. After calling it, all blocks which need to be changed must
413 * go through another set of journal_access/journal_dirty calls.
415 * WARNING: This will not release any semaphores or disk locks taken
416 * during the transaction, so make sure they were taken *before*
417 * start_trans or we'll have ordering deadlocks.
419 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
420 * good because transaction ids haven't yet been recorded on the
421 * cluster locks associated with this handle.
423 int ocfs2_extend_trans(handle_t *handle, int nblocks)
425 int status;
427 BUG_ON(!handle);
428 BUG_ON(!nblocks);
430 mlog_entry_void();
432 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
434 #ifdef CONFIG_OCFS2_DEBUG_FS
435 status = 1;
436 #else
437 status = jbd2_journal_extend(handle, nblocks);
438 if (status < 0) {
439 mlog_errno(status);
440 goto bail;
442 #endif
444 if (status > 0) {
445 mlog(0,
446 "jbd2_journal_extend failed, trying "
447 "jbd2_journal_restart\n");
448 status = jbd2_journal_restart(handle, nblocks);
449 if (status < 0) {
450 mlog_errno(status);
451 goto bail;
455 status = 0;
456 bail:
458 mlog_exit(status);
459 return status;
462 struct ocfs2_triggers {
463 struct jbd2_buffer_trigger_type ot_triggers;
464 int ot_offset;
467 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
469 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
472 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
473 struct buffer_head *bh,
474 void *data, size_t size)
476 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
479 * We aren't guaranteed to have the superblock here, so we
480 * must unconditionally compute the ecc data.
481 * __ocfs2_journal_access() will only set the triggers if
482 * metaecc is enabled.
484 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
488 * Quota blocks have their own trigger because the struct ocfs2_block_check
489 * offset depends on the blocksize.
491 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
492 struct buffer_head *bh,
493 void *data, size_t size)
495 struct ocfs2_disk_dqtrailer *dqt =
496 ocfs2_block_dqtrailer(size, data);
499 * We aren't guaranteed to have the superblock here, so we
500 * must unconditionally compute the ecc data.
501 * __ocfs2_journal_access() will only set the triggers if
502 * metaecc is enabled.
504 ocfs2_block_check_compute(data, size, &dqt->dq_check);
508 * Directory blocks also have their own trigger because the
509 * struct ocfs2_block_check offset depends on the blocksize.
511 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
512 struct buffer_head *bh,
513 void *data, size_t size)
515 struct ocfs2_dir_block_trailer *trailer =
516 ocfs2_dir_trailer_from_size(size, data);
519 * We aren't guaranteed to have the superblock here, so we
520 * must unconditionally compute the ecc data.
521 * __ocfs2_journal_access() will only set the triggers if
522 * metaecc is enabled.
524 ocfs2_block_check_compute(data, size, &trailer->db_check);
527 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
528 struct buffer_head *bh)
530 mlog(ML_ERROR,
531 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
532 "bh->b_blocknr = %llu\n",
533 (unsigned long)bh,
534 (unsigned long long)bh->b_blocknr);
536 /* We aren't guaranteed to have the superblock here - but if we
537 * don't, it'll just crash. */
538 ocfs2_error(bh->b_assoc_map->host->i_sb,
539 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
542 static struct ocfs2_triggers di_triggers = {
543 .ot_triggers = {
544 .t_commit = ocfs2_commit_trigger,
545 .t_abort = ocfs2_abort_trigger,
547 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
550 static struct ocfs2_triggers eb_triggers = {
551 .ot_triggers = {
552 .t_commit = ocfs2_commit_trigger,
553 .t_abort = ocfs2_abort_trigger,
555 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
558 static struct ocfs2_triggers rb_triggers = {
559 .ot_triggers = {
560 .t_commit = ocfs2_commit_trigger,
561 .t_abort = ocfs2_abort_trigger,
563 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
566 static struct ocfs2_triggers gd_triggers = {
567 .ot_triggers = {
568 .t_commit = ocfs2_commit_trigger,
569 .t_abort = ocfs2_abort_trigger,
571 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
574 static struct ocfs2_triggers db_triggers = {
575 .ot_triggers = {
576 .t_commit = ocfs2_db_commit_trigger,
577 .t_abort = ocfs2_abort_trigger,
581 static struct ocfs2_triggers xb_triggers = {
582 .ot_triggers = {
583 .t_commit = ocfs2_commit_trigger,
584 .t_abort = ocfs2_abort_trigger,
586 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
589 static struct ocfs2_triggers dq_triggers = {
590 .ot_triggers = {
591 .t_commit = ocfs2_dq_commit_trigger,
592 .t_abort = ocfs2_abort_trigger,
596 static struct ocfs2_triggers dr_triggers = {
597 .ot_triggers = {
598 .t_commit = ocfs2_commit_trigger,
599 .t_abort = ocfs2_abort_trigger,
601 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
604 static struct ocfs2_triggers dl_triggers = {
605 .ot_triggers = {
606 .t_commit = ocfs2_commit_trigger,
607 .t_abort = ocfs2_abort_trigger,
609 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
612 static int __ocfs2_journal_access(handle_t *handle,
613 struct ocfs2_caching_info *ci,
614 struct buffer_head *bh,
615 struct ocfs2_triggers *triggers,
616 int type)
618 int status;
619 struct ocfs2_super *osb =
620 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
622 BUG_ON(!ci || !ci->ci_ops);
623 BUG_ON(!handle);
624 BUG_ON(!bh);
626 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
627 (unsigned long long)bh->b_blocknr, type,
628 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
629 "OCFS2_JOURNAL_ACCESS_CREATE" :
630 "OCFS2_JOURNAL_ACCESS_WRITE",
631 bh->b_size);
633 /* we can safely remove this assertion after testing. */
634 if (!buffer_uptodate(bh)) {
635 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
636 mlog(ML_ERROR, "b_blocknr=%llu\n",
637 (unsigned long long)bh->b_blocknr);
638 BUG();
641 /* Set the current transaction information on the ci so
642 * that the locking code knows whether it can drop it's locks
643 * on this ci or not. We're protected from the commit
644 * thread updating the current transaction id until
645 * ocfs2_commit_trans() because ocfs2_start_trans() took
646 * j_trans_barrier for us. */
647 ocfs2_set_ci_lock_trans(osb->journal, ci);
649 ocfs2_metadata_cache_io_lock(ci);
650 switch (type) {
651 case OCFS2_JOURNAL_ACCESS_CREATE:
652 case OCFS2_JOURNAL_ACCESS_WRITE:
653 status = jbd2_journal_get_write_access(handle, bh);
654 break;
656 case OCFS2_JOURNAL_ACCESS_UNDO:
657 status = jbd2_journal_get_undo_access(handle, bh);
658 break;
660 default:
661 status = -EINVAL;
662 mlog(ML_ERROR, "Uknown access type!\n");
664 if (!status && ocfs2_meta_ecc(osb) && triggers)
665 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
666 ocfs2_metadata_cache_io_unlock(ci);
668 if (status < 0)
669 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
670 status, type);
672 mlog_exit(status);
673 return status;
676 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
677 struct buffer_head *bh, int type)
679 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
682 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
683 struct buffer_head *bh, int type)
685 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
688 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
689 struct buffer_head *bh, int type)
691 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
692 type);
695 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
696 struct buffer_head *bh, int type)
698 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
701 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
702 struct buffer_head *bh, int type)
704 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
707 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
708 struct buffer_head *bh, int type)
710 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
713 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
714 struct buffer_head *bh, int type)
716 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
719 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
720 struct buffer_head *bh, int type)
722 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
725 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
726 struct buffer_head *bh, int type)
728 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
731 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
732 struct buffer_head *bh, int type)
734 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
737 int ocfs2_journal_dirty(handle_t *handle,
738 struct buffer_head *bh)
740 int status;
742 mlog_entry("(bh->b_blocknr=%llu)\n",
743 (unsigned long long)bh->b_blocknr);
745 status = jbd2_journal_dirty_metadata(handle, bh);
746 if (status < 0)
747 mlog(ML_ERROR, "Could not dirty metadata buffer. "
748 "(bh->b_blocknr=%llu)\n",
749 (unsigned long long)bh->b_blocknr);
751 mlog_exit(status);
752 return status;
755 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
757 void ocfs2_set_journal_params(struct ocfs2_super *osb)
759 journal_t *journal = osb->journal->j_journal;
760 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
762 if (osb->osb_commit_interval)
763 commit_interval = osb->osb_commit_interval;
765 spin_lock(&journal->j_state_lock);
766 journal->j_commit_interval = commit_interval;
767 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
768 journal->j_flags |= JBD2_BARRIER;
769 else
770 journal->j_flags &= ~JBD2_BARRIER;
771 spin_unlock(&journal->j_state_lock);
774 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
776 int status = -1;
777 struct inode *inode = NULL; /* the journal inode */
778 journal_t *j_journal = NULL;
779 struct ocfs2_dinode *di = NULL;
780 struct buffer_head *bh = NULL;
781 struct ocfs2_super *osb;
782 int inode_lock = 0;
784 mlog_entry_void();
786 BUG_ON(!journal);
788 osb = journal->j_osb;
790 /* already have the inode for our journal */
791 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
792 osb->slot_num);
793 if (inode == NULL) {
794 status = -EACCES;
795 mlog_errno(status);
796 goto done;
798 if (is_bad_inode(inode)) {
799 mlog(ML_ERROR, "access error (bad inode)\n");
800 iput(inode);
801 inode = NULL;
802 status = -EACCES;
803 goto done;
806 SET_INODE_JOURNAL(inode);
807 OCFS2_I(inode)->ip_open_count++;
809 /* Skip recovery waits here - journal inode metadata never
810 * changes in a live cluster so it can be considered an
811 * exception to the rule. */
812 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
813 if (status < 0) {
814 if (status != -ERESTARTSYS)
815 mlog(ML_ERROR, "Could not get lock on journal!\n");
816 goto done;
819 inode_lock = 1;
820 di = (struct ocfs2_dinode *)bh->b_data;
822 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
823 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
824 inode->i_size);
825 status = -EINVAL;
826 goto done;
829 mlog(0, "inode->i_size = %lld\n", inode->i_size);
830 mlog(0, "inode->i_blocks = %llu\n",
831 (unsigned long long)inode->i_blocks);
832 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
834 /* call the kernels journal init function now */
835 j_journal = jbd2_journal_init_inode(inode);
836 if (j_journal == NULL) {
837 mlog(ML_ERROR, "Linux journal layer error\n");
838 status = -EINVAL;
839 goto done;
842 mlog(0, "Returned from jbd2_journal_init_inode\n");
843 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
845 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
846 OCFS2_JOURNAL_DIRTY_FL);
848 journal->j_journal = j_journal;
849 journal->j_inode = inode;
850 journal->j_bh = bh;
852 ocfs2_set_journal_params(osb);
854 journal->j_state = OCFS2_JOURNAL_LOADED;
856 status = 0;
857 done:
858 if (status < 0) {
859 if (inode_lock)
860 ocfs2_inode_unlock(inode, 1);
861 brelse(bh);
862 if (inode) {
863 OCFS2_I(inode)->ip_open_count--;
864 iput(inode);
868 mlog_exit(status);
869 return status;
872 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
874 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
877 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
879 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
882 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
883 int dirty, int replayed)
885 int status;
886 unsigned int flags;
887 struct ocfs2_journal *journal = osb->journal;
888 struct buffer_head *bh = journal->j_bh;
889 struct ocfs2_dinode *fe;
891 mlog_entry_void();
893 fe = (struct ocfs2_dinode *)bh->b_data;
895 /* The journal bh on the osb always comes from ocfs2_journal_init()
896 * and was validated there inside ocfs2_inode_lock_full(). It's a
897 * code bug if we mess it up. */
898 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
900 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
901 if (dirty)
902 flags |= OCFS2_JOURNAL_DIRTY_FL;
903 else
904 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
905 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
907 if (replayed)
908 ocfs2_bump_recovery_generation(fe);
910 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
911 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
912 if (status < 0)
913 mlog_errno(status);
915 mlog_exit(status);
916 return status;
920 * If the journal has been kmalloc'd it needs to be freed after this
921 * call.
923 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
925 struct ocfs2_journal *journal = NULL;
926 int status = 0;
927 struct inode *inode = NULL;
928 int num_running_trans = 0;
930 mlog_entry_void();
932 BUG_ON(!osb);
934 journal = osb->journal;
935 if (!journal)
936 goto done;
938 inode = journal->j_inode;
940 if (journal->j_state != OCFS2_JOURNAL_LOADED)
941 goto done;
943 /* need to inc inode use count - jbd2_journal_destroy will iput. */
944 if (!igrab(inode))
945 BUG();
947 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
948 if (num_running_trans > 0)
949 mlog(0, "Shutting down journal: must wait on %d "
950 "running transactions!\n",
951 num_running_trans);
953 /* Do a commit_cache here. It will flush our journal, *and*
954 * release any locks that are still held.
955 * set the SHUTDOWN flag and release the trans lock.
956 * the commit thread will take the trans lock for us below. */
957 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
959 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
960 * drop the trans_lock (which we want to hold until we
961 * completely destroy the journal. */
962 if (osb->commit_task) {
963 /* Wait for the commit thread */
964 mlog(0, "Waiting for ocfs2commit to exit....\n");
965 kthread_stop(osb->commit_task);
966 osb->commit_task = NULL;
969 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
971 if (ocfs2_mount_local(osb)) {
972 jbd2_journal_lock_updates(journal->j_journal);
973 status = jbd2_journal_flush(journal->j_journal);
974 jbd2_journal_unlock_updates(journal->j_journal);
975 if (status < 0)
976 mlog_errno(status);
979 if (status == 0) {
981 * Do not toggle if flush was unsuccessful otherwise
982 * will leave dirty metadata in a "clean" journal
984 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
985 if (status < 0)
986 mlog_errno(status);
989 /* Shutdown the kernel journal system */
990 jbd2_journal_destroy(journal->j_journal);
991 journal->j_journal = NULL;
993 OCFS2_I(inode)->ip_open_count--;
995 /* unlock our journal */
996 ocfs2_inode_unlock(inode, 1);
998 brelse(journal->j_bh);
999 journal->j_bh = NULL;
1001 journal->j_state = OCFS2_JOURNAL_FREE;
1003 // up_write(&journal->j_trans_barrier);
1004 done:
1005 if (inode)
1006 iput(inode);
1007 mlog_exit_void();
1010 static void ocfs2_clear_journal_error(struct super_block *sb,
1011 journal_t *journal,
1012 int slot)
1014 int olderr;
1016 olderr = jbd2_journal_errno(journal);
1017 if (olderr) {
1018 mlog(ML_ERROR, "File system error %d recorded in "
1019 "journal %u.\n", olderr, slot);
1020 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1021 sb->s_id);
1023 jbd2_journal_ack_err(journal);
1024 jbd2_journal_clear_err(journal);
1028 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1030 int status = 0;
1031 struct ocfs2_super *osb;
1033 mlog_entry_void();
1035 BUG_ON(!journal);
1037 osb = journal->j_osb;
1039 status = jbd2_journal_load(journal->j_journal);
1040 if (status < 0) {
1041 mlog(ML_ERROR, "Failed to load journal!\n");
1042 goto done;
1045 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1047 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1048 if (status < 0) {
1049 mlog_errno(status);
1050 goto done;
1053 /* Launch the commit thread */
1054 if (!local) {
1055 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1056 "ocfs2cmt");
1057 if (IS_ERR(osb->commit_task)) {
1058 status = PTR_ERR(osb->commit_task);
1059 osb->commit_task = NULL;
1060 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1061 "error=%d", status);
1062 goto done;
1064 } else
1065 osb->commit_task = NULL;
1067 done:
1068 mlog_exit(status);
1069 return status;
1073 /* 'full' flag tells us whether we clear out all blocks or if we just
1074 * mark the journal clean */
1075 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1077 int status;
1079 mlog_entry_void();
1081 BUG_ON(!journal);
1083 status = jbd2_journal_wipe(journal->j_journal, full);
1084 if (status < 0) {
1085 mlog_errno(status);
1086 goto bail;
1089 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1090 if (status < 0)
1091 mlog_errno(status);
1093 bail:
1094 mlog_exit(status);
1095 return status;
1098 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1100 int empty;
1101 struct ocfs2_recovery_map *rm = osb->recovery_map;
1103 spin_lock(&osb->osb_lock);
1104 empty = (rm->rm_used == 0);
1105 spin_unlock(&osb->osb_lock);
1107 return empty;
1110 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1112 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1116 * JBD Might read a cached version of another nodes journal file. We
1117 * don't want this as this file changes often and we get no
1118 * notification on those changes. The only way to be sure that we've
1119 * got the most up to date version of those blocks then is to force
1120 * read them off disk. Just searching through the buffer cache won't
1121 * work as there may be pages backing this file which are still marked
1122 * up to date. We know things can't change on this file underneath us
1123 * as we have the lock by now :)
1125 static int ocfs2_force_read_journal(struct inode *inode)
1127 int status = 0;
1128 int i;
1129 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1130 #define CONCURRENT_JOURNAL_FILL 32ULL
1131 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1133 mlog_entry_void();
1135 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1137 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1138 v_blkno = 0;
1139 while (v_blkno < num_blocks) {
1140 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1141 &p_blkno, &p_blocks, NULL);
1142 if (status < 0) {
1143 mlog_errno(status);
1144 goto bail;
1147 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1148 p_blocks = CONCURRENT_JOURNAL_FILL;
1150 /* We are reading journal data which should not
1151 * be put in the uptodate cache */
1152 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1153 p_blkno, p_blocks, bhs);
1154 if (status < 0) {
1155 mlog_errno(status);
1156 goto bail;
1159 for(i = 0; i < p_blocks; i++) {
1160 brelse(bhs[i]);
1161 bhs[i] = NULL;
1164 v_blkno += p_blocks;
1167 bail:
1168 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1169 brelse(bhs[i]);
1170 mlog_exit(status);
1171 return status;
1174 struct ocfs2_la_recovery_item {
1175 struct list_head lri_list;
1176 int lri_slot;
1177 struct ocfs2_dinode *lri_la_dinode;
1178 struct ocfs2_dinode *lri_tl_dinode;
1179 struct ocfs2_quota_recovery *lri_qrec;
1182 /* Does the second half of the recovery process. By this point, the
1183 * node is marked clean and can actually be considered recovered,
1184 * hence it's no longer in the recovery map, but there's still some
1185 * cleanup we can do which shouldn't happen within the recovery thread
1186 * as locking in that context becomes very difficult if we are to take
1187 * recovering nodes into account.
1189 * NOTE: This function can and will sleep on recovery of other nodes
1190 * during cluster locking, just like any other ocfs2 process.
1192 void ocfs2_complete_recovery(struct work_struct *work)
1194 int ret;
1195 struct ocfs2_journal *journal =
1196 container_of(work, struct ocfs2_journal, j_recovery_work);
1197 struct ocfs2_super *osb = journal->j_osb;
1198 struct ocfs2_dinode *la_dinode, *tl_dinode;
1199 struct ocfs2_la_recovery_item *item, *n;
1200 struct ocfs2_quota_recovery *qrec;
1201 LIST_HEAD(tmp_la_list);
1203 mlog_entry_void();
1205 mlog(0, "completing recovery from keventd\n");
1207 spin_lock(&journal->j_lock);
1208 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1209 spin_unlock(&journal->j_lock);
1211 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1212 list_del_init(&item->lri_list);
1214 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1216 ocfs2_wait_on_quotas(osb);
1218 la_dinode = item->lri_la_dinode;
1219 if (la_dinode) {
1220 mlog(0, "Clean up local alloc %llu\n",
1221 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1223 ret = ocfs2_complete_local_alloc_recovery(osb,
1224 la_dinode);
1225 if (ret < 0)
1226 mlog_errno(ret);
1228 kfree(la_dinode);
1231 tl_dinode = item->lri_tl_dinode;
1232 if (tl_dinode) {
1233 mlog(0, "Clean up truncate log %llu\n",
1234 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1236 ret = ocfs2_complete_truncate_log_recovery(osb,
1237 tl_dinode);
1238 if (ret < 0)
1239 mlog_errno(ret);
1241 kfree(tl_dinode);
1244 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1245 if (ret < 0)
1246 mlog_errno(ret);
1248 qrec = item->lri_qrec;
1249 if (qrec) {
1250 mlog(0, "Recovering quota files");
1251 ret = ocfs2_finish_quota_recovery(osb, qrec,
1252 item->lri_slot);
1253 if (ret < 0)
1254 mlog_errno(ret);
1255 /* Recovery info is already freed now */
1258 kfree(item);
1261 mlog(0, "Recovery completion\n");
1262 mlog_exit_void();
1265 /* NOTE: This function always eats your references to la_dinode and
1266 * tl_dinode, either manually on error, or by passing them to
1267 * ocfs2_complete_recovery */
1268 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1269 int slot_num,
1270 struct ocfs2_dinode *la_dinode,
1271 struct ocfs2_dinode *tl_dinode,
1272 struct ocfs2_quota_recovery *qrec)
1274 struct ocfs2_la_recovery_item *item;
1276 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1277 if (!item) {
1278 /* Though we wish to avoid it, we are in fact safe in
1279 * skipping local alloc cleanup as fsck.ocfs2 is more
1280 * than capable of reclaiming unused space. */
1281 if (la_dinode)
1282 kfree(la_dinode);
1284 if (tl_dinode)
1285 kfree(tl_dinode);
1287 if (qrec)
1288 ocfs2_free_quota_recovery(qrec);
1290 mlog_errno(-ENOMEM);
1291 return;
1294 INIT_LIST_HEAD(&item->lri_list);
1295 item->lri_la_dinode = la_dinode;
1296 item->lri_slot = slot_num;
1297 item->lri_tl_dinode = tl_dinode;
1298 item->lri_qrec = qrec;
1300 spin_lock(&journal->j_lock);
1301 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1302 queue_work(ocfs2_wq, &journal->j_recovery_work);
1303 spin_unlock(&journal->j_lock);
1306 /* Called by the mount code to queue recovery the last part of
1307 * recovery for it's own and offline slot(s). */
1308 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1310 struct ocfs2_journal *journal = osb->journal;
1312 /* No need to queue up our truncate_log as regular cleanup will catch
1313 * that */
1314 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1315 osb->local_alloc_copy, NULL, NULL);
1316 ocfs2_schedule_truncate_log_flush(osb, 0);
1318 osb->local_alloc_copy = NULL;
1319 osb->dirty = 0;
1321 /* queue to recover orphan slots for all offline slots */
1322 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1323 ocfs2_queue_replay_slots(osb);
1324 ocfs2_free_replay_slots(osb);
1327 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1329 if (osb->quota_rec) {
1330 ocfs2_queue_recovery_completion(osb->journal,
1331 osb->slot_num,
1332 NULL,
1333 NULL,
1334 osb->quota_rec);
1335 osb->quota_rec = NULL;
1339 static int __ocfs2_recovery_thread(void *arg)
1341 int status, node_num, slot_num;
1342 struct ocfs2_super *osb = arg;
1343 struct ocfs2_recovery_map *rm = osb->recovery_map;
1344 int *rm_quota = NULL;
1345 int rm_quota_used = 0, i;
1346 struct ocfs2_quota_recovery *qrec;
1348 mlog_entry_void();
1350 status = ocfs2_wait_on_mount(osb);
1351 if (status < 0) {
1352 goto bail;
1355 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1356 if (!rm_quota) {
1357 status = -ENOMEM;
1358 goto bail;
1360 restart:
1361 status = ocfs2_super_lock(osb, 1);
1362 if (status < 0) {
1363 mlog_errno(status);
1364 goto bail;
1367 status = ocfs2_compute_replay_slots(osb);
1368 if (status < 0)
1369 mlog_errno(status);
1371 /* queue recovery for our own slot */
1372 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1373 NULL, NULL);
1375 spin_lock(&osb->osb_lock);
1376 while (rm->rm_used) {
1377 /* It's always safe to remove entry zero, as we won't
1378 * clear it until ocfs2_recover_node() has succeeded. */
1379 node_num = rm->rm_entries[0];
1380 spin_unlock(&osb->osb_lock);
1381 mlog(0, "checking node %d\n", node_num);
1382 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1383 if (slot_num == -ENOENT) {
1384 status = 0;
1385 mlog(0, "no slot for this node, so no recovery"
1386 "required.\n");
1387 goto skip_recovery;
1389 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1391 /* It is a bit subtle with quota recovery. We cannot do it
1392 * immediately because we have to obtain cluster locks from
1393 * quota files and we also don't want to just skip it because
1394 * then quota usage would be out of sync until some node takes
1395 * the slot. So we remember which nodes need quota recovery
1396 * and when everything else is done, we recover quotas. */
1397 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1398 if (i == rm_quota_used)
1399 rm_quota[rm_quota_used++] = slot_num;
1401 status = ocfs2_recover_node(osb, node_num, slot_num);
1402 skip_recovery:
1403 if (!status) {
1404 ocfs2_recovery_map_clear(osb, node_num);
1405 } else {
1406 mlog(ML_ERROR,
1407 "Error %d recovering node %d on device (%u,%u)!\n",
1408 status, node_num,
1409 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1410 mlog(ML_ERROR, "Volume requires unmount.\n");
1413 spin_lock(&osb->osb_lock);
1415 spin_unlock(&osb->osb_lock);
1416 mlog(0, "All nodes recovered\n");
1418 /* Refresh all journal recovery generations from disk */
1419 status = ocfs2_check_journals_nolocks(osb);
1420 status = (status == -EROFS) ? 0 : status;
1421 if (status < 0)
1422 mlog_errno(status);
1424 /* Now it is right time to recover quotas... We have to do this under
1425 * superblock lock so that noone can start using the slot (and crash)
1426 * before we recover it */
1427 for (i = 0; i < rm_quota_used; i++) {
1428 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1429 if (IS_ERR(qrec)) {
1430 status = PTR_ERR(qrec);
1431 mlog_errno(status);
1432 continue;
1434 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1435 NULL, NULL, qrec);
1438 ocfs2_super_unlock(osb, 1);
1440 /* queue recovery for offline slots */
1441 ocfs2_queue_replay_slots(osb);
1443 bail:
1444 mutex_lock(&osb->recovery_lock);
1445 if (!status && !ocfs2_recovery_completed(osb)) {
1446 mutex_unlock(&osb->recovery_lock);
1447 goto restart;
1450 ocfs2_free_replay_slots(osb);
1451 osb->recovery_thread_task = NULL;
1452 mb(); /* sync with ocfs2_recovery_thread_running */
1453 wake_up(&osb->recovery_event);
1455 mutex_unlock(&osb->recovery_lock);
1457 if (rm_quota)
1458 kfree(rm_quota);
1460 mlog_exit(status);
1461 /* no one is callint kthread_stop() for us so the kthread() api
1462 * requires that we call do_exit(). And it isn't exported, but
1463 * complete_and_exit() seems to be a minimal wrapper around it. */
1464 complete_and_exit(NULL, status);
1465 return status;
1468 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1470 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1471 node_num, osb->node_num);
1473 mutex_lock(&osb->recovery_lock);
1474 if (osb->disable_recovery)
1475 goto out;
1477 /* People waiting on recovery will wait on
1478 * the recovery map to empty. */
1479 if (ocfs2_recovery_map_set(osb, node_num))
1480 mlog(0, "node %d already in recovery map.\n", node_num);
1482 mlog(0, "starting recovery thread...\n");
1484 if (osb->recovery_thread_task)
1485 goto out;
1487 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1488 "ocfs2rec");
1489 if (IS_ERR(osb->recovery_thread_task)) {
1490 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1491 osb->recovery_thread_task = NULL;
1494 out:
1495 mutex_unlock(&osb->recovery_lock);
1496 wake_up(&osb->recovery_event);
1498 mlog_exit_void();
1501 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1502 int slot_num,
1503 struct buffer_head **bh,
1504 struct inode **ret_inode)
1506 int status = -EACCES;
1507 struct inode *inode = NULL;
1509 BUG_ON(slot_num >= osb->max_slots);
1511 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1512 slot_num);
1513 if (!inode || is_bad_inode(inode)) {
1514 mlog_errno(status);
1515 goto bail;
1517 SET_INODE_JOURNAL(inode);
1519 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1520 if (status < 0) {
1521 mlog_errno(status);
1522 goto bail;
1525 status = 0;
1527 bail:
1528 if (inode) {
1529 if (status || !ret_inode)
1530 iput(inode);
1531 else
1532 *ret_inode = inode;
1534 return status;
1537 /* Does the actual journal replay and marks the journal inode as
1538 * clean. Will only replay if the journal inode is marked dirty. */
1539 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1540 int node_num,
1541 int slot_num)
1543 int status;
1544 int got_lock = 0;
1545 unsigned int flags;
1546 struct inode *inode = NULL;
1547 struct ocfs2_dinode *fe;
1548 journal_t *journal = NULL;
1549 struct buffer_head *bh = NULL;
1550 u32 slot_reco_gen;
1552 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1553 if (status) {
1554 mlog_errno(status);
1555 goto done;
1558 fe = (struct ocfs2_dinode *)bh->b_data;
1559 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1560 brelse(bh);
1561 bh = NULL;
1564 * As the fs recovery is asynchronous, there is a small chance that
1565 * another node mounted (and recovered) the slot before the recovery
1566 * thread could get the lock. To handle that, we dirty read the journal
1567 * inode for that slot to get the recovery generation. If it is
1568 * different than what we expected, the slot has been recovered.
1569 * If not, it needs recovery.
1571 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1572 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1573 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1574 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1575 status = -EBUSY;
1576 goto done;
1579 /* Continue with recovery as the journal has not yet been recovered */
1581 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1582 if (status < 0) {
1583 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1584 if (status != -ERESTARTSYS)
1585 mlog(ML_ERROR, "Could not lock journal!\n");
1586 goto done;
1588 got_lock = 1;
1590 fe = (struct ocfs2_dinode *) bh->b_data;
1592 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1593 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1595 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1596 mlog(0, "No recovery required for node %d\n", node_num);
1597 /* Refresh recovery generation for the slot */
1598 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1599 goto done;
1602 /* we need to run complete recovery for offline orphan slots */
1603 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1605 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1606 node_num, slot_num,
1607 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1609 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1611 status = ocfs2_force_read_journal(inode);
1612 if (status < 0) {
1613 mlog_errno(status);
1614 goto done;
1617 mlog(0, "calling journal_init_inode\n");
1618 journal = jbd2_journal_init_inode(inode);
1619 if (journal == NULL) {
1620 mlog(ML_ERROR, "Linux journal layer error\n");
1621 status = -EIO;
1622 goto done;
1625 status = jbd2_journal_load(journal);
1626 if (status < 0) {
1627 mlog_errno(status);
1628 if (!igrab(inode))
1629 BUG();
1630 jbd2_journal_destroy(journal);
1631 goto done;
1634 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1636 /* wipe the journal */
1637 mlog(0, "flushing the journal.\n");
1638 jbd2_journal_lock_updates(journal);
1639 status = jbd2_journal_flush(journal);
1640 jbd2_journal_unlock_updates(journal);
1641 if (status < 0)
1642 mlog_errno(status);
1644 /* This will mark the node clean */
1645 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1646 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1647 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1649 /* Increment recovery generation to indicate successful recovery */
1650 ocfs2_bump_recovery_generation(fe);
1651 osb->slot_recovery_generations[slot_num] =
1652 ocfs2_get_recovery_generation(fe);
1654 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1655 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1656 if (status < 0)
1657 mlog_errno(status);
1659 if (!igrab(inode))
1660 BUG();
1662 jbd2_journal_destroy(journal);
1664 done:
1665 /* drop the lock on this nodes journal */
1666 if (got_lock)
1667 ocfs2_inode_unlock(inode, 1);
1669 if (inode)
1670 iput(inode);
1672 brelse(bh);
1674 mlog_exit(status);
1675 return status;
1679 * Do the most important parts of node recovery:
1680 * - Replay it's journal
1681 * - Stamp a clean local allocator file
1682 * - Stamp a clean truncate log
1683 * - Mark the node clean
1685 * If this function completes without error, a node in OCFS2 can be
1686 * said to have been safely recovered. As a result, failure during the
1687 * second part of a nodes recovery process (local alloc recovery) is
1688 * far less concerning.
1690 static int ocfs2_recover_node(struct ocfs2_super *osb,
1691 int node_num, int slot_num)
1693 int status = 0;
1694 struct ocfs2_dinode *la_copy = NULL;
1695 struct ocfs2_dinode *tl_copy = NULL;
1697 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1698 node_num, slot_num, osb->node_num);
1700 /* Should not ever be called to recover ourselves -- in that
1701 * case we should've called ocfs2_journal_load instead. */
1702 BUG_ON(osb->node_num == node_num);
1704 status = ocfs2_replay_journal(osb, node_num, slot_num);
1705 if (status < 0) {
1706 if (status == -EBUSY) {
1707 mlog(0, "Skipping recovery for slot %u (node %u) "
1708 "as another node has recovered it\n", slot_num,
1709 node_num);
1710 status = 0;
1711 goto done;
1713 mlog_errno(status);
1714 goto done;
1717 /* Stamp a clean local alloc file AFTER recovering the journal... */
1718 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1719 if (status < 0) {
1720 mlog_errno(status);
1721 goto done;
1724 /* An error from begin_truncate_log_recovery is not
1725 * serious enough to warrant halting the rest of
1726 * recovery. */
1727 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1728 if (status < 0)
1729 mlog_errno(status);
1731 /* Likewise, this would be a strange but ultimately not so
1732 * harmful place to get an error... */
1733 status = ocfs2_clear_slot(osb, slot_num);
1734 if (status < 0)
1735 mlog_errno(status);
1737 /* This will kfree the memory pointed to by la_copy and tl_copy */
1738 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1739 tl_copy, NULL);
1741 status = 0;
1742 done:
1744 mlog_exit(status);
1745 return status;
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750 * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752 int slot_num)
1754 int status, flags;
1755 struct inode *inode = NULL;
1757 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758 slot_num);
1759 if (inode == NULL) {
1760 mlog(ML_ERROR, "access error\n");
1761 status = -EACCES;
1762 goto bail;
1764 if (is_bad_inode(inode)) {
1765 mlog(ML_ERROR, "access error (bad inode)\n");
1766 iput(inode);
1767 inode = NULL;
1768 status = -EACCES;
1769 goto bail;
1771 SET_INODE_JOURNAL(inode);
1773 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1774 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1775 if (status < 0) {
1776 if (status != -EAGAIN)
1777 mlog_errno(status);
1778 goto bail;
1781 ocfs2_inode_unlock(inode, 1);
1782 bail:
1783 if (inode)
1784 iput(inode);
1786 return status;
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790 * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1793 unsigned int node_num;
1794 int status, i;
1795 u32 gen;
1796 struct buffer_head *bh = NULL;
1797 struct ocfs2_dinode *di;
1799 /* This is called with the super block cluster lock, so we
1800 * know that the slot map can't change underneath us. */
1802 for (i = 0; i < osb->max_slots; i++) {
1803 /* Read journal inode to get the recovery generation */
1804 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805 if (status) {
1806 mlog_errno(status);
1807 goto bail;
1809 di = (struct ocfs2_dinode *)bh->b_data;
1810 gen = ocfs2_get_recovery_generation(di);
1811 brelse(bh);
1812 bh = NULL;
1814 spin_lock(&osb->osb_lock);
1815 osb->slot_recovery_generations[i] = gen;
1817 mlog(0, "Slot %u recovery generation is %u\n", i,
1818 osb->slot_recovery_generations[i]);
1820 if (i == osb->slot_num) {
1821 spin_unlock(&osb->osb_lock);
1822 continue;
1825 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1826 if (status == -ENOENT) {
1827 spin_unlock(&osb->osb_lock);
1828 continue;
1831 if (__ocfs2_recovery_map_test(osb, node_num)) {
1832 spin_unlock(&osb->osb_lock);
1833 continue;
1835 spin_unlock(&osb->osb_lock);
1837 /* Ok, we have a slot occupied by another node which
1838 * is not in the recovery map. We trylock his journal
1839 * file here to test if he's alive. */
1840 status = ocfs2_trylock_journal(osb, i);
1841 if (!status) {
1842 /* Since we're called from mount, we know that
1843 * the recovery thread can't race us on
1844 * setting / checking the recovery bits. */
1845 ocfs2_recovery_thread(osb, node_num);
1846 } else if ((status < 0) && (status != -EAGAIN)) {
1847 mlog_errno(status);
1848 goto bail;
1852 status = 0;
1853 bail:
1854 mlog_exit(status);
1855 return status;
1859 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1860 * randomness to the timeout to minimize multple nodes firing the timer at the
1861 * same time.
1863 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1865 unsigned long time;
1867 get_random_bytes(&time, sizeof(time));
1868 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1869 return msecs_to_jiffies(time);
1873 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1874 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1875 * is done to catch any orphans that are left over in orphan directories.
1877 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1878 * seconds. It gets an EX lock on os_lockres and checks sequence number
1879 * stored in LVB. If the sequence number has changed, it means some other
1880 * node has done the scan. This node skips the scan and tracks the
1881 * sequence number. If the sequence number didn't change, it means a scan
1882 * hasn't happened. The node queues a scan and increments the
1883 * sequence number in the LVB.
1885 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1887 struct ocfs2_orphan_scan *os;
1888 int status, i;
1889 u32 seqno = 0;
1891 os = &osb->osb_orphan_scan;
1893 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1894 goto out;
1896 status = ocfs2_orphan_scan_lock(osb, &seqno);
1897 if (status < 0) {
1898 if (status != -EAGAIN)
1899 mlog_errno(status);
1900 goto out;
1903 /* Do no queue the tasks if the volume is being umounted */
1904 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1905 goto unlock;
1907 if (os->os_seqno != seqno) {
1908 os->os_seqno = seqno;
1909 goto unlock;
1912 for (i = 0; i < osb->max_slots; i++)
1913 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1914 NULL);
1916 * We queued a recovery on orphan slots, increment the sequence
1917 * number and update LVB so other node will skip the scan for a while
1919 seqno++;
1920 os->os_count++;
1921 os->os_scantime = CURRENT_TIME;
1922 unlock:
1923 ocfs2_orphan_scan_unlock(osb, seqno);
1924 out:
1925 return;
1928 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1929 void ocfs2_orphan_scan_work(struct work_struct *work)
1931 struct ocfs2_orphan_scan *os;
1932 struct ocfs2_super *osb;
1934 os = container_of(work, struct ocfs2_orphan_scan,
1935 os_orphan_scan_work.work);
1936 osb = os->os_osb;
1938 mutex_lock(&os->os_lock);
1939 ocfs2_queue_orphan_scan(osb);
1940 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1941 schedule_delayed_work(&os->os_orphan_scan_work,
1942 ocfs2_orphan_scan_timeout());
1943 mutex_unlock(&os->os_lock);
1946 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1948 struct ocfs2_orphan_scan *os;
1950 os = &osb->osb_orphan_scan;
1951 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1952 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1953 mutex_lock(&os->os_lock);
1954 cancel_delayed_work(&os->os_orphan_scan_work);
1955 mutex_unlock(&os->os_lock);
1959 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1961 struct ocfs2_orphan_scan *os;
1963 os = &osb->osb_orphan_scan;
1964 os->os_osb = osb;
1965 os->os_count = 0;
1966 os->os_seqno = 0;
1967 mutex_init(&os->os_lock);
1968 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1971 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1973 struct ocfs2_orphan_scan *os;
1975 os = &osb->osb_orphan_scan;
1976 os->os_scantime = CURRENT_TIME;
1977 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1978 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1979 else {
1980 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1981 schedule_delayed_work(&os->os_orphan_scan_work,
1982 ocfs2_orphan_scan_timeout());
1986 struct ocfs2_orphan_filldir_priv {
1987 struct inode *head;
1988 struct ocfs2_super *osb;
1991 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1992 loff_t pos, u64 ino, unsigned type)
1994 struct ocfs2_orphan_filldir_priv *p = priv;
1995 struct inode *iter;
1997 if (name_len == 1 && !strncmp(".", name, 1))
1998 return 0;
1999 if (name_len == 2 && !strncmp("..", name, 2))
2000 return 0;
2002 /* Skip bad inodes so that recovery can continue */
2003 iter = ocfs2_iget(p->osb, ino,
2004 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2005 if (IS_ERR(iter))
2006 return 0;
2008 mlog(0, "queue orphan %llu\n",
2009 (unsigned long long)OCFS2_I(iter)->ip_blkno);
2010 /* No locking is required for the next_orphan queue as there
2011 * is only ever a single process doing orphan recovery. */
2012 OCFS2_I(iter)->ip_next_orphan = p->head;
2013 p->head = iter;
2015 return 0;
2018 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2019 int slot,
2020 struct inode **head)
2022 int status;
2023 struct inode *orphan_dir_inode = NULL;
2024 struct ocfs2_orphan_filldir_priv priv;
2025 loff_t pos = 0;
2027 priv.osb = osb;
2028 priv.head = *head;
2030 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2031 ORPHAN_DIR_SYSTEM_INODE,
2032 slot);
2033 if (!orphan_dir_inode) {
2034 status = -ENOENT;
2035 mlog_errno(status);
2036 return status;
2039 mutex_lock(&orphan_dir_inode->i_mutex);
2040 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2041 if (status < 0) {
2042 mlog_errno(status);
2043 goto out;
2046 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2047 ocfs2_orphan_filldir);
2048 if (status) {
2049 mlog_errno(status);
2050 goto out_cluster;
2053 *head = priv.head;
2055 out_cluster:
2056 ocfs2_inode_unlock(orphan_dir_inode, 0);
2057 out:
2058 mutex_unlock(&orphan_dir_inode->i_mutex);
2059 iput(orphan_dir_inode);
2060 return status;
2063 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2064 int slot)
2066 int ret;
2068 spin_lock(&osb->osb_lock);
2069 ret = !osb->osb_orphan_wipes[slot];
2070 spin_unlock(&osb->osb_lock);
2071 return ret;
2074 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2075 int slot)
2077 spin_lock(&osb->osb_lock);
2078 /* Mark ourselves such that new processes in delete_inode()
2079 * know to quit early. */
2080 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2081 while (osb->osb_orphan_wipes[slot]) {
2082 /* If any processes are already in the middle of an
2083 * orphan wipe on this dir, then we need to wait for
2084 * them. */
2085 spin_unlock(&osb->osb_lock);
2086 wait_event_interruptible(osb->osb_wipe_event,
2087 ocfs2_orphan_recovery_can_continue(osb, slot));
2088 spin_lock(&osb->osb_lock);
2090 spin_unlock(&osb->osb_lock);
2093 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2094 int slot)
2096 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2100 * Orphan recovery. Each mounted node has it's own orphan dir which we
2101 * must run during recovery. Our strategy here is to build a list of
2102 * the inodes in the orphan dir and iget/iput them. The VFS does
2103 * (most) of the rest of the work.
2105 * Orphan recovery can happen at any time, not just mount so we have a
2106 * couple of extra considerations.
2108 * - We grab as many inodes as we can under the orphan dir lock -
2109 * doing iget() outside the orphan dir risks getting a reference on
2110 * an invalid inode.
2111 * - We must be sure not to deadlock with other processes on the
2112 * system wanting to run delete_inode(). This can happen when they go
2113 * to lock the orphan dir and the orphan recovery process attempts to
2114 * iget() inside the orphan dir lock. This can be avoided by
2115 * advertising our state to ocfs2_delete_inode().
2117 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2118 int slot)
2120 int ret = 0;
2121 struct inode *inode = NULL;
2122 struct inode *iter;
2123 struct ocfs2_inode_info *oi;
2125 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2127 ocfs2_mark_recovering_orphan_dir(osb, slot);
2128 ret = ocfs2_queue_orphans(osb, slot, &inode);
2129 ocfs2_clear_recovering_orphan_dir(osb, slot);
2131 /* Error here should be noted, but we want to continue with as
2132 * many queued inodes as we've got. */
2133 if (ret)
2134 mlog_errno(ret);
2136 while (inode) {
2137 oi = OCFS2_I(inode);
2138 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2140 iter = oi->ip_next_orphan;
2142 spin_lock(&oi->ip_lock);
2143 /* The remote delete code may have set these on the
2144 * assumption that the other node would wipe them
2145 * successfully. If they are still in the node's
2146 * orphan dir, we need to reset that state. */
2147 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2149 /* Set the proper information to get us going into
2150 * ocfs2_delete_inode. */
2151 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2152 spin_unlock(&oi->ip_lock);
2154 iput(inode);
2156 inode = iter;
2159 return ret;
2162 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2164 /* This check is good because ocfs2 will wait on our recovery
2165 * thread before changing it to something other than MOUNTED
2166 * or DISABLED. */
2167 wait_event(osb->osb_mount_event,
2168 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2169 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2170 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2172 /* If there's an error on mount, then we may never get to the
2173 * MOUNTED flag, but this is set right before
2174 * dismount_volume() so we can trust it. */
2175 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2176 mlog(0, "mount error, exiting!\n");
2177 return -EBUSY;
2180 return 0;
2183 static int ocfs2_commit_thread(void *arg)
2185 int status;
2186 struct ocfs2_super *osb = arg;
2187 struct ocfs2_journal *journal = osb->journal;
2189 /* we can trust j_num_trans here because _should_stop() is only set in
2190 * shutdown and nobody other than ourselves should be able to start
2191 * transactions. committing on shutdown might take a few iterations
2192 * as final transactions put deleted inodes on the list */
2193 while (!(kthread_should_stop() &&
2194 atomic_read(&journal->j_num_trans) == 0)) {
2196 wait_event_interruptible(osb->checkpoint_event,
2197 atomic_read(&journal->j_num_trans)
2198 || kthread_should_stop());
2200 status = ocfs2_commit_cache(osb);
2201 if (status < 0)
2202 mlog_errno(status);
2204 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2205 mlog(ML_KTHREAD,
2206 "commit_thread: %u transactions pending on "
2207 "shutdown\n",
2208 atomic_read(&journal->j_num_trans));
2212 return 0;
2215 /* Reads all the journal inodes without taking any cluster locks. Used
2216 * for hard readonly access to determine whether any journal requires
2217 * recovery. Also used to refresh the recovery generation numbers after
2218 * a journal has been recovered by another node.
2220 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2222 int ret = 0;
2223 unsigned int slot;
2224 struct buffer_head *di_bh = NULL;
2225 struct ocfs2_dinode *di;
2226 int journal_dirty = 0;
2228 for(slot = 0; slot < osb->max_slots; slot++) {
2229 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2230 if (ret) {
2231 mlog_errno(ret);
2232 goto out;
2235 di = (struct ocfs2_dinode *) di_bh->b_data;
2237 osb->slot_recovery_generations[slot] =
2238 ocfs2_get_recovery_generation(di);
2240 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2241 OCFS2_JOURNAL_DIRTY_FL)
2242 journal_dirty = 1;
2244 brelse(di_bh);
2245 di_bh = NULL;
2248 out:
2249 if (journal_dirty)
2250 ret = -EROFS;
2251 return ret;