OMAP3: SR: Fix init voltage on OPP change
[linux-ginger.git] / fs / ntfs / mft.c
blob1caa0ef0b2bba8c0e27fe2154d8e633210feb0e7
1 /**
2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
5 * Copyright (c) 2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
26 #include "attrib.h"
27 #include "aops.h"
28 #include "bitmap.h"
29 #include "debug.h"
30 #include "dir.h"
31 #include "lcnalloc.h"
32 #include "malloc.h"
33 #include "mft.h"
34 #include "ntfs.h"
36 /**
37 * map_mft_record_page - map the page in which a specific mft record resides
38 * @ni: ntfs inode whose mft record page to map
40 * This maps the page in which the mft record of the ntfs inode @ni is situated
41 * and returns a pointer to the mft record within the mapped page.
43 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
44 * contains the negative error code returned.
46 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
48 loff_t i_size;
49 ntfs_volume *vol = ni->vol;
50 struct inode *mft_vi = vol->mft_ino;
51 struct page *page;
52 unsigned long index, end_index;
53 unsigned ofs;
55 BUG_ON(ni->page);
57 * The index into the page cache and the offset within the page cache
58 * page of the wanted mft record. FIXME: We need to check for
59 * overflowing the unsigned long, but I don't think we would ever get
60 * here if the volume was that big...
62 index = (u64)ni->mft_no << vol->mft_record_size_bits >>
63 PAGE_CACHE_SHIFT;
64 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
66 i_size = i_size_read(mft_vi);
67 /* The maximum valid index into the page cache for $MFT's data. */
68 end_index = i_size >> PAGE_CACHE_SHIFT;
70 /* If the wanted index is out of bounds the mft record doesn't exist. */
71 if (unlikely(index >= end_index)) {
72 if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs +
73 vol->mft_record_size) {
74 page = ERR_PTR(-ENOENT);
75 ntfs_error(vol->sb, "Attemt to read mft record 0x%lx, "
76 "which is beyond the end of the mft. "
77 "This is probably a bug in the ntfs "
78 "driver.", ni->mft_no);
79 goto err_out;
82 /* Read, map, and pin the page. */
83 page = ntfs_map_page(mft_vi->i_mapping, index);
84 if (likely(!IS_ERR(page))) {
85 /* Catch multi sector transfer fixup errors. */
86 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
87 ofs)))) {
88 ni->page = page;
89 ni->page_ofs = ofs;
90 return page_address(page) + ofs;
92 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. "
93 "Run chkdsk.", ni->mft_no);
94 ntfs_unmap_page(page);
95 page = ERR_PTR(-EIO);
96 NVolSetErrors(vol);
98 err_out:
99 ni->page = NULL;
100 ni->page_ofs = 0;
101 return (void*)page;
105 * map_mft_record - map, pin and lock an mft record
106 * @ni: ntfs inode whose MFT record to map
108 * First, take the mrec_lock mutex. We might now be sleeping, while waiting
109 * for the mutex if it was already locked by someone else.
111 * The page of the record is mapped using map_mft_record_page() before being
112 * returned to the caller.
114 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
115 * record (it in turn calls read_cache_page() which reads it in from disk if
116 * necessary, increments the use count on the page so that it cannot disappear
117 * under us and returns a reference to the page cache page).
119 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
120 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
121 * and the post-read mst fixups on each mft record in the page have been
122 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
123 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
124 * ntfs_map_page() waits for PG_locked to become clear and checks if
125 * PG_uptodate is set and returns an error code if not. This provides
126 * sufficient protection against races when reading/using the page.
128 * However there is the write mapping to think about. Doing the above described
129 * checking here will be fine, because when initiating the write we will set
130 * PG_locked and clear PG_uptodate making sure nobody is touching the page
131 * contents. Doing the locking this way means that the commit to disk code in
132 * the page cache code paths is automatically sufficiently locked with us as
133 * we will not touch a page that has been locked or is not uptodate. The only
134 * locking problem then is them locking the page while we are accessing it.
136 * So that code will end up having to own the mrec_lock of all mft
137 * records/inodes present in the page before I/O can proceed. In that case we
138 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
139 * accessing anything without owning the mrec_lock mutex. But we do need to
140 * use them because of the read_cache_page() invocation and the code becomes so
141 * much simpler this way that it is well worth it.
143 * The mft record is now ours and we return a pointer to it. You need to check
144 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
145 * the error code.
147 * NOTE: Caller is responsible for setting the mft record dirty before calling
148 * unmap_mft_record(). This is obviously only necessary if the caller really
149 * modified the mft record...
150 * Q: Do we want to recycle one of the VFS inode state bits instead?
151 * A: No, the inode ones mean we want to change the mft record, not we want to
152 * write it out.
154 MFT_RECORD *map_mft_record(ntfs_inode *ni)
156 MFT_RECORD *m;
158 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
160 /* Make sure the ntfs inode doesn't go away. */
161 atomic_inc(&ni->count);
163 /* Serialize access to this mft record. */
164 mutex_lock(&ni->mrec_lock);
166 m = map_mft_record_page(ni);
167 if (likely(!IS_ERR(m)))
168 return m;
170 mutex_unlock(&ni->mrec_lock);
171 atomic_dec(&ni->count);
172 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
173 return m;
177 * unmap_mft_record_page - unmap the page in which a specific mft record resides
178 * @ni: ntfs inode whose mft record page to unmap
180 * This unmaps the page in which the mft record of the ntfs inode @ni is
181 * situated and returns. This is a NOOP if highmem is not configured.
183 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
184 * count on the page thus releasing it from the pinned state.
186 * We do not actually unmap the page from memory of course, as that will be
187 * done by the page cache code itself when memory pressure increases or
188 * whatever.
190 static inline void unmap_mft_record_page(ntfs_inode *ni)
192 BUG_ON(!ni->page);
194 // TODO: If dirty, blah...
195 ntfs_unmap_page(ni->page);
196 ni->page = NULL;
197 ni->page_ofs = 0;
198 return;
202 * unmap_mft_record - release a mapped mft record
203 * @ni: ntfs inode whose MFT record to unmap
205 * We release the page mapping and the mrec_lock mutex which unmaps the mft
206 * record and releases it for others to get hold of. We also release the ntfs
207 * inode by decrementing the ntfs inode reference count.
209 * NOTE: If caller has modified the mft record, it is imperative to set the mft
210 * record dirty BEFORE calling unmap_mft_record().
212 void unmap_mft_record(ntfs_inode *ni)
214 struct page *page = ni->page;
216 BUG_ON(!page);
218 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
220 unmap_mft_record_page(ni);
221 mutex_unlock(&ni->mrec_lock);
222 atomic_dec(&ni->count);
224 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
225 * ntfs_clear_extent_inode() in the extent inode case, and to the
226 * caller in the non-extent, yet pure ntfs inode case, to do the actual
227 * tear down of all structures and freeing of all allocated memory.
229 return;
233 * map_extent_mft_record - load an extent inode and attach it to its base
234 * @base_ni: base ntfs inode
235 * @mref: mft reference of the extent inode to load
236 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure
238 * Load the extent mft record @mref and attach it to its base inode @base_ni.
239 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise
240 * PTR_ERR(result) gives the negative error code.
242 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
243 * structure of the mapped extent inode.
245 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
246 ntfs_inode **ntfs_ino)
248 MFT_RECORD *m;
249 ntfs_inode *ni = NULL;
250 ntfs_inode **extent_nis = NULL;
251 int i;
252 unsigned long mft_no = MREF(mref);
253 u16 seq_no = MSEQNO(mref);
254 bool destroy_ni = false;
256 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
257 mft_no, base_ni->mft_no);
258 /* Make sure the base ntfs inode doesn't go away. */
259 atomic_inc(&base_ni->count);
261 * Check if this extent inode has already been added to the base inode,
262 * in which case just return it. If not found, add it to the base
263 * inode before returning it.
265 mutex_lock(&base_ni->extent_lock);
266 if (base_ni->nr_extents > 0) {
267 extent_nis = base_ni->ext.extent_ntfs_inos;
268 for (i = 0; i < base_ni->nr_extents; i++) {
269 if (mft_no != extent_nis[i]->mft_no)
270 continue;
271 ni = extent_nis[i];
272 /* Make sure the ntfs inode doesn't go away. */
273 atomic_inc(&ni->count);
274 break;
277 if (likely(ni != NULL)) {
278 mutex_unlock(&base_ni->extent_lock);
279 atomic_dec(&base_ni->count);
280 /* We found the record; just have to map and return it. */
281 m = map_mft_record(ni);
282 /* map_mft_record() has incremented this on success. */
283 atomic_dec(&ni->count);
284 if (likely(!IS_ERR(m))) {
285 /* Verify the sequence number. */
286 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
287 ntfs_debug("Done 1.");
288 *ntfs_ino = ni;
289 return m;
291 unmap_mft_record(ni);
292 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
293 "reference! Corrupt filesystem. "
294 "Run chkdsk.");
295 return ERR_PTR(-EIO);
297 map_err_out:
298 ntfs_error(base_ni->vol->sb, "Failed to map extent "
299 "mft record, error code %ld.", -PTR_ERR(m));
300 return m;
302 /* Record wasn't there. Get a new ntfs inode and initialize it. */
303 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
304 if (unlikely(!ni)) {
305 mutex_unlock(&base_ni->extent_lock);
306 atomic_dec(&base_ni->count);
307 return ERR_PTR(-ENOMEM);
309 ni->vol = base_ni->vol;
310 ni->seq_no = seq_no;
311 ni->nr_extents = -1;
312 ni->ext.base_ntfs_ino = base_ni;
313 /* Now map the record. */
314 m = map_mft_record(ni);
315 if (IS_ERR(m)) {
316 mutex_unlock(&base_ni->extent_lock);
317 atomic_dec(&base_ni->count);
318 ntfs_clear_extent_inode(ni);
319 goto map_err_out;
321 /* Verify the sequence number if it is present. */
322 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
323 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
324 "reference! Corrupt filesystem. Run chkdsk.");
325 destroy_ni = true;
326 m = ERR_PTR(-EIO);
327 goto unm_err_out;
329 /* Attach extent inode to base inode, reallocating memory if needed. */
330 if (!(base_ni->nr_extents & 3)) {
331 ntfs_inode **tmp;
332 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
334 tmp = kmalloc(new_size, GFP_NOFS);
335 if (unlikely(!tmp)) {
336 ntfs_error(base_ni->vol->sb, "Failed to allocate "
337 "internal buffer.");
338 destroy_ni = true;
339 m = ERR_PTR(-ENOMEM);
340 goto unm_err_out;
342 if (base_ni->nr_extents) {
343 BUG_ON(!base_ni->ext.extent_ntfs_inos);
344 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
345 4 * sizeof(ntfs_inode *));
346 kfree(base_ni->ext.extent_ntfs_inos);
348 base_ni->ext.extent_ntfs_inos = tmp;
350 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
351 mutex_unlock(&base_ni->extent_lock);
352 atomic_dec(&base_ni->count);
353 ntfs_debug("Done 2.");
354 *ntfs_ino = ni;
355 return m;
356 unm_err_out:
357 unmap_mft_record(ni);
358 mutex_unlock(&base_ni->extent_lock);
359 atomic_dec(&base_ni->count);
361 * If the extent inode was not attached to the base inode we need to
362 * release it or we will leak memory.
364 if (destroy_ni)
365 ntfs_clear_extent_inode(ni);
366 return m;
369 #ifdef NTFS_RW
372 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
373 * @ni: ntfs inode describing the mapped mft record
375 * Internal function. Users should call mark_mft_record_dirty() instead.
377 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
378 * as well as the page containing the mft record, dirty. Also, mark the base
379 * vfs inode dirty. This ensures that any changes to the mft record are
380 * written out to disk.
382 * NOTE: We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
383 * on the base vfs inode, because even though file data may have been modified,
384 * it is dirty in the inode meta data rather than the data page cache of the
385 * inode, and thus there are no data pages that need writing out. Therefore, a
386 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the
387 * other hand, is not sufficient, because ->write_inode needs to be called even
388 * in case of fdatasync. This needs to happen or the file data would not
389 * necessarily hit the device synchronously, even though the vfs inode has the
390 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just
391 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
392 * which is not what I_DIRTY_SYNC on its own would suggest.
394 void __mark_mft_record_dirty(ntfs_inode *ni)
396 ntfs_inode *base_ni;
398 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
399 BUG_ON(NInoAttr(ni));
400 mark_ntfs_record_dirty(ni->page, ni->page_ofs);
401 /* Determine the base vfs inode and mark it dirty, too. */
402 mutex_lock(&ni->extent_lock);
403 if (likely(ni->nr_extents >= 0))
404 base_ni = ni;
405 else
406 base_ni = ni->ext.base_ntfs_ino;
407 mutex_unlock(&ni->extent_lock);
408 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
411 static const char *ntfs_please_email = "Please email "
412 "linux-ntfs-dev@lists.sourceforge.net and say that you saw "
413 "this message. Thank you.";
416 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
417 * @vol: ntfs volume on which the mft record to synchronize resides
418 * @mft_no: mft record number of mft record to synchronize
419 * @m: mapped, mst protected (extent) mft record to synchronize
421 * Write the mapped, mst protected (extent) mft record @m with mft record
422 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
423 * bypassing the page cache and the $MFTMirr inode itself.
425 * This function is only for use at umount time when the mft mirror inode has
426 * already been disposed off. We BUG() if we are called while the mft mirror
427 * inode is still attached to the volume.
429 * On success return 0. On error return -errno.
431 * NOTE: This function is not implemented yet as I am not convinced it can
432 * actually be triggered considering the sequence of commits we do in super.c::
433 * ntfs_put_super(). But just in case we provide this place holder as the
434 * alternative would be either to BUG() or to get a NULL pointer dereference
435 * and Oops.
437 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
438 const unsigned long mft_no, MFT_RECORD *m)
440 BUG_ON(vol->mftmirr_ino);
441 ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
442 "implemented yet. %s", ntfs_please_email);
443 return -EOPNOTSUPP;
447 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
448 * @vol: ntfs volume on which the mft record to synchronize resides
449 * @mft_no: mft record number of mft record to synchronize
450 * @m: mapped, mst protected (extent) mft record to synchronize
451 * @sync: if true, wait for i/o completion
453 * Write the mapped, mst protected (extent) mft record @m with mft record
454 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
456 * On success return 0. On error return -errno and set the volume errors flag
457 * in the ntfs volume @vol.
459 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
461 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
462 * schedule i/o via ->writepage or do it via kntfsd or whatever.
464 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
465 MFT_RECORD *m, int sync)
467 struct page *page;
468 unsigned int blocksize = vol->sb->s_blocksize;
469 int max_bhs = vol->mft_record_size / blocksize;
470 struct buffer_head *bhs[max_bhs];
471 struct buffer_head *bh, *head;
472 u8 *kmirr;
473 runlist_element *rl;
474 unsigned int block_start, block_end, m_start, m_end, page_ofs;
475 int i_bhs, nr_bhs, err = 0;
476 unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
478 ntfs_debug("Entering for inode 0x%lx.", mft_no);
479 BUG_ON(!max_bhs);
480 if (unlikely(!vol->mftmirr_ino)) {
481 /* This could happen during umount... */
482 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
483 if (likely(!err))
484 return err;
485 goto err_out;
487 /* Get the page containing the mirror copy of the mft record @m. */
488 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
489 (PAGE_CACHE_SHIFT - vol->mft_record_size_bits));
490 if (IS_ERR(page)) {
491 ntfs_error(vol->sb, "Failed to map mft mirror page.");
492 err = PTR_ERR(page);
493 goto err_out;
495 lock_page(page);
496 BUG_ON(!PageUptodate(page));
497 ClearPageUptodate(page);
498 /* Offset of the mft mirror record inside the page. */
499 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
500 /* The address in the page of the mirror copy of the mft record @m. */
501 kmirr = page_address(page) + page_ofs;
502 /* Copy the mst protected mft record to the mirror. */
503 memcpy(kmirr, m, vol->mft_record_size);
504 /* Create uptodate buffers if not present. */
505 if (unlikely(!page_has_buffers(page))) {
506 struct buffer_head *tail;
508 bh = head = alloc_page_buffers(page, blocksize, 1);
509 do {
510 set_buffer_uptodate(bh);
511 tail = bh;
512 bh = bh->b_this_page;
513 } while (bh);
514 tail->b_this_page = head;
515 attach_page_buffers(page, head);
517 bh = head = page_buffers(page);
518 BUG_ON(!bh);
519 rl = NULL;
520 nr_bhs = 0;
521 block_start = 0;
522 m_start = kmirr - (u8*)page_address(page);
523 m_end = m_start + vol->mft_record_size;
524 do {
525 block_end = block_start + blocksize;
526 /* If the buffer is outside the mft record, skip it. */
527 if (block_end <= m_start)
528 continue;
529 if (unlikely(block_start >= m_end))
530 break;
531 /* Need to map the buffer if it is not mapped already. */
532 if (unlikely(!buffer_mapped(bh))) {
533 VCN vcn;
534 LCN lcn;
535 unsigned int vcn_ofs;
537 bh->b_bdev = vol->sb->s_bdev;
538 /* Obtain the vcn and offset of the current block. */
539 vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
540 (block_start - m_start);
541 vcn_ofs = vcn & vol->cluster_size_mask;
542 vcn >>= vol->cluster_size_bits;
543 if (!rl) {
544 down_read(&NTFS_I(vol->mftmirr_ino)->
545 runlist.lock);
546 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
548 * $MFTMirr always has the whole of its runlist
549 * in memory.
551 BUG_ON(!rl);
553 /* Seek to element containing target vcn. */
554 while (rl->length && rl[1].vcn <= vcn)
555 rl++;
556 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
557 /* For $MFTMirr, only lcn >= 0 is a successful remap. */
558 if (likely(lcn >= 0)) {
559 /* Setup buffer head to correct block. */
560 bh->b_blocknr = ((lcn <<
561 vol->cluster_size_bits) +
562 vcn_ofs) >> blocksize_bits;
563 set_buffer_mapped(bh);
564 } else {
565 bh->b_blocknr = -1;
566 ntfs_error(vol->sb, "Cannot write mft mirror "
567 "record 0x%lx because its "
568 "location on disk could not "
569 "be determined (error code "
570 "%lli).", mft_no,
571 (long long)lcn);
572 err = -EIO;
575 BUG_ON(!buffer_uptodate(bh));
576 BUG_ON(!nr_bhs && (m_start != block_start));
577 BUG_ON(nr_bhs >= max_bhs);
578 bhs[nr_bhs++] = bh;
579 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
580 } while (block_start = block_end, (bh = bh->b_this_page) != head);
581 if (unlikely(rl))
582 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
583 if (likely(!err)) {
584 /* Lock buffers and start synchronous write i/o on them. */
585 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
586 struct buffer_head *tbh = bhs[i_bhs];
588 if (!trylock_buffer(tbh))
589 BUG();
590 BUG_ON(!buffer_uptodate(tbh));
591 clear_buffer_dirty(tbh);
592 get_bh(tbh);
593 tbh->b_end_io = end_buffer_write_sync;
594 submit_bh(WRITE, tbh);
596 /* Wait on i/o completion of buffers. */
597 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
598 struct buffer_head *tbh = bhs[i_bhs];
600 wait_on_buffer(tbh);
601 if (unlikely(!buffer_uptodate(tbh))) {
602 err = -EIO;
604 * Set the buffer uptodate so the page and
605 * buffer states do not become out of sync.
607 set_buffer_uptodate(tbh);
610 } else /* if (unlikely(err)) */ {
611 /* Clean the buffers. */
612 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
613 clear_buffer_dirty(bhs[i_bhs]);
615 /* Current state: all buffers are clean, unlocked, and uptodate. */
616 /* Remove the mst protection fixups again. */
617 post_write_mst_fixup((NTFS_RECORD*)kmirr);
618 flush_dcache_page(page);
619 SetPageUptodate(page);
620 unlock_page(page);
621 ntfs_unmap_page(page);
622 if (likely(!err)) {
623 ntfs_debug("Done.");
624 } else {
625 ntfs_error(vol->sb, "I/O error while writing mft mirror "
626 "record 0x%lx!", mft_no);
627 err_out:
628 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
629 "code %i). Volume will be left marked dirty "
630 "on umount. Run ntfsfix on the partition "
631 "after umounting to correct this.", -err);
632 NVolSetErrors(vol);
634 return err;
638 * write_mft_record_nolock - write out a mapped (extent) mft record
639 * @ni: ntfs inode describing the mapped (extent) mft record
640 * @m: mapped (extent) mft record to write
641 * @sync: if true, wait for i/o completion
643 * Write the mapped (extent) mft record @m described by the (regular or extent)
644 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in
645 * the mft mirror, that is also updated.
647 * We only write the mft record if the ntfs inode @ni is dirty and the first
648 * buffer belonging to its mft record is dirty, too. We ignore the dirty state
649 * of subsequent buffers because we could have raced with
650 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
652 * On success, clean the mft record and return 0. On error, leave the mft
653 * record dirty and return -errno.
655 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
656 * However, if the mft record has a counterpart in the mft mirror and @sync is
657 * true, we write the mft record, wait for i/o completion, and only then write
658 * the mft mirror copy. This ensures that if the system crashes either the mft
659 * or the mft mirror will contain a self-consistent mft record @m. If @sync is
660 * false on the other hand, we start i/o on both and then wait for completion
661 * on them. This provides a speedup but no longer guarantees that you will end
662 * up with a self-consistent mft record in the case of a crash but if you asked
663 * for asynchronous writing you probably do not care about that anyway.
665 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
666 * schedule i/o via ->writepage or do it via kntfsd or whatever.
668 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
670 ntfs_volume *vol = ni->vol;
671 struct page *page = ni->page;
672 unsigned int blocksize = vol->sb->s_blocksize;
673 unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
674 int max_bhs = vol->mft_record_size / blocksize;
675 struct buffer_head *bhs[max_bhs];
676 struct buffer_head *bh, *head;
677 runlist_element *rl;
678 unsigned int block_start, block_end, m_start, m_end;
679 int i_bhs, nr_bhs, err = 0;
681 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
682 BUG_ON(NInoAttr(ni));
683 BUG_ON(!max_bhs);
684 BUG_ON(!PageLocked(page));
686 * If the ntfs_inode is clean no need to do anything. If it is dirty,
687 * mark it as clean now so that it can be redirtied later on if needed.
688 * There is no danger of races since the caller is holding the locks
689 * for the mft record @m and the page it is in.
691 if (!NInoTestClearDirty(ni))
692 goto done;
693 bh = head = page_buffers(page);
694 BUG_ON(!bh);
695 rl = NULL;
696 nr_bhs = 0;
697 block_start = 0;
698 m_start = ni->page_ofs;
699 m_end = m_start + vol->mft_record_size;
700 do {
701 block_end = block_start + blocksize;
702 /* If the buffer is outside the mft record, skip it. */
703 if (block_end <= m_start)
704 continue;
705 if (unlikely(block_start >= m_end))
706 break;
708 * If this block is not the first one in the record, we ignore
709 * the buffer's dirty state because we could have raced with a
710 * parallel mark_ntfs_record_dirty().
712 if (block_start == m_start) {
713 /* This block is the first one in the record. */
714 if (!buffer_dirty(bh)) {
715 BUG_ON(nr_bhs);
716 /* Clean records are not written out. */
717 break;
720 /* Need to map the buffer if it is not mapped already. */
721 if (unlikely(!buffer_mapped(bh))) {
722 VCN vcn;
723 LCN lcn;
724 unsigned int vcn_ofs;
726 bh->b_bdev = vol->sb->s_bdev;
727 /* Obtain the vcn and offset of the current block. */
728 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
729 (block_start - m_start);
730 vcn_ofs = vcn & vol->cluster_size_mask;
731 vcn >>= vol->cluster_size_bits;
732 if (!rl) {
733 down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
734 rl = NTFS_I(vol->mft_ino)->runlist.rl;
735 BUG_ON(!rl);
737 /* Seek to element containing target vcn. */
738 while (rl->length && rl[1].vcn <= vcn)
739 rl++;
740 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
741 /* For $MFT, only lcn >= 0 is a successful remap. */
742 if (likely(lcn >= 0)) {
743 /* Setup buffer head to correct block. */
744 bh->b_blocknr = ((lcn <<
745 vol->cluster_size_bits) +
746 vcn_ofs) >> blocksize_bits;
747 set_buffer_mapped(bh);
748 } else {
749 bh->b_blocknr = -1;
750 ntfs_error(vol->sb, "Cannot write mft record "
751 "0x%lx because its location "
752 "on disk could not be "
753 "determined (error code %lli).",
754 ni->mft_no, (long long)lcn);
755 err = -EIO;
758 BUG_ON(!buffer_uptodate(bh));
759 BUG_ON(!nr_bhs && (m_start != block_start));
760 BUG_ON(nr_bhs >= max_bhs);
761 bhs[nr_bhs++] = bh;
762 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
763 } while (block_start = block_end, (bh = bh->b_this_page) != head);
764 if (unlikely(rl))
765 up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
766 if (!nr_bhs)
767 goto done;
768 if (unlikely(err))
769 goto cleanup_out;
770 /* Apply the mst protection fixups. */
771 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
772 if (err) {
773 ntfs_error(vol->sb, "Failed to apply mst fixups!");
774 goto cleanup_out;
776 flush_dcache_mft_record_page(ni);
777 /* Lock buffers and start synchronous write i/o on them. */
778 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
779 struct buffer_head *tbh = bhs[i_bhs];
781 if (!trylock_buffer(tbh))
782 BUG();
783 BUG_ON(!buffer_uptodate(tbh));
784 clear_buffer_dirty(tbh);
785 get_bh(tbh);
786 tbh->b_end_io = end_buffer_write_sync;
787 submit_bh(WRITE, tbh);
789 /* Synchronize the mft mirror now if not @sync. */
790 if (!sync && ni->mft_no < vol->mftmirr_size)
791 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
792 /* Wait on i/o completion of buffers. */
793 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
794 struct buffer_head *tbh = bhs[i_bhs];
796 wait_on_buffer(tbh);
797 if (unlikely(!buffer_uptodate(tbh))) {
798 err = -EIO;
800 * Set the buffer uptodate so the page and buffer
801 * states do not become out of sync.
803 if (PageUptodate(page))
804 set_buffer_uptodate(tbh);
807 /* If @sync, now synchronize the mft mirror. */
808 if (sync && ni->mft_no < vol->mftmirr_size)
809 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
810 /* Remove the mst protection fixups again. */
811 post_write_mst_fixup((NTFS_RECORD*)m);
812 flush_dcache_mft_record_page(ni);
813 if (unlikely(err)) {
814 /* I/O error during writing. This is really bad! */
815 ntfs_error(vol->sb, "I/O error while writing mft record "
816 "0x%lx! Marking base inode as bad. You "
817 "should unmount the volume and run chkdsk.",
818 ni->mft_no);
819 goto err_out;
821 done:
822 ntfs_debug("Done.");
823 return 0;
824 cleanup_out:
825 /* Clean the buffers. */
826 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
827 clear_buffer_dirty(bhs[i_bhs]);
828 err_out:
830 * Current state: all buffers are clean, unlocked, and uptodate.
831 * The caller should mark the base inode as bad so that no more i/o
832 * happens. ->clear_inode() will still be invoked so all extent inodes
833 * and other allocated memory will be freed.
835 if (err == -ENOMEM) {
836 ntfs_error(vol->sb, "Not enough memory to write mft record. "
837 "Redirtying so the write is retried later.");
838 mark_mft_record_dirty(ni);
839 err = 0;
840 } else
841 NVolSetErrors(vol);
842 return err;
846 * ntfs_may_write_mft_record - check if an mft record may be written out
847 * @vol: [IN] ntfs volume on which the mft record to check resides
848 * @mft_no: [IN] mft record number of the mft record to check
849 * @m: [IN] mapped mft record to check
850 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned
852 * Check if the mapped (base or extent) mft record @m with mft record number
853 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary
854 * and possible the ntfs inode of the mft record is locked and the base vfs
855 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The
856 * caller is responsible for unlocking the ntfs inode and unpinning the base
857 * vfs inode.
859 * Return 'true' if the mft record may be written out and 'false' if not.
861 * The caller has locked the page and cleared the uptodate flag on it which
862 * means that we can safely write out any dirty mft records that do not have
863 * their inodes in icache as determined by ilookup5() as anyone
864 * opening/creating such an inode would block when attempting to map the mft
865 * record in read_cache_page() until we are finished with the write out.
867 * Here is a description of the tests we perform:
869 * If the inode is found in icache we know the mft record must be a base mft
870 * record. If it is dirty, we do not write it and return 'false' as the vfs
871 * inode write paths will result in the access times being updated which would
872 * cause the base mft record to be redirtied and written out again. (We know
873 * the access time update will modify the base mft record because Windows
874 * chkdsk complains if the standard information attribute is not in the base
875 * mft record.)
877 * If the inode is in icache and not dirty, we attempt to lock the mft record
878 * and if we find the lock was already taken, it is not safe to write the mft
879 * record and we return 'false'.
881 * If we manage to obtain the lock we have exclusive access to the mft record,
882 * which also allows us safe writeout of the mft record. We then set
883 * @locked_ni to the locked ntfs inode and return 'true'.
885 * Note we cannot just lock the mft record and sleep while waiting for the lock
886 * because this would deadlock due to lock reversal (normally the mft record is
887 * locked before the page is locked but we already have the page locked here
888 * when we try to lock the mft record).
890 * If the inode is not in icache we need to perform further checks.
892 * If the mft record is not a FILE record or it is a base mft record, we can
893 * safely write it and return 'true'.
895 * We now know the mft record is an extent mft record. We check if the inode
896 * corresponding to its base mft record is in icache and obtain a reference to
897 * it if it is. If it is not, we can safely write it and return 'true'.
899 * We now have the base inode for the extent mft record. We check if it has an
900 * ntfs inode for the extent mft record attached and if not it is safe to write
901 * the extent mft record and we return 'true'.
903 * The ntfs inode for the extent mft record is attached to the base inode so we
904 * attempt to lock the extent mft record and if we find the lock was already
905 * taken, it is not safe to write the extent mft record and we return 'false'.
907 * If we manage to obtain the lock we have exclusive access to the extent mft
908 * record, which also allows us safe writeout of the extent mft record. We
909 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
910 * the now locked ntfs inode and return 'true'.
912 * Note, the reason for actually writing dirty mft records here and not just
913 * relying on the vfs inode dirty code paths is that we can have mft records
914 * modified without them ever having actual inodes in memory. Also we can have
915 * dirty mft records with clean ntfs inodes in memory. None of the described
916 * cases would result in the dirty mft records being written out if we only
917 * relied on the vfs inode dirty code paths. And these cases can really occur
918 * during allocation of new mft records and in particular when the
919 * initialized_size of the $MFT/$DATA attribute is extended and the new space
920 * is initialized using ntfs_mft_record_format(). The clean inode can then
921 * appear if the mft record is reused for a new inode before it got written
922 * out.
924 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
925 const MFT_RECORD *m, ntfs_inode **locked_ni)
927 struct super_block *sb = vol->sb;
928 struct inode *mft_vi = vol->mft_ino;
929 struct inode *vi;
930 ntfs_inode *ni, *eni, **extent_nis;
931 int i;
932 ntfs_attr na;
934 ntfs_debug("Entering for inode 0x%lx.", mft_no);
936 * Normally we do not return a locked inode so set @locked_ni to NULL.
938 BUG_ON(!locked_ni);
939 *locked_ni = NULL;
941 * Check if the inode corresponding to this mft record is in the VFS
942 * inode cache and obtain a reference to it if it is.
944 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
945 na.mft_no = mft_no;
946 na.name = NULL;
947 na.name_len = 0;
948 na.type = AT_UNUSED;
950 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
951 * we get here for it rather often.
953 if (!mft_no) {
954 /* Balance the below iput(). */
955 vi = igrab(mft_vi);
956 BUG_ON(vi != mft_vi);
957 } else {
959 * Have to use ilookup5_nowait() since ilookup5() waits for the
960 * inode lock which causes ntfs to deadlock when a concurrent
961 * inode write via the inode dirty code paths and the page
962 * dirty code path of the inode dirty code path when writing
963 * $MFT occurs.
965 vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
967 if (vi) {
968 ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
969 /* The inode is in icache. */
970 ni = NTFS_I(vi);
971 /* Take a reference to the ntfs inode. */
972 atomic_inc(&ni->count);
973 /* If the inode is dirty, do not write this record. */
974 if (NInoDirty(ni)) {
975 ntfs_debug("Inode 0x%lx is dirty, do not write it.",
976 mft_no);
977 atomic_dec(&ni->count);
978 iput(vi);
979 return false;
981 ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
982 /* The inode is not dirty, try to take the mft record lock. */
983 if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
984 ntfs_debug("Mft record 0x%lx is already locked, do "
985 "not write it.", mft_no);
986 atomic_dec(&ni->count);
987 iput(vi);
988 return false;
990 ntfs_debug("Managed to lock mft record 0x%lx, write it.",
991 mft_no);
993 * The write has to occur while we hold the mft record lock so
994 * return the locked ntfs inode.
996 *locked_ni = ni;
997 return true;
999 ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1000 /* The inode is not in icache. */
1001 /* Write the record if it is not a mft record (type "FILE"). */
1002 if (!ntfs_is_mft_record(m->magic)) {
1003 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1004 mft_no);
1005 return true;
1007 /* Write the mft record if it is a base inode. */
1008 if (!m->base_mft_record) {
1009 ntfs_debug("Mft record 0x%lx is a base record, write it.",
1010 mft_no);
1011 return true;
1014 * This is an extent mft record. Check if the inode corresponding to
1015 * its base mft record is in icache and obtain a reference to it if it
1016 * is.
1018 na.mft_no = MREF_LE(m->base_mft_record);
1019 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base "
1020 "inode 0x%lx in icache.", mft_no, na.mft_no);
1021 if (!na.mft_no) {
1022 /* Balance the below iput(). */
1023 vi = igrab(mft_vi);
1024 BUG_ON(vi != mft_vi);
1025 } else
1026 vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1027 &na);
1028 if (!vi) {
1030 * The base inode is not in icache, write this extent mft
1031 * record.
1033 ntfs_debug("Base inode 0x%lx is not in icache, write the "
1034 "extent record.", na.mft_no);
1035 return true;
1037 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1039 * The base inode is in icache. Check if it has the extent inode
1040 * corresponding to this extent mft record attached.
1042 ni = NTFS_I(vi);
1043 mutex_lock(&ni->extent_lock);
1044 if (ni->nr_extents <= 0) {
1046 * The base inode has no attached extent inodes, write this
1047 * extent mft record.
1049 mutex_unlock(&ni->extent_lock);
1050 iput(vi);
1051 ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1052 "write the extent record.", na.mft_no);
1053 return true;
1055 /* Iterate over the attached extent inodes. */
1056 extent_nis = ni->ext.extent_ntfs_inos;
1057 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1058 if (mft_no == extent_nis[i]->mft_no) {
1060 * Found the extent inode corresponding to this extent
1061 * mft record.
1063 eni = extent_nis[i];
1064 break;
1068 * If the extent inode was not attached to the base inode, write this
1069 * extent mft record.
1071 if (!eni) {
1072 mutex_unlock(&ni->extent_lock);
1073 iput(vi);
1074 ntfs_debug("Extent inode 0x%lx is not attached to its base "
1075 "inode 0x%lx, write the extent record.",
1076 mft_no, na.mft_no);
1077 return true;
1079 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1080 mft_no, na.mft_no);
1081 /* Take a reference to the extent ntfs inode. */
1082 atomic_inc(&eni->count);
1083 mutex_unlock(&ni->extent_lock);
1085 * Found the extent inode coresponding to this extent mft record.
1086 * Try to take the mft record lock.
1088 if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1089 atomic_dec(&eni->count);
1090 iput(vi);
1091 ntfs_debug("Extent mft record 0x%lx is already locked, do "
1092 "not write it.", mft_no);
1093 return false;
1095 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1096 mft_no);
1097 if (NInoTestClearDirty(eni))
1098 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1099 mft_no);
1101 * The write has to occur while we hold the mft record lock so return
1102 * the locked extent ntfs inode.
1104 *locked_ni = eni;
1105 return true;
1108 static const char *es = " Leaving inconsistent metadata. Unmount and run "
1109 "chkdsk.";
1112 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1113 * @vol: volume on which to search for a free mft record
1114 * @base_ni: open base inode if allocating an extent mft record or NULL
1116 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1117 * @vol.
1119 * If @base_ni is NULL start the search at the default allocator position.
1121 * If @base_ni is not NULL start the search at the mft record after the base
1122 * mft record @base_ni.
1124 * Return the free mft record on success and -errno on error. An error code of
1125 * -ENOSPC means that there are no free mft records in the currently
1126 * initialized mft bitmap.
1128 * Locking: Caller must hold vol->mftbmp_lock for writing.
1130 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1131 ntfs_inode *base_ni)
1133 s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1134 unsigned long flags;
1135 struct address_space *mftbmp_mapping;
1136 u8 *buf, *byte;
1137 struct page *page;
1138 unsigned int page_ofs, size;
1139 u8 pass, b;
1141 ntfs_debug("Searching for free mft record in the currently "
1142 "initialized mft bitmap.");
1143 mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1145 * Set the end of the pass making sure we do not overflow the mft
1146 * bitmap.
1148 read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1149 pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1150 vol->mft_record_size_bits;
1151 read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1152 read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1153 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1154 read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1155 if (pass_end > ll)
1156 pass_end = ll;
1157 pass = 1;
1158 if (!base_ni)
1159 data_pos = vol->mft_data_pos;
1160 else
1161 data_pos = base_ni->mft_no + 1;
1162 if (data_pos < 24)
1163 data_pos = 24;
1164 if (data_pos >= pass_end) {
1165 data_pos = 24;
1166 pass = 2;
1167 /* This happens on a freshly formatted volume. */
1168 if (data_pos >= pass_end)
1169 return -ENOSPC;
1171 pass_start = data_pos;
1172 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1173 "pass_end 0x%llx, data_pos 0x%llx.", pass,
1174 (long long)pass_start, (long long)pass_end,
1175 (long long)data_pos);
1176 /* Loop until a free mft record is found. */
1177 for (; pass <= 2;) {
1178 /* Cap size to pass_end. */
1179 ofs = data_pos >> 3;
1180 page_ofs = ofs & ~PAGE_CACHE_MASK;
1181 size = PAGE_CACHE_SIZE - page_ofs;
1182 ll = ((pass_end + 7) >> 3) - ofs;
1183 if (size > ll)
1184 size = ll;
1185 size <<= 3;
1187 * If we are still within the active pass, search the next page
1188 * for a zero bit.
1190 if (size) {
1191 page = ntfs_map_page(mftbmp_mapping,
1192 ofs >> PAGE_CACHE_SHIFT);
1193 if (IS_ERR(page)) {
1194 ntfs_error(vol->sb, "Failed to read mft "
1195 "bitmap, aborting.");
1196 return PTR_ERR(page);
1198 buf = (u8*)page_address(page) + page_ofs;
1199 bit = data_pos & 7;
1200 data_pos &= ~7ull;
1201 ntfs_debug("Before inner for loop: size 0x%x, "
1202 "data_pos 0x%llx, bit 0x%llx", size,
1203 (long long)data_pos, (long long)bit);
1204 for (; bit < size && data_pos + bit < pass_end;
1205 bit &= ~7ull, bit += 8) {
1206 byte = buf + (bit >> 3);
1207 if (*byte == 0xff)
1208 continue;
1209 b = ffz((unsigned long)*byte);
1210 if (b < 8 && b >= (bit & 7)) {
1211 ll = data_pos + (bit & ~7ull) + b;
1212 if (unlikely(ll > (1ll << 32))) {
1213 ntfs_unmap_page(page);
1214 return -ENOSPC;
1216 *byte |= 1 << b;
1217 flush_dcache_page(page);
1218 set_page_dirty(page);
1219 ntfs_unmap_page(page);
1220 ntfs_debug("Done. (Found and "
1221 "allocated mft record "
1222 "0x%llx.)",
1223 (long long)ll);
1224 return ll;
1227 ntfs_debug("After inner for loop: size 0x%x, "
1228 "data_pos 0x%llx, bit 0x%llx", size,
1229 (long long)data_pos, (long long)bit);
1230 data_pos += size;
1231 ntfs_unmap_page(page);
1233 * If the end of the pass has not been reached yet,
1234 * continue searching the mft bitmap for a zero bit.
1236 if (data_pos < pass_end)
1237 continue;
1239 /* Do the next pass. */
1240 if (++pass == 2) {
1242 * Starting the second pass, in which we scan the first
1243 * part of the zone which we omitted earlier.
1245 pass_end = pass_start;
1246 data_pos = pass_start = 24;
1247 ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1248 "0x%llx.", pass, (long long)pass_start,
1249 (long long)pass_end);
1250 if (data_pos >= pass_end)
1251 break;
1254 /* No free mft records in currently initialized mft bitmap. */
1255 ntfs_debug("Done. (No free mft records left in currently initialized "
1256 "mft bitmap.)");
1257 return -ENOSPC;
1261 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1262 * @vol: volume on which to extend the mft bitmap attribute
1264 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1266 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1267 * data_size.
1269 * Return 0 on success and -errno on error.
1271 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1272 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1273 * writing and releases it before returning.
1274 * - This function takes vol->lcnbmp_lock for writing and releases it
1275 * before returning.
1277 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1279 LCN lcn;
1280 s64 ll;
1281 unsigned long flags;
1282 struct page *page;
1283 ntfs_inode *mft_ni, *mftbmp_ni;
1284 runlist_element *rl, *rl2 = NULL;
1285 ntfs_attr_search_ctx *ctx = NULL;
1286 MFT_RECORD *mrec;
1287 ATTR_RECORD *a = NULL;
1288 int ret, mp_size;
1289 u32 old_alen = 0;
1290 u8 *b, tb;
1291 struct {
1292 u8 added_cluster:1;
1293 u8 added_run:1;
1294 u8 mp_rebuilt:1;
1295 } status = { 0, 0, 0 };
1297 ntfs_debug("Extending mft bitmap allocation.");
1298 mft_ni = NTFS_I(vol->mft_ino);
1299 mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1301 * Determine the last lcn of the mft bitmap. The allocated size of the
1302 * mft bitmap cannot be zero so we are ok to do this.
1304 down_write(&mftbmp_ni->runlist.lock);
1305 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1306 ll = mftbmp_ni->allocated_size;
1307 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1308 rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1309 (ll - 1) >> vol->cluster_size_bits, NULL);
1310 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1311 up_write(&mftbmp_ni->runlist.lock);
1312 ntfs_error(vol->sb, "Failed to determine last allocated "
1313 "cluster of mft bitmap attribute.");
1314 if (!IS_ERR(rl))
1315 ret = -EIO;
1316 else
1317 ret = PTR_ERR(rl);
1318 return ret;
1320 lcn = rl->lcn + rl->length;
1321 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1322 (long long)lcn);
1324 * Attempt to get the cluster following the last allocated cluster by
1325 * hand as it may be in the MFT zone so the allocator would not give it
1326 * to us.
1328 ll = lcn >> 3;
1329 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1330 ll >> PAGE_CACHE_SHIFT);
1331 if (IS_ERR(page)) {
1332 up_write(&mftbmp_ni->runlist.lock);
1333 ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1334 return PTR_ERR(page);
1336 b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK);
1337 tb = 1 << (lcn & 7ull);
1338 down_write(&vol->lcnbmp_lock);
1339 if (*b != 0xff && !(*b & tb)) {
1340 /* Next cluster is free, allocate it. */
1341 *b |= tb;
1342 flush_dcache_page(page);
1343 set_page_dirty(page);
1344 up_write(&vol->lcnbmp_lock);
1345 ntfs_unmap_page(page);
1346 /* Update the mft bitmap runlist. */
1347 rl->length++;
1348 rl[1].vcn++;
1349 status.added_cluster = 1;
1350 ntfs_debug("Appending one cluster to mft bitmap.");
1351 } else {
1352 up_write(&vol->lcnbmp_lock);
1353 ntfs_unmap_page(page);
1354 /* Allocate a cluster from the DATA_ZONE. */
1355 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1356 true);
1357 if (IS_ERR(rl2)) {
1358 up_write(&mftbmp_ni->runlist.lock);
1359 ntfs_error(vol->sb, "Failed to allocate a cluster for "
1360 "the mft bitmap.");
1361 return PTR_ERR(rl2);
1363 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1364 if (IS_ERR(rl)) {
1365 up_write(&mftbmp_ni->runlist.lock);
1366 ntfs_error(vol->sb, "Failed to merge runlists for mft "
1367 "bitmap.");
1368 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1369 ntfs_error(vol->sb, "Failed to dealocate "
1370 "allocated cluster.%s", es);
1371 NVolSetErrors(vol);
1373 ntfs_free(rl2);
1374 return PTR_ERR(rl);
1376 mftbmp_ni->runlist.rl = rl;
1377 status.added_run = 1;
1378 ntfs_debug("Adding one run to mft bitmap.");
1379 /* Find the last run in the new runlist. */
1380 for (; rl[1].length; rl++)
1384 * Update the attribute record as well. Note: @rl is the last
1385 * (non-terminator) runlist element of mft bitmap.
1387 mrec = map_mft_record(mft_ni);
1388 if (IS_ERR(mrec)) {
1389 ntfs_error(vol->sb, "Failed to map mft record.");
1390 ret = PTR_ERR(mrec);
1391 goto undo_alloc;
1393 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1394 if (unlikely(!ctx)) {
1395 ntfs_error(vol->sb, "Failed to get search context.");
1396 ret = -ENOMEM;
1397 goto undo_alloc;
1399 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1400 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1401 0, ctx);
1402 if (unlikely(ret)) {
1403 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1404 "mft bitmap attribute.");
1405 if (ret == -ENOENT)
1406 ret = -EIO;
1407 goto undo_alloc;
1409 a = ctx->attr;
1410 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1411 /* Search back for the previous last allocated cluster of mft bitmap. */
1412 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1413 if (ll >= rl2->vcn)
1414 break;
1416 BUG_ON(ll < rl2->vcn);
1417 BUG_ON(ll >= rl2->vcn + rl2->length);
1418 /* Get the size for the new mapping pairs array for this extent. */
1419 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1420 if (unlikely(mp_size <= 0)) {
1421 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1422 "mft bitmap attribute extent.");
1423 ret = mp_size;
1424 if (!ret)
1425 ret = -EIO;
1426 goto undo_alloc;
1428 /* Expand the attribute record if necessary. */
1429 old_alen = le32_to_cpu(a->length);
1430 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1431 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1432 if (unlikely(ret)) {
1433 if (ret != -ENOSPC) {
1434 ntfs_error(vol->sb, "Failed to resize attribute "
1435 "record for mft bitmap attribute.");
1436 goto undo_alloc;
1438 // TODO: Deal with this by moving this extent to a new mft
1439 // record or by starting a new extent in a new mft record or by
1440 // moving other attributes out of this mft record.
1441 // Note: It will need to be a special mft record and if none of
1442 // those are available it gets rather complicated...
1443 ntfs_error(vol->sb, "Not enough space in this mft record to "
1444 "accomodate extended mft bitmap attribute "
1445 "extent. Cannot handle this yet.");
1446 ret = -EOPNOTSUPP;
1447 goto undo_alloc;
1449 status.mp_rebuilt = 1;
1450 /* Generate the mapping pairs array directly into the attr record. */
1451 ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1452 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1453 mp_size, rl2, ll, -1, NULL);
1454 if (unlikely(ret)) {
1455 ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1456 "mft bitmap attribute.");
1457 goto undo_alloc;
1459 /* Update the highest_vcn. */
1460 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1462 * We now have extended the mft bitmap allocated_size by one cluster.
1463 * Reflect this in the ntfs_inode structure and the attribute record.
1465 if (a->data.non_resident.lowest_vcn) {
1467 * We are not in the first attribute extent, switch to it, but
1468 * first ensure the changes will make it to disk later.
1470 flush_dcache_mft_record_page(ctx->ntfs_ino);
1471 mark_mft_record_dirty(ctx->ntfs_ino);
1472 ntfs_attr_reinit_search_ctx(ctx);
1473 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1474 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1475 0, ctx);
1476 if (unlikely(ret)) {
1477 ntfs_error(vol->sb, "Failed to find first attribute "
1478 "extent of mft bitmap attribute.");
1479 goto restore_undo_alloc;
1481 a = ctx->attr;
1483 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1484 mftbmp_ni->allocated_size += vol->cluster_size;
1485 a->data.non_resident.allocated_size =
1486 cpu_to_sle64(mftbmp_ni->allocated_size);
1487 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1488 /* Ensure the changes make it to disk. */
1489 flush_dcache_mft_record_page(ctx->ntfs_ino);
1490 mark_mft_record_dirty(ctx->ntfs_ino);
1491 ntfs_attr_put_search_ctx(ctx);
1492 unmap_mft_record(mft_ni);
1493 up_write(&mftbmp_ni->runlist.lock);
1494 ntfs_debug("Done.");
1495 return 0;
1496 restore_undo_alloc:
1497 ntfs_attr_reinit_search_ctx(ctx);
1498 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1499 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1500 0, ctx)) {
1501 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1502 "mft bitmap attribute.%s", es);
1503 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1504 mftbmp_ni->allocated_size += vol->cluster_size;
1505 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1506 ntfs_attr_put_search_ctx(ctx);
1507 unmap_mft_record(mft_ni);
1508 up_write(&mftbmp_ni->runlist.lock);
1510 * The only thing that is now wrong is ->allocated_size of the
1511 * base attribute extent which chkdsk should be able to fix.
1513 NVolSetErrors(vol);
1514 return ret;
1516 a = ctx->attr;
1517 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1518 undo_alloc:
1519 if (status.added_cluster) {
1520 /* Truncate the last run in the runlist by one cluster. */
1521 rl->length--;
1522 rl[1].vcn--;
1523 } else if (status.added_run) {
1524 lcn = rl->lcn;
1525 /* Remove the last run from the runlist. */
1526 rl->lcn = rl[1].lcn;
1527 rl->length = 0;
1529 /* Deallocate the cluster. */
1530 down_write(&vol->lcnbmp_lock);
1531 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1532 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1533 NVolSetErrors(vol);
1535 up_write(&vol->lcnbmp_lock);
1536 if (status.mp_rebuilt) {
1537 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1538 a->data.non_resident.mapping_pairs_offset),
1539 old_alen - le16_to_cpu(
1540 a->data.non_resident.mapping_pairs_offset),
1541 rl2, ll, -1, NULL)) {
1542 ntfs_error(vol->sb, "Failed to restore mapping pairs "
1543 "array.%s", es);
1544 NVolSetErrors(vol);
1546 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1547 ntfs_error(vol->sb, "Failed to restore attribute "
1548 "record.%s", es);
1549 NVolSetErrors(vol);
1551 flush_dcache_mft_record_page(ctx->ntfs_ino);
1552 mark_mft_record_dirty(ctx->ntfs_ino);
1554 if (ctx)
1555 ntfs_attr_put_search_ctx(ctx);
1556 if (!IS_ERR(mrec))
1557 unmap_mft_record(mft_ni);
1558 up_write(&mftbmp_ni->runlist.lock);
1559 return ret;
1563 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1564 * @vol: volume on which to extend the mft bitmap attribute
1566 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1567 * volume @vol by 8 bytes.
1569 * Note: Only changes initialized_size and data_size, i.e. requires that
1570 * allocated_size is big enough to fit the new initialized_size.
1572 * Return 0 on success and -error on error.
1574 * Locking: Caller must hold vol->mftbmp_lock for writing.
1576 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1578 s64 old_data_size, old_initialized_size;
1579 unsigned long flags;
1580 struct inode *mftbmp_vi;
1581 ntfs_inode *mft_ni, *mftbmp_ni;
1582 ntfs_attr_search_ctx *ctx;
1583 MFT_RECORD *mrec;
1584 ATTR_RECORD *a;
1585 int ret;
1587 ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1588 mft_ni = NTFS_I(vol->mft_ino);
1589 mftbmp_vi = vol->mftbmp_ino;
1590 mftbmp_ni = NTFS_I(mftbmp_vi);
1591 /* Get the attribute record. */
1592 mrec = map_mft_record(mft_ni);
1593 if (IS_ERR(mrec)) {
1594 ntfs_error(vol->sb, "Failed to map mft record.");
1595 return PTR_ERR(mrec);
1597 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1598 if (unlikely(!ctx)) {
1599 ntfs_error(vol->sb, "Failed to get search context.");
1600 ret = -ENOMEM;
1601 goto unm_err_out;
1603 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1604 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1605 if (unlikely(ret)) {
1606 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1607 "mft bitmap attribute.");
1608 if (ret == -ENOENT)
1609 ret = -EIO;
1610 goto put_err_out;
1612 a = ctx->attr;
1613 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1614 old_data_size = i_size_read(mftbmp_vi);
1615 old_initialized_size = mftbmp_ni->initialized_size;
1617 * We can simply update the initialized_size before filling the space
1618 * with zeroes because the caller is holding the mft bitmap lock for
1619 * writing which ensures that no one else is trying to access the data.
1621 mftbmp_ni->initialized_size += 8;
1622 a->data.non_resident.initialized_size =
1623 cpu_to_sle64(mftbmp_ni->initialized_size);
1624 if (mftbmp_ni->initialized_size > old_data_size) {
1625 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1626 a->data.non_resident.data_size =
1627 cpu_to_sle64(mftbmp_ni->initialized_size);
1629 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1630 /* Ensure the changes make it to disk. */
1631 flush_dcache_mft_record_page(ctx->ntfs_ino);
1632 mark_mft_record_dirty(ctx->ntfs_ino);
1633 ntfs_attr_put_search_ctx(ctx);
1634 unmap_mft_record(mft_ni);
1635 /* Initialize the mft bitmap attribute value with zeroes. */
1636 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1637 if (likely(!ret)) {
1638 ntfs_debug("Done. (Wrote eight initialized bytes to mft "
1639 "bitmap.");
1640 return 0;
1642 ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1643 /* Try to recover from the error. */
1644 mrec = map_mft_record(mft_ni);
1645 if (IS_ERR(mrec)) {
1646 ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1647 NVolSetErrors(vol);
1648 return ret;
1650 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1651 if (unlikely(!ctx)) {
1652 ntfs_error(vol->sb, "Failed to get search context.%s", es);
1653 NVolSetErrors(vol);
1654 goto unm_err_out;
1656 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1657 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1658 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1659 "mft bitmap attribute.%s", es);
1660 NVolSetErrors(vol);
1661 put_err_out:
1662 ntfs_attr_put_search_ctx(ctx);
1663 unm_err_out:
1664 unmap_mft_record(mft_ni);
1665 goto err_out;
1667 a = ctx->attr;
1668 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1669 mftbmp_ni->initialized_size = old_initialized_size;
1670 a->data.non_resident.initialized_size =
1671 cpu_to_sle64(old_initialized_size);
1672 if (i_size_read(mftbmp_vi) != old_data_size) {
1673 i_size_write(mftbmp_vi, old_data_size);
1674 a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1676 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1677 flush_dcache_mft_record_page(ctx->ntfs_ino);
1678 mark_mft_record_dirty(ctx->ntfs_ino);
1679 ntfs_attr_put_search_ctx(ctx);
1680 unmap_mft_record(mft_ni);
1681 #ifdef DEBUG
1682 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1683 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1684 "data_size 0x%llx, initialized_size 0x%llx.",
1685 (long long)mftbmp_ni->allocated_size,
1686 (long long)i_size_read(mftbmp_vi),
1687 (long long)mftbmp_ni->initialized_size);
1688 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1689 #endif /* DEBUG */
1690 err_out:
1691 return ret;
1695 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1696 * @vol: volume on which to extend the mft data attribute
1698 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1699 * worth of clusters or if not enough space for this by one mft record worth
1700 * of clusters.
1702 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1703 * data_size.
1705 * Return 0 on success and -errno on error.
1707 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1708 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1709 * writing and releases it before returning.
1710 * - This function calls functions which take vol->lcnbmp_lock for
1711 * writing and release it before returning.
1713 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1715 LCN lcn;
1716 VCN old_last_vcn;
1717 s64 min_nr, nr, ll;
1718 unsigned long flags;
1719 ntfs_inode *mft_ni;
1720 runlist_element *rl, *rl2;
1721 ntfs_attr_search_ctx *ctx = NULL;
1722 MFT_RECORD *mrec;
1723 ATTR_RECORD *a = NULL;
1724 int ret, mp_size;
1725 u32 old_alen = 0;
1726 bool mp_rebuilt = false;
1728 ntfs_debug("Extending mft data allocation.");
1729 mft_ni = NTFS_I(vol->mft_ino);
1731 * Determine the preferred allocation location, i.e. the last lcn of
1732 * the mft data attribute. The allocated size of the mft data
1733 * attribute cannot be zero so we are ok to do this.
1735 down_write(&mft_ni->runlist.lock);
1736 read_lock_irqsave(&mft_ni->size_lock, flags);
1737 ll = mft_ni->allocated_size;
1738 read_unlock_irqrestore(&mft_ni->size_lock, flags);
1739 rl = ntfs_attr_find_vcn_nolock(mft_ni,
1740 (ll - 1) >> vol->cluster_size_bits, NULL);
1741 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1742 up_write(&mft_ni->runlist.lock);
1743 ntfs_error(vol->sb, "Failed to determine last allocated "
1744 "cluster of mft data attribute.");
1745 if (!IS_ERR(rl))
1746 ret = -EIO;
1747 else
1748 ret = PTR_ERR(rl);
1749 return ret;
1751 lcn = rl->lcn + rl->length;
1752 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1753 /* Minimum allocation is one mft record worth of clusters. */
1754 min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1755 if (!min_nr)
1756 min_nr = 1;
1757 /* Want to allocate 16 mft records worth of clusters. */
1758 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1759 if (!nr)
1760 nr = min_nr;
1761 /* Ensure we do not go above 2^32-1 mft records. */
1762 read_lock_irqsave(&mft_ni->size_lock, flags);
1763 ll = mft_ni->allocated_size;
1764 read_unlock_irqrestore(&mft_ni->size_lock, flags);
1765 if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1766 vol->mft_record_size_bits >= (1ll << 32))) {
1767 nr = min_nr;
1768 if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1769 vol->mft_record_size_bits >= (1ll << 32))) {
1770 ntfs_warning(vol->sb, "Cannot allocate mft record "
1771 "because the maximum number of inodes "
1772 "(2^32) has already been reached.");
1773 up_write(&mft_ni->runlist.lock);
1774 return -ENOSPC;
1777 ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1778 nr > min_nr ? "default" : "minimal", (long long)nr);
1779 old_last_vcn = rl[1].vcn;
1780 do {
1781 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1782 true);
1783 if (likely(!IS_ERR(rl2)))
1784 break;
1785 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1786 ntfs_error(vol->sb, "Failed to allocate the minimal "
1787 "number of clusters (%lli) for the "
1788 "mft data attribute.", (long long)nr);
1789 up_write(&mft_ni->runlist.lock);
1790 return PTR_ERR(rl2);
1793 * There is not enough space to do the allocation, but there
1794 * might be enough space to do a minimal allocation so try that
1795 * before failing.
1797 nr = min_nr;
1798 ntfs_debug("Retrying mft data allocation with minimal cluster "
1799 "count %lli.", (long long)nr);
1800 } while (1);
1801 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1802 if (IS_ERR(rl)) {
1803 up_write(&mft_ni->runlist.lock);
1804 ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1805 "attribute.");
1806 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1807 ntfs_error(vol->sb, "Failed to dealocate clusters "
1808 "from the mft data attribute.%s", es);
1809 NVolSetErrors(vol);
1811 ntfs_free(rl2);
1812 return PTR_ERR(rl);
1814 mft_ni->runlist.rl = rl;
1815 ntfs_debug("Allocated %lli clusters.", (long long)nr);
1816 /* Find the last run in the new runlist. */
1817 for (; rl[1].length; rl++)
1819 /* Update the attribute record as well. */
1820 mrec = map_mft_record(mft_ni);
1821 if (IS_ERR(mrec)) {
1822 ntfs_error(vol->sb, "Failed to map mft record.");
1823 ret = PTR_ERR(mrec);
1824 goto undo_alloc;
1826 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1827 if (unlikely(!ctx)) {
1828 ntfs_error(vol->sb, "Failed to get search context.");
1829 ret = -ENOMEM;
1830 goto undo_alloc;
1832 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1833 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1834 if (unlikely(ret)) {
1835 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1836 "mft data attribute.");
1837 if (ret == -ENOENT)
1838 ret = -EIO;
1839 goto undo_alloc;
1841 a = ctx->attr;
1842 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1843 /* Search back for the previous last allocated cluster of mft bitmap. */
1844 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1845 if (ll >= rl2->vcn)
1846 break;
1848 BUG_ON(ll < rl2->vcn);
1849 BUG_ON(ll >= rl2->vcn + rl2->length);
1850 /* Get the size for the new mapping pairs array for this extent. */
1851 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1852 if (unlikely(mp_size <= 0)) {
1853 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1854 "mft data attribute extent.");
1855 ret = mp_size;
1856 if (!ret)
1857 ret = -EIO;
1858 goto undo_alloc;
1860 /* Expand the attribute record if necessary. */
1861 old_alen = le32_to_cpu(a->length);
1862 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1863 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1864 if (unlikely(ret)) {
1865 if (ret != -ENOSPC) {
1866 ntfs_error(vol->sb, "Failed to resize attribute "
1867 "record for mft data attribute.");
1868 goto undo_alloc;
1870 // TODO: Deal with this by moving this extent to a new mft
1871 // record or by starting a new extent in a new mft record or by
1872 // moving other attributes out of this mft record.
1873 // Note: Use the special reserved mft records and ensure that
1874 // this extent is not required to find the mft record in
1875 // question. If no free special records left we would need to
1876 // move an existing record away, insert ours in its place, and
1877 // then place the moved record into the newly allocated space
1878 // and we would then need to update all references to this mft
1879 // record appropriately. This is rather complicated...
1880 ntfs_error(vol->sb, "Not enough space in this mft record to "
1881 "accomodate extended mft data attribute "
1882 "extent. Cannot handle this yet.");
1883 ret = -EOPNOTSUPP;
1884 goto undo_alloc;
1886 mp_rebuilt = true;
1887 /* Generate the mapping pairs array directly into the attr record. */
1888 ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1889 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1890 mp_size, rl2, ll, -1, NULL);
1891 if (unlikely(ret)) {
1892 ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1893 "mft data attribute.");
1894 goto undo_alloc;
1896 /* Update the highest_vcn. */
1897 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1899 * We now have extended the mft data allocated_size by nr clusters.
1900 * Reflect this in the ntfs_inode structure and the attribute record.
1901 * @rl is the last (non-terminator) runlist element of mft data
1902 * attribute.
1904 if (a->data.non_resident.lowest_vcn) {
1906 * We are not in the first attribute extent, switch to it, but
1907 * first ensure the changes will make it to disk later.
1909 flush_dcache_mft_record_page(ctx->ntfs_ino);
1910 mark_mft_record_dirty(ctx->ntfs_ino);
1911 ntfs_attr_reinit_search_ctx(ctx);
1912 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1913 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1914 ctx);
1915 if (unlikely(ret)) {
1916 ntfs_error(vol->sb, "Failed to find first attribute "
1917 "extent of mft data attribute.");
1918 goto restore_undo_alloc;
1920 a = ctx->attr;
1922 write_lock_irqsave(&mft_ni->size_lock, flags);
1923 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1924 a->data.non_resident.allocated_size =
1925 cpu_to_sle64(mft_ni->allocated_size);
1926 write_unlock_irqrestore(&mft_ni->size_lock, flags);
1927 /* Ensure the changes make it to disk. */
1928 flush_dcache_mft_record_page(ctx->ntfs_ino);
1929 mark_mft_record_dirty(ctx->ntfs_ino);
1930 ntfs_attr_put_search_ctx(ctx);
1931 unmap_mft_record(mft_ni);
1932 up_write(&mft_ni->runlist.lock);
1933 ntfs_debug("Done.");
1934 return 0;
1935 restore_undo_alloc:
1936 ntfs_attr_reinit_search_ctx(ctx);
1937 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1938 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1939 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1940 "mft data attribute.%s", es);
1941 write_lock_irqsave(&mft_ni->size_lock, flags);
1942 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1943 write_unlock_irqrestore(&mft_ni->size_lock, flags);
1944 ntfs_attr_put_search_ctx(ctx);
1945 unmap_mft_record(mft_ni);
1946 up_write(&mft_ni->runlist.lock);
1948 * The only thing that is now wrong is ->allocated_size of the
1949 * base attribute extent which chkdsk should be able to fix.
1951 NVolSetErrors(vol);
1952 return ret;
1954 ctx->attr->data.non_resident.highest_vcn =
1955 cpu_to_sle64(old_last_vcn - 1);
1956 undo_alloc:
1957 if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1958 ntfs_error(vol->sb, "Failed to free clusters from mft data "
1959 "attribute.%s", es);
1960 NVolSetErrors(vol);
1962 a = ctx->attr;
1963 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1964 ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1965 "runlist.%s", es);
1966 NVolSetErrors(vol);
1968 if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1969 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1970 a->data.non_resident.mapping_pairs_offset),
1971 old_alen - le16_to_cpu(
1972 a->data.non_resident.mapping_pairs_offset),
1973 rl2, ll, -1, NULL)) {
1974 ntfs_error(vol->sb, "Failed to restore mapping pairs "
1975 "array.%s", es);
1976 NVolSetErrors(vol);
1978 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1979 ntfs_error(vol->sb, "Failed to restore attribute "
1980 "record.%s", es);
1981 NVolSetErrors(vol);
1983 flush_dcache_mft_record_page(ctx->ntfs_ino);
1984 mark_mft_record_dirty(ctx->ntfs_ino);
1985 } else if (IS_ERR(ctx->mrec)) {
1986 ntfs_error(vol->sb, "Failed to restore attribute search "
1987 "context.%s", es);
1988 NVolSetErrors(vol);
1990 if (ctx)
1991 ntfs_attr_put_search_ctx(ctx);
1992 if (!IS_ERR(mrec))
1993 unmap_mft_record(mft_ni);
1994 up_write(&mft_ni->runlist.lock);
1995 return ret;
1999 * ntfs_mft_record_layout - layout an mft record into a memory buffer
2000 * @vol: volume to which the mft record will belong
2001 * @mft_no: mft reference specifying the mft record number
2002 * @m: destination buffer of size >= @vol->mft_record_size bytes
2004 * Layout an empty, unused mft record with the mft record number @mft_no into
2005 * the buffer @m. The volume @vol is needed because the mft record structure
2006 * was modified in NTFS 3.1 so we need to know which volume version this mft
2007 * record will be used on.
2009 * Return 0 on success and -errno on error.
2011 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2012 MFT_RECORD *m)
2014 ATTR_RECORD *a;
2016 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2017 if (mft_no >= (1ll << 32)) {
2018 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2019 "maximum of 2^32.", (long long)mft_no);
2020 return -ERANGE;
2022 /* Start by clearing the whole mft record to gives us a clean slate. */
2023 memset(m, 0, vol->mft_record_size);
2024 /* Aligned to 2-byte boundary. */
2025 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2026 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2027 else {
2028 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2030 * Set the NTFS 3.1+ specific fields while we know that the
2031 * volume version is 3.1+.
2033 m->reserved = 0;
2034 m->mft_record_number = cpu_to_le32((u32)mft_no);
2036 m->magic = magic_FILE;
2037 if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2038 m->usa_count = cpu_to_le16(vol->mft_record_size /
2039 NTFS_BLOCK_SIZE + 1);
2040 else {
2041 m->usa_count = cpu_to_le16(1);
2042 ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2043 "size. Setting usa_count to 1. If chkdsk "
2044 "reports this as corruption, please email "
2045 "linux-ntfs-dev@lists.sourceforge.net stating "
2046 "that you saw this message and that the "
2047 "modified filesystem created was corrupt. "
2048 "Thank you.");
2050 /* Set the update sequence number to 1. */
2051 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2052 m->lsn = 0;
2053 m->sequence_number = cpu_to_le16(1);
2054 m->link_count = 0;
2056 * Place the attributes straight after the update sequence array,
2057 * aligned to 8-byte boundary.
2059 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2060 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2061 m->flags = 0;
2063 * Using attrs_offset plus eight bytes (for the termination attribute).
2064 * attrs_offset is already aligned to 8-byte boundary, so no need to
2065 * align again.
2067 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2068 m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2069 m->base_mft_record = 0;
2070 m->next_attr_instance = 0;
2071 /* Add the termination attribute. */
2072 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2073 a->type = AT_END;
2074 a->length = 0;
2075 ntfs_debug("Done.");
2076 return 0;
2080 * ntfs_mft_record_format - format an mft record on an ntfs volume
2081 * @vol: volume on which to format the mft record
2082 * @mft_no: mft record number to format
2084 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2085 * mft record into the appropriate place of the mft data attribute. This is
2086 * used when extending the mft data attribute.
2088 * Return 0 on success and -errno on error.
2090 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2092 loff_t i_size;
2093 struct inode *mft_vi = vol->mft_ino;
2094 struct page *page;
2095 MFT_RECORD *m;
2096 pgoff_t index, end_index;
2097 unsigned int ofs;
2098 int err;
2100 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2102 * The index into the page cache and the offset within the page cache
2103 * page of the wanted mft record.
2105 index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2106 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2107 /* The maximum valid index into the page cache for $MFT's data. */
2108 i_size = i_size_read(mft_vi);
2109 end_index = i_size >> PAGE_CACHE_SHIFT;
2110 if (unlikely(index >= end_index)) {
2111 if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2112 (i_size & ~PAGE_CACHE_MASK))) {
2113 ntfs_error(vol->sb, "Tried to format non-existing mft "
2114 "record 0x%llx.", (long long)mft_no);
2115 return -ENOENT;
2118 /* Read, map, and pin the page containing the mft record. */
2119 page = ntfs_map_page(mft_vi->i_mapping, index);
2120 if (IS_ERR(page)) {
2121 ntfs_error(vol->sb, "Failed to map page containing mft record "
2122 "to format 0x%llx.", (long long)mft_no);
2123 return PTR_ERR(page);
2125 lock_page(page);
2126 BUG_ON(!PageUptodate(page));
2127 ClearPageUptodate(page);
2128 m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2129 err = ntfs_mft_record_layout(vol, mft_no, m);
2130 if (unlikely(err)) {
2131 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2132 (long long)mft_no);
2133 SetPageUptodate(page);
2134 unlock_page(page);
2135 ntfs_unmap_page(page);
2136 return err;
2138 flush_dcache_page(page);
2139 SetPageUptodate(page);
2140 unlock_page(page);
2142 * Make sure the mft record is written out to disk. We could use
2143 * ilookup5() to check if an inode is in icache and so on but this is
2144 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2146 mark_ntfs_record_dirty(page, ofs);
2147 ntfs_unmap_page(page);
2148 ntfs_debug("Done.");
2149 return 0;
2153 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2154 * @vol: [IN] volume on which to allocate the mft record
2155 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0
2156 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL
2157 * @mrec: [OUT] on successful return this is the mapped mft record
2159 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2161 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2162 * direvctory inode, and allocate it at the default allocator position. In
2163 * this case @mode is the file mode as given to us by the caller. We in
2164 * particular use @mode to distinguish whether a file or a directory is being
2165 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2167 * If @base_ni is not NULL make the allocated mft record an extent record,
2168 * allocate it starting at the mft record after the base mft record and attach
2169 * the allocated and opened ntfs inode to the base inode @base_ni. In this
2170 * case @mode must be 0 as it is meaningless for extent inodes.
2172 * You need to check the return value with IS_ERR(). If false, the function
2173 * was successful and the return value is the now opened ntfs inode of the
2174 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned,
2175 * and locked mft record. If IS_ERR() is true, the function failed and the
2176 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in
2177 * this case.
2179 * Allocation strategy:
2181 * To find a free mft record, we scan the mft bitmap for a zero bit. To
2182 * optimize this we start scanning at the place specified by @base_ni or if
2183 * @base_ni is NULL we start where we last stopped and we perform wrap around
2184 * when we reach the end. Note, we do not try to allocate mft records below
2185 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2186 * to 24 are special in that they are used for storing extension mft records
2187 * for the $DATA attribute of $MFT. This is required to avoid the possibility
2188 * of creating a runlist with a circular dependency which once written to disk
2189 * can never be read in again. Windows will only use records 16 to 24 for
2190 * normal files if the volume is completely out of space. We never use them
2191 * which means that when the volume is really out of space we cannot create any
2192 * more files while Windows can still create up to 8 small files. We can start
2193 * doing this at some later time, it does not matter much for now.
2195 * When scanning the mft bitmap, we only search up to the last allocated mft
2196 * record. If there are no free records left in the range 24 to number of
2197 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2198 * create free mft records. We extend the allocated size of $MFT/$DATA by 16
2199 * records at a time or one cluster, if cluster size is above 16kiB. If there
2200 * is not sufficient space to do this, we try to extend by a single mft record
2201 * or one cluster, if cluster size is above the mft record size.
2203 * No matter how many mft records we allocate, we initialize only the first
2204 * allocated mft record, incrementing mft data size and initialized size
2205 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2206 * there are less than 24 mft records, in which case we allocate and initialize
2207 * mft records until we reach record 24 which we consider as the first free mft
2208 * record for use by normal files.
2210 * If during any stage we overflow the initialized data in the mft bitmap, we
2211 * extend the initialized size (and data size) by 8 bytes, allocating another
2212 * cluster if required. The bitmap data size has to be at least equal to the
2213 * number of mft records in the mft, but it can be bigger, in which case the
2214 * superflous bits are padded with zeroes.
2216 * Thus, when we return successfully (IS_ERR() is false), we will have:
2217 * - initialized / extended the mft bitmap if necessary,
2218 * - initialized / extended the mft data if necessary,
2219 * - set the bit corresponding to the mft record being allocated in the
2220 * mft bitmap,
2221 * - opened an ntfs_inode for the allocated mft record, and we will have
2222 * - returned the ntfs_inode as well as the allocated mapped, pinned, and
2223 * locked mft record.
2225 * On error, the volume will be left in a consistent state and no record will
2226 * be allocated. If rolling back a partial operation fails, we may leave some
2227 * inconsistent metadata in which case we set NVolErrors() so the volume is
2228 * left dirty when unmounted.
2230 * Note, this function cannot make use of most of the normal functions, like
2231 * for example for attribute resizing, etc, because when the run list overflows
2232 * the base mft record and an attribute list is used, it is very important that
2233 * the extension mft records used to store the $DATA attribute of $MFT can be
2234 * reached without having to read the information contained inside them, as
2235 * this would make it impossible to find them in the first place after the
2236 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this
2237 * rule because the bitmap is not essential for finding the mft records, but on
2238 * the other hand, handling the bitmap in this special way would make life
2239 * easier because otherwise there might be circular invocations of functions
2240 * when reading the bitmap.
2242 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2243 ntfs_inode *base_ni, MFT_RECORD **mrec)
2245 s64 ll, bit, old_data_initialized, old_data_size;
2246 unsigned long flags;
2247 struct inode *vi;
2248 struct page *page;
2249 ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2250 ntfs_attr_search_ctx *ctx;
2251 MFT_RECORD *m;
2252 ATTR_RECORD *a;
2253 pgoff_t index;
2254 unsigned int ofs;
2255 int err;
2256 le16 seq_no, usn;
2257 bool record_formatted = false;
2259 if (base_ni) {
2260 ntfs_debug("Entering (allocating an extent mft record for "
2261 "base mft record 0x%llx).",
2262 (long long)base_ni->mft_no);
2263 /* @mode and @base_ni are mutually exclusive. */
2264 BUG_ON(mode);
2265 } else
2266 ntfs_debug("Entering (allocating a base mft record).");
2267 if (mode) {
2268 /* @mode and @base_ni are mutually exclusive. */
2269 BUG_ON(base_ni);
2270 /* We only support creation of normal files and directories. */
2271 if (!S_ISREG(mode) && !S_ISDIR(mode))
2272 return ERR_PTR(-EOPNOTSUPP);
2274 BUG_ON(!mrec);
2275 mft_ni = NTFS_I(vol->mft_ino);
2276 mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2277 down_write(&vol->mftbmp_lock);
2278 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2279 if (bit >= 0) {
2280 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2281 (long long)bit);
2282 goto have_alloc_rec;
2284 if (bit != -ENOSPC) {
2285 up_write(&vol->mftbmp_lock);
2286 return ERR_PTR(bit);
2289 * No free mft records left. If the mft bitmap already covers more
2290 * than the currently used mft records, the next records are all free,
2291 * so we can simply allocate the first unused mft record.
2292 * Note: We also have to make sure that the mft bitmap at least covers
2293 * the first 24 mft records as they are special and whilst they may not
2294 * be in use, we do not allocate from them.
2296 read_lock_irqsave(&mft_ni->size_lock, flags);
2297 ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2298 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2299 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2300 old_data_initialized = mftbmp_ni->initialized_size;
2301 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2302 if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2303 bit = ll;
2304 if (bit < 24)
2305 bit = 24;
2306 if (unlikely(bit >= (1ll << 32)))
2307 goto max_err_out;
2308 ntfs_debug("Found free record (#2), bit 0x%llx.",
2309 (long long)bit);
2310 goto found_free_rec;
2313 * The mft bitmap needs to be expanded until it covers the first unused
2314 * mft record that we can allocate.
2315 * Note: The smallest mft record we allocate is mft record 24.
2317 bit = old_data_initialized << 3;
2318 if (unlikely(bit >= (1ll << 32)))
2319 goto max_err_out;
2320 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2321 old_data_size = mftbmp_ni->allocated_size;
2322 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2323 "data_size 0x%llx, initialized_size 0x%llx.",
2324 (long long)old_data_size,
2325 (long long)i_size_read(vol->mftbmp_ino),
2326 (long long)old_data_initialized);
2327 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2328 if (old_data_initialized + 8 > old_data_size) {
2329 /* Need to extend bitmap by one more cluster. */
2330 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2331 err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2332 if (unlikely(err)) {
2333 up_write(&vol->mftbmp_lock);
2334 goto err_out;
2336 #ifdef DEBUG
2337 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2338 ntfs_debug("Status of mftbmp after allocation extension: "
2339 "allocated_size 0x%llx, data_size 0x%llx, "
2340 "initialized_size 0x%llx.",
2341 (long long)mftbmp_ni->allocated_size,
2342 (long long)i_size_read(vol->mftbmp_ino),
2343 (long long)mftbmp_ni->initialized_size);
2344 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2345 #endif /* DEBUG */
2348 * We now have sufficient allocated space, extend the initialized_size
2349 * as well as the data_size if necessary and fill the new space with
2350 * zeroes.
2352 err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2353 if (unlikely(err)) {
2354 up_write(&vol->mftbmp_lock);
2355 goto err_out;
2357 #ifdef DEBUG
2358 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2359 ntfs_debug("Status of mftbmp after initialized extention: "
2360 "allocated_size 0x%llx, data_size 0x%llx, "
2361 "initialized_size 0x%llx.",
2362 (long long)mftbmp_ni->allocated_size,
2363 (long long)i_size_read(vol->mftbmp_ino),
2364 (long long)mftbmp_ni->initialized_size);
2365 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2366 #endif /* DEBUG */
2367 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2368 found_free_rec:
2369 /* @bit is the found free mft record, allocate it in the mft bitmap. */
2370 ntfs_debug("At found_free_rec.");
2371 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2372 if (unlikely(err)) {
2373 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2374 up_write(&vol->mftbmp_lock);
2375 goto err_out;
2377 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2378 have_alloc_rec:
2380 * The mft bitmap is now uptodate. Deal with mft data attribute now.
2381 * Note, we keep hold of the mft bitmap lock for writing until all
2382 * modifications to the mft data attribute are complete, too, as they
2383 * will impact decisions for mft bitmap and mft record allocation done
2384 * by a parallel allocation and if the lock is not maintained a
2385 * parallel allocation could allocate the same mft record as this one.
2387 ll = (bit + 1) << vol->mft_record_size_bits;
2388 read_lock_irqsave(&mft_ni->size_lock, flags);
2389 old_data_initialized = mft_ni->initialized_size;
2390 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2391 if (ll <= old_data_initialized) {
2392 ntfs_debug("Allocated mft record already initialized.");
2393 goto mft_rec_already_initialized;
2395 ntfs_debug("Initializing allocated mft record.");
2397 * The mft record is outside the initialized data. Extend the mft data
2398 * attribute until it covers the allocated record. The loop is only
2399 * actually traversed more than once when a freshly formatted volume is
2400 * first written to so it optimizes away nicely in the common case.
2402 read_lock_irqsave(&mft_ni->size_lock, flags);
2403 ntfs_debug("Status of mft data before extension: "
2404 "allocated_size 0x%llx, data_size 0x%llx, "
2405 "initialized_size 0x%llx.",
2406 (long long)mft_ni->allocated_size,
2407 (long long)i_size_read(vol->mft_ino),
2408 (long long)mft_ni->initialized_size);
2409 while (ll > mft_ni->allocated_size) {
2410 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2411 err = ntfs_mft_data_extend_allocation_nolock(vol);
2412 if (unlikely(err)) {
2413 ntfs_error(vol->sb, "Failed to extend mft data "
2414 "allocation.");
2415 goto undo_mftbmp_alloc_nolock;
2417 read_lock_irqsave(&mft_ni->size_lock, flags);
2418 ntfs_debug("Status of mft data after allocation extension: "
2419 "allocated_size 0x%llx, data_size 0x%llx, "
2420 "initialized_size 0x%llx.",
2421 (long long)mft_ni->allocated_size,
2422 (long long)i_size_read(vol->mft_ino),
2423 (long long)mft_ni->initialized_size);
2425 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2427 * Extend mft data initialized size (and data size of course) to reach
2428 * the allocated mft record, formatting the mft records allong the way.
2429 * Note: We only modify the ntfs_inode structure as that is all that is
2430 * needed by ntfs_mft_record_format(). We will update the attribute
2431 * record itself in one fell swoop later on.
2433 write_lock_irqsave(&mft_ni->size_lock, flags);
2434 old_data_initialized = mft_ni->initialized_size;
2435 old_data_size = vol->mft_ino->i_size;
2436 while (ll > mft_ni->initialized_size) {
2437 s64 new_initialized_size, mft_no;
2439 new_initialized_size = mft_ni->initialized_size +
2440 vol->mft_record_size;
2441 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2442 if (new_initialized_size > i_size_read(vol->mft_ino))
2443 i_size_write(vol->mft_ino, new_initialized_size);
2444 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2445 ntfs_debug("Initializing mft record 0x%llx.",
2446 (long long)mft_no);
2447 err = ntfs_mft_record_format(vol, mft_no);
2448 if (unlikely(err)) {
2449 ntfs_error(vol->sb, "Failed to format mft record.");
2450 goto undo_data_init;
2452 write_lock_irqsave(&mft_ni->size_lock, flags);
2453 mft_ni->initialized_size = new_initialized_size;
2455 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2456 record_formatted = true;
2457 /* Update the mft data attribute record to reflect the new sizes. */
2458 m = map_mft_record(mft_ni);
2459 if (IS_ERR(m)) {
2460 ntfs_error(vol->sb, "Failed to map mft record.");
2461 err = PTR_ERR(m);
2462 goto undo_data_init;
2464 ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2465 if (unlikely(!ctx)) {
2466 ntfs_error(vol->sb, "Failed to get search context.");
2467 err = -ENOMEM;
2468 unmap_mft_record(mft_ni);
2469 goto undo_data_init;
2471 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2472 CASE_SENSITIVE, 0, NULL, 0, ctx);
2473 if (unlikely(err)) {
2474 ntfs_error(vol->sb, "Failed to find first attribute extent of "
2475 "mft data attribute.");
2476 ntfs_attr_put_search_ctx(ctx);
2477 unmap_mft_record(mft_ni);
2478 goto undo_data_init;
2480 a = ctx->attr;
2481 read_lock_irqsave(&mft_ni->size_lock, flags);
2482 a->data.non_resident.initialized_size =
2483 cpu_to_sle64(mft_ni->initialized_size);
2484 a->data.non_resident.data_size =
2485 cpu_to_sle64(i_size_read(vol->mft_ino));
2486 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2487 /* Ensure the changes make it to disk. */
2488 flush_dcache_mft_record_page(ctx->ntfs_ino);
2489 mark_mft_record_dirty(ctx->ntfs_ino);
2490 ntfs_attr_put_search_ctx(ctx);
2491 unmap_mft_record(mft_ni);
2492 read_lock_irqsave(&mft_ni->size_lock, flags);
2493 ntfs_debug("Status of mft data after mft record initialization: "
2494 "allocated_size 0x%llx, data_size 0x%llx, "
2495 "initialized_size 0x%llx.",
2496 (long long)mft_ni->allocated_size,
2497 (long long)i_size_read(vol->mft_ino),
2498 (long long)mft_ni->initialized_size);
2499 BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2500 BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2501 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2502 mft_rec_already_initialized:
2504 * We can finally drop the mft bitmap lock as the mft data attribute
2505 * has been fully updated. The only disparity left is that the
2506 * allocated mft record still needs to be marked as in use to match the
2507 * set bit in the mft bitmap but this is actually not a problem since
2508 * this mft record is not referenced from anywhere yet and the fact
2509 * that it is allocated in the mft bitmap means that no-one will try to
2510 * allocate it either.
2512 up_write(&vol->mftbmp_lock);
2514 * We now have allocated and initialized the mft record. Calculate the
2515 * index of and the offset within the page cache page the record is in.
2517 index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2518 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2519 /* Read, map, and pin the page containing the mft record. */
2520 page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2521 if (IS_ERR(page)) {
2522 ntfs_error(vol->sb, "Failed to map page containing allocated "
2523 "mft record 0x%llx.", (long long)bit);
2524 err = PTR_ERR(page);
2525 goto undo_mftbmp_alloc;
2527 lock_page(page);
2528 BUG_ON(!PageUptodate(page));
2529 ClearPageUptodate(page);
2530 m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2531 /* If we just formatted the mft record no need to do it again. */
2532 if (!record_formatted) {
2533 /* Sanity check that the mft record is really not in use. */
2534 if (ntfs_is_file_record(m->magic) &&
2535 (m->flags & MFT_RECORD_IN_USE)) {
2536 ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2537 "free in mft bitmap but is marked "
2538 "used itself. Corrupt filesystem. "
2539 "Unmount and run chkdsk.",
2540 (long long)bit);
2541 err = -EIO;
2542 SetPageUptodate(page);
2543 unlock_page(page);
2544 ntfs_unmap_page(page);
2545 NVolSetErrors(vol);
2546 goto undo_mftbmp_alloc;
2549 * We need to (re-)format the mft record, preserving the
2550 * sequence number if it is not zero as well as the update
2551 * sequence number if it is not zero or -1 (0xffff). This
2552 * means we do not need to care whether or not something went
2553 * wrong with the previous mft record.
2555 seq_no = m->sequence_number;
2556 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2557 err = ntfs_mft_record_layout(vol, bit, m);
2558 if (unlikely(err)) {
2559 ntfs_error(vol->sb, "Failed to layout allocated mft "
2560 "record 0x%llx.", (long long)bit);
2561 SetPageUptodate(page);
2562 unlock_page(page);
2563 ntfs_unmap_page(page);
2564 goto undo_mftbmp_alloc;
2566 if (seq_no)
2567 m->sequence_number = seq_no;
2568 if (usn && le16_to_cpu(usn) != 0xffff)
2569 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2571 /* Set the mft record itself in use. */
2572 m->flags |= MFT_RECORD_IN_USE;
2573 if (S_ISDIR(mode))
2574 m->flags |= MFT_RECORD_IS_DIRECTORY;
2575 flush_dcache_page(page);
2576 SetPageUptodate(page);
2577 if (base_ni) {
2579 * Setup the base mft record in the extent mft record. This
2580 * completes initialization of the allocated extent mft record
2581 * and we can simply use it with map_extent_mft_record().
2583 m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2584 base_ni->seq_no);
2586 * Allocate an extent inode structure for the new mft record,
2587 * attach it to the base inode @base_ni and map, pin, and lock
2588 * its, i.e. the allocated, mft record.
2590 m = map_extent_mft_record(base_ni, bit, &ni);
2591 if (IS_ERR(m)) {
2592 ntfs_error(vol->sb, "Failed to map allocated extent "
2593 "mft record 0x%llx.", (long long)bit);
2594 err = PTR_ERR(m);
2595 /* Set the mft record itself not in use. */
2596 m->flags &= cpu_to_le16(
2597 ~le16_to_cpu(MFT_RECORD_IN_USE));
2598 flush_dcache_page(page);
2599 /* Make sure the mft record is written out to disk. */
2600 mark_ntfs_record_dirty(page, ofs);
2601 unlock_page(page);
2602 ntfs_unmap_page(page);
2603 goto undo_mftbmp_alloc;
2606 * Make sure the allocated mft record is written out to disk.
2607 * No need to set the inode dirty because the caller is going
2608 * to do that anyway after finishing with the new extent mft
2609 * record (e.g. at a minimum a new attribute will be added to
2610 * the mft record.
2612 mark_ntfs_record_dirty(page, ofs);
2613 unlock_page(page);
2615 * Need to unmap the page since map_extent_mft_record() mapped
2616 * it as well so we have it mapped twice at the moment.
2618 ntfs_unmap_page(page);
2619 } else {
2621 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink
2622 * is set to 1 but the mft record->link_count is 0. The caller
2623 * needs to bear this in mind.
2625 vi = new_inode(vol->sb);
2626 if (unlikely(!vi)) {
2627 err = -ENOMEM;
2628 /* Set the mft record itself not in use. */
2629 m->flags &= cpu_to_le16(
2630 ~le16_to_cpu(MFT_RECORD_IN_USE));
2631 flush_dcache_page(page);
2632 /* Make sure the mft record is written out to disk. */
2633 mark_ntfs_record_dirty(page, ofs);
2634 unlock_page(page);
2635 ntfs_unmap_page(page);
2636 goto undo_mftbmp_alloc;
2638 vi->i_ino = bit;
2640 * This is for checking whether an inode has changed w.r.t. a
2641 * file so that the file can be updated if necessary (compare
2642 * with f_version).
2644 vi->i_version = 1;
2646 /* The owner and group come from the ntfs volume. */
2647 vi->i_uid = vol->uid;
2648 vi->i_gid = vol->gid;
2650 /* Initialize the ntfs specific part of @vi. */
2651 ntfs_init_big_inode(vi);
2652 ni = NTFS_I(vi);
2654 * Set the appropriate mode, attribute type, and name. For
2655 * directories, also setup the index values to the defaults.
2657 if (S_ISDIR(mode)) {
2658 vi->i_mode = S_IFDIR | S_IRWXUGO;
2659 vi->i_mode &= ~vol->dmask;
2661 NInoSetMstProtected(ni);
2662 ni->type = AT_INDEX_ALLOCATION;
2663 ni->name = I30;
2664 ni->name_len = 4;
2666 ni->itype.index.block_size = 4096;
2667 ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2668 ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2669 if (vol->cluster_size <= ni->itype.index.block_size) {
2670 ni->itype.index.vcn_size = vol->cluster_size;
2671 ni->itype.index.vcn_size_bits =
2672 vol->cluster_size_bits;
2673 } else {
2674 ni->itype.index.vcn_size = vol->sector_size;
2675 ni->itype.index.vcn_size_bits =
2676 vol->sector_size_bits;
2678 } else {
2679 vi->i_mode = S_IFREG | S_IRWXUGO;
2680 vi->i_mode &= ~vol->fmask;
2682 ni->type = AT_DATA;
2683 ni->name = NULL;
2684 ni->name_len = 0;
2686 if (IS_RDONLY(vi))
2687 vi->i_mode &= ~S_IWUGO;
2689 /* Set the inode times to the current time. */
2690 vi->i_atime = vi->i_mtime = vi->i_ctime =
2691 current_fs_time(vi->i_sb);
2693 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2694 * the call to ntfs_init_big_inode() below.
2696 vi->i_size = 0;
2697 vi->i_blocks = 0;
2699 /* Set the sequence number. */
2700 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2702 * Manually map, pin, and lock the mft record as we already
2703 * have its page mapped and it is very easy to do.
2705 atomic_inc(&ni->count);
2706 mutex_lock(&ni->mrec_lock);
2707 ni->page = page;
2708 ni->page_ofs = ofs;
2710 * Make sure the allocated mft record is written out to disk.
2711 * NOTE: We do not set the ntfs inode dirty because this would
2712 * fail in ntfs_write_inode() because the inode does not have a
2713 * standard information attribute yet. Also, there is no need
2714 * to set the inode dirty because the caller is going to do
2715 * that anyway after finishing with the new mft record (e.g. at
2716 * a minimum some new attributes will be added to the mft
2717 * record.
2719 mark_ntfs_record_dirty(page, ofs);
2720 unlock_page(page);
2722 /* Add the inode to the inode hash for the superblock. */
2723 insert_inode_hash(vi);
2725 /* Update the default mft allocation position. */
2726 vol->mft_data_pos = bit + 1;
2729 * Return the opened, allocated inode of the allocated mft record as
2730 * well as the mapped, pinned, and locked mft record.
2732 ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2733 base_ni ? "extent " : "", (long long)bit);
2734 *mrec = m;
2735 return ni;
2736 undo_data_init:
2737 write_lock_irqsave(&mft_ni->size_lock, flags);
2738 mft_ni->initialized_size = old_data_initialized;
2739 i_size_write(vol->mft_ino, old_data_size);
2740 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2741 goto undo_mftbmp_alloc_nolock;
2742 undo_mftbmp_alloc:
2743 down_write(&vol->mftbmp_lock);
2744 undo_mftbmp_alloc_nolock:
2745 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2746 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2747 NVolSetErrors(vol);
2749 up_write(&vol->mftbmp_lock);
2750 err_out:
2751 return ERR_PTR(err);
2752 max_err_out:
2753 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2754 "number of inodes (2^32) has already been reached.");
2755 up_write(&vol->mftbmp_lock);
2756 return ERR_PTR(-ENOSPC);
2760 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2761 * @ni: ntfs inode of the mapped extent mft record to free
2762 * @m: mapped extent mft record of the ntfs inode @ni
2764 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2766 * Note that this function unmaps the mft record and closes and destroys @ni
2767 * internally and hence you cannot use either @ni nor @m any more after this
2768 * function returns success.
2770 * On success return 0 and on error return -errno. @ni and @m are still valid
2771 * in this case and have not been freed.
2773 * For some errors an error message is displayed and the success code 0 is
2774 * returned and the volume is then left dirty on umount. This makes sense in
2775 * case we could not rollback the changes that were already done since the
2776 * caller no longer wants to reference this mft record so it does not matter to
2777 * the caller if something is wrong with it as long as it is properly detached
2778 * from the base inode.
2780 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2782 unsigned long mft_no = ni->mft_no;
2783 ntfs_volume *vol = ni->vol;
2784 ntfs_inode *base_ni;
2785 ntfs_inode **extent_nis;
2786 int i, err;
2787 le16 old_seq_no;
2788 u16 seq_no;
2790 BUG_ON(NInoAttr(ni));
2791 BUG_ON(ni->nr_extents != -1);
2793 mutex_lock(&ni->extent_lock);
2794 base_ni = ni->ext.base_ntfs_ino;
2795 mutex_unlock(&ni->extent_lock);
2797 BUG_ON(base_ni->nr_extents <= 0);
2799 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2800 mft_no, base_ni->mft_no);
2802 mutex_lock(&base_ni->extent_lock);
2804 /* Make sure we are holding the only reference to the extent inode. */
2805 if (atomic_read(&ni->count) > 2) {
2806 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2807 "not freeing.", base_ni->mft_no);
2808 mutex_unlock(&base_ni->extent_lock);
2809 return -EBUSY;
2812 /* Dissociate the ntfs inode from the base inode. */
2813 extent_nis = base_ni->ext.extent_ntfs_inos;
2814 err = -ENOENT;
2815 for (i = 0; i < base_ni->nr_extents; i++) {
2816 if (ni != extent_nis[i])
2817 continue;
2818 extent_nis += i;
2819 base_ni->nr_extents--;
2820 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2821 sizeof(ntfs_inode*));
2822 err = 0;
2823 break;
2826 mutex_unlock(&base_ni->extent_lock);
2828 if (unlikely(err)) {
2829 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2830 "its base inode 0x%lx.", mft_no,
2831 base_ni->mft_no);
2832 BUG();
2836 * The extent inode is no longer attached to the base inode so no one
2837 * can get a reference to it any more.
2840 /* Mark the mft record as not in use. */
2841 m->flags &= ~MFT_RECORD_IN_USE;
2843 /* Increment the sequence number, skipping zero, if it is not zero. */
2844 old_seq_no = m->sequence_number;
2845 seq_no = le16_to_cpu(old_seq_no);
2846 if (seq_no == 0xffff)
2847 seq_no = 1;
2848 else if (seq_no)
2849 seq_no++;
2850 m->sequence_number = cpu_to_le16(seq_no);
2853 * Set the ntfs inode dirty and write it out. We do not need to worry
2854 * about the base inode here since whatever caused the extent mft
2855 * record to be freed is guaranteed to do it already.
2857 NInoSetDirty(ni);
2858 err = write_mft_record(ni, m, 0);
2859 if (unlikely(err)) {
2860 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2861 "freeing.", mft_no);
2862 goto rollback;
2864 rollback_error:
2865 /* Unmap and throw away the now freed extent inode. */
2866 unmap_extent_mft_record(ni);
2867 ntfs_clear_extent_inode(ni);
2869 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2870 down_write(&vol->mftbmp_lock);
2871 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2872 up_write(&vol->mftbmp_lock);
2873 if (unlikely(err)) {
2875 * The extent inode is gone but we failed to deallocate it in
2876 * the mft bitmap. Just emit a warning and leave the volume
2877 * dirty on umount.
2879 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2880 NVolSetErrors(vol);
2882 return 0;
2883 rollback:
2884 /* Rollback what we did... */
2885 mutex_lock(&base_ni->extent_lock);
2886 extent_nis = base_ni->ext.extent_ntfs_inos;
2887 if (!(base_ni->nr_extents & 3)) {
2888 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2890 extent_nis = kmalloc(new_size, GFP_NOFS);
2891 if (unlikely(!extent_nis)) {
2892 ntfs_error(vol->sb, "Failed to allocate internal "
2893 "buffer during rollback.%s", es);
2894 mutex_unlock(&base_ni->extent_lock);
2895 NVolSetErrors(vol);
2896 goto rollback_error;
2898 if (base_ni->nr_extents) {
2899 BUG_ON(!base_ni->ext.extent_ntfs_inos);
2900 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2901 new_size - 4 * sizeof(ntfs_inode*));
2902 kfree(base_ni->ext.extent_ntfs_inos);
2904 base_ni->ext.extent_ntfs_inos = extent_nis;
2906 m->flags |= MFT_RECORD_IN_USE;
2907 m->sequence_number = old_seq_no;
2908 extent_nis[base_ni->nr_extents++] = ni;
2909 mutex_unlock(&base_ni->extent_lock);
2910 mark_mft_record_dirty(ni);
2911 return err;
2913 #endif /* NTFS_RW */