2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
39 #include <linux/compiler.h>
40 #include <linux/module.h>
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
48 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
54 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
56 int sysctl_tcp_mtu_probing __read_mostly
= 0;
57 int sysctl_tcp_base_mss __read_mostly
= 512;
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
62 /* Account for new data that has been sent to the network. */
63 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
65 struct tcp_sock
*tp
= tcp_sk(sk
);
66 unsigned int prior_packets
= tp
->packets_out
;
68 tcp_advance_send_head(sk
, skb
);
69 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
71 /* Don't override Nagle indefinately with F-RTO */
72 if (tp
->frto_counter
== 2)
75 tp
->packets_out
+= tcp_skb_pcount(skb
);
77 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
78 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
81 /* SND.NXT, if window was not shrunk.
82 * If window has been shrunk, what should we make? It is not clear at all.
83 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
84 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
85 * invalid. OK, let's make this for now:
87 static inline __u32
tcp_acceptable_seq(struct sock
*sk
)
89 struct tcp_sock
*tp
= tcp_sk(sk
);
91 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
94 return tcp_wnd_end(tp
);
97 /* Calculate mss to advertise in SYN segment.
98 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
100 * 1. It is independent of path mtu.
101 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
102 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
103 * attached devices, because some buggy hosts are confused by
105 * 4. We do not make 3, we advertise MSS, calculated from first
106 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
107 * This may be overridden via information stored in routing table.
108 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
109 * probably even Jumbo".
111 static __u16
tcp_advertise_mss(struct sock
*sk
)
113 struct tcp_sock
*tp
= tcp_sk(sk
);
114 struct dst_entry
*dst
= __sk_dst_get(sk
);
115 int mss
= tp
->advmss
;
117 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
118 mss
= dst_metric(dst
, RTAX_ADVMSS
);
125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126 * This is the first part of cwnd validation mechanism. */
127 static void tcp_cwnd_restart(struct sock
*sk
, struct dst_entry
*dst
)
129 struct tcp_sock
*tp
= tcp_sk(sk
);
130 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
131 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
132 u32 cwnd
= tp
->snd_cwnd
;
134 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
136 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
137 restart_cwnd
= min(restart_cwnd
, cwnd
);
139 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
141 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
142 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
143 tp
->snd_cwnd_used
= 0;
146 /* Congestion state accounting after a packet has been sent. */
147 static void tcp_event_data_sent(struct tcp_sock
*tp
,
148 struct sk_buff
*skb
, struct sock
*sk
)
150 struct inet_connection_sock
*icsk
= inet_csk(sk
);
151 const u32 now
= tcp_time_stamp
;
153 if (sysctl_tcp_slow_start_after_idle
&&
154 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
155 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
159 /* If it is a reply for ato after last received
160 * packet, enter pingpong mode.
162 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
163 icsk
->icsk_ack
.pingpong
= 1;
166 /* Account for an ACK we sent. */
167 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
169 tcp_dec_quickack_mode(sk
, pkts
);
170 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
173 /* Determine a window scaling and initial window to offer.
174 * Based on the assumption that the given amount of space
175 * will be offered. Store the results in the tp structure.
176 * NOTE: for smooth operation initial space offering should
177 * be a multiple of mss if possible. We assume here that mss >= 1.
178 * This MUST be enforced by all callers.
180 void tcp_select_initial_window(int __space
, __u32 mss
,
181 __u32
*rcv_wnd
, __u32
*window_clamp
,
182 int wscale_ok
, __u8
*rcv_wscale
)
184 unsigned int space
= (__space
< 0 ? 0 : __space
);
186 /* If no clamp set the clamp to the max possible scaled window */
187 if (*window_clamp
== 0)
188 (*window_clamp
) = (65535 << 14);
189 space
= min(*window_clamp
, space
);
191 /* Quantize space offering to a multiple of mss if possible. */
193 space
= (space
/ mss
) * mss
;
195 /* NOTE: offering an initial window larger than 32767
196 * will break some buggy TCP stacks. If the admin tells us
197 * it is likely we could be speaking with such a buggy stack
198 * we will truncate our initial window offering to 32K-1
199 * unless the remote has sent us a window scaling option,
200 * which we interpret as a sign the remote TCP is not
201 * misinterpreting the window field as a signed quantity.
203 if (sysctl_tcp_workaround_signed_windows
)
204 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
210 /* Set window scaling on max possible window
211 * See RFC1323 for an explanation of the limit to 14
213 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
214 space
= min_t(u32
, space
, *window_clamp
);
215 while (space
> 65535 && (*rcv_wscale
) < 14) {
221 /* Set initial window to value enough for senders,
222 * following RFC2414. Senders, not following this RFC,
223 * will be satisfied with 2.
225 if (mss
> (1 << *rcv_wscale
)) {
231 if (*rcv_wnd
> init_cwnd
* mss
)
232 *rcv_wnd
= init_cwnd
* mss
;
235 /* Set the clamp no higher than max representable value */
236 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
239 /* Chose a new window to advertise, update state in tcp_sock for the
240 * socket, and return result with RFC1323 scaling applied. The return
241 * value can be stuffed directly into th->window for an outgoing
244 static u16
tcp_select_window(struct sock
*sk
)
246 struct tcp_sock
*tp
= tcp_sk(sk
);
247 u32 cur_win
= tcp_receive_window(tp
);
248 u32 new_win
= __tcp_select_window(sk
);
250 /* Never shrink the offered window */
251 if (new_win
< cur_win
) {
252 /* Danger Will Robinson!
253 * Don't update rcv_wup/rcv_wnd here or else
254 * we will not be able to advertise a zero
255 * window in time. --DaveM
257 * Relax Will Robinson.
259 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
261 tp
->rcv_wnd
= new_win
;
262 tp
->rcv_wup
= tp
->rcv_nxt
;
264 /* Make sure we do not exceed the maximum possible
267 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
268 new_win
= min(new_win
, MAX_TCP_WINDOW
);
270 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
272 /* RFC1323 scaling applied */
273 new_win
>>= tp
->rx_opt
.rcv_wscale
;
275 /* If we advertise zero window, disable fast path. */
282 /* Packet ECN state for a SYN-ACK */
283 static inline void TCP_ECN_send_synack(struct tcp_sock
*tp
, struct sk_buff
*skb
)
285 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_CWR
;
286 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
287 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_ECE
;
290 /* Packet ECN state for a SYN. */
291 static inline void TCP_ECN_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
293 struct tcp_sock
*tp
= tcp_sk(sk
);
296 if (sysctl_tcp_ecn
== 1) {
297 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ECE
| TCPCB_FLAG_CWR
;
298 tp
->ecn_flags
= TCP_ECN_OK
;
302 static __inline__
void
303 TCP_ECN_make_synack(struct request_sock
*req
, struct tcphdr
*th
)
305 if (inet_rsk(req
)->ecn_ok
)
309 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
312 static inline void TCP_ECN_send(struct sock
*sk
, struct sk_buff
*skb
,
315 struct tcp_sock
*tp
= tcp_sk(sk
);
317 if (tp
->ecn_flags
& TCP_ECN_OK
) {
318 /* Not-retransmitted data segment: set ECT and inject CWR. */
319 if (skb
->len
!= tcp_header_len
&&
320 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
322 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
323 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
324 tcp_hdr(skb
)->cwr
= 1;
325 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
328 /* ACK or retransmitted segment: clear ECT|CE */
329 INET_ECN_dontxmit(sk
);
331 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
332 tcp_hdr(skb
)->ece
= 1;
336 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
337 * auto increment end seqno.
339 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
343 TCP_SKB_CB(skb
)->flags
= flags
;
344 TCP_SKB_CB(skb
)->sacked
= 0;
346 skb_shinfo(skb
)->gso_segs
= 1;
347 skb_shinfo(skb
)->gso_size
= 0;
348 skb_shinfo(skb
)->gso_type
= 0;
350 TCP_SKB_CB(skb
)->seq
= seq
;
351 if (flags
& (TCPCB_FLAG_SYN
| TCPCB_FLAG_FIN
))
353 TCP_SKB_CB(skb
)->end_seq
= seq
;
356 static inline int tcp_urg_mode(const struct tcp_sock
*tp
)
358 return tp
->snd_una
!= tp
->snd_up
;
361 #define OPTION_SACK_ADVERTISE (1 << 0)
362 #define OPTION_TS (1 << 1)
363 #define OPTION_MD5 (1 << 2)
364 #define OPTION_WSCALE (1 << 3)
366 struct tcp_out_options
{
367 u8 options
; /* bit field of OPTION_* */
368 u8 ws
; /* window scale, 0 to disable */
369 u8 num_sack_blocks
; /* number of SACK blocks to include */
370 u16 mss
; /* 0 to disable */
371 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
374 /* Write previously computed TCP options to the packet.
376 * Beware: Something in the Internet is very sensitive to the ordering of
377 * TCP options, we learned this through the hard way, so be careful here.
378 * Luckily we can at least blame others for their non-compliance but from
379 * inter-operatibility perspective it seems that we're somewhat stuck with
380 * the ordering which we have been using if we want to keep working with
381 * those broken things (not that it currently hurts anybody as there isn't
382 * particular reason why the ordering would need to be changed).
384 * At least SACK_PERM as the first option is known to lead to a disaster
385 * (but it may well be that other scenarios fail similarly).
387 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
388 const struct tcp_out_options
*opts
,
390 if (unlikely(OPTION_MD5
& opts
->options
)) {
391 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
393 (TCPOPT_MD5SIG
<< 8) |
395 *md5_hash
= (__u8
*)ptr
;
401 if (unlikely(opts
->mss
)) {
402 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
403 (TCPOLEN_MSS
<< 16) |
407 if (likely(OPTION_TS
& opts
->options
)) {
408 if (unlikely(OPTION_SACK_ADVERTISE
& opts
->options
)) {
409 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
410 (TCPOLEN_SACK_PERM
<< 16) |
411 (TCPOPT_TIMESTAMP
<< 8) |
414 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
416 (TCPOPT_TIMESTAMP
<< 8) |
419 *ptr
++ = htonl(opts
->tsval
);
420 *ptr
++ = htonl(opts
->tsecr
);
423 if (unlikely(OPTION_SACK_ADVERTISE
& opts
->options
&&
424 !(OPTION_TS
& opts
->options
))) {
425 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
427 (TCPOPT_SACK_PERM
<< 8) |
431 if (unlikely(OPTION_WSCALE
& opts
->options
)) {
432 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
433 (TCPOPT_WINDOW
<< 16) |
434 (TCPOLEN_WINDOW
<< 8) |
438 if (unlikely(opts
->num_sack_blocks
)) {
439 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
440 tp
->duplicate_sack
: tp
->selective_acks
;
443 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
446 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
447 TCPOLEN_SACK_PERBLOCK
)));
449 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
451 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
452 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
455 tp
->rx_opt
.dsack
= 0;
459 /* Compute TCP options for SYN packets. This is not the final
460 * network wire format yet.
462 static unsigned tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
463 struct tcp_out_options
*opts
,
464 struct tcp_md5sig_key
**md5
) {
465 struct tcp_sock
*tp
= tcp_sk(sk
);
468 #ifdef CONFIG_TCP_MD5SIG
469 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
471 opts
->options
|= OPTION_MD5
;
472 size
+= TCPOLEN_MD5SIG_ALIGNED
;
478 /* We always get an MSS option. The option bytes which will be seen in
479 * normal data packets should timestamps be used, must be in the MSS
480 * advertised. But we subtract them from tp->mss_cache so that
481 * calculations in tcp_sendmsg are simpler etc. So account for this
482 * fact here if necessary. If we don't do this correctly, as a
483 * receiver we won't recognize data packets as being full sized when we
484 * should, and thus we won't abide by the delayed ACK rules correctly.
485 * SACKs don't matter, we never delay an ACK when we have any of those
487 opts
->mss
= tcp_advertise_mss(sk
);
488 size
+= TCPOLEN_MSS_ALIGNED
;
490 if (likely(sysctl_tcp_timestamps
&& *md5
== NULL
)) {
491 opts
->options
|= OPTION_TS
;
492 opts
->tsval
= TCP_SKB_CB(skb
)->when
;
493 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
494 size
+= TCPOLEN_TSTAMP_ALIGNED
;
496 if (likely(sysctl_tcp_window_scaling
)) {
497 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
498 opts
->options
|= OPTION_WSCALE
;
499 size
+= TCPOLEN_WSCALE_ALIGNED
;
501 if (likely(sysctl_tcp_sack
)) {
502 opts
->options
|= OPTION_SACK_ADVERTISE
;
503 if (unlikely(!(OPTION_TS
& opts
->options
)))
504 size
+= TCPOLEN_SACKPERM_ALIGNED
;
510 /* Set up TCP options for SYN-ACKs. */
511 static unsigned tcp_synack_options(struct sock
*sk
,
512 struct request_sock
*req
,
513 unsigned mss
, struct sk_buff
*skb
,
514 struct tcp_out_options
*opts
,
515 struct tcp_md5sig_key
**md5
) {
517 struct inet_request_sock
*ireq
= inet_rsk(req
);
520 #ifdef CONFIG_TCP_MD5SIG
521 *md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
523 opts
->options
|= OPTION_MD5
;
524 size
+= TCPOLEN_MD5SIG_ALIGNED
;
530 /* we can't fit any SACK blocks in a packet with MD5 + TS
531 options. There was discussion about disabling SACK rather than TS in
532 order to fit in better with old, buggy kernels, but that was deemed
533 to be unnecessary. */
534 doing_ts
= ireq
->tstamp_ok
&& !(*md5
&& ireq
->sack_ok
);
537 size
+= TCPOLEN_MSS_ALIGNED
;
539 if (likely(ireq
->wscale_ok
)) {
540 opts
->ws
= ireq
->rcv_wscale
;
541 opts
->options
|= OPTION_WSCALE
;
542 size
+= TCPOLEN_WSCALE_ALIGNED
;
544 if (likely(doing_ts
)) {
545 opts
->options
|= OPTION_TS
;
546 opts
->tsval
= TCP_SKB_CB(skb
)->when
;
547 opts
->tsecr
= req
->ts_recent
;
548 size
+= TCPOLEN_TSTAMP_ALIGNED
;
550 if (likely(ireq
->sack_ok
)) {
551 opts
->options
|= OPTION_SACK_ADVERTISE
;
552 if (unlikely(!doing_ts
))
553 size
+= TCPOLEN_SACKPERM_ALIGNED
;
559 /* Compute TCP options for ESTABLISHED sockets. This is not the
560 * final wire format yet.
562 static unsigned tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
563 struct tcp_out_options
*opts
,
564 struct tcp_md5sig_key
**md5
) {
565 struct tcp_skb_cb
*tcb
= skb
? TCP_SKB_CB(skb
) : NULL
;
566 struct tcp_sock
*tp
= tcp_sk(sk
);
568 unsigned int eff_sacks
;
570 #ifdef CONFIG_TCP_MD5SIG
571 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
572 if (unlikely(*md5
)) {
573 opts
->options
|= OPTION_MD5
;
574 size
+= TCPOLEN_MD5SIG_ALIGNED
;
580 if (likely(tp
->rx_opt
.tstamp_ok
)) {
581 opts
->options
|= OPTION_TS
;
582 opts
->tsval
= tcb
? tcb
->when
: 0;
583 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
584 size
+= TCPOLEN_TSTAMP_ALIGNED
;
587 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
588 if (unlikely(eff_sacks
)) {
589 const unsigned remaining
= MAX_TCP_OPTION_SPACE
- size
;
590 opts
->num_sack_blocks
=
591 min_t(unsigned, eff_sacks
,
592 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
593 TCPOLEN_SACK_PERBLOCK
);
594 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
595 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
601 /* This routine actually transmits TCP packets queued in by
602 * tcp_do_sendmsg(). This is used by both the initial
603 * transmission and possible later retransmissions.
604 * All SKB's seen here are completely headerless. It is our
605 * job to build the TCP header, and pass the packet down to
606 * IP so it can do the same plus pass the packet off to the
609 * We are working here with either a clone of the original
610 * SKB, or a fresh unique copy made by the retransmit engine.
612 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
615 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
616 struct inet_sock
*inet
;
618 struct tcp_skb_cb
*tcb
;
619 struct tcp_out_options opts
;
620 unsigned tcp_options_size
, tcp_header_size
;
621 struct tcp_md5sig_key
*md5
;
622 __u8
*md5_hash_location
;
626 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
628 /* If congestion control is doing timestamping, we must
629 * take such a timestamp before we potentially clone/copy.
631 if (icsk
->icsk_ca_ops
->flags
& TCP_CONG_RTT_STAMP
)
632 __net_timestamp(skb
);
634 if (likely(clone_it
)) {
635 if (unlikely(skb_cloned(skb
)))
636 skb
= pskb_copy(skb
, gfp_mask
);
638 skb
= skb_clone(skb
, gfp_mask
);
645 tcb
= TCP_SKB_CB(skb
);
646 memset(&opts
, 0, sizeof(opts
));
648 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
))
649 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
651 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
653 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
655 if (tcp_packets_in_flight(tp
) == 0)
656 tcp_ca_event(sk
, CA_EVENT_TX_START
);
658 skb_push(skb
, tcp_header_size
);
659 skb_reset_transport_header(skb
);
660 skb_set_owner_w(skb
, sk
);
662 /* Build TCP header and checksum it. */
664 th
->source
= inet
->sport
;
665 th
->dest
= inet
->dport
;
666 th
->seq
= htonl(tcb
->seq
);
667 th
->ack_seq
= htonl(tp
->rcv_nxt
);
668 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
671 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
672 /* RFC1323: The window in SYN & SYN/ACK segments
675 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
677 th
->window
= htons(tcp_select_window(sk
));
682 /* The urg_mode check is necessary during a below snd_una win probe */
683 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
684 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
685 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
687 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
688 th
->urg_ptr
= 0xFFFF;
693 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
, &md5_hash_location
);
694 if (likely((tcb
->flags
& TCPCB_FLAG_SYN
) == 0))
695 TCP_ECN_send(sk
, skb
, tcp_header_size
);
697 #ifdef CONFIG_TCP_MD5SIG
698 /* Calculate the MD5 hash, as we have all we need now */
700 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
701 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
706 icsk
->icsk_af_ops
->send_check(sk
, skb
->len
, skb
);
708 if (likely(tcb
->flags
& TCPCB_FLAG_ACK
))
709 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
711 if (skb
->len
!= tcp_header_size
)
712 tcp_event_data_sent(tp
, skb
, sk
);
714 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
715 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
717 err
= icsk
->icsk_af_ops
->queue_xmit(skb
, 0);
718 if (likely(err
<= 0))
721 tcp_enter_cwr(sk
, 1);
723 return net_xmit_eval(err
);
726 /* This routine just queues the buffer for sending.
728 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
729 * otherwise socket can stall.
731 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
733 struct tcp_sock
*tp
= tcp_sk(sk
);
735 /* Advance write_seq and place onto the write_queue. */
736 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
737 skb_header_release(skb
);
738 tcp_add_write_queue_tail(sk
, skb
);
739 sk
->sk_wmem_queued
+= skb
->truesize
;
740 sk_mem_charge(sk
, skb
->truesize
);
743 /* Initialize TSO segments for a packet. */
744 static void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
745 unsigned int mss_now
)
747 if (skb
->len
<= mss_now
|| !sk_can_gso(sk
) ||
748 skb
->ip_summed
== CHECKSUM_NONE
) {
749 /* Avoid the costly divide in the normal
752 skb_shinfo(skb
)->gso_segs
= 1;
753 skb_shinfo(skb
)->gso_size
= 0;
754 skb_shinfo(skb
)->gso_type
= 0;
756 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss_now
);
757 skb_shinfo(skb
)->gso_size
= mss_now
;
758 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
762 /* When a modification to fackets out becomes necessary, we need to check
763 * skb is counted to fackets_out or not.
765 static void tcp_adjust_fackets_out(struct sock
*sk
, struct sk_buff
*skb
,
768 struct tcp_sock
*tp
= tcp_sk(sk
);
770 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
773 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
774 tp
->fackets_out
-= decr
;
777 /* Pcount in the middle of the write queue got changed, we need to do various
778 * tweaks to fix counters
780 static void tcp_adjust_pcount(struct sock
*sk
, struct sk_buff
*skb
, int decr
)
782 struct tcp_sock
*tp
= tcp_sk(sk
);
784 tp
->packets_out
-= decr
;
786 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
787 tp
->sacked_out
-= decr
;
788 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
789 tp
->retrans_out
-= decr
;
790 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
791 tp
->lost_out
-= decr
;
793 /* Reno case is special. Sigh... */
794 if (tcp_is_reno(tp
) && decr
> 0)
795 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
797 tcp_adjust_fackets_out(sk
, skb
, decr
);
799 if (tp
->lost_skb_hint
&&
800 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
801 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
802 tp
->lost_cnt_hint
-= decr
;
804 tcp_verify_left_out(tp
);
807 /* Function to create two new TCP segments. Shrinks the given segment
808 * to the specified size and appends a new segment with the rest of the
809 * packet to the list. This won't be called frequently, I hope.
810 * Remember, these are still headerless SKBs at this point.
812 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
813 unsigned int mss_now
)
815 struct tcp_sock
*tp
= tcp_sk(sk
);
816 struct sk_buff
*buff
;
817 int nsize
, old_factor
;
821 BUG_ON(len
> skb
->len
);
823 nsize
= skb_headlen(skb
) - len
;
827 if (skb_cloned(skb
) &&
828 skb_is_nonlinear(skb
) &&
829 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
832 /* Get a new skb... force flag on. */
833 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
835 return -ENOMEM
; /* We'll just try again later. */
837 sk
->sk_wmem_queued
+= buff
->truesize
;
838 sk_mem_charge(sk
, buff
->truesize
);
839 nlen
= skb
->len
- len
- nsize
;
840 buff
->truesize
+= nlen
;
841 skb
->truesize
-= nlen
;
843 /* Correct the sequence numbers. */
844 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
845 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
846 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
848 /* PSH and FIN should only be set in the second packet. */
849 flags
= TCP_SKB_CB(skb
)->flags
;
850 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
851 TCP_SKB_CB(buff
)->flags
= flags
;
852 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
854 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
855 /* Copy and checksum data tail into the new buffer. */
856 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
857 skb_put(buff
, nsize
),
862 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
864 skb
->ip_summed
= CHECKSUM_PARTIAL
;
865 skb_split(skb
, buff
, len
);
868 buff
->ip_summed
= skb
->ip_summed
;
870 /* Looks stupid, but our code really uses when of
871 * skbs, which it never sent before. --ANK
873 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
874 buff
->tstamp
= skb
->tstamp
;
876 old_factor
= tcp_skb_pcount(skb
);
878 /* Fix up tso_factor for both original and new SKB. */
879 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
880 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
882 /* If this packet has been sent out already, we must
883 * adjust the various packet counters.
885 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
886 int diff
= old_factor
- tcp_skb_pcount(skb
) -
887 tcp_skb_pcount(buff
);
890 tcp_adjust_pcount(sk
, skb
, diff
);
893 /* Link BUFF into the send queue. */
894 skb_header_release(buff
);
895 tcp_insert_write_queue_after(skb
, buff
, sk
);
900 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
901 * eventually). The difference is that pulled data not copied, but
902 * immediately discarded.
904 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
910 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
911 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
912 put_page(skb_shinfo(skb
)->frags
[i
].page
);
913 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
915 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
917 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
918 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
924 skb_shinfo(skb
)->nr_frags
= k
;
926 skb_reset_tail_pointer(skb
);
927 skb
->data_len
-= len
;
928 skb
->len
= skb
->data_len
;
931 /* Remove acked data from a packet in the transmit queue. */
932 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
934 if (skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
937 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
938 if (unlikely(len
< skb_headlen(skb
)))
939 __skb_pull(skb
, len
);
941 __pskb_trim_head(skb
, len
- skb_headlen(skb
));
943 TCP_SKB_CB(skb
)->seq
+= len
;
944 skb
->ip_summed
= CHECKSUM_PARTIAL
;
946 skb
->truesize
-= len
;
947 sk
->sk_wmem_queued
-= len
;
948 sk_mem_uncharge(sk
, len
);
949 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
951 /* Any change of skb->len requires recalculation of tso
954 if (tcp_skb_pcount(skb
) > 1)
955 tcp_set_skb_tso_segs(sk
, skb
, tcp_current_mss(sk
));
960 /* Calculate MSS. Not accounting for SACKs here. */
961 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
963 struct tcp_sock
*tp
= tcp_sk(sk
);
964 struct inet_connection_sock
*icsk
= inet_csk(sk
);
967 /* Calculate base mss without TCP options:
968 It is MMS_S - sizeof(tcphdr) of rfc1122
970 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
972 /* Clamp it (mss_clamp does not include tcp options) */
973 if (mss_now
> tp
->rx_opt
.mss_clamp
)
974 mss_now
= tp
->rx_opt
.mss_clamp
;
976 /* Now subtract optional transport overhead */
977 mss_now
-= icsk
->icsk_ext_hdr_len
;
979 /* Then reserve room for full set of TCP options and 8 bytes of data */
983 /* Now subtract TCP options size, not including SACKs */
984 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
989 /* Inverse of above */
990 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
992 struct tcp_sock
*tp
= tcp_sk(sk
);
993 struct inet_connection_sock
*icsk
= inet_csk(sk
);
998 icsk
->icsk_ext_hdr_len
+
999 icsk
->icsk_af_ops
->net_header_len
;
1004 /* MTU probing init per socket */
1005 void tcp_mtup_init(struct sock
*sk
)
1007 struct tcp_sock
*tp
= tcp_sk(sk
);
1008 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1010 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
1011 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1012 icsk
->icsk_af_ops
->net_header_len
;
1013 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
1014 icsk
->icsk_mtup
.probe_size
= 0;
1017 /* This function synchronize snd mss to current pmtu/exthdr set.
1019 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1020 for TCP options, but includes only bare TCP header.
1022 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1023 It is minimum of user_mss and mss received with SYN.
1024 It also does not include TCP options.
1026 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1028 tp->mss_cache is current effective sending mss, including
1029 all tcp options except for SACKs. It is evaluated,
1030 taking into account current pmtu, but never exceeds
1031 tp->rx_opt.mss_clamp.
1033 NOTE1. rfc1122 clearly states that advertised MSS
1034 DOES NOT include either tcp or ip options.
1036 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1037 are READ ONLY outside this function. --ANK (980731)
1039 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1041 struct tcp_sock
*tp
= tcp_sk(sk
);
1042 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1045 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1046 icsk
->icsk_mtup
.search_high
= pmtu
;
1048 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1049 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1051 /* And store cached results */
1052 icsk
->icsk_pmtu_cookie
= pmtu
;
1053 if (icsk
->icsk_mtup
.enabled
)
1054 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1055 tp
->mss_cache
= mss_now
;
1060 /* Compute the current effective MSS, taking SACKs and IP options,
1061 * and even PMTU discovery events into account.
1063 unsigned int tcp_current_mss(struct sock
*sk
)
1065 struct tcp_sock
*tp
= tcp_sk(sk
);
1066 struct dst_entry
*dst
= __sk_dst_get(sk
);
1068 unsigned header_len
;
1069 struct tcp_out_options opts
;
1070 struct tcp_md5sig_key
*md5
;
1072 mss_now
= tp
->mss_cache
;
1075 u32 mtu
= dst_mtu(dst
);
1076 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1077 mss_now
= tcp_sync_mss(sk
, mtu
);
1080 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1081 sizeof(struct tcphdr
);
1082 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1083 * some common options. If this is an odd packet (because we have SACK
1084 * blocks etc) then our calculated header_len will be different, and
1085 * we have to adjust mss_now correspondingly */
1086 if (header_len
!= tp
->tcp_header_len
) {
1087 int delta
= (int) header_len
- tp
->tcp_header_len
;
1094 /* Congestion window validation. (RFC2861) */
1095 static void tcp_cwnd_validate(struct sock
*sk
)
1097 struct tcp_sock
*tp
= tcp_sk(sk
);
1099 if (tp
->packets_out
>= tp
->snd_cwnd
) {
1100 /* Network is feed fully. */
1101 tp
->snd_cwnd_used
= 0;
1102 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1104 /* Network starves. */
1105 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1106 tp
->snd_cwnd_used
= tp
->packets_out
;
1108 if (sysctl_tcp_slow_start_after_idle
&&
1109 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1110 tcp_cwnd_application_limited(sk
);
1114 /* Returns the portion of skb which can be sent right away without
1115 * introducing MSS oddities to segment boundaries. In rare cases where
1116 * mss_now != mss_cache, we will request caller to create a small skb
1117 * per input skb which could be mostly avoided here (if desired).
1119 * We explicitly want to create a request for splitting write queue tail
1120 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1121 * thus all the complexity (cwnd_len is always MSS multiple which we
1122 * return whenever allowed by the other factors). Basically we need the
1123 * modulo only when the receiver window alone is the limiting factor or
1124 * when we would be allowed to send the split-due-to-Nagle skb fully.
1126 static unsigned int tcp_mss_split_point(struct sock
*sk
, struct sk_buff
*skb
,
1127 unsigned int mss_now
, unsigned int cwnd
)
1129 struct tcp_sock
*tp
= tcp_sk(sk
);
1130 u32 needed
, window
, cwnd_len
;
1132 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1133 cwnd_len
= mss_now
* cwnd
;
1135 if (likely(cwnd_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1138 needed
= min(skb
->len
, window
);
1140 if (cwnd_len
<= needed
)
1143 return needed
- needed
% mss_now
;
1146 /* Can at least one segment of SKB be sent right now, according to the
1147 * congestion window rules? If so, return how many segments are allowed.
1149 static inline unsigned int tcp_cwnd_test(struct tcp_sock
*tp
,
1150 struct sk_buff
*skb
)
1152 u32 in_flight
, cwnd
;
1154 /* Don't be strict about the congestion window for the final FIN. */
1155 if ((TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1156 tcp_skb_pcount(skb
) == 1)
1159 in_flight
= tcp_packets_in_flight(tp
);
1160 cwnd
= tp
->snd_cwnd
;
1161 if (in_flight
< cwnd
)
1162 return (cwnd
- in_flight
);
1167 /* Intialize TSO state of a skb.
1168 * This must be invoked the first time we consider transmitting
1169 * SKB onto the wire.
1171 static int tcp_init_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
1172 unsigned int mss_now
)
1174 int tso_segs
= tcp_skb_pcount(skb
);
1176 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1177 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1178 tso_segs
= tcp_skb_pcount(skb
);
1183 /* Minshall's variant of the Nagle send check. */
1184 static inline int tcp_minshall_check(const struct tcp_sock
*tp
)
1186 return after(tp
->snd_sml
, tp
->snd_una
) &&
1187 !after(tp
->snd_sml
, tp
->snd_nxt
);
1190 /* Return 0, if packet can be sent now without violation Nagle's rules:
1191 * 1. It is full sized.
1192 * 2. Or it contains FIN. (already checked by caller)
1193 * 3. Or TCP_NODELAY was set.
1194 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1195 * With Minshall's modification: all sent small packets are ACKed.
1197 static inline int tcp_nagle_check(const struct tcp_sock
*tp
,
1198 const struct sk_buff
*skb
,
1199 unsigned mss_now
, int nonagle
)
1201 return (skb
->len
< mss_now
&&
1202 ((nonagle
& TCP_NAGLE_CORK
) ||
1203 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
))));
1206 /* Return non-zero if the Nagle test allows this packet to be
1209 static inline int tcp_nagle_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1210 unsigned int cur_mss
, int nonagle
)
1212 /* Nagle rule does not apply to frames, which sit in the middle of the
1213 * write_queue (they have no chances to get new data).
1215 * This is implemented in the callers, where they modify the 'nonagle'
1216 * argument based upon the location of SKB in the send queue.
1218 if (nonagle
& TCP_NAGLE_PUSH
)
1221 /* Don't use the nagle rule for urgent data (or for the final FIN).
1222 * Nagle can be ignored during F-RTO too (see RFC4138).
1224 if (tcp_urg_mode(tp
) || (tp
->frto_counter
== 2) ||
1225 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
))
1228 if (!tcp_nagle_check(tp
, skb
, cur_mss
, nonagle
))
1234 /* Does at least the first segment of SKB fit into the send window? */
1235 static inline int tcp_snd_wnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1236 unsigned int cur_mss
)
1238 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1240 if (skb
->len
> cur_mss
)
1241 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1243 return !after(end_seq
, tcp_wnd_end(tp
));
1246 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1247 * should be put on the wire right now. If so, it returns the number of
1248 * packets allowed by the congestion window.
1250 static unsigned int tcp_snd_test(struct sock
*sk
, struct sk_buff
*skb
,
1251 unsigned int cur_mss
, int nonagle
)
1253 struct tcp_sock
*tp
= tcp_sk(sk
);
1254 unsigned int cwnd_quota
;
1256 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1258 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1261 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1262 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1268 /* Test if sending is allowed right now. */
1269 int tcp_may_send_now(struct sock
*sk
)
1271 struct tcp_sock
*tp
= tcp_sk(sk
);
1272 struct sk_buff
*skb
= tcp_send_head(sk
);
1275 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1276 (tcp_skb_is_last(sk
, skb
) ?
1277 tp
->nonagle
: TCP_NAGLE_PUSH
)));
1280 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1281 * which is put after SKB on the list. It is very much like
1282 * tcp_fragment() except that it may make several kinds of assumptions
1283 * in order to speed up the splitting operation. In particular, we
1284 * know that all the data is in scatter-gather pages, and that the
1285 * packet has never been sent out before (and thus is not cloned).
1287 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1288 unsigned int mss_now
)
1290 struct sk_buff
*buff
;
1291 int nlen
= skb
->len
- len
;
1294 /* All of a TSO frame must be composed of paged data. */
1295 if (skb
->len
!= skb
->data_len
)
1296 return tcp_fragment(sk
, skb
, len
, mss_now
);
1298 buff
= sk_stream_alloc_skb(sk
, 0, GFP_ATOMIC
);
1299 if (unlikely(buff
== NULL
))
1302 sk
->sk_wmem_queued
+= buff
->truesize
;
1303 sk_mem_charge(sk
, buff
->truesize
);
1304 buff
->truesize
+= nlen
;
1305 skb
->truesize
-= nlen
;
1307 /* Correct the sequence numbers. */
1308 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1309 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1310 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1312 /* PSH and FIN should only be set in the second packet. */
1313 flags
= TCP_SKB_CB(skb
)->flags
;
1314 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
1315 TCP_SKB_CB(buff
)->flags
= flags
;
1317 /* This packet was never sent out yet, so no SACK bits. */
1318 TCP_SKB_CB(buff
)->sacked
= 0;
1320 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1321 skb_split(skb
, buff
, len
);
1323 /* Fix up tso_factor for both original and new SKB. */
1324 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1325 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1327 /* Link BUFF into the send queue. */
1328 skb_header_release(buff
);
1329 tcp_insert_write_queue_after(skb
, buff
, sk
);
1334 /* Try to defer sending, if possible, in order to minimize the amount
1335 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1337 * This algorithm is from John Heffner.
1339 static int tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
)
1341 struct tcp_sock
*tp
= tcp_sk(sk
);
1342 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1343 u32 send_win
, cong_win
, limit
, in_flight
;
1345 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
1348 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1351 /* Defer for less than two clock ticks. */
1352 if (tp
->tso_deferred
&&
1353 (((u32
)jiffies
<< 1) >> 1) - (tp
->tso_deferred
>> 1) > 1)
1356 in_flight
= tcp_packets_in_flight(tp
);
1358 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1360 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1362 /* From in_flight test above, we know that cwnd > in_flight. */
1363 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1365 limit
= min(send_win
, cong_win
);
1367 /* If a full-sized TSO skb can be sent, do it. */
1368 if (limit
>= sk
->sk_gso_max_size
)
1371 /* Middle in queue won't get any more data, full sendable already? */
1372 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1375 if (sysctl_tcp_tso_win_divisor
) {
1376 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1378 /* If at least some fraction of a window is available,
1381 chunk
/= sysctl_tcp_tso_win_divisor
;
1385 /* Different approach, try not to defer past a single
1386 * ACK. Receiver should ACK every other full sized
1387 * frame, so if we have space for more than 3 frames
1390 if (limit
> tcp_max_burst(tp
) * tp
->mss_cache
)
1394 /* Ok, it looks like it is advisable to defer. */
1395 tp
->tso_deferred
= 1 | (jiffies
<< 1);
1400 tp
->tso_deferred
= 0;
1404 /* Create a new MTU probe if we are ready.
1405 * MTU probe is regularly attempting to increase the path MTU by
1406 * deliberately sending larger packets. This discovers routing
1407 * changes resulting in larger path MTUs.
1409 * Returns 0 if we should wait to probe (no cwnd available),
1410 * 1 if a probe was sent,
1413 static int tcp_mtu_probe(struct sock
*sk
)
1415 struct tcp_sock
*tp
= tcp_sk(sk
);
1416 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1417 struct sk_buff
*skb
, *nskb
, *next
;
1424 /* Not currently probing/verifying,
1426 * have enough cwnd, and
1427 * not SACKing (the variable headers throw things off) */
1428 if (!icsk
->icsk_mtup
.enabled
||
1429 icsk
->icsk_mtup
.probe_size
||
1430 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1431 tp
->snd_cwnd
< 11 ||
1432 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1435 /* Very simple search strategy: just double the MSS. */
1436 mss_now
= tcp_current_mss(sk
);
1437 probe_size
= 2 * tp
->mss_cache
;
1438 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1439 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1440 /* TODO: set timer for probe_converge_event */
1444 /* Have enough data in the send queue to probe? */
1445 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1448 if (tp
->snd_wnd
< size_needed
)
1450 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1453 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1454 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1455 if (!tcp_packets_in_flight(tp
))
1461 /* We're allowed to probe. Build it now. */
1462 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1464 sk
->sk_wmem_queued
+= nskb
->truesize
;
1465 sk_mem_charge(sk
, nskb
->truesize
);
1467 skb
= tcp_send_head(sk
);
1469 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1470 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1471 TCP_SKB_CB(nskb
)->flags
= TCPCB_FLAG_ACK
;
1472 TCP_SKB_CB(nskb
)->sacked
= 0;
1474 nskb
->ip_summed
= skb
->ip_summed
;
1476 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1479 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1480 copy
= min_t(int, skb
->len
, probe_size
- len
);
1481 if (nskb
->ip_summed
)
1482 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1484 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1485 skb_put(nskb
, copy
),
1488 if (skb
->len
<= copy
) {
1489 /* We've eaten all the data from this skb.
1491 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
;
1492 tcp_unlink_write_queue(skb
, sk
);
1493 sk_wmem_free_skb(sk
, skb
);
1495 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
&
1496 ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1497 if (!skb_shinfo(skb
)->nr_frags
) {
1498 skb_pull(skb
, copy
);
1499 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1500 skb
->csum
= csum_partial(skb
->data
,
1503 __pskb_trim_head(skb
, copy
);
1504 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1506 TCP_SKB_CB(skb
)->seq
+= copy
;
1511 if (len
>= probe_size
)
1514 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1516 /* We're ready to send. If this fails, the probe will
1517 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1518 TCP_SKB_CB(nskb
)->when
= tcp_time_stamp
;
1519 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1520 /* Decrement cwnd here because we are sending
1521 * effectively two packets. */
1523 tcp_event_new_data_sent(sk
, nskb
);
1525 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1526 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1527 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1535 /* This routine writes packets to the network. It advances the
1536 * send_head. This happens as incoming acks open up the remote
1539 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1540 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1541 * account rare use of URG, this is not a big flaw.
1543 * Returns 1, if no segments are in flight and we have queued segments, but
1544 * cannot send anything now because of SWS or another problem.
1546 static int tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
1547 int push_one
, gfp_t gfp
)
1549 struct tcp_sock
*tp
= tcp_sk(sk
);
1550 struct sk_buff
*skb
;
1551 unsigned int tso_segs
, sent_pkts
;
1558 /* Do MTU probing. */
1559 result
= tcp_mtu_probe(sk
);
1562 } else if (result
> 0) {
1567 while ((skb
= tcp_send_head(sk
))) {
1570 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1573 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1577 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
1580 if (tso_segs
== 1) {
1581 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
1582 (tcp_skb_is_last(sk
, skb
) ?
1583 nonagle
: TCP_NAGLE_PUSH
))))
1586 if (!push_one
&& tcp_tso_should_defer(sk
, skb
))
1591 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
1592 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
1595 if (skb
->len
> limit
&&
1596 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1599 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1601 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
1604 /* Advance the send_head. This one is sent out.
1605 * This call will increment packets_out.
1607 tcp_event_new_data_sent(sk
, skb
);
1609 tcp_minshall_update(tp
, mss_now
, skb
);
1616 if (likely(sent_pkts
)) {
1617 tcp_cwnd_validate(sk
);
1620 return !tp
->packets_out
&& tcp_send_head(sk
);
1623 /* Push out any pending frames which were held back due to
1624 * TCP_CORK or attempt at coalescing tiny packets.
1625 * The socket must be locked by the caller.
1627 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
1630 struct sk_buff
*skb
= tcp_send_head(sk
);
1635 /* If we are closed, the bytes will have to remain here.
1636 * In time closedown will finish, we empty the write queue and
1637 * all will be happy.
1639 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
1642 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0, GFP_ATOMIC
))
1643 tcp_check_probe_timer(sk
);
1646 /* Send _single_ skb sitting at the send head. This function requires
1647 * true push pending frames to setup probe timer etc.
1649 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
1651 struct sk_buff
*skb
= tcp_send_head(sk
);
1653 BUG_ON(!skb
|| skb
->len
< mss_now
);
1655 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
1658 /* This function returns the amount that we can raise the
1659 * usable window based on the following constraints
1661 * 1. The window can never be shrunk once it is offered (RFC 793)
1662 * 2. We limit memory per socket
1665 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1666 * RECV.NEXT + RCV.WIN fixed until:
1667 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1669 * i.e. don't raise the right edge of the window until you can raise
1670 * it at least MSS bytes.
1672 * Unfortunately, the recommended algorithm breaks header prediction,
1673 * since header prediction assumes th->window stays fixed.
1675 * Strictly speaking, keeping th->window fixed violates the receiver
1676 * side SWS prevention criteria. The problem is that under this rule
1677 * a stream of single byte packets will cause the right side of the
1678 * window to always advance by a single byte.
1680 * Of course, if the sender implements sender side SWS prevention
1681 * then this will not be a problem.
1683 * BSD seems to make the following compromise:
1685 * If the free space is less than the 1/4 of the maximum
1686 * space available and the free space is less than 1/2 mss,
1687 * then set the window to 0.
1688 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1689 * Otherwise, just prevent the window from shrinking
1690 * and from being larger than the largest representable value.
1692 * This prevents incremental opening of the window in the regime
1693 * where TCP is limited by the speed of the reader side taking
1694 * data out of the TCP receive queue. It does nothing about
1695 * those cases where the window is constrained on the sender side
1696 * because the pipeline is full.
1698 * BSD also seems to "accidentally" limit itself to windows that are a
1699 * multiple of MSS, at least until the free space gets quite small.
1700 * This would appear to be a side effect of the mbuf implementation.
1701 * Combining these two algorithms results in the observed behavior
1702 * of having a fixed window size at almost all times.
1704 * Below we obtain similar behavior by forcing the offered window to
1705 * a multiple of the mss when it is feasible to do so.
1707 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1708 * Regular options like TIMESTAMP are taken into account.
1710 u32
__tcp_select_window(struct sock
*sk
)
1712 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1713 struct tcp_sock
*tp
= tcp_sk(sk
);
1714 /* MSS for the peer's data. Previous versions used mss_clamp
1715 * here. I don't know if the value based on our guesses
1716 * of peer's MSS is better for the performance. It's more correct
1717 * but may be worse for the performance because of rcv_mss
1718 * fluctuations. --SAW 1998/11/1
1720 int mss
= icsk
->icsk_ack
.rcv_mss
;
1721 int free_space
= tcp_space(sk
);
1722 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
1725 if (mss
> full_space
)
1728 if (free_space
< (full_space
>> 1)) {
1729 icsk
->icsk_ack
.quick
= 0;
1731 if (tcp_memory_pressure
)
1732 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
1735 if (free_space
< mss
)
1739 if (free_space
> tp
->rcv_ssthresh
)
1740 free_space
= tp
->rcv_ssthresh
;
1742 /* Don't do rounding if we are using window scaling, since the
1743 * scaled window will not line up with the MSS boundary anyway.
1745 window
= tp
->rcv_wnd
;
1746 if (tp
->rx_opt
.rcv_wscale
) {
1747 window
= free_space
;
1749 /* Advertise enough space so that it won't get scaled away.
1750 * Import case: prevent zero window announcement if
1751 * 1<<rcv_wscale > mss.
1753 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
1754 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
1755 << tp
->rx_opt
.rcv_wscale
);
1757 /* Get the largest window that is a nice multiple of mss.
1758 * Window clamp already applied above.
1759 * If our current window offering is within 1 mss of the
1760 * free space we just keep it. This prevents the divide
1761 * and multiply from happening most of the time.
1762 * We also don't do any window rounding when the free space
1765 if (window
<= free_space
- mss
|| window
> free_space
)
1766 window
= (free_space
/ mss
) * mss
;
1767 else if (mss
== full_space
&&
1768 free_space
> window
+ (full_space
>> 1))
1769 window
= free_space
;
1775 /* Collapses two adjacent SKB's during retransmission. */
1776 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
1778 struct tcp_sock
*tp
= tcp_sk(sk
);
1779 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
1780 int skb_size
, next_skb_size
;
1782 skb_size
= skb
->len
;
1783 next_skb_size
= next_skb
->len
;
1785 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
1787 tcp_highest_sack_combine(sk
, next_skb
, skb
);
1789 tcp_unlink_write_queue(next_skb
, sk
);
1791 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
1794 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
1795 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1797 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1798 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
1800 /* Update sequence range on original skb. */
1801 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
1803 /* Merge over control information. This moves PSH/FIN etc. over */
1804 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(next_skb
)->flags
;
1806 /* All done, get rid of second SKB and account for it so
1807 * packet counting does not break.
1809 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
1811 /* changed transmit queue under us so clear hints */
1812 tcp_clear_retrans_hints_partial(tp
);
1813 if (next_skb
== tp
->retransmit_skb_hint
)
1814 tp
->retransmit_skb_hint
= skb
;
1816 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
1818 sk_wmem_free_skb(sk
, next_skb
);
1821 /* Check if coalescing SKBs is legal. */
1822 static int tcp_can_collapse(struct sock
*sk
, struct sk_buff
*skb
)
1824 if (tcp_skb_pcount(skb
) > 1)
1826 /* TODO: SACK collapsing could be used to remove this condition */
1827 if (skb_shinfo(skb
)->nr_frags
!= 0)
1829 if (skb_cloned(skb
))
1831 if (skb
== tcp_send_head(sk
))
1833 /* Some heurestics for collapsing over SACK'd could be invented */
1834 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1840 /* Collapse packets in the retransmit queue to make to create
1841 * less packets on the wire. This is only done on retransmission.
1843 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
1846 struct tcp_sock
*tp
= tcp_sk(sk
);
1847 struct sk_buff
*skb
= to
, *tmp
;
1850 if (!sysctl_tcp_retrans_collapse
)
1852 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
)
1855 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
1856 if (!tcp_can_collapse(sk
, skb
))
1868 /* Punt if not enough space exists in the first SKB for
1869 * the data in the second
1871 if (skb
->len
> skb_tailroom(to
))
1874 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
1877 tcp_collapse_retrans(sk
, to
);
1881 /* This retransmits one SKB. Policy decisions and retransmit queue
1882 * state updates are done by the caller. Returns non-zero if an
1883 * error occurred which prevented the send.
1885 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1887 struct tcp_sock
*tp
= tcp_sk(sk
);
1888 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1889 unsigned int cur_mss
;
1892 /* Inconslusive MTU probe */
1893 if (icsk
->icsk_mtup
.probe_size
) {
1894 icsk
->icsk_mtup
.probe_size
= 0;
1897 /* Do not sent more than we queued. 1/4 is reserved for possible
1898 * copying overhead: fragmentation, tunneling, mangling etc.
1900 if (atomic_read(&sk
->sk_wmem_alloc
) >
1901 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1904 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1905 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1907 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1911 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
1912 return -EHOSTUNREACH
; /* Routing failure or similar. */
1914 cur_mss
= tcp_current_mss(sk
);
1916 /* If receiver has shrunk his window, and skb is out of
1917 * new window, do not retransmit it. The exception is the
1918 * case, when window is shrunk to zero. In this case
1919 * our retransmit serves as a zero window probe.
1921 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))
1922 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1925 if (skb
->len
> cur_mss
) {
1926 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
))
1927 return -ENOMEM
; /* We'll try again later. */
1929 int oldpcount
= tcp_skb_pcount(skb
);
1931 if (unlikely(oldpcount
> 1)) {
1932 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1933 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
1937 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1939 /* Some Solaris stacks overoptimize and ignore the FIN on a
1940 * retransmit when old data is attached. So strip it off
1941 * since it is cheap to do so and saves bytes on the network.
1944 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1945 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1946 if (!pskb_trim(skb
, 0)) {
1947 /* Reuse, even though it does some unnecessary work */
1948 tcp_init_nondata_skb(skb
, TCP_SKB_CB(skb
)->end_seq
- 1,
1949 TCP_SKB_CB(skb
)->flags
);
1950 skb
->ip_summed
= CHECKSUM_NONE
;
1954 /* Make a copy, if the first transmission SKB clone we made
1955 * is still in somebody's hands, else make a clone.
1957 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1959 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
1962 /* Update global TCP statistics. */
1963 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
1965 tp
->total_retrans
++;
1967 #if FASTRETRANS_DEBUG > 0
1968 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1969 if (net_ratelimit())
1970 printk(KERN_DEBUG
"retrans_out leaked.\n");
1973 if (!tp
->retrans_out
)
1974 tp
->lost_retrans_low
= tp
->snd_nxt
;
1975 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1976 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1978 /* Save stamp of the first retransmit. */
1979 if (!tp
->retrans_stamp
)
1980 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1984 /* snd_nxt is stored to detect loss of retransmitted segment,
1985 * see tcp_input.c tcp_sacktag_write_queue().
1987 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
1992 /* Check if we forward retransmits are possible in the current
1993 * window/congestion state.
1995 static int tcp_can_forward_retransmit(struct sock
*sk
)
1997 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1998 struct tcp_sock
*tp
= tcp_sk(sk
);
2000 /* Forward retransmissions are possible only during Recovery. */
2001 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2004 /* No forward retransmissions in Reno are possible. */
2005 if (tcp_is_reno(tp
))
2008 /* Yeah, we have to make difficult choice between forward transmission
2009 * and retransmission... Both ways have their merits...
2011 * For now we do not retransmit anything, while we have some new
2012 * segments to send. In the other cases, follow rule 3 for
2013 * NextSeg() specified in RFC3517.
2016 if (tcp_may_send_now(sk
))
2022 /* This gets called after a retransmit timeout, and the initially
2023 * retransmitted data is acknowledged. It tries to continue
2024 * resending the rest of the retransmit queue, until either
2025 * we've sent it all or the congestion window limit is reached.
2026 * If doing SACK, the first ACK which comes back for a timeout
2027 * based retransmit packet might feed us FACK information again.
2028 * If so, we use it to avoid unnecessarily retransmissions.
2030 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2032 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2033 struct tcp_sock
*tp
= tcp_sk(sk
);
2034 struct sk_buff
*skb
;
2035 struct sk_buff
*hole
= NULL
;
2038 int fwd_rexmitting
= 0;
2041 tp
->retransmit_high
= tp
->snd_una
;
2043 if (tp
->retransmit_skb_hint
) {
2044 skb
= tp
->retransmit_skb_hint
;
2045 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2046 if (after(last_lost
, tp
->retransmit_high
))
2047 last_lost
= tp
->retransmit_high
;
2049 skb
= tcp_write_queue_head(sk
);
2050 last_lost
= tp
->snd_una
;
2053 tcp_for_write_queue_from(skb
, sk
) {
2054 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2056 if (skb
== tcp_send_head(sk
))
2058 /* we could do better than to assign each time */
2060 tp
->retransmit_skb_hint
= skb
;
2062 /* Assume this retransmit will generate
2063 * only one packet for congestion window
2064 * calculation purposes. This works because
2065 * tcp_retransmit_skb() will chop up the
2066 * packet to be MSS sized and all the
2067 * packet counting works out.
2069 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2072 if (fwd_rexmitting
) {
2074 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2076 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2078 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2079 tp
->retransmit_high
= last_lost
;
2080 if (!tcp_can_forward_retransmit(sk
))
2082 /* Backtrack if necessary to non-L'ed skb */
2090 } else if (!(sacked
& TCPCB_LOST
)) {
2091 if (hole
== NULL
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2096 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2097 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2098 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2100 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2103 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2106 if (tcp_retransmit_skb(sk
, skb
))
2108 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2110 if (skb
== tcp_write_queue_head(sk
))
2111 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2112 inet_csk(sk
)->icsk_rto
,
2117 /* Send a fin. The caller locks the socket for us. This cannot be
2118 * allowed to fail queueing a FIN frame under any circumstances.
2120 void tcp_send_fin(struct sock
*sk
)
2122 struct tcp_sock
*tp
= tcp_sk(sk
);
2123 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
2126 /* Optimization, tack on the FIN if we have a queue of
2127 * unsent frames. But be careful about outgoing SACKS
2130 mss_now
= tcp_current_mss(sk
);
2132 if (tcp_send_head(sk
) != NULL
) {
2133 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
2134 TCP_SKB_CB(skb
)->end_seq
++;
2137 /* Socket is locked, keep trying until memory is available. */
2139 skb
= alloc_skb_fclone(MAX_TCP_HEADER
,
2146 /* Reserve space for headers and prepare control bits. */
2147 skb_reserve(skb
, MAX_TCP_HEADER
);
2148 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2149 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2150 TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
2151 tcp_queue_skb(sk
, skb
);
2153 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_OFF
);
2156 /* We get here when a process closes a file descriptor (either due to
2157 * an explicit close() or as a byproduct of exit()'ing) and there
2158 * was unread data in the receive queue. This behavior is recommended
2159 * by RFC 2525, section 2.17. -DaveM
2161 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2163 struct sk_buff
*skb
;
2165 /* NOTE: No TCP options attached and we never retransmit this. */
2166 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2168 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2172 /* Reserve space for headers and prepare control bits. */
2173 skb_reserve(skb
, MAX_TCP_HEADER
);
2174 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2175 TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
2177 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2178 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2179 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2181 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2184 /* Send a crossed SYN-ACK during socket establishment.
2185 * WARNING: This routine must only be called when we have already sent
2186 * a SYN packet that crossed the incoming SYN that caused this routine
2187 * to get called. If this assumption fails then the initial rcv_wnd
2188 * and rcv_wscale values will not be correct.
2190 int tcp_send_synack(struct sock
*sk
)
2192 struct sk_buff
*skb
;
2194 skb
= tcp_write_queue_head(sk
);
2195 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
)) {
2196 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
2199 if (!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_ACK
)) {
2200 if (skb_cloned(skb
)) {
2201 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2204 tcp_unlink_write_queue(skb
, sk
);
2205 skb_header_release(nskb
);
2206 __tcp_add_write_queue_head(sk
, nskb
);
2207 sk_wmem_free_skb(sk
, skb
);
2208 sk
->sk_wmem_queued
+= nskb
->truesize
;
2209 sk_mem_charge(sk
, nskb
->truesize
);
2213 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
2214 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
2216 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2217 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2220 /* Prepare a SYN-ACK. */
2221 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2222 struct request_sock
*req
)
2224 struct inet_request_sock
*ireq
= inet_rsk(req
);
2225 struct tcp_sock
*tp
= tcp_sk(sk
);
2227 int tcp_header_size
;
2228 struct tcp_out_options opts
;
2229 struct sk_buff
*skb
;
2230 struct tcp_md5sig_key
*md5
;
2231 __u8
*md5_hash_location
;
2234 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
2238 /* Reserve space for headers. */
2239 skb_reserve(skb
, MAX_TCP_HEADER
);
2241 skb_dst_set(skb
, dst_clone(dst
));
2243 mss
= dst_metric(dst
, RTAX_ADVMSS
);
2244 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< mss
)
2245 mss
= tp
->rx_opt
.user_mss
;
2247 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
2249 /* Set this up on the first call only */
2250 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
2251 /* tcp_full_space because it is guaranteed to be the first packet */
2252 tcp_select_initial_window(tcp_full_space(sk
),
2253 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
2258 ireq
->rcv_wscale
= rcv_wscale
;
2261 memset(&opts
, 0, sizeof(opts
));
2262 #ifdef CONFIG_SYN_COOKIES
2263 if (unlikely(req
->cookie_ts
))
2264 TCP_SKB_CB(skb
)->when
= cookie_init_timestamp(req
);
2267 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2268 tcp_header_size
= tcp_synack_options(sk
, req
, mss
,
2270 sizeof(struct tcphdr
);
2272 skb_push(skb
, tcp_header_size
);
2273 skb_reset_transport_header(skb
);
2276 memset(th
, 0, sizeof(struct tcphdr
));
2279 TCP_ECN_make_synack(req
, th
);
2280 th
->source
= ireq
->loc_port
;
2281 th
->dest
= ireq
->rmt_port
;
2282 /* Setting of flags are superfluous here for callers (and ECE is
2283 * not even correctly set)
2285 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
2286 TCPCB_FLAG_SYN
| TCPCB_FLAG_ACK
);
2287 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2288 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_isn
+ 1);
2290 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2291 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
2292 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
, &md5_hash_location
);
2293 th
->doff
= (tcp_header_size
>> 2);
2294 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
2296 #ifdef CONFIG_TCP_MD5SIG
2297 /* Okay, we have all we need - do the md5 hash if needed */
2299 tcp_rsk(req
)->af_specific
->calc_md5_hash(md5_hash_location
,
2300 md5
, NULL
, req
, skb
);
2307 /* Do all connect socket setups that can be done AF independent. */
2308 static void tcp_connect_init(struct sock
*sk
)
2310 struct dst_entry
*dst
= __sk_dst_get(sk
);
2311 struct tcp_sock
*tp
= tcp_sk(sk
);
2314 /* We'll fix this up when we get a response from the other end.
2315 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2317 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2318 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2320 #ifdef CONFIG_TCP_MD5SIG
2321 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2322 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2325 /* If user gave his TCP_MAXSEG, record it to clamp */
2326 if (tp
->rx_opt
.user_mss
)
2327 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2330 tcp_sync_mss(sk
, dst_mtu(dst
));
2332 if (!tp
->window_clamp
)
2333 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2334 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
2335 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
2336 tp
->advmss
= tp
->rx_opt
.user_mss
;
2338 tcp_initialize_rcv_mss(sk
);
2340 tcp_select_initial_window(tcp_full_space(sk
),
2341 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2344 sysctl_tcp_window_scaling
,
2347 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2348 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2351 sock_reset_flag(sk
, SOCK_DONE
);
2354 tp
->snd_una
= tp
->write_seq
;
2355 tp
->snd_sml
= tp
->write_seq
;
2356 tp
->snd_up
= tp
->write_seq
;
2361 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
2362 inet_csk(sk
)->icsk_retransmits
= 0;
2363 tcp_clear_retrans(tp
);
2366 /* Build a SYN and send it off. */
2367 int tcp_connect(struct sock
*sk
)
2369 struct tcp_sock
*tp
= tcp_sk(sk
);
2370 struct sk_buff
*buff
;
2372 tcp_connect_init(sk
);
2374 buff
= alloc_skb_fclone(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
2375 if (unlikely(buff
== NULL
))
2378 /* Reserve space for headers. */
2379 skb_reserve(buff
, MAX_TCP_HEADER
);
2381 tp
->snd_nxt
= tp
->write_seq
;
2382 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPCB_FLAG_SYN
);
2383 TCP_ECN_send_syn(sk
, buff
);
2386 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2387 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
2388 skb_header_release(buff
);
2389 __tcp_add_write_queue_tail(sk
, buff
);
2390 sk
->sk_wmem_queued
+= buff
->truesize
;
2391 sk_mem_charge(sk
, buff
->truesize
);
2392 tp
->packets_out
+= tcp_skb_pcount(buff
);
2393 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
2395 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2396 * in order to make this packet get counted in tcpOutSegs.
2398 tp
->snd_nxt
= tp
->write_seq
;
2399 tp
->pushed_seq
= tp
->write_seq
;
2400 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
2402 /* Timer for repeating the SYN until an answer. */
2403 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2404 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2408 /* Send out a delayed ack, the caller does the policy checking
2409 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2412 void tcp_send_delayed_ack(struct sock
*sk
)
2414 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2415 int ato
= icsk
->icsk_ack
.ato
;
2416 unsigned long timeout
;
2418 if (ato
> TCP_DELACK_MIN
) {
2419 const struct tcp_sock
*tp
= tcp_sk(sk
);
2420 int max_ato
= HZ
/ 2;
2422 if (icsk
->icsk_ack
.pingpong
||
2423 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
2424 max_ato
= TCP_DELACK_MAX
;
2426 /* Slow path, intersegment interval is "high". */
2428 /* If some rtt estimate is known, use it to bound delayed ack.
2429 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2433 int rtt
= max(tp
->srtt
>> 3, TCP_DELACK_MIN
);
2439 ato
= min(ato
, max_ato
);
2442 /* Stay within the limit we were given */
2443 timeout
= jiffies
+ ato
;
2445 /* Use new timeout only if there wasn't a older one earlier. */
2446 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
2447 /* If delack timer was blocked or is about to expire,
2450 if (icsk
->icsk_ack
.blocked
||
2451 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
2456 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
2457 timeout
= icsk
->icsk_ack
.timeout
;
2459 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
2460 icsk
->icsk_ack
.timeout
= timeout
;
2461 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
2464 /* This routine sends an ack and also updates the window. */
2465 void tcp_send_ack(struct sock
*sk
)
2467 struct sk_buff
*buff
;
2469 /* If we have been reset, we may not send again. */
2470 if (sk
->sk_state
== TCP_CLOSE
)
2473 /* We are not putting this on the write queue, so
2474 * tcp_transmit_skb() will set the ownership to this
2477 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2479 inet_csk_schedule_ack(sk
);
2480 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
2481 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
2482 TCP_DELACK_MAX
, TCP_RTO_MAX
);
2486 /* Reserve space for headers and prepare control bits. */
2487 skb_reserve(buff
, MAX_TCP_HEADER
);
2488 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPCB_FLAG_ACK
);
2490 /* Send it off, this clears delayed acks for us. */
2491 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2492 tcp_transmit_skb(sk
, buff
, 0, GFP_ATOMIC
);
2495 /* This routine sends a packet with an out of date sequence
2496 * number. It assumes the other end will try to ack it.
2498 * Question: what should we make while urgent mode?
2499 * 4.4BSD forces sending single byte of data. We cannot send
2500 * out of window data, because we have SND.NXT==SND.MAX...
2502 * Current solution: to send TWO zero-length segments in urgent mode:
2503 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2504 * out-of-date with SND.UNA-1 to probe window.
2506 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
2508 struct tcp_sock
*tp
= tcp_sk(sk
);
2509 struct sk_buff
*skb
;
2511 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2512 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2516 /* Reserve space for headers and set control bits. */
2517 skb_reserve(skb
, MAX_TCP_HEADER
);
2518 /* Use a previous sequence. This should cause the other
2519 * end to send an ack. Don't queue or clone SKB, just
2522 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPCB_FLAG_ACK
);
2523 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2524 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
2527 /* Initiate keepalive or window probe from timer. */
2528 int tcp_write_wakeup(struct sock
*sk
)
2530 struct tcp_sock
*tp
= tcp_sk(sk
);
2531 struct sk_buff
*skb
;
2533 if (sk
->sk_state
== TCP_CLOSE
)
2536 if ((skb
= tcp_send_head(sk
)) != NULL
&&
2537 before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
2539 unsigned int mss
= tcp_current_mss(sk
);
2540 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
2542 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
2543 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
2545 /* We are probing the opening of a window
2546 * but the window size is != 0
2547 * must have been a result SWS avoidance ( sender )
2549 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
2551 seg_size
= min(seg_size
, mss
);
2552 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2553 if (tcp_fragment(sk
, skb
, seg_size
, mss
))
2555 } else if (!tcp_skb_pcount(skb
))
2556 tcp_set_skb_tso_segs(sk
, skb
, mss
);
2558 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2559 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2560 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2562 tcp_event_new_data_sent(sk
, skb
);
2565 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
2566 tcp_xmit_probe_skb(sk
, 1);
2567 return tcp_xmit_probe_skb(sk
, 0);
2571 /* A window probe timeout has occurred. If window is not closed send
2572 * a partial packet else a zero probe.
2574 void tcp_send_probe0(struct sock
*sk
)
2576 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2577 struct tcp_sock
*tp
= tcp_sk(sk
);
2580 err
= tcp_write_wakeup(sk
);
2582 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
2583 /* Cancel probe timer, if it is not required. */
2584 icsk
->icsk_probes_out
= 0;
2585 icsk
->icsk_backoff
= 0;
2590 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
2591 icsk
->icsk_backoff
++;
2592 icsk
->icsk_probes_out
++;
2593 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2594 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2597 /* If packet was not sent due to local congestion,
2598 * do not backoff and do not remember icsk_probes_out.
2599 * Let local senders to fight for local resources.
2601 * Use accumulated backoff yet.
2603 if (!icsk
->icsk_probes_out
)
2604 icsk
->icsk_probes_out
= 1;
2605 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2606 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
,
2607 TCP_RESOURCE_PROBE_INTERVAL
),
2612 EXPORT_SYMBOL(tcp_select_initial_window
);
2613 EXPORT_SYMBOL(tcp_connect
);
2614 EXPORT_SYMBOL(tcp_make_synack
);
2615 EXPORT_SYMBOL(tcp_simple_retransmit
);
2616 EXPORT_SYMBOL(tcp_sync_mss
);
2617 EXPORT_SYMBOL(tcp_mtup_init
);