4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
104 static int __init
disable_randmaps(char *s
)
106 randomize_va_space
= 0;
109 __setup("norandmaps", disable_randmaps
);
111 unsigned long zero_pfn __read_mostly
;
112 unsigned long highest_memmap_pfn __read_mostly
;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init
init_zero_pfn(void)
119 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
122 core_initcall(init_zero_pfn
);
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
130 void pgd_clear_bad(pgd_t
*pgd
)
136 void pud_clear_bad(pud_t
*pud
)
142 void pmd_clear_bad(pmd_t
*pmd
)
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
152 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
155 pgtable_t token
= pmd_pgtable(*pmd
);
157 pte_free_tlb(tlb
, token
, addr
);
161 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
162 unsigned long addr
, unsigned long end
,
163 unsigned long floor
, unsigned long ceiling
)
170 pmd
= pmd_offset(pud
, addr
);
172 next
= pmd_addr_end(addr
, end
);
173 if (pmd_none_or_clear_bad(pmd
))
175 free_pte_range(tlb
, pmd
, addr
);
176 } while (pmd
++, addr
= next
, addr
!= end
);
186 if (end
- 1 > ceiling
- 1)
189 pmd
= pmd_offset(pud
, start
);
191 pmd_free_tlb(tlb
, pmd
, start
);
194 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
195 unsigned long addr
, unsigned long end
,
196 unsigned long floor
, unsigned long ceiling
)
203 pud
= pud_offset(pgd
, addr
);
205 next
= pud_addr_end(addr
, end
);
206 if (pud_none_or_clear_bad(pud
))
208 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
209 } while (pud
++, addr
= next
, addr
!= end
);
215 ceiling
&= PGDIR_MASK
;
219 if (end
- 1 > ceiling
- 1)
222 pud
= pud_offset(pgd
, start
);
224 pud_free_tlb(tlb
, pud
, start
);
228 * This function frees user-level page tables of a process.
230 * Must be called with pagetable lock held.
232 void free_pgd_range(struct mmu_gather
*tlb
,
233 unsigned long addr
, unsigned long end
,
234 unsigned long floor
, unsigned long ceiling
)
241 * The next few lines have given us lots of grief...
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
277 if (end
- 1 > ceiling
- 1)
283 pgd
= pgd_offset(tlb
->mm
, addr
);
285 next
= pgd_addr_end(addr
, end
);
286 if (pgd_none_or_clear_bad(pgd
))
288 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
289 } while (pgd
++, addr
= next
, addr
!= end
);
292 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
293 unsigned long floor
, unsigned long ceiling
)
296 struct vm_area_struct
*next
= vma
->vm_next
;
297 unsigned long addr
= vma
->vm_start
;
300 * Hide vma from rmap and vmtruncate before freeing pgtables
302 anon_vma_unlink(vma
);
303 unlink_file_vma(vma
);
305 if (is_vm_hugetlb_page(vma
)) {
306 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
307 floor
, next
? next
->vm_start
: ceiling
);
310 * Optimization: gather nearby vmas into one call down
312 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
313 && !is_vm_hugetlb_page(next
)) {
316 anon_vma_unlink(vma
);
317 unlink_file_vma(vma
);
319 free_pgd_range(tlb
, addr
, vma
->vm_end
,
320 floor
, next
? next
->vm_start
: ceiling
);
326 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
328 pgtable_t
new = pte_alloc_one(mm
, address
);
333 * Ensure all pte setup (eg. pte page lock and page clearing) are
334 * visible before the pte is made visible to other CPUs by being
335 * put into page tables.
337 * The other side of the story is the pointer chasing in the page
338 * table walking code (when walking the page table without locking;
339 * ie. most of the time). Fortunately, these data accesses consist
340 * of a chain of data-dependent loads, meaning most CPUs (alpha
341 * being the notable exception) will already guarantee loads are
342 * seen in-order. See the alpha page table accessors for the
343 * smp_read_barrier_depends() barriers in page table walking code.
345 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
347 spin_lock(&mm
->page_table_lock
);
348 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
350 pmd_populate(mm
, pmd
, new);
353 spin_unlock(&mm
->page_table_lock
);
359 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
361 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
365 smp_wmb(); /* See comment in __pte_alloc */
367 spin_lock(&init_mm
.page_table_lock
);
368 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
369 pmd_populate_kernel(&init_mm
, pmd
, new);
372 spin_unlock(&init_mm
.page_table_lock
);
374 pte_free_kernel(&init_mm
, new);
378 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
381 add_mm_counter(mm
, file_rss
, file_rss
);
383 add_mm_counter(mm
, anon_rss
, anon_rss
);
387 * This function is called to print an error when a bad pte
388 * is found. For example, we might have a PFN-mapped pte in
389 * a region that doesn't allow it.
391 * The calling function must still handle the error.
393 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
394 pte_t pte
, struct page
*page
)
396 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
397 pud_t
*pud
= pud_offset(pgd
, addr
);
398 pmd_t
*pmd
= pmd_offset(pud
, addr
);
399 struct address_space
*mapping
;
401 static unsigned long resume
;
402 static unsigned long nr_shown
;
403 static unsigned long nr_unshown
;
406 * Allow a burst of 60 reports, then keep quiet for that minute;
407 * or allow a steady drip of one report per second.
409 if (nr_shown
== 60) {
410 if (time_before(jiffies
, resume
)) {
416 "BUG: Bad page map: %lu messages suppressed\n",
423 resume
= jiffies
+ 60 * HZ
;
425 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
426 index
= linear_page_index(vma
, addr
);
429 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
431 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
434 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
435 page
, (void *)page
->flags
, page_count(page
),
436 page_mapcount(page
), page
->mapping
, page
->index
);
439 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
440 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
442 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
445 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
446 (unsigned long)vma
->vm_ops
->fault
);
447 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
448 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
449 (unsigned long)vma
->vm_file
->f_op
->mmap
);
451 add_taint(TAINT_BAD_PAGE
);
454 static inline int is_cow_mapping(unsigned int flags
)
456 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
460 static inline int is_zero_pfn(unsigned long pfn
)
462 return pfn
== zero_pfn
;
467 static inline unsigned long my_zero_pfn(unsigned long addr
)
474 * vm_normal_page -- This function gets the "struct page" associated with a pte.
476 * "Special" mappings do not wish to be associated with a "struct page" (either
477 * it doesn't exist, or it exists but they don't want to touch it). In this
478 * case, NULL is returned here. "Normal" mappings do have a struct page.
480 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
481 * pte bit, in which case this function is trivial. Secondly, an architecture
482 * may not have a spare pte bit, which requires a more complicated scheme,
485 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
486 * special mapping (even if there are underlying and valid "struct pages").
487 * COWed pages of a VM_PFNMAP are always normal.
489 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
490 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
491 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
492 * mapping will always honor the rule
494 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
496 * And for normal mappings this is false.
498 * This restricts such mappings to be a linear translation from virtual address
499 * to pfn. To get around this restriction, we allow arbitrary mappings so long
500 * as the vma is not a COW mapping; in that case, we know that all ptes are
501 * special (because none can have been COWed).
504 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
506 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
507 * page" backing, however the difference is that _all_ pages with a struct
508 * page (that is, those where pfn_valid is true) are refcounted and considered
509 * normal pages by the VM. The disadvantage is that pages are refcounted
510 * (which can be slower and simply not an option for some PFNMAP users). The
511 * advantage is that we don't have to follow the strict linearity rule of
512 * PFNMAP mappings in order to support COWable mappings.
515 #ifdef __HAVE_ARCH_PTE_SPECIAL
516 # define HAVE_PTE_SPECIAL 1
518 # define HAVE_PTE_SPECIAL 0
520 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
523 unsigned long pfn
= pte_pfn(pte
);
525 if (HAVE_PTE_SPECIAL
) {
526 if (likely(!pte_special(pte
)))
528 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
530 if (!is_zero_pfn(pfn
))
531 print_bad_pte(vma
, addr
, pte
, NULL
);
535 /* !HAVE_PTE_SPECIAL case follows: */
537 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
538 if (vma
->vm_flags
& VM_MIXEDMAP
) {
544 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
545 if (pfn
== vma
->vm_pgoff
+ off
)
547 if (!is_cow_mapping(vma
->vm_flags
))
552 if (is_zero_pfn(pfn
))
555 if (unlikely(pfn
> highest_memmap_pfn
)) {
556 print_bad_pte(vma
, addr
, pte
, NULL
);
561 * NOTE! We still have PageReserved() pages in the page tables.
562 * eg. VDSO mappings can cause them to exist.
565 return pfn_to_page(pfn
);
569 * copy one vm_area from one task to the other. Assumes the page tables
570 * already present in the new task to be cleared in the whole range
571 * covered by this vma.
575 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
576 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
577 unsigned long addr
, int *rss
)
579 unsigned long vm_flags
= vma
->vm_flags
;
580 pte_t pte
= *src_pte
;
583 /* pte contains position in swap or file, so copy. */
584 if (unlikely(!pte_present(pte
))) {
585 if (!pte_file(pte
)) {
586 swp_entry_t entry
= pte_to_swp_entry(pte
);
588 swap_duplicate(entry
);
589 /* make sure dst_mm is on swapoff's mmlist. */
590 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
591 spin_lock(&mmlist_lock
);
592 if (list_empty(&dst_mm
->mmlist
))
593 list_add(&dst_mm
->mmlist
,
595 spin_unlock(&mmlist_lock
);
597 if (is_write_migration_entry(entry
) &&
598 is_cow_mapping(vm_flags
)) {
600 * COW mappings require pages in both parent
601 * and child to be set to read.
603 make_migration_entry_read(&entry
);
604 pte
= swp_entry_to_pte(entry
);
605 set_pte_at(src_mm
, addr
, src_pte
, pte
);
612 * If it's a COW mapping, write protect it both
613 * in the parent and the child
615 if (is_cow_mapping(vm_flags
)) {
616 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
617 pte
= pte_wrprotect(pte
);
621 * If it's a shared mapping, mark it clean in
624 if (vm_flags
& VM_SHARED
)
625 pte
= pte_mkclean(pte
);
626 pte
= pte_mkold(pte
);
628 page
= vm_normal_page(vma
, addr
, pte
);
632 rss
[PageAnon(page
)]++;
636 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
639 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
640 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
641 unsigned long addr
, unsigned long end
)
643 pte_t
*src_pte
, *dst_pte
;
644 spinlock_t
*src_ptl
, *dst_ptl
;
650 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
653 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
654 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
655 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
656 arch_enter_lazy_mmu_mode();
660 * We are holding two locks at this point - either of them
661 * could generate latencies in another task on another CPU.
663 if (progress
>= 32) {
665 if (need_resched() ||
666 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
669 if (pte_none(*src_pte
)) {
673 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
675 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
677 arch_leave_lazy_mmu_mode();
678 spin_unlock(src_ptl
);
679 pte_unmap_nested(src_pte
- 1);
680 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
681 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
688 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
689 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
690 unsigned long addr
, unsigned long end
)
692 pmd_t
*src_pmd
, *dst_pmd
;
695 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
698 src_pmd
= pmd_offset(src_pud
, addr
);
700 next
= pmd_addr_end(addr
, end
);
701 if (pmd_none_or_clear_bad(src_pmd
))
703 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
706 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
710 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
711 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
712 unsigned long addr
, unsigned long end
)
714 pud_t
*src_pud
, *dst_pud
;
717 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
720 src_pud
= pud_offset(src_pgd
, addr
);
722 next
= pud_addr_end(addr
, end
);
723 if (pud_none_or_clear_bad(src_pud
))
725 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
728 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
732 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
733 struct vm_area_struct
*vma
)
735 pgd_t
*src_pgd
, *dst_pgd
;
737 unsigned long addr
= vma
->vm_start
;
738 unsigned long end
= vma
->vm_end
;
742 * Don't copy ptes where a page fault will fill them correctly.
743 * Fork becomes much lighter when there are big shared or private
744 * readonly mappings. The tradeoff is that copy_page_range is more
745 * efficient than faulting.
747 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
752 if (is_vm_hugetlb_page(vma
))
753 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
755 if (unlikely(is_pfn_mapping(vma
))) {
757 * We do not free on error cases below as remove_vma
758 * gets called on error from higher level routine
760 ret
= track_pfn_vma_copy(vma
);
766 * We need to invalidate the secondary MMU mappings only when
767 * there could be a permission downgrade on the ptes of the
768 * parent mm. And a permission downgrade will only happen if
769 * is_cow_mapping() returns true.
771 if (is_cow_mapping(vma
->vm_flags
))
772 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
775 dst_pgd
= pgd_offset(dst_mm
, addr
);
776 src_pgd
= pgd_offset(src_mm
, addr
);
778 next
= pgd_addr_end(addr
, end
);
779 if (pgd_none_or_clear_bad(src_pgd
))
781 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
786 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
788 if (is_cow_mapping(vma
->vm_flags
))
789 mmu_notifier_invalidate_range_end(src_mm
,
794 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
795 struct vm_area_struct
*vma
, pmd_t
*pmd
,
796 unsigned long addr
, unsigned long end
,
797 long *zap_work
, struct zap_details
*details
)
799 struct mm_struct
*mm
= tlb
->mm
;
805 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
806 arch_enter_lazy_mmu_mode();
809 if (pte_none(ptent
)) {
814 (*zap_work
) -= PAGE_SIZE
;
816 if (pte_present(ptent
)) {
819 page
= vm_normal_page(vma
, addr
, ptent
);
820 if (unlikely(details
) && page
) {
822 * unmap_shared_mapping_pages() wants to
823 * invalidate cache without truncating:
824 * unmap shared but keep private pages.
826 if (details
->check_mapping
&&
827 details
->check_mapping
!= page
->mapping
)
830 * Each page->index must be checked when
831 * invalidating or truncating nonlinear.
833 if (details
->nonlinear_vma
&&
834 (page
->index
< details
->first_index
||
835 page
->index
> details
->last_index
))
838 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
840 tlb_remove_tlb_entry(tlb
, pte
, addr
);
843 if (unlikely(details
) && details
->nonlinear_vma
844 && linear_page_index(details
->nonlinear_vma
,
845 addr
) != page
->index
)
846 set_pte_at(mm
, addr
, pte
,
847 pgoff_to_pte(page
->index
));
851 if (pte_dirty(ptent
))
852 set_page_dirty(page
);
853 if (pte_young(ptent
) &&
854 likely(!VM_SequentialReadHint(vma
)))
855 mark_page_accessed(page
);
858 page_remove_rmap(page
);
859 if (unlikely(page_mapcount(page
) < 0))
860 print_bad_pte(vma
, addr
, ptent
, page
);
861 tlb_remove_page(tlb
, page
);
865 * If details->check_mapping, we leave swap entries;
866 * if details->nonlinear_vma, we leave file entries.
868 if (unlikely(details
))
870 if (pte_file(ptent
)) {
871 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
872 print_bad_pte(vma
, addr
, ptent
, NULL
);
874 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
875 print_bad_pte(vma
, addr
, ptent
, NULL
);
876 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
877 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
879 add_mm_rss(mm
, file_rss
, anon_rss
);
880 arch_leave_lazy_mmu_mode();
881 pte_unmap_unlock(pte
- 1, ptl
);
886 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
887 struct vm_area_struct
*vma
, pud_t
*pud
,
888 unsigned long addr
, unsigned long end
,
889 long *zap_work
, struct zap_details
*details
)
894 pmd
= pmd_offset(pud
, addr
);
896 next
= pmd_addr_end(addr
, end
);
897 if (pmd_none_or_clear_bad(pmd
)) {
901 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
903 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
908 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
909 struct vm_area_struct
*vma
, pgd_t
*pgd
,
910 unsigned long addr
, unsigned long end
,
911 long *zap_work
, struct zap_details
*details
)
916 pud
= pud_offset(pgd
, addr
);
918 next
= pud_addr_end(addr
, end
);
919 if (pud_none_or_clear_bad(pud
)) {
923 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
925 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
930 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
931 struct vm_area_struct
*vma
,
932 unsigned long addr
, unsigned long end
,
933 long *zap_work
, struct zap_details
*details
)
938 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
942 tlb_start_vma(tlb
, vma
);
943 pgd
= pgd_offset(vma
->vm_mm
, addr
);
945 next
= pgd_addr_end(addr
, end
);
946 if (pgd_none_or_clear_bad(pgd
)) {
950 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
952 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
953 tlb_end_vma(tlb
, vma
);
958 #ifdef CONFIG_PREEMPT
959 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
961 /* No preempt: go for improved straight-line efficiency */
962 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
966 * unmap_vmas - unmap a range of memory covered by a list of vma's
967 * @tlbp: address of the caller's struct mmu_gather
968 * @vma: the starting vma
969 * @start_addr: virtual address at which to start unmapping
970 * @end_addr: virtual address at which to end unmapping
971 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
972 * @details: details of nonlinear truncation or shared cache invalidation
974 * Returns the end address of the unmapping (restart addr if interrupted).
976 * Unmap all pages in the vma list.
978 * We aim to not hold locks for too long (for scheduling latency reasons).
979 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
980 * return the ending mmu_gather to the caller.
982 * Only addresses between `start' and `end' will be unmapped.
984 * The VMA list must be sorted in ascending virtual address order.
986 * unmap_vmas() assumes that the caller will flush the whole unmapped address
987 * range after unmap_vmas() returns. So the only responsibility here is to
988 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
989 * drops the lock and schedules.
991 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
992 struct vm_area_struct
*vma
, unsigned long start_addr
,
993 unsigned long end_addr
, unsigned long *nr_accounted
,
994 struct zap_details
*details
)
996 long zap_work
= ZAP_BLOCK_SIZE
;
997 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
998 int tlb_start_valid
= 0;
999 unsigned long start
= start_addr
;
1000 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1001 int fullmm
= (*tlbp
)->fullmm
;
1002 struct mm_struct
*mm
= vma
->vm_mm
;
1004 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1005 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1008 start
= max(vma
->vm_start
, start_addr
);
1009 if (start
>= vma
->vm_end
)
1011 end
= min(vma
->vm_end
, end_addr
);
1012 if (end
<= vma
->vm_start
)
1015 if (vma
->vm_flags
& VM_ACCOUNT
)
1016 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1018 if (unlikely(is_pfn_mapping(vma
)))
1019 untrack_pfn_vma(vma
, 0, 0);
1021 while (start
!= end
) {
1022 if (!tlb_start_valid
) {
1024 tlb_start_valid
= 1;
1027 if (unlikely(is_vm_hugetlb_page(vma
))) {
1029 * It is undesirable to test vma->vm_file as it
1030 * should be non-null for valid hugetlb area.
1031 * However, vm_file will be NULL in the error
1032 * cleanup path of do_mmap_pgoff. When
1033 * hugetlbfs ->mmap method fails,
1034 * do_mmap_pgoff() nullifies vma->vm_file
1035 * before calling this function to clean up.
1036 * Since no pte has actually been setup, it is
1037 * safe to do nothing in this case.
1040 unmap_hugepage_range(vma
, start
, end
, NULL
);
1041 zap_work
-= (end
- start
) /
1042 pages_per_huge_page(hstate_vma(vma
));
1047 start
= unmap_page_range(*tlbp
, vma
,
1048 start
, end
, &zap_work
, details
);
1051 BUG_ON(start
!= end
);
1055 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1057 if (need_resched() ||
1058 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1066 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1067 tlb_start_valid
= 0;
1068 zap_work
= ZAP_BLOCK_SIZE
;
1072 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1073 return start
; /* which is now the end (or restart) address */
1077 * zap_page_range - remove user pages in a given range
1078 * @vma: vm_area_struct holding the applicable pages
1079 * @address: starting address of pages to zap
1080 * @size: number of bytes to zap
1081 * @details: details of nonlinear truncation or shared cache invalidation
1083 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1084 unsigned long size
, struct zap_details
*details
)
1086 struct mm_struct
*mm
= vma
->vm_mm
;
1087 struct mmu_gather
*tlb
;
1088 unsigned long end
= address
+ size
;
1089 unsigned long nr_accounted
= 0;
1092 tlb
= tlb_gather_mmu(mm
, 0);
1093 update_hiwater_rss(mm
);
1094 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1096 tlb_finish_mmu(tlb
, address
, end
);
1101 * zap_vma_ptes - remove ptes mapping the vma
1102 * @vma: vm_area_struct holding ptes to be zapped
1103 * @address: starting address of pages to zap
1104 * @size: number of bytes to zap
1106 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1108 * The entire address range must be fully contained within the vma.
1110 * Returns 0 if successful.
1112 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1115 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1116 !(vma
->vm_flags
& VM_PFNMAP
))
1118 zap_page_range(vma
, address
, size
, NULL
);
1121 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1124 * Do a quick page-table lookup for a single page.
1126 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1135 struct mm_struct
*mm
= vma
->vm_mm
;
1137 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1138 if (!IS_ERR(page
)) {
1139 BUG_ON(flags
& FOLL_GET
);
1144 pgd
= pgd_offset(mm
, address
);
1145 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1148 pud
= pud_offset(pgd
, address
);
1151 if (pud_huge(*pud
)) {
1152 BUG_ON(flags
& FOLL_GET
);
1153 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1156 if (unlikely(pud_bad(*pud
)))
1159 pmd
= pmd_offset(pud
, address
);
1162 if (pmd_huge(*pmd
)) {
1163 BUG_ON(flags
& FOLL_GET
);
1164 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1167 if (unlikely(pmd_bad(*pmd
)))
1170 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1173 if (!pte_present(pte
))
1175 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1178 page
= vm_normal_page(vma
, address
, pte
);
1179 if (unlikely(!page
)) {
1180 if ((flags
& FOLL_DUMP
) ||
1181 !is_zero_pfn(pte_pfn(pte
)))
1183 page
= pte_page(pte
);
1186 if (flags
& FOLL_GET
)
1188 if (flags
& FOLL_TOUCH
) {
1189 if ((flags
& FOLL_WRITE
) &&
1190 !pte_dirty(pte
) && !PageDirty(page
))
1191 set_page_dirty(page
);
1193 * pte_mkyoung() would be more correct here, but atomic care
1194 * is needed to avoid losing the dirty bit: it is easier to use
1195 * mark_page_accessed().
1197 mark_page_accessed(page
);
1200 pte_unmap_unlock(ptep
, ptl
);
1205 pte_unmap_unlock(ptep
, ptl
);
1206 return ERR_PTR(-EFAULT
);
1209 pte_unmap_unlock(ptep
, ptl
);
1215 * When core dumping an enormous anonymous area that nobody
1216 * has touched so far, we don't want to allocate unnecessary pages or
1217 * page tables. Return error instead of NULL to skip handle_mm_fault,
1218 * then get_dump_page() will return NULL to leave a hole in the dump.
1219 * But we can only make this optimization where a hole would surely
1220 * be zero-filled if handle_mm_fault() actually did handle it.
1222 if ((flags
& FOLL_DUMP
) &&
1223 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1224 return ERR_PTR(-EFAULT
);
1228 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1229 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1230 struct page
**pages
, struct vm_area_struct
**vmas
)
1233 unsigned long vm_flags
;
1238 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1241 * Require read or write permissions.
1242 * If FOLL_FORCE is set, we only require the "MAY" flags.
1244 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1245 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1246 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1247 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1251 struct vm_area_struct
*vma
;
1253 vma
= find_extend_vma(mm
, start
);
1254 if (!vma
&& in_gate_area(tsk
, start
)) {
1255 unsigned long pg
= start
& PAGE_MASK
;
1256 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1262 /* user gate pages are read-only */
1263 if (gup_flags
& FOLL_WRITE
)
1264 return i
? : -EFAULT
;
1266 pgd
= pgd_offset_k(pg
);
1268 pgd
= pgd_offset_gate(mm
, pg
);
1269 BUG_ON(pgd_none(*pgd
));
1270 pud
= pud_offset(pgd
, pg
);
1271 BUG_ON(pud_none(*pud
));
1272 pmd
= pmd_offset(pud
, pg
);
1274 return i
? : -EFAULT
;
1275 pte
= pte_offset_map(pmd
, pg
);
1276 if (pte_none(*pte
)) {
1278 return i
? : -EFAULT
;
1281 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1296 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1297 !(vm_flags
& vma
->vm_flags
))
1298 return i
? : -EFAULT
;
1300 if (is_vm_hugetlb_page(vma
)) {
1301 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1302 &start
, &nr_pages
, i
, gup_flags
);
1308 unsigned int foll_flags
= gup_flags
;
1311 * If we have a pending SIGKILL, don't keep faulting
1312 * pages and potentially allocating memory.
1314 if (unlikely(fatal_signal_pending(current
)))
1315 return i
? i
: -ERESTARTSYS
;
1318 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1321 ret
= handle_mm_fault(mm
, vma
, start
,
1322 (foll_flags
& FOLL_WRITE
) ?
1323 FAULT_FLAG_WRITE
: 0);
1325 if (ret
& VM_FAULT_ERROR
) {
1326 if (ret
& VM_FAULT_OOM
)
1327 return i
? i
: -ENOMEM
;
1328 else if (ret
& VM_FAULT_SIGBUS
)
1329 return i
? i
: -EFAULT
;
1332 if (ret
& VM_FAULT_MAJOR
)
1338 * The VM_FAULT_WRITE bit tells us that
1339 * do_wp_page has broken COW when necessary,
1340 * even if maybe_mkwrite decided not to set
1341 * pte_write. We can thus safely do subsequent
1342 * page lookups as if they were reads. But only
1343 * do so when looping for pte_write is futile:
1344 * in some cases userspace may also be wanting
1345 * to write to the gotten user page, which a
1346 * read fault here might prevent (a readonly
1347 * page might get reCOWed by userspace write).
1349 if ((ret
& VM_FAULT_WRITE
) &&
1350 !(vma
->vm_flags
& VM_WRITE
))
1351 foll_flags
&= ~FOLL_WRITE
;
1356 return i
? i
: PTR_ERR(page
);
1360 flush_anon_page(vma
, page
, start
);
1361 flush_dcache_page(page
);
1368 } while (nr_pages
&& start
< vma
->vm_end
);
1374 * get_user_pages() - pin user pages in memory
1375 * @tsk: task_struct of target task
1376 * @mm: mm_struct of target mm
1377 * @start: starting user address
1378 * @nr_pages: number of pages from start to pin
1379 * @write: whether pages will be written to by the caller
1380 * @force: whether to force write access even if user mapping is
1381 * readonly. This will result in the page being COWed even
1382 * in MAP_SHARED mappings. You do not want this.
1383 * @pages: array that receives pointers to the pages pinned.
1384 * Should be at least nr_pages long. Or NULL, if caller
1385 * only intends to ensure the pages are faulted in.
1386 * @vmas: array of pointers to vmas corresponding to each page.
1387 * Or NULL if the caller does not require them.
1389 * Returns number of pages pinned. This may be fewer than the number
1390 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1391 * were pinned, returns -errno. Each page returned must be released
1392 * with a put_page() call when it is finished with. vmas will only
1393 * remain valid while mmap_sem is held.
1395 * Must be called with mmap_sem held for read or write.
1397 * get_user_pages walks a process's page tables and takes a reference to
1398 * each struct page that each user address corresponds to at a given
1399 * instant. That is, it takes the page that would be accessed if a user
1400 * thread accesses the given user virtual address at that instant.
1402 * This does not guarantee that the page exists in the user mappings when
1403 * get_user_pages returns, and there may even be a completely different
1404 * page there in some cases (eg. if mmapped pagecache has been invalidated
1405 * and subsequently re faulted). However it does guarantee that the page
1406 * won't be freed completely. And mostly callers simply care that the page
1407 * contains data that was valid *at some point in time*. Typically, an IO
1408 * or similar operation cannot guarantee anything stronger anyway because
1409 * locks can't be held over the syscall boundary.
1411 * If write=0, the page must not be written to. If the page is written to,
1412 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1413 * after the page is finished with, and before put_page is called.
1415 * get_user_pages is typically used for fewer-copy IO operations, to get a
1416 * handle on the memory by some means other than accesses via the user virtual
1417 * addresses. The pages may be submitted for DMA to devices or accessed via
1418 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1419 * use the correct cache flushing APIs.
1421 * See also get_user_pages_fast, for performance critical applications.
1423 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1424 unsigned long start
, int nr_pages
, int write
, int force
,
1425 struct page
**pages
, struct vm_area_struct
**vmas
)
1427 int flags
= FOLL_TOUCH
;
1432 flags
|= FOLL_WRITE
;
1434 flags
|= FOLL_FORCE
;
1436 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1438 EXPORT_SYMBOL(get_user_pages
);
1441 * get_dump_page() - pin user page in memory while writing it to core dump
1442 * @addr: user address
1444 * Returns struct page pointer of user page pinned for dump,
1445 * to be freed afterwards by page_cache_release() or put_page().
1447 * Returns NULL on any kind of failure - a hole must then be inserted into
1448 * the corefile, to preserve alignment with its headers; and also returns
1449 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1450 * allowing a hole to be left in the corefile to save diskspace.
1452 * Called without mmap_sem, but after all other threads have been killed.
1454 #ifdef CONFIG_ELF_CORE
1455 struct page
*get_dump_page(unsigned long addr
)
1457 struct vm_area_struct
*vma
;
1460 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1461 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1463 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1466 #endif /* CONFIG_ELF_CORE */
1468 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1471 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1472 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1474 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1476 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1482 * This is the old fallback for page remapping.
1484 * For historical reasons, it only allows reserved pages. Only
1485 * old drivers should use this, and they needed to mark their
1486 * pages reserved for the old functions anyway.
1488 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1489 struct page
*page
, pgprot_t prot
)
1491 struct mm_struct
*mm
= vma
->vm_mm
;
1500 flush_dcache_page(page
);
1501 pte
= get_locked_pte(mm
, addr
, &ptl
);
1505 if (!pte_none(*pte
))
1508 /* Ok, finally just insert the thing.. */
1510 inc_mm_counter(mm
, file_rss
);
1511 page_add_file_rmap(page
);
1512 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1515 pte_unmap_unlock(pte
, ptl
);
1518 pte_unmap_unlock(pte
, ptl
);
1524 * vm_insert_page - insert single page into user vma
1525 * @vma: user vma to map to
1526 * @addr: target user address of this page
1527 * @page: source kernel page
1529 * This allows drivers to insert individual pages they've allocated
1532 * The page has to be a nice clean _individual_ kernel allocation.
1533 * If you allocate a compound page, you need to have marked it as
1534 * such (__GFP_COMP), or manually just split the page up yourself
1535 * (see split_page()).
1537 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1538 * took an arbitrary page protection parameter. This doesn't allow
1539 * that. Your vma protection will have to be set up correctly, which
1540 * means that if you want a shared writable mapping, you'd better
1541 * ask for a shared writable mapping!
1543 * The page does not need to be reserved.
1545 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1548 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1550 if (!page_count(page
))
1552 vma
->vm_flags
|= VM_INSERTPAGE
;
1553 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1555 EXPORT_SYMBOL(vm_insert_page
);
1557 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1558 unsigned long pfn
, pgprot_t prot
)
1560 struct mm_struct
*mm
= vma
->vm_mm
;
1566 pte
= get_locked_pte(mm
, addr
, &ptl
);
1570 if (!pte_none(*pte
))
1573 /* Ok, finally just insert the thing.. */
1574 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1575 set_pte_at(mm
, addr
, pte
, entry
);
1576 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1580 pte_unmap_unlock(pte
, ptl
);
1586 * vm_insert_pfn - insert single pfn into user vma
1587 * @vma: user vma to map to
1588 * @addr: target user address of this page
1589 * @pfn: source kernel pfn
1591 * Similar to vm_inert_page, this allows drivers to insert individual pages
1592 * they've allocated into a user vma. Same comments apply.
1594 * This function should only be called from a vm_ops->fault handler, and
1595 * in that case the handler should return NULL.
1597 * vma cannot be a COW mapping.
1599 * As this is called only for pages that do not currently exist, we
1600 * do not need to flush old virtual caches or the TLB.
1602 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1606 pgprot_t pgprot
= vma
->vm_page_prot
;
1608 * Technically, architectures with pte_special can avoid all these
1609 * restrictions (same for remap_pfn_range). However we would like
1610 * consistency in testing and feature parity among all, so we should
1611 * try to keep these invariants in place for everybody.
1613 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1614 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1615 (VM_PFNMAP
|VM_MIXEDMAP
));
1616 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1617 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1619 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1621 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1624 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1627 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1631 EXPORT_SYMBOL(vm_insert_pfn
);
1633 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1636 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1638 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
1648 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1651 page
= pfn_to_page(pfn
);
1652 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1654 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1656 EXPORT_SYMBOL(vm_insert_mixed
);
1659 * maps a range of physical memory into the requested pages. the old
1660 * mappings are removed. any references to nonexistent pages results
1661 * in null mappings (currently treated as "copy-on-access")
1663 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1664 unsigned long addr
, unsigned long end
,
1665 unsigned long pfn
, pgprot_t prot
)
1670 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1673 arch_enter_lazy_mmu_mode();
1675 BUG_ON(!pte_none(*pte
));
1676 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1678 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1679 arch_leave_lazy_mmu_mode();
1680 pte_unmap_unlock(pte
- 1, ptl
);
1684 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1685 unsigned long addr
, unsigned long end
,
1686 unsigned long pfn
, pgprot_t prot
)
1691 pfn
-= addr
>> PAGE_SHIFT
;
1692 pmd
= pmd_alloc(mm
, pud
, addr
);
1696 next
= pmd_addr_end(addr
, end
);
1697 if (remap_pte_range(mm
, pmd
, addr
, next
,
1698 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1700 } while (pmd
++, addr
= next
, addr
!= end
);
1704 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1705 unsigned long addr
, unsigned long end
,
1706 unsigned long pfn
, pgprot_t prot
)
1711 pfn
-= addr
>> PAGE_SHIFT
;
1712 pud
= pud_alloc(mm
, pgd
, addr
);
1716 next
= pud_addr_end(addr
, end
);
1717 if (remap_pmd_range(mm
, pud
, addr
, next
,
1718 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1720 } while (pud
++, addr
= next
, addr
!= end
);
1725 * remap_pfn_range - remap kernel memory to userspace
1726 * @vma: user vma to map to
1727 * @addr: target user address to start at
1728 * @pfn: physical address of kernel memory
1729 * @size: size of map area
1730 * @prot: page protection flags for this mapping
1732 * Note: this is only safe if the mm semaphore is held when called.
1734 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1735 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1739 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1740 struct mm_struct
*mm
= vma
->vm_mm
;
1744 * Physically remapped pages are special. Tell the
1745 * rest of the world about it:
1746 * VM_IO tells people not to look at these pages
1747 * (accesses can have side effects).
1748 * VM_RESERVED is specified all over the place, because
1749 * in 2.4 it kept swapout's vma scan off this vma; but
1750 * in 2.6 the LRU scan won't even find its pages, so this
1751 * flag means no more than count its pages in reserved_vm,
1752 * and omit it from core dump, even when VM_IO turned off.
1753 * VM_PFNMAP tells the core MM that the base pages are just
1754 * raw PFN mappings, and do not have a "struct page" associated
1757 * There's a horrible special case to handle copy-on-write
1758 * behaviour that some programs depend on. We mark the "original"
1759 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1761 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1762 vma
->vm_pgoff
= pfn
;
1763 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1764 } else if (is_cow_mapping(vma
->vm_flags
))
1767 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1769 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1772 * To indicate that track_pfn related cleanup is not
1773 * needed from higher level routine calling unmap_vmas
1775 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1776 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1780 BUG_ON(addr
>= end
);
1781 pfn
-= addr
>> PAGE_SHIFT
;
1782 pgd
= pgd_offset(mm
, addr
);
1783 flush_cache_range(vma
, addr
, end
);
1785 next
= pgd_addr_end(addr
, end
);
1786 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1787 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1790 } while (pgd
++, addr
= next
, addr
!= end
);
1793 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1797 EXPORT_SYMBOL(remap_pfn_range
);
1799 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1800 unsigned long addr
, unsigned long end
,
1801 pte_fn_t fn
, void *data
)
1806 spinlock_t
*uninitialized_var(ptl
);
1808 pte
= (mm
== &init_mm
) ?
1809 pte_alloc_kernel(pmd
, addr
) :
1810 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1814 BUG_ON(pmd_huge(*pmd
));
1816 arch_enter_lazy_mmu_mode();
1818 token
= pmd_pgtable(*pmd
);
1821 err
= fn(pte
, token
, addr
, data
);
1824 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1826 arch_leave_lazy_mmu_mode();
1829 pte_unmap_unlock(pte
-1, ptl
);
1833 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1834 unsigned long addr
, unsigned long end
,
1835 pte_fn_t fn
, void *data
)
1841 BUG_ON(pud_huge(*pud
));
1843 pmd
= pmd_alloc(mm
, pud
, addr
);
1847 next
= pmd_addr_end(addr
, end
);
1848 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1851 } while (pmd
++, addr
= next
, addr
!= end
);
1855 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1856 unsigned long addr
, unsigned long end
,
1857 pte_fn_t fn
, void *data
)
1863 pud
= pud_alloc(mm
, pgd
, addr
);
1867 next
= pud_addr_end(addr
, end
);
1868 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1871 } while (pud
++, addr
= next
, addr
!= end
);
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1879 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1880 unsigned long size
, pte_fn_t fn
, void *data
)
1884 unsigned long start
= addr
, end
= addr
+ size
;
1887 BUG_ON(addr
>= end
);
1888 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1889 pgd
= pgd_offset(mm
, addr
);
1891 next
= pgd_addr_end(addr
, end
);
1892 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1895 } while (pgd
++, addr
= next
, addr
!= end
);
1896 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1899 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1902 * handle_pte_fault chooses page fault handler according to an entry
1903 * which was read non-atomically. Before making any commitment, on
1904 * those architectures or configurations (e.g. i386 with PAE) which
1905 * might give a mix of unmatched parts, do_swap_page and do_file_page
1906 * must check under lock before unmapping the pte and proceeding
1907 * (but do_wp_page is only called after already making such a check;
1908 * and do_anonymous_page and do_no_page can safely check later on).
1910 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1911 pte_t
*page_table
, pte_t orig_pte
)
1914 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1915 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1916 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1918 same
= pte_same(*page_table
, orig_pte
);
1922 pte_unmap(page_table
);
1927 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1928 * servicing faults for write access. In the normal case, do always want
1929 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1930 * that do not have writing enabled, when used by access_process_vm.
1932 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1934 if (likely(vma
->vm_flags
& VM_WRITE
))
1935 pte
= pte_mkwrite(pte
);
1939 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1942 * If the source page was a PFN mapping, we don't have
1943 * a "struct page" for it. We do a best-effort copy by
1944 * just copying from the original user address. If that
1945 * fails, we just zero-fill it. Live with it.
1947 if (unlikely(!src
)) {
1948 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1949 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1952 * This really shouldn't fail, because the page is there
1953 * in the page tables. But it might just be unreadable,
1954 * in which case we just give up and fill the result with
1957 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1958 memset(kaddr
, 0, PAGE_SIZE
);
1959 kunmap_atomic(kaddr
, KM_USER0
);
1960 flush_dcache_page(dst
);
1962 copy_user_highpage(dst
, src
, va
, vma
);
1966 * This routine handles present pages, when users try to write
1967 * to a shared page. It is done by copying the page to a new address
1968 * and decrementing the shared-page counter for the old page.
1970 * Note that this routine assumes that the protection checks have been
1971 * done by the caller (the low-level page fault routine in most cases).
1972 * Thus we can safely just mark it writable once we've done any necessary
1975 * We also mark the page dirty at this point even though the page will
1976 * change only once the write actually happens. This avoids a few races,
1977 * and potentially makes it more efficient.
1979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1980 * but allow concurrent faults), with pte both mapped and locked.
1981 * We return with mmap_sem still held, but pte unmapped and unlocked.
1983 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1984 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1985 spinlock_t
*ptl
, pte_t orig_pte
)
1987 struct page
*old_page
, *new_page
;
1989 int reuse
= 0, ret
= 0;
1990 int page_mkwrite
= 0;
1991 struct page
*dirty_page
= NULL
;
1993 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1996 * VM_MIXEDMAP !pfn_valid() case
1998 * We should not cow pages in a shared writeable mapping.
1999 * Just mark the pages writable as we can't do any dirty
2000 * accounting on raw pfn maps.
2002 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2003 (VM_WRITE
|VM_SHARED
))
2009 * Take out anonymous pages first, anonymous shared vmas are
2010 * not dirty accountable.
2012 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2013 if (!trylock_page(old_page
)) {
2014 page_cache_get(old_page
);
2015 pte_unmap_unlock(page_table
, ptl
);
2016 lock_page(old_page
);
2017 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2019 if (!pte_same(*page_table
, orig_pte
)) {
2020 unlock_page(old_page
);
2021 page_cache_release(old_page
);
2024 page_cache_release(old_page
);
2026 reuse
= reuse_swap_page(old_page
);
2027 unlock_page(old_page
);
2028 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2029 (VM_WRITE
|VM_SHARED
))) {
2031 * Only catch write-faults on shared writable pages,
2032 * read-only shared pages can get COWed by
2033 * get_user_pages(.write=1, .force=1).
2035 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2036 struct vm_fault vmf
;
2039 vmf
.virtual_address
= (void __user
*)(address
&
2041 vmf
.pgoff
= old_page
->index
;
2042 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2043 vmf
.page
= old_page
;
2046 * Notify the address space that the page is about to
2047 * become writable so that it can prohibit this or wait
2048 * for the page to get into an appropriate state.
2050 * We do this without the lock held, so that it can
2051 * sleep if it needs to.
2053 page_cache_get(old_page
);
2054 pte_unmap_unlock(page_table
, ptl
);
2056 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2058 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2060 goto unwritable_page
;
2062 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2063 lock_page(old_page
);
2064 if (!old_page
->mapping
) {
2065 ret
= 0; /* retry the fault */
2066 unlock_page(old_page
);
2067 goto unwritable_page
;
2070 VM_BUG_ON(!PageLocked(old_page
));
2073 * Since we dropped the lock we need to revalidate
2074 * the PTE as someone else may have changed it. If
2075 * they did, we just return, as we can count on the
2076 * MMU to tell us if they didn't also make it writable.
2078 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2080 if (!pte_same(*page_table
, orig_pte
)) {
2081 unlock_page(old_page
);
2082 page_cache_release(old_page
);
2088 dirty_page
= old_page
;
2089 get_page(dirty_page
);
2095 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2096 entry
= pte_mkyoung(orig_pte
);
2097 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2098 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2099 update_mmu_cache(vma
, address
, entry
);
2100 ret
|= VM_FAULT_WRITE
;
2105 * Ok, we need to copy. Oh, well..
2107 page_cache_get(old_page
);
2109 pte_unmap_unlock(page_table
, ptl
);
2111 if (unlikely(anon_vma_prepare(vma
)))
2114 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2115 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2119 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2122 cow_user_page(new_page
, old_page
, address
, vma
);
2124 __SetPageUptodate(new_page
);
2127 * Don't let another task, with possibly unlocked vma,
2128 * keep the mlocked page.
2130 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2131 lock_page(old_page
); /* for LRU manipulation */
2132 clear_page_mlock(old_page
);
2133 unlock_page(old_page
);
2136 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2140 * Re-check the pte - we dropped the lock
2142 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2143 if (likely(pte_same(*page_table
, orig_pte
))) {
2145 if (!PageAnon(old_page
)) {
2146 dec_mm_counter(mm
, file_rss
);
2147 inc_mm_counter(mm
, anon_rss
);
2150 inc_mm_counter(mm
, anon_rss
);
2151 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2152 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2153 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2155 * Clear the pte entry and flush it first, before updating the
2156 * pte with the new entry. This will avoid a race condition
2157 * seen in the presence of one thread doing SMC and another
2160 ptep_clear_flush(vma
, address
, page_table
);
2161 page_add_new_anon_rmap(new_page
, vma
, address
);
2163 * We call the notify macro here because, when using secondary
2164 * mmu page tables (such as kvm shadow page tables), we want the
2165 * new page to be mapped directly into the secondary page table.
2167 set_pte_at_notify(mm
, address
, page_table
, entry
);
2168 update_mmu_cache(vma
, address
, entry
);
2171 * Only after switching the pte to the new page may
2172 * we remove the mapcount here. Otherwise another
2173 * process may come and find the rmap count decremented
2174 * before the pte is switched to the new page, and
2175 * "reuse" the old page writing into it while our pte
2176 * here still points into it and can be read by other
2179 * The critical issue is to order this
2180 * page_remove_rmap with the ptp_clear_flush above.
2181 * Those stores are ordered by (if nothing else,)
2182 * the barrier present in the atomic_add_negative
2183 * in page_remove_rmap.
2185 * Then the TLB flush in ptep_clear_flush ensures that
2186 * no process can access the old page before the
2187 * decremented mapcount is visible. And the old page
2188 * cannot be reused until after the decremented
2189 * mapcount is visible. So transitively, TLBs to
2190 * old page will be flushed before it can be reused.
2192 page_remove_rmap(old_page
);
2195 /* Free the old page.. */
2196 new_page
= old_page
;
2197 ret
|= VM_FAULT_WRITE
;
2199 mem_cgroup_uncharge_page(new_page
);
2202 page_cache_release(new_page
);
2204 page_cache_release(old_page
);
2206 pte_unmap_unlock(page_table
, ptl
);
2209 * Yes, Virginia, this is actually required to prevent a race
2210 * with clear_page_dirty_for_io() from clearing the page dirty
2211 * bit after it clear all dirty ptes, but before a racing
2212 * do_wp_page installs a dirty pte.
2214 * do_no_page is protected similarly.
2216 if (!page_mkwrite
) {
2217 wait_on_page_locked(dirty_page
);
2218 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2220 put_page(dirty_page
);
2222 struct address_space
*mapping
= dirty_page
->mapping
;
2224 set_page_dirty(dirty_page
);
2225 unlock_page(dirty_page
);
2226 page_cache_release(dirty_page
);
2229 * Some device drivers do not set page.mapping
2230 * but still dirty their pages
2232 balance_dirty_pages_ratelimited(mapping
);
2236 /* file_update_time outside page_lock */
2238 file_update_time(vma
->vm_file
);
2242 page_cache_release(new_page
);
2246 unlock_page(old_page
);
2247 page_cache_release(old_page
);
2249 page_cache_release(old_page
);
2251 return VM_FAULT_OOM
;
2254 page_cache_release(old_page
);
2259 * Helper functions for unmap_mapping_range().
2261 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2263 * We have to restart searching the prio_tree whenever we drop the lock,
2264 * since the iterator is only valid while the lock is held, and anyway
2265 * a later vma might be split and reinserted earlier while lock dropped.
2267 * The list of nonlinear vmas could be handled more efficiently, using
2268 * a placeholder, but handle it in the same way until a need is shown.
2269 * It is important to search the prio_tree before nonlinear list: a vma
2270 * may become nonlinear and be shifted from prio_tree to nonlinear list
2271 * while the lock is dropped; but never shifted from list to prio_tree.
2273 * In order to make forward progress despite restarting the search,
2274 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2275 * quickly skip it next time around. Since the prio_tree search only
2276 * shows us those vmas affected by unmapping the range in question, we
2277 * can't efficiently keep all vmas in step with mapping->truncate_count:
2278 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2279 * mapping->truncate_count and vma->vm_truncate_count are protected by
2282 * In order to make forward progress despite repeatedly restarting some
2283 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2284 * and restart from that address when we reach that vma again. It might
2285 * have been split or merged, shrunk or extended, but never shifted: so
2286 * restart_addr remains valid so long as it remains in the vma's range.
2287 * unmap_mapping_range forces truncate_count to leap over page-aligned
2288 * values so we can save vma's restart_addr in its truncate_count field.
2290 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2292 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2294 struct vm_area_struct
*vma
;
2295 struct prio_tree_iter iter
;
2297 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2298 vma
->vm_truncate_count
= 0;
2299 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2300 vma
->vm_truncate_count
= 0;
2303 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2304 unsigned long start_addr
, unsigned long end_addr
,
2305 struct zap_details
*details
)
2307 unsigned long restart_addr
;
2311 * files that support invalidating or truncating portions of the
2312 * file from under mmaped areas must have their ->fault function
2313 * return a locked page (and set VM_FAULT_LOCKED in the return).
2314 * This provides synchronisation against concurrent unmapping here.
2318 restart_addr
= vma
->vm_truncate_count
;
2319 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2320 start_addr
= restart_addr
;
2321 if (start_addr
>= end_addr
) {
2322 /* Top of vma has been split off since last time */
2323 vma
->vm_truncate_count
= details
->truncate_count
;
2328 restart_addr
= zap_page_range(vma
, start_addr
,
2329 end_addr
- start_addr
, details
);
2330 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2332 if (restart_addr
>= end_addr
) {
2333 /* We have now completed this vma: mark it so */
2334 vma
->vm_truncate_count
= details
->truncate_count
;
2338 /* Note restart_addr in vma's truncate_count field */
2339 vma
->vm_truncate_count
= restart_addr
;
2344 spin_unlock(details
->i_mmap_lock
);
2346 spin_lock(details
->i_mmap_lock
);
2350 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2351 struct zap_details
*details
)
2353 struct vm_area_struct
*vma
;
2354 struct prio_tree_iter iter
;
2355 pgoff_t vba
, vea
, zba
, zea
;
2358 vma_prio_tree_foreach(vma
, &iter
, root
,
2359 details
->first_index
, details
->last_index
) {
2360 /* Skip quickly over those we have already dealt with */
2361 if (vma
->vm_truncate_count
== details
->truncate_count
)
2364 vba
= vma
->vm_pgoff
;
2365 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2366 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2367 zba
= details
->first_index
;
2370 zea
= details
->last_index
;
2374 if (unmap_mapping_range_vma(vma
,
2375 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2376 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2382 static inline void unmap_mapping_range_list(struct list_head
*head
,
2383 struct zap_details
*details
)
2385 struct vm_area_struct
*vma
;
2388 * In nonlinear VMAs there is no correspondence between virtual address
2389 * offset and file offset. So we must perform an exhaustive search
2390 * across *all* the pages in each nonlinear VMA, not just the pages
2391 * whose virtual address lies outside the file truncation point.
2394 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2395 /* Skip quickly over those we have already dealt with */
2396 if (vma
->vm_truncate_count
== details
->truncate_count
)
2398 details
->nonlinear_vma
= vma
;
2399 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2400 vma
->vm_end
, details
) < 0)
2406 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2407 * @mapping: the address space containing mmaps to be unmapped.
2408 * @holebegin: byte in first page to unmap, relative to the start of
2409 * the underlying file. This will be rounded down to a PAGE_SIZE
2410 * boundary. Note that this is different from vmtruncate(), which
2411 * must keep the partial page. In contrast, we must get rid of
2413 * @holelen: size of prospective hole in bytes. This will be rounded
2414 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2416 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2417 * but 0 when invalidating pagecache, don't throw away private data.
2419 void unmap_mapping_range(struct address_space
*mapping
,
2420 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2422 struct zap_details details
;
2423 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2424 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2426 /* Check for overflow. */
2427 if (sizeof(holelen
) > sizeof(hlen
)) {
2429 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2430 if (holeend
& ~(long long)ULONG_MAX
)
2431 hlen
= ULONG_MAX
- hba
+ 1;
2434 details
.check_mapping
= even_cows
? NULL
: mapping
;
2435 details
.nonlinear_vma
= NULL
;
2436 details
.first_index
= hba
;
2437 details
.last_index
= hba
+ hlen
- 1;
2438 if (details
.last_index
< details
.first_index
)
2439 details
.last_index
= ULONG_MAX
;
2440 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2442 spin_lock(&mapping
->i_mmap_lock
);
2444 /* Protect against endless unmapping loops */
2445 mapping
->truncate_count
++;
2446 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2447 if (mapping
->truncate_count
== 0)
2448 reset_vma_truncate_counts(mapping
);
2449 mapping
->truncate_count
++;
2451 details
.truncate_count
= mapping
->truncate_count
;
2453 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2454 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2455 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2456 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2457 spin_unlock(&mapping
->i_mmap_lock
);
2459 EXPORT_SYMBOL(unmap_mapping_range
);
2462 * vmtruncate - unmap mappings "freed" by truncate() syscall
2463 * @inode: inode of the file used
2464 * @offset: file offset to start truncating
2466 * NOTE! We have to be ready to update the memory sharing
2467 * between the file and the memory map for a potential last
2468 * incomplete page. Ugly, but necessary.
2470 int vmtruncate(struct inode
* inode
, loff_t offset
)
2472 if (inode
->i_size
< offset
) {
2473 unsigned long limit
;
2475 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2476 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2478 if (offset
> inode
->i_sb
->s_maxbytes
)
2480 i_size_write(inode
, offset
);
2482 struct address_space
*mapping
= inode
->i_mapping
;
2485 * truncation of in-use swapfiles is disallowed - it would
2486 * cause subsequent swapout to scribble on the now-freed
2489 if (IS_SWAPFILE(inode
))
2491 i_size_write(inode
, offset
);
2494 * unmap_mapping_range is called twice, first simply for
2495 * efficiency so that truncate_inode_pages does fewer
2496 * single-page unmaps. However after this first call, and
2497 * before truncate_inode_pages finishes, it is possible for
2498 * private pages to be COWed, which remain after
2499 * truncate_inode_pages finishes, hence the second
2500 * unmap_mapping_range call must be made for correctness.
2502 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2503 truncate_inode_pages(mapping
, offset
);
2504 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2507 if (inode
->i_op
->truncate
)
2508 inode
->i_op
->truncate(inode
);
2512 send_sig(SIGXFSZ
, current
, 0);
2516 EXPORT_SYMBOL(vmtruncate
);
2518 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2520 struct address_space
*mapping
= inode
->i_mapping
;
2523 * If the underlying filesystem is not going to provide
2524 * a way to truncate a range of blocks (punch a hole) -
2525 * we should return failure right now.
2527 if (!inode
->i_op
->truncate_range
)
2530 mutex_lock(&inode
->i_mutex
);
2531 down_write(&inode
->i_alloc_sem
);
2532 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2533 truncate_inode_pages_range(mapping
, offset
, end
);
2534 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2535 inode
->i_op
->truncate_range(inode
, offset
, end
);
2536 up_write(&inode
->i_alloc_sem
);
2537 mutex_unlock(&inode
->i_mutex
);
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), and pte mapped but not yet locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2547 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2548 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2549 unsigned int flags
, pte_t orig_pte
)
2555 struct mem_cgroup
*ptr
= NULL
;
2558 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2561 entry
= pte_to_swp_entry(orig_pte
);
2562 if (is_migration_entry(entry
)) {
2563 migration_entry_wait(mm
, pmd
, address
);
2566 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2567 page
= lookup_swap_cache(entry
);
2569 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2570 page
= swapin_readahead(entry
,
2571 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2574 * Back out if somebody else faulted in this pte
2575 * while we released the pte lock.
2577 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2578 if (likely(pte_same(*page_table
, orig_pte
)))
2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2584 /* Had to read the page from swap area: Major fault */
2585 ret
= VM_FAULT_MAJOR
;
2586 count_vm_event(PGMAJFAULT
);
2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2592 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2598 * Back out if somebody else already faulted in this pte.
2600 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2601 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2604 if (unlikely(!PageUptodate(page
))) {
2605 ret
= VM_FAULT_SIGBUS
;
2610 * The page isn't present yet, go ahead with the fault.
2612 * Be careful about the sequence of operations here.
2613 * To get its accounting right, reuse_swap_page() must be called
2614 * while the page is counted on swap but not yet in mapcount i.e.
2615 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2616 * must be called after the swap_free(), or it will never succeed.
2617 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2618 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2619 * in page->private. In this case, a record in swap_cgroup is silently
2620 * discarded at swap_free().
2623 inc_mm_counter(mm
, anon_rss
);
2624 pte
= mk_pte(page
, vma
->vm_page_prot
);
2625 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2626 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2627 flags
&= ~FAULT_FLAG_WRITE
;
2629 flush_icache_page(vma
, page
);
2630 set_pte_at(mm
, address
, page_table
, pte
);
2631 page_add_anon_rmap(page
, vma
, address
);
2632 /* It's better to call commit-charge after rmap is established */
2633 mem_cgroup_commit_charge_swapin(page
, ptr
);
2636 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2637 try_to_free_swap(page
);
2640 if (flags
& FAULT_FLAG_WRITE
) {
2641 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2642 if (ret
& VM_FAULT_ERROR
)
2643 ret
&= VM_FAULT_ERROR
;
2647 /* No need to invalidate - it was non-present before */
2648 update_mmu_cache(vma
, address
, pte
);
2650 pte_unmap_unlock(page_table
, ptl
);
2654 mem_cgroup_cancel_charge_swapin(ptr
);
2655 pte_unmap_unlock(page_table
, ptl
);
2658 page_cache_release(page
);
2663 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664 * but allow concurrent faults), and pte mapped but not yet locked.
2665 * We return with mmap_sem still held, but pte unmapped and unlocked.
2667 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2668 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2675 if (!(flags
& FAULT_FLAG_WRITE
)) {
2676 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2677 vma
->vm_page_prot
));
2678 ptl
= pte_lockptr(mm
, pmd
);
2680 if (!pte_none(*page_table
))
2685 /* Allocate our own private page. */
2686 pte_unmap(page_table
);
2688 if (unlikely(anon_vma_prepare(vma
)))
2690 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2693 __SetPageUptodate(page
);
2695 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2698 entry
= mk_pte(page
, vma
->vm_page_prot
);
2699 if (vma
->vm_flags
& VM_WRITE
)
2700 entry
= pte_mkwrite(pte_mkdirty(entry
));
2702 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2703 if (!pte_none(*page_table
))
2706 inc_mm_counter(mm
, anon_rss
);
2707 page_add_new_anon_rmap(page
, vma
, address
);
2709 set_pte_at(mm
, address
, page_table
, entry
);
2711 /* No need to invalidate - it was non-present before */
2712 update_mmu_cache(vma
, address
, entry
);
2714 pte_unmap_unlock(page_table
, ptl
);
2717 mem_cgroup_uncharge_page(page
);
2718 page_cache_release(page
);
2721 page_cache_release(page
);
2723 return VM_FAULT_OOM
;
2727 * __do_fault() tries to create a new page mapping. It aggressively
2728 * tries to share with existing pages, but makes a separate copy if
2729 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2730 * the next page fault.
2732 * As this is called only for pages that do not currently exist, we
2733 * do not need to flush old virtual caches or the TLB.
2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736 * but allow concurrent faults), and pte neither mapped nor locked.
2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
2739 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2740 unsigned long address
, pmd_t
*pmd
,
2741 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2749 struct page
*dirty_page
= NULL
;
2750 struct vm_fault vmf
;
2752 int page_mkwrite
= 0;
2754 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2759 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2760 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2764 * For consistency in subsequent calls, make the faulted page always
2767 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2768 lock_page(vmf
.page
);
2770 VM_BUG_ON(!PageLocked(vmf
.page
));
2773 * Should we do an early C-O-W break?
2776 if (flags
& FAULT_FLAG_WRITE
) {
2777 if (!(vma
->vm_flags
& VM_SHARED
)) {
2779 if (unlikely(anon_vma_prepare(vma
))) {
2783 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2789 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2791 page_cache_release(page
);
2796 * Don't let another task, with possibly unlocked vma,
2797 * keep the mlocked page.
2799 if (vma
->vm_flags
& VM_LOCKED
)
2800 clear_page_mlock(vmf
.page
);
2801 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2802 __SetPageUptodate(page
);
2805 * If the page will be shareable, see if the backing
2806 * address space wants to know that the page is about
2807 * to become writable
2809 if (vma
->vm_ops
->page_mkwrite
) {
2813 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2814 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2816 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2818 goto unwritable_page
;
2820 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2822 if (!page
->mapping
) {
2823 ret
= 0; /* retry the fault */
2825 goto unwritable_page
;
2828 VM_BUG_ON(!PageLocked(page
));
2835 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2838 * This silly early PAGE_DIRTY setting removes a race
2839 * due to the bad i386 page protection. But it's valid
2840 * for other architectures too.
2842 * Note that if FAULT_FLAG_WRITE is set, we either now have
2843 * an exclusive copy of the page, or this is a shared mapping,
2844 * so we can make it writable and dirty to avoid having to
2845 * handle that later.
2847 /* Only go through if we didn't race with anybody else... */
2848 if (likely(pte_same(*page_table
, orig_pte
))) {
2849 flush_icache_page(vma
, page
);
2850 entry
= mk_pte(page
, vma
->vm_page_prot
);
2851 if (flags
& FAULT_FLAG_WRITE
)
2852 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2854 inc_mm_counter(mm
, anon_rss
);
2855 page_add_new_anon_rmap(page
, vma
, address
);
2857 inc_mm_counter(mm
, file_rss
);
2858 page_add_file_rmap(page
);
2859 if (flags
& FAULT_FLAG_WRITE
) {
2861 get_page(dirty_page
);
2864 set_pte_at(mm
, address
, page_table
, entry
);
2866 /* no need to invalidate: a not-present page won't be cached */
2867 update_mmu_cache(vma
, address
, entry
);
2870 mem_cgroup_uncharge_page(page
);
2872 page_cache_release(page
);
2874 anon
= 1; /* no anon but release faulted_page */
2877 pte_unmap_unlock(page_table
, ptl
);
2881 struct address_space
*mapping
= page
->mapping
;
2883 if (set_page_dirty(dirty_page
))
2885 unlock_page(dirty_page
);
2886 put_page(dirty_page
);
2887 if (page_mkwrite
&& mapping
) {
2889 * Some device drivers do not set page.mapping but still
2892 balance_dirty_pages_ratelimited(mapping
);
2895 /* file_update_time outside page_lock */
2897 file_update_time(vma
->vm_file
);
2899 unlock_page(vmf
.page
);
2901 page_cache_release(vmf
.page
);
2907 page_cache_release(page
);
2911 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2912 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2913 unsigned int flags
, pte_t orig_pte
)
2915 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2916 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2918 pte_unmap(page_table
);
2919 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2923 * Fault of a previously existing named mapping. Repopulate the pte
2924 * from the encoded file_pte if possible. This enables swappable
2927 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2928 * but allow concurrent faults), and pte mapped but not yet locked.
2929 * We return with mmap_sem still held, but pte unmapped and unlocked.
2931 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2932 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2933 unsigned int flags
, pte_t orig_pte
)
2937 flags
|= FAULT_FLAG_NONLINEAR
;
2939 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2942 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2944 * Page table corrupted: show pte and kill process.
2946 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2947 return VM_FAULT_OOM
;
2950 pgoff
= pte_to_pgoff(orig_pte
);
2951 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2955 * These routines also need to handle stuff like marking pages dirty
2956 * and/or accessed for architectures that don't do it in hardware (most
2957 * RISC architectures). The early dirtying is also good on the i386.
2959 * There is also a hook called "update_mmu_cache()" that architectures
2960 * with external mmu caches can use to update those (ie the Sparc or
2961 * PowerPC hashed page tables that act as extended TLBs).
2963 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2964 * but allow concurrent faults), and pte mapped but not yet locked.
2965 * We return with mmap_sem still held, but pte unmapped and unlocked.
2967 static inline int handle_pte_fault(struct mm_struct
*mm
,
2968 struct vm_area_struct
*vma
, unsigned long address
,
2969 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
2975 if (!pte_present(entry
)) {
2976 if (pte_none(entry
)) {
2978 if (likely(vma
->vm_ops
->fault
))
2979 return do_linear_fault(mm
, vma
, address
,
2980 pte
, pmd
, flags
, entry
);
2982 return do_anonymous_page(mm
, vma
, address
,
2985 if (pte_file(entry
))
2986 return do_nonlinear_fault(mm
, vma
, address
,
2987 pte
, pmd
, flags
, entry
);
2988 return do_swap_page(mm
, vma
, address
,
2989 pte
, pmd
, flags
, entry
);
2992 ptl
= pte_lockptr(mm
, pmd
);
2994 if (unlikely(!pte_same(*pte
, entry
)))
2996 if (flags
& FAULT_FLAG_WRITE
) {
2997 if (!pte_write(entry
))
2998 return do_wp_page(mm
, vma
, address
,
2999 pte
, pmd
, ptl
, entry
);
3000 entry
= pte_mkdirty(entry
);
3002 entry
= pte_mkyoung(entry
);
3003 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3004 update_mmu_cache(vma
, address
, entry
);
3007 * This is needed only for protection faults but the arch code
3008 * is not yet telling us if this is a protection fault or not.
3009 * This still avoids useless tlb flushes for .text page faults
3012 if (flags
& FAULT_FLAG_WRITE
)
3013 flush_tlb_page(vma
, address
);
3016 pte_unmap_unlock(pte
, ptl
);
3021 * By the time we get here, we already hold the mm semaphore
3023 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3024 unsigned long address
, unsigned int flags
)
3031 __set_current_state(TASK_RUNNING
);
3033 count_vm_event(PGFAULT
);
3035 if (unlikely(is_vm_hugetlb_page(vma
)))
3036 return hugetlb_fault(mm
, vma
, address
, flags
);
3038 pgd
= pgd_offset(mm
, address
);
3039 pud
= pud_alloc(mm
, pgd
, address
);
3041 return VM_FAULT_OOM
;
3042 pmd
= pmd_alloc(mm
, pud
, address
);
3044 return VM_FAULT_OOM
;
3045 pte
= pte_alloc_map(mm
, pmd
, address
);
3047 return VM_FAULT_OOM
;
3049 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3052 #ifndef __PAGETABLE_PUD_FOLDED
3054 * Allocate page upper directory.
3055 * We've already handled the fast-path in-line.
3057 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3059 pud_t
*new = pud_alloc_one(mm
, address
);
3063 smp_wmb(); /* See comment in __pte_alloc */
3065 spin_lock(&mm
->page_table_lock
);
3066 if (pgd_present(*pgd
)) /* Another has populated it */
3069 pgd_populate(mm
, pgd
, new);
3070 spin_unlock(&mm
->page_table_lock
);
3073 #endif /* __PAGETABLE_PUD_FOLDED */
3075 #ifndef __PAGETABLE_PMD_FOLDED
3077 * Allocate page middle directory.
3078 * We've already handled the fast-path in-line.
3080 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3082 pmd_t
*new = pmd_alloc_one(mm
, address
);
3086 smp_wmb(); /* See comment in __pte_alloc */
3088 spin_lock(&mm
->page_table_lock
);
3089 #ifndef __ARCH_HAS_4LEVEL_HACK
3090 if (pud_present(*pud
)) /* Another has populated it */
3093 pud_populate(mm
, pud
, new);
3095 if (pgd_present(*pud
)) /* Another has populated it */
3098 pgd_populate(mm
, pud
, new);
3099 #endif /* __ARCH_HAS_4LEVEL_HACK */
3100 spin_unlock(&mm
->page_table_lock
);
3103 #endif /* __PAGETABLE_PMD_FOLDED */
3105 int make_pages_present(unsigned long addr
, unsigned long end
)
3107 int ret
, len
, write
;
3108 struct vm_area_struct
* vma
;
3110 vma
= find_vma(current
->mm
, addr
);
3113 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3114 BUG_ON(addr
>= end
);
3115 BUG_ON(end
> vma
->vm_end
);
3116 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3117 ret
= get_user_pages(current
, current
->mm
, addr
,
3118 len
, write
, 0, NULL
, NULL
);
3121 return ret
== len
? 0 : -EFAULT
;
3124 #if !defined(__HAVE_ARCH_GATE_AREA)
3126 #if defined(AT_SYSINFO_EHDR)
3127 static struct vm_area_struct gate_vma
;
3129 static int __init
gate_vma_init(void)
3131 gate_vma
.vm_mm
= NULL
;
3132 gate_vma
.vm_start
= FIXADDR_USER_START
;
3133 gate_vma
.vm_end
= FIXADDR_USER_END
;
3134 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3135 gate_vma
.vm_page_prot
= __P101
;
3137 * Make sure the vDSO gets into every core dump.
3138 * Dumping its contents makes post-mortem fully interpretable later
3139 * without matching up the same kernel and hardware config to see
3140 * what PC values meant.
3142 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3145 __initcall(gate_vma_init
);
3148 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3150 #ifdef AT_SYSINFO_EHDR
3157 int in_gate_area_no_task(unsigned long addr
)
3159 #ifdef AT_SYSINFO_EHDR
3160 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3166 #endif /* __HAVE_ARCH_GATE_AREA */
3168 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3169 pte_t
**ptepp
, spinlock_t
**ptlp
)
3176 pgd
= pgd_offset(mm
, address
);
3177 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3180 pud
= pud_offset(pgd
, address
);
3181 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3184 pmd
= pmd_offset(pud
, address
);
3185 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3188 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3192 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3195 if (!pte_present(*ptep
))
3200 pte_unmap_unlock(ptep
, *ptlp
);
3206 * follow_pfn - look up PFN at a user virtual address
3207 * @vma: memory mapping
3208 * @address: user virtual address
3209 * @pfn: location to store found PFN
3211 * Only IO mappings and raw PFN mappings are allowed.
3213 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3215 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3222 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3225 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3228 *pfn
= pte_pfn(*ptep
);
3229 pte_unmap_unlock(ptep
, ptl
);
3232 EXPORT_SYMBOL(follow_pfn
);
3234 #ifdef CONFIG_HAVE_IOREMAP_PROT
3235 int follow_phys(struct vm_area_struct
*vma
,
3236 unsigned long address
, unsigned int flags
,
3237 unsigned long *prot
, resource_size_t
*phys
)
3243 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3246 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3250 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3253 *prot
= pgprot_val(pte_pgprot(pte
));
3254 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3258 pte_unmap_unlock(ptep
, ptl
);
3263 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3264 void *buf
, int len
, int write
)
3266 resource_size_t phys_addr
;
3267 unsigned long prot
= 0;
3268 void __iomem
*maddr
;
3269 int offset
= addr
& (PAGE_SIZE
-1);
3271 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3274 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3276 memcpy_toio(maddr
+ offset
, buf
, len
);
3278 memcpy_fromio(buf
, maddr
+ offset
, len
);
3286 * Access another process' address space.
3287 * Source/target buffer must be kernel space,
3288 * Do not walk the page table directly, use get_user_pages
3290 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3292 struct mm_struct
*mm
;
3293 struct vm_area_struct
*vma
;
3294 void *old_buf
= buf
;
3296 mm
= get_task_mm(tsk
);
3300 down_read(&mm
->mmap_sem
);
3301 /* ignore errors, just check how much was successfully transferred */
3303 int bytes
, ret
, offset
;
3305 struct page
*page
= NULL
;
3307 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3308 write
, 1, &page
, &vma
);
3311 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3312 * we can access using slightly different code.
3314 #ifdef CONFIG_HAVE_IOREMAP_PROT
3315 vma
= find_vma(mm
, addr
);
3318 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3319 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3327 offset
= addr
& (PAGE_SIZE
-1);
3328 if (bytes
> PAGE_SIZE
-offset
)
3329 bytes
= PAGE_SIZE
-offset
;
3333 copy_to_user_page(vma
, page
, addr
,
3334 maddr
+ offset
, buf
, bytes
);
3335 set_page_dirty_lock(page
);
3337 copy_from_user_page(vma
, page
, addr
,
3338 buf
, maddr
+ offset
, bytes
);
3341 page_cache_release(page
);
3347 up_read(&mm
->mmap_sem
);
3350 return buf
- old_buf
;
3354 * Print the name of a VMA.
3356 void print_vma_addr(char *prefix
, unsigned long ip
)
3358 struct mm_struct
*mm
= current
->mm
;
3359 struct vm_area_struct
*vma
;
3362 * Do not print if we are in atomic
3363 * contexts (in exception stacks, etc.):
3365 if (preempt_count())
3368 down_read(&mm
->mmap_sem
);
3369 vma
= find_vma(mm
, ip
);
3370 if (vma
&& vma
->vm_file
) {
3371 struct file
*f
= vma
->vm_file
;
3372 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3376 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3379 s
= strrchr(p
, '/');
3382 printk("%s%s[%lx+%lx]", prefix
, p
,
3384 vma
->vm_end
- vma
->vm_start
);
3385 free_page((unsigned long)buf
);
3388 up_read(¤t
->mm
->mmap_sem
);
3391 #ifdef CONFIG_PROVE_LOCKING
3392 void might_fault(void)
3395 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3396 * holding the mmap_sem, this is safe because kernel memory doesn't
3397 * get paged out, therefore we'll never actually fault, and the
3398 * below annotations will generate false positives.
3400 if (segment_eq(get_fs(), KERNEL_DS
))
3405 * it would be nicer only to annotate paths which are not under
3406 * pagefault_disable, however that requires a larger audit and
3407 * providing helpers like get_user_atomic.
3409 if (!in_atomic() && current
->mm
)
3410 might_lock_read(¤t
->mm
->mmap_sem
);
3412 EXPORT_SYMBOL(might_fault
);