siimage: coding style cleanup (take 2)
[linux-ginger.git] / kernel / workqueue.c
blob00ff4d08e370c4ee3e5d23cabb9c86b0e53f7833
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
38 * The per-CPU workqueue (if single thread, we always use the first
39 * possible cpu).
41 struct cpu_workqueue_struct {
43 spinlock_t lock;
45 struct list_head worklist;
46 wait_queue_head_t more_work;
47 struct work_struct *current_work;
49 struct workqueue_struct *wq;
50 struct task_struct *thread;
52 int run_depth; /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
59 struct workqueue_struct {
60 struct cpu_workqueue_struct *cpu_wq;
61 struct list_head list;
62 const char *name;
63 int singlethread;
64 int freezeable; /* Freeze threads during suspend */
65 #ifdef CONFIG_LOCKDEP
66 struct lockdep_map lockdep_map;
67 #endif
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
74 static int singlethread_cpu __read_mostly;
75 static cpumask_t cpu_singlethread_map __read_mostly;
77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79 * which comes in between can't use for_each_online_cpu(). We could
80 * use cpu_possible_map, the cpumask below is more a documentation
81 * than optimization.
83 static cpumask_t cpu_populated_map __read_mostly;
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_single_threaded(struct workqueue_struct *wq)
88 return wq->singlethread;
91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
93 return is_single_threaded(wq)
94 ? &cpu_singlethread_map : &cpu_populated_map;
97 static
98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
100 if (unlikely(is_single_threaded(wq)))
101 cpu = singlethread_cpu;
102 return per_cpu_ptr(wq->cpu_wq, cpu);
106 * Set the workqueue on which a work item is to be run
107 * - Must *only* be called if the pending flag is set
109 static inline void set_wq_data(struct work_struct *work,
110 struct cpu_workqueue_struct *cwq)
112 unsigned long new;
114 BUG_ON(!work_pending(work));
116 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
117 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
118 atomic_long_set(&work->data, new);
121 static inline
122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
124 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
127 static void insert_work(struct cpu_workqueue_struct *cwq,
128 struct work_struct *work, int tail)
130 set_wq_data(work, cwq);
132 * Ensure that we get the right work->data if we see the
133 * result of list_add() below, see try_to_grab_pending().
135 smp_wmb();
136 if (tail)
137 list_add_tail(&work->entry, &cwq->worklist);
138 else
139 list_add(&work->entry, &cwq->worklist);
140 wake_up(&cwq->more_work);
143 /* Preempt must be disabled. */
144 static void __queue_work(struct cpu_workqueue_struct *cwq,
145 struct work_struct *work)
147 unsigned long flags;
149 spin_lock_irqsave(&cwq->lock, flags);
150 insert_work(cwq, work, 1);
151 spin_unlock_irqrestore(&cwq->lock, flags);
155 * queue_work - queue work on a workqueue
156 * @wq: workqueue to use
157 * @work: work to queue
159 * Returns 0 if @work was already on a queue, non-zero otherwise.
161 * We queue the work to the CPU it was submitted, but there is no
162 * guarantee that it will be processed by that CPU.
164 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
166 int ret = 0;
168 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
169 BUG_ON(!list_empty(&work->entry));
170 __queue_work(wq_per_cpu(wq, get_cpu()), work);
171 put_cpu();
172 ret = 1;
174 return ret;
176 EXPORT_SYMBOL_GPL(queue_work);
178 static void delayed_work_timer_fn(unsigned long __data)
180 struct delayed_work *dwork = (struct delayed_work *)__data;
181 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
182 struct workqueue_struct *wq = cwq->wq;
184 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
188 * queue_delayed_work - queue work on a workqueue after delay
189 * @wq: workqueue to use
190 * @dwork: delayable work to queue
191 * @delay: number of jiffies to wait before queueing
193 * Returns 0 if @work was already on a queue, non-zero otherwise.
195 int queue_delayed_work(struct workqueue_struct *wq,
196 struct delayed_work *dwork, unsigned long delay)
198 timer_stats_timer_set_start_info(&dwork->timer);
199 if (delay == 0)
200 return queue_work(wq, &dwork->work);
202 return queue_delayed_work_on(-1, wq, dwork, delay);
204 EXPORT_SYMBOL_GPL(queue_delayed_work);
207 * queue_delayed_work_on - queue work on specific CPU after delay
208 * @cpu: CPU number to execute work on
209 * @wq: workqueue to use
210 * @dwork: work to queue
211 * @delay: number of jiffies to wait before queueing
213 * Returns 0 if @work was already on a queue, non-zero otherwise.
215 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
216 struct delayed_work *dwork, unsigned long delay)
218 int ret = 0;
219 struct timer_list *timer = &dwork->timer;
220 struct work_struct *work = &dwork->work;
222 timer_stats_timer_set_start_info(&dwork->timer);
223 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
224 BUG_ON(timer_pending(timer));
225 BUG_ON(!list_empty(&work->entry));
227 /* This stores cwq for the moment, for the timer_fn */
228 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
229 timer->expires = jiffies + delay;
230 timer->data = (unsigned long)dwork;
231 timer->function = delayed_work_timer_fn;
233 if (unlikely(cpu >= 0))
234 add_timer_on(timer, cpu);
235 else
236 add_timer(timer);
237 ret = 1;
239 return ret;
241 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
243 static void run_workqueue(struct cpu_workqueue_struct *cwq)
245 spin_lock_irq(&cwq->lock);
246 cwq->run_depth++;
247 if (cwq->run_depth > 3) {
248 /* morton gets to eat his hat */
249 printk("%s: recursion depth exceeded: %d\n",
250 __FUNCTION__, cwq->run_depth);
251 dump_stack();
253 while (!list_empty(&cwq->worklist)) {
254 struct work_struct *work = list_entry(cwq->worklist.next,
255 struct work_struct, entry);
256 work_func_t f = work->func;
257 #ifdef CONFIG_LOCKDEP
259 * It is permissible to free the struct work_struct
260 * from inside the function that is called from it,
261 * this we need to take into account for lockdep too.
262 * To avoid bogus "held lock freed" warnings as well
263 * as problems when looking into work->lockdep_map,
264 * make a copy and use that here.
266 struct lockdep_map lockdep_map = work->lockdep_map;
267 #endif
269 cwq->current_work = work;
270 list_del_init(cwq->worklist.next);
271 spin_unlock_irq(&cwq->lock);
273 BUG_ON(get_wq_data(work) != cwq);
274 work_clear_pending(work);
275 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
276 lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
277 f(work);
278 lock_release(&lockdep_map, 1, _THIS_IP_);
279 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
281 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
282 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
283 "%s/0x%08x/%d\n",
284 current->comm, preempt_count(),
285 task_pid_nr(current));
286 printk(KERN_ERR " last function: ");
287 print_symbol("%s\n", (unsigned long)f);
288 debug_show_held_locks(current);
289 dump_stack();
292 spin_lock_irq(&cwq->lock);
293 cwq->current_work = NULL;
295 cwq->run_depth--;
296 spin_unlock_irq(&cwq->lock);
299 static int worker_thread(void *__cwq)
301 struct cpu_workqueue_struct *cwq = __cwq;
302 DEFINE_WAIT(wait);
304 if (cwq->wq->freezeable)
305 set_freezable();
307 set_user_nice(current, -5);
309 for (;;) {
310 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
311 if (!freezing(current) &&
312 !kthread_should_stop() &&
313 list_empty(&cwq->worklist))
314 schedule();
315 finish_wait(&cwq->more_work, &wait);
317 try_to_freeze();
319 if (kthread_should_stop())
320 break;
322 run_workqueue(cwq);
325 return 0;
328 struct wq_barrier {
329 struct work_struct work;
330 struct completion done;
333 static void wq_barrier_func(struct work_struct *work)
335 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
336 complete(&barr->done);
339 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
340 struct wq_barrier *barr, int tail)
342 INIT_WORK(&barr->work, wq_barrier_func);
343 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
345 init_completion(&barr->done);
347 insert_work(cwq, &barr->work, tail);
350 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
352 int active;
354 if (cwq->thread == current) {
356 * Probably keventd trying to flush its own queue. So simply run
357 * it by hand rather than deadlocking.
359 run_workqueue(cwq);
360 active = 1;
361 } else {
362 struct wq_barrier barr;
364 active = 0;
365 spin_lock_irq(&cwq->lock);
366 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
367 insert_wq_barrier(cwq, &barr, 1);
368 active = 1;
370 spin_unlock_irq(&cwq->lock);
372 if (active)
373 wait_for_completion(&barr.done);
376 return active;
380 * flush_workqueue - ensure that any scheduled work has run to completion.
381 * @wq: workqueue to flush
383 * Forces execution of the workqueue and blocks until its completion.
384 * This is typically used in driver shutdown handlers.
386 * We sleep until all works which were queued on entry have been handled,
387 * but we are not livelocked by new incoming ones.
389 * This function used to run the workqueues itself. Now we just wait for the
390 * helper threads to do it.
392 void flush_workqueue(struct workqueue_struct *wq)
394 const cpumask_t *cpu_map = wq_cpu_map(wq);
395 int cpu;
397 might_sleep();
398 lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
399 lock_release(&wq->lockdep_map, 1, _THIS_IP_);
400 for_each_cpu_mask(cpu, *cpu_map)
401 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
403 EXPORT_SYMBOL_GPL(flush_workqueue);
406 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
407 * so this work can't be re-armed in any way.
409 static int try_to_grab_pending(struct work_struct *work)
411 struct cpu_workqueue_struct *cwq;
412 int ret = -1;
414 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
415 return 0;
418 * The queueing is in progress, or it is already queued. Try to
419 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
422 cwq = get_wq_data(work);
423 if (!cwq)
424 return ret;
426 spin_lock_irq(&cwq->lock);
427 if (!list_empty(&work->entry)) {
429 * This work is queued, but perhaps we locked the wrong cwq.
430 * In that case we must see the new value after rmb(), see
431 * insert_work()->wmb().
433 smp_rmb();
434 if (cwq == get_wq_data(work)) {
435 list_del_init(&work->entry);
436 ret = 1;
439 spin_unlock_irq(&cwq->lock);
441 return ret;
444 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
445 struct work_struct *work)
447 struct wq_barrier barr;
448 int running = 0;
450 spin_lock_irq(&cwq->lock);
451 if (unlikely(cwq->current_work == work)) {
452 insert_wq_barrier(cwq, &barr, 0);
453 running = 1;
455 spin_unlock_irq(&cwq->lock);
457 if (unlikely(running))
458 wait_for_completion(&barr.done);
461 static void wait_on_work(struct work_struct *work)
463 struct cpu_workqueue_struct *cwq;
464 struct workqueue_struct *wq;
465 const cpumask_t *cpu_map;
466 int cpu;
468 might_sleep();
470 lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
471 lock_release(&work->lockdep_map, 1, _THIS_IP_);
473 cwq = get_wq_data(work);
474 if (!cwq)
475 return;
477 wq = cwq->wq;
478 cpu_map = wq_cpu_map(wq);
480 for_each_cpu_mask(cpu, *cpu_map)
481 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
484 static int __cancel_work_timer(struct work_struct *work,
485 struct timer_list* timer)
487 int ret;
489 do {
490 ret = (timer && likely(del_timer(timer)));
491 if (!ret)
492 ret = try_to_grab_pending(work);
493 wait_on_work(work);
494 } while (unlikely(ret < 0));
496 work_clear_pending(work);
497 return ret;
501 * cancel_work_sync - block until a work_struct's callback has terminated
502 * @work: the work which is to be flushed
504 * Returns true if @work was pending.
506 * cancel_work_sync() will cancel the work if it is queued. If the work's
507 * callback appears to be running, cancel_work_sync() will block until it
508 * has completed.
510 * It is possible to use this function if the work re-queues itself. It can
511 * cancel the work even if it migrates to another workqueue, however in that
512 * case it only guarantees that work->func() has completed on the last queued
513 * workqueue.
515 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
516 * pending, otherwise it goes into a busy-wait loop until the timer expires.
518 * The caller must ensure that workqueue_struct on which this work was last
519 * queued can't be destroyed before this function returns.
521 int cancel_work_sync(struct work_struct *work)
523 return __cancel_work_timer(work, NULL);
525 EXPORT_SYMBOL_GPL(cancel_work_sync);
528 * cancel_delayed_work_sync - reliably kill off a delayed work.
529 * @dwork: the delayed work struct
531 * Returns true if @dwork was pending.
533 * It is possible to use this function if @dwork rearms itself via queue_work()
534 * or queue_delayed_work(). See also the comment for cancel_work_sync().
536 int cancel_delayed_work_sync(struct delayed_work *dwork)
538 return __cancel_work_timer(&dwork->work, &dwork->timer);
540 EXPORT_SYMBOL(cancel_delayed_work_sync);
542 static struct workqueue_struct *keventd_wq __read_mostly;
545 * schedule_work - put work task in global workqueue
546 * @work: job to be done
548 * This puts a job in the kernel-global workqueue.
550 int schedule_work(struct work_struct *work)
552 return queue_work(keventd_wq, work);
554 EXPORT_SYMBOL(schedule_work);
557 * schedule_delayed_work - put work task in global workqueue after delay
558 * @dwork: job to be done
559 * @delay: number of jiffies to wait or 0 for immediate execution
561 * After waiting for a given time this puts a job in the kernel-global
562 * workqueue.
564 int schedule_delayed_work(struct delayed_work *dwork,
565 unsigned long delay)
567 timer_stats_timer_set_start_info(&dwork->timer);
568 return queue_delayed_work(keventd_wq, dwork, delay);
570 EXPORT_SYMBOL(schedule_delayed_work);
573 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
574 * @cpu: cpu to use
575 * @dwork: job to be done
576 * @delay: number of jiffies to wait
578 * After waiting for a given time this puts a job in the kernel-global
579 * workqueue on the specified CPU.
581 int schedule_delayed_work_on(int cpu,
582 struct delayed_work *dwork, unsigned long delay)
584 timer_stats_timer_set_start_info(&dwork->timer);
585 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
587 EXPORT_SYMBOL(schedule_delayed_work_on);
590 * schedule_on_each_cpu - call a function on each online CPU from keventd
591 * @func: the function to call
593 * Returns zero on success.
594 * Returns -ve errno on failure.
596 * schedule_on_each_cpu() is very slow.
598 int schedule_on_each_cpu(work_func_t func)
600 int cpu;
601 struct work_struct *works;
603 works = alloc_percpu(struct work_struct);
604 if (!works)
605 return -ENOMEM;
607 get_online_cpus();
608 for_each_online_cpu(cpu) {
609 struct work_struct *work = per_cpu_ptr(works, cpu);
611 INIT_WORK(work, func);
612 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
613 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
615 flush_workqueue(keventd_wq);
616 put_online_cpus();
617 free_percpu(works);
618 return 0;
621 void flush_scheduled_work(void)
623 flush_workqueue(keventd_wq);
625 EXPORT_SYMBOL(flush_scheduled_work);
628 * execute_in_process_context - reliably execute the routine with user context
629 * @fn: the function to execute
630 * @ew: guaranteed storage for the execute work structure (must
631 * be available when the work executes)
633 * Executes the function immediately if process context is available,
634 * otherwise schedules the function for delayed execution.
636 * Returns: 0 - function was executed
637 * 1 - function was scheduled for execution
639 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
641 if (!in_interrupt()) {
642 fn(&ew->work);
643 return 0;
646 INIT_WORK(&ew->work, fn);
647 schedule_work(&ew->work);
649 return 1;
651 EXPORT_SYMBOL_GPL(execute_in_process_context);
653 int keventd_up(void)
655 return keventd_wq != NULL;
658 int current_is_keventd(void)
660 struct cpu_workqueue_struct *cwq;
661 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
662 int ret = 0;
664 BUG_ON(!keventd_wq);
666 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
667 if (current == cwq->thread)
668 ret = 1;
670 return ret;
674 static struct cpu_workqueue_struct *
675 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
677 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
679 cwq->wq = wq;
680 spin_lock_init(&cwq->lock);
681 INIT_LIST_HEAD(&cwq->worklist);
682 init_waitqueue_head(&cwq->more_work);
684 return cwq;
687 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
689 struct workqueue_struct *wq = cwq->wq;
690 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
691 struct task_struct *p;
693 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
695 * Nobody can add the work_struct to this cwq,
696 * if (caller is __create_workqueue)
697 * nobody should see this wq
698 * else // caller is CPU_UP_PREPARE
699 * cpu is not on cpu_online_map
700 * so we can abort safely.
702 if (IS_ERR(p))
703 return PTR_ERR(p);
705 cwq->thread = p;
707 return 0;
710 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
712 struct task_struct *p = cwq->thread;
714 if (p != NULL) {
715 if (cpu >= 0)
716 kthread_bind(p, cpu);
717 wake_up_process(p);
721 struct workqueue_struct *__create_workqueue_key(const char *name,
722 int singlethread,
723 int freezeable,
724 struct lock_class_key *key,
725 const char *lock_name)
727 struct workqueue_struct *wq;
728 struct cpu_workqueue_struct *cwq;
729 int err = 0, cpu;
731 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
732 if (!wq)
733 return NULL;
735 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
736 if (!wq->cpu_wq) {
737 kfree(wq);
738 return NULL;
741 wq->name = name;
742 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
743 wq->singlethread = singlethread;
744 wq->freezeable = freezeable;
745 INIT_LIST_HEAD(&wq->list);
747 if (singlethread) {
748 cwq = init_cpu_workqueue(wq, singlethread_cpu);
749 err = create_workqueue_thread(cwq, singlethread_cpu);
750 start_workqueue_thread(cwq, -1);
751 } else {
752 get_online_cpus();
753 spin_lock(&workqueue_lock);
754 list_add(&wq->list, &workqueues);
755 spin_unlock(&workqueue_lock);
757 for_each_possible_cpu(cpu) {
758 cwq = init_cpu_workqueue(wq, cpu);
759 if (err || !cpu_online(cpu))
760 continue;
761 err = create_workqueue_thread(cwq, cpu);
762 start_workqueue_thread(cwq, cpu);
764 put_online_cpus();
767 if (err) {
768 destroy_workqueue(wq);
769 wq = NULL;
771 return wq;
773 EXPORT_SYMBOL_GPL(__create_workqueue_key);
775 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
778 * Our caller is either destroy_workqueue() or CPU_DEAD,
779 * get_online_cpus() protects cwq->thread.
781 if (cwq->thread == NULL)
782 return;
784 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
785 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
787 flush_cpu_workqueue(cwq);
789 * If the caller is CPU_DEAD and cwq->worklist was not empty,
790 * a concurrent flush_workqueue() can insert a barrier after us.
791 * However, in that case run_workqueue() won't return and check
792 * kthread_should_stop() until it flushes all work_struct's.
793 * When ->worklist becomes empty it is safe to exit because no
794 * more work_structs can be queued on this cwq: flush_workqueue
795 * checks list_empty(), and a "normal" queue_work() can't use
796 * a dead CPU.
798 kthread_stop(cwq->thread);
799 cwq->thread = NULL;
803 * destroy_workqueue - safely terminate a workqueue
804 * @wq: target workqueue
806 * Safely destroy a workqueue. All work currently pending will be done first.
808 void destroy_workqueue(struct workqueue_struct *wq)
810 const cpumask_t *cpu_map = wq_cpu_map(wq);
811 struct cpu_workqueue_struct *cwq;
812 int cpu;
814 get_online_cpus();
815 spin_lock(&workqueue_lock);
816 list_del(&wq->list);
817 spin_unlock(&workqueue_lock);
818 put_online_cpus();
820 for_each_cpu_mask(cpu, *cpu_map) {
821 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
822 cleanup_workqueue_thread(cwq, cpu);
825 free_percpu(wq->cpu_wq);
826 kfree(wq);
828 EXPORT_SYMBOL_GPL(destroy_workqueue);
830 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
831 unsigned long action,
832 void *hcpu)
834 unsigned int cpu = (unsigned long)hcpu;
835 struct cpu_workqueue_struct *cwq;
836 struct workqueue_struct *wq;
838 action &= ~CPU_TASKS_FROZEN;
840 switch (action) {
842 case CPU_UP_PREPARE:
843 cpu_set(cpu, cpu_populated_map);
846 list_for_each_entry(wq, &workqueues, list) {
847 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
849 switch (action) {
850 case CPU_UP_PREPARE:
851 if (!create_workqueue_thread(cwq, cpu))
852 break;
853 printk(KERN_ERR "workqueue [%s] for %i failed\n",
854 wq->name, cpu);
855 return NOTIFY_BAD;
857 case CPU_ONLINE:
858 start_workqueue_thread(cwq, cpu);
859 break;
861 case CPU_UP_CANCELED:
862 start_workqueue_thread(cwq, -1);
863 case CPU_DEAD:
864 cleanup_workqueue_thread(cwq, cpu);
865 break;
869 return NOTIFY_OK;
872 void __init init_workqueues(void)
874 cpu_populated_map = cpu_online_map;
875 singlethread_cpu = first_cpu(cpu_possible_map);
876 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
877 hotcpu_notifier(workqueue_cpu_callback, 0);
878 keventd_wq = create_workqueue("events");
879 BUG_ON(!keventd_wq);