OMAP3: SR: Fix SR driver to check for omap-pm return values
[linux-ginger.git] / drivers / staging / android / logger.c
blob6c10b456c6cc5c082c6ceca278672c98538ff0aa
1 /*
2 * drivers/misc/logger.c
4 * A Logging Subsystem
6 * Copyright (C) 2007-2008 Google, Inc.
8 * Robert Love <rlove@google.com>
10 * This software is licensed under the terms of the GNU General Public
11 * License version 2, as published by the Free Software Foundation, and
12 * may be copied, distributed, and modified under those terms.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/module.h>
21 #include <linux/fs.h>
22 #include <linux/miscdevice.h>
23 #include <linux/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/time.h>
26 #include "logger.h"
28 #include <asm/ioctls.h>
31 * struct logger_log - represents a specific log, such as 'main' or 'radio'
33 * This structure lives from module insertion until module removal, so it does
34 * not need additional reference counting. The structure is protected by the
35 * mutex 'mutex'.
37 struct logger_log {
38 unsigned char *buffer;/* the ring buffer itself */
39 struct miscdevice misc; /* misc device representing the log */
40 wait_queue_head_t wq; /* wait queue for readers */
41 struct list_head readers; /* this log's readers */
42 struct mutex mutex; /* mutex protecting buffer */
43 size_t w_off; /* current write head offset */
44 size_t head; /* new readers start here */
45 size_t size; /* size of the log */
49 * struct logger_reader - a logging device open for reading
51 * This object lives from open to release, so we don't need additional
52 * reference counting. The structure is protected by log->mutex.
54 struct logger_reader {
55 struct logger_log *log; /* associated log */
56 struct list_head list; /* entry in logger_log's list */
57 size_t r_off; /* current read head offset */
60 /* logger_offset - returns index 'n' into the log via (optimized) modulus */
61 #define logger_offset(n) ((n) & (log->size - 1))
64 * file_get_log - Given a file structure, return the associated log
66 * This isn't aesthetic. We have several goals:
68 * 1) Need to quickly obtain the associated log during an I/O operation
69 * 2) Readers need to maintain state (logger_reader)
70 * 3) Writers need to be very fast (open() should be a near no-op)
72 * In the reader case, we can trivially go file->logger_reader->logger_log.
73 * For a writer, we don't want to maintain a logger_reader, so we just go
74 * file->logger_log. Thus what file->private_data points at depends on whether
75 * or not the file was opened for reading. This function hides that dirtiness.
77 static inline struct logger_log *file_get_log(struct file *file)
79 if (file->f_mode & FMODE_READ) {
80 struct logger_reader *reader = file->private_data;
81 return reader->log;
82 } else
83 return file->private_data;
87 * get_entry_len - Grabs the length of the payload of the next entry starting
88 * from 'off'.
90 * Caller needs to hold log->mutex.
92 static __u32 get_entry_len(struct logger_log *log, size_t off)
94 __u16 val;
96 switch (log->size - off) {
97 case 1:
98 memcpy(&val, log->buffer + off, 1);
99 memcpy(((char *) &val) + 1, log->buffer, 1);
100 break;
101 default:
102 memcpy(&val, log->buffer + off, 2);
105 return sizeof(struct logger_entry) + val;
109 * do_read_log_to_user - reads exactly 'count' bytes from 'log' into the
110 * user-space buffer 'buf'. Returns 'count' on success.
112 * Caller must hold log->mutex.
114 static ssize_t do_read_log_to_user(struct logger_log *log,
115 struct logger_reader *reader,
116 char __user *buf,
117 size_t count)
119 size_t len;
122 * We read from the log in two disjoint operations. First, we read from
123 * the current read head offset up to 'count' bytes or to the end of
124 * the log, whichever comes first.
126 len = min(count, log->size - reader->r_off);
127 if (copy_to_user(buf, log->buffer + reader->r_off, len))
128 return -EFAULT;
131 * Second, we read any remaining bytes, starting back at the head of
132 * the log.
134 if (count != len)
135 if (copy_to_user(buf + len, log->buffer, count - len))
136 return -EFAULT;
138 reader->r_off = logger_offset(reader->r_off + count);
140 return count;
144 * logger_read - our log's read() method
146 * Behavior:
148 * - O_NONBLOCK works
149 * - If there are no log entries to read, blocks until log is written to
150 * - Atomically reads exactly one log entry
152 * Optimal read size is LOGGER_ENTRY_MAX_LEN. Will set errno to EINVAL if read
153 * buffer is insufficient to hold next entry.
155 static ssize_t logger_read(struct file *file, char __user *buf,
156 size_t count, loff_t *pos)
158 struct logger_reader *reader = file->private_data;
159 struct logger_log *log = reader->log;
160 ssize_t ret;
161 DEFINE_WAIT(wait);
163 start:
164 while (1) {
165 prepare_to_wait(&log->wq, &wait, TASK_INTERRUPTIBLE);
167 mutex_lock(&log->mutex);
168 ret = (log->w_off == reader->r_off);
169 mutex_unlock(&log->mutex);
170 if (!ret)
171 break;
173 if (file->f_flags & O_NONBLOCK) {
174 ret = -EAGAIN;
175 break;
178 if (signal_pending(current)) {
179 ret = -EINTR;
180 break;
183 schedule();
186 finish_wait(&log->wq, &wait);
187 if (ret)
188 return ret;
190 mutex_lock(&log->mutex);
192 /* is there still something to read or did we race? */
193 if (unlikely(log->w_off == reader->r_off)) {
194 mutex_unlock(&log->mutex);
195 goto start;
198 /* get the size of the next entry */
199 ret = get_entry_len(log, reader->r_off);
200 if (count < ret) {
201 ret = -EINVAL;
202 goto out;
205 /* get exactly one entry from the log */
206 ret = do_read_log_to_user(log, reader, buf, ret);
208 out:
209 mutex_unlock(&log->mutex);
211 return ret;
215 * get_next_entry - return the offset of the first valid entry at least 'len'
216 * bytes after 'off'.
218 * Caller must hold log->mutex.
220 static size_t get_next_entry(struct logger_log *log, size_t off, size_t len)
222 size_t count = 0;
224 do {
225 size_t nr = get_entry_len(log, off);
226 off = logger_offset(off + nr);
227 count += nr;
228 } while (count < len);
230 return off;
234 * clock_interval - is a < c < b in mod-space? Put another way, does the line
235 * from a to b cross c?
237 static inline int clock_interval(size_t a, size_t b, size_t c)
239 if (b < a) {
240 if (a < c || b >= c)
241 return 1;
242 } else {
243 if (a < c && b >= c)
244 return 1;
247 return 0;
251 * fix_up_readers - walk the list of all readers and "fix up" any who were
252 * lapped by the writer; also do the same for the default "start head".
253 * We do this by "pulling forward" the readers and start head to the first
254 * entry after the new write head.
256 * The caller needs to hold log->mutex.
258 static void fix_up_readers(struct logger_log *log, size_t len)
260 size_t old = log->w_off;
261 size_t new = logger_offset(old + len);
262 struct logger_reader *reader;
264 if (clock_interval(old, new, log->head))
265 log->head = get_next_entry(log, log->head, len);
267 list_for_each_entry(reader, &log->readers, list)
268 if (clock_interval(old, new, reader->r_off))
269 reader->r_off = get_next_entry(log, reader->r_off, len);
273 * do_write_log - writes 'len' bytes from 'buf' to 'log'
275 * The caller needs to hold log->mutex.
277 static void do_write_log(struct logger_log *log, const void *buf, size_t count)
279 size_t len;
281 len = min(count, log->size - log->w_off);
282 memcpy(log->buffer + log->w_off, buf, len);
284 if (count != len)
285 memcpy(log->buffer, buf + len, count - len);
287 log->w_off = logger_offset(log->w_off + count);
292 * do_write_log_user - writes 'len' bytes from the user-space buffer 'buf' to
293 * the log 'log'
295 * The caller needs to hold log->mutex.
297 * Returns 'count' on success, negative error code on failure.
299 static ssize_t do_write_log_from_user(struct logger_log *log,
300 const void __user *buf, size_t count)
302 size_t len;
304 len = min(count, log->size - log->w_off);
305 if (len && copy_from_user(log->buffer + log->w_off, buf, len))
306 return -EFAULT;
308 if (count != len)
309 if (copy_from_user(log->buffer, buf + len, count - len))
310 return -EFAULT;
312 log->w_off = logger_offset(log->w_off + count);
314 return count;
318 * logger_aio_write - our write method, implementing support for write(),
319 * writev(), and aio_write(). Writes are our fast path, and we try to optimize
320 * them above all else.
322 ssize_t logger_aio_write(struct kiocb *iocb, const struct iovec *iov,
323 unsigned long nr_segs, loff_t ppos)
325 struct logger_log *log = file_get_log(iocb->ki_filp);
326 size_t orig = log->w_off;
327 struct logger_entry header;
328 struct timespec now;
329 ssize_t ret = 0;
331 now = current_kernel_time();
333 header.pid = current->tgid;
334 header.tid = current->pid;
335 header.sec = now.tv_sec;
336 header.nsec = now.tv_nsec;
337 header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD);
339 /* null writes succeed, return zero */
340 if (unlikely(!header.len))
341 return 0;
343 mutex_lock(&log->mutex);
346 * Fix up any readers, pulling them forward to the first readable
347 * entry after (what will be) the new write offset. We do this now
348 * because if we partially fail, we can end up with clobbered log
349 * entries that encroach on readable buffer.
351 fix_up_readers(log, sizeof(struct logger_entry) + header.len);
353 do_write_log(log, &header, sizeof(struct logger_entry));
355 while (nr_segs-- > 0) {
356 size_t len;
357 ssize_t nr;
359 /* figure out how much of this vector we can keep */
360 len = min_t(size_t, iov->iov_len, header.len - ret);
362 /* write out this segment's payload */
363 nr = do_write_log_from_user(log, iov->iov_base, len);
364 if (unlikely(nr < 0)) {
365 log->w_off = orig;
366 mutex_unlock(&log->mutex);
367 return nr;
370 iov++;
371 ret += nr;
374 mutex_unlock(&log->mutex);
376 /* wake up any blocked readers */
377 wake_up_interruptible(&log->wq);
379 return ret;
382 static struct logger_log *get_log_from_minor(int);
385 * logger_open - the log's open() file operation
387 * Note how near a no-op this is in the write-only case. Keep it that way!
389 static int logger_open(struct inode *inode, struct file *file)
391 struct logger_log *log;
392 int ret;
394 ret = nonseekable_open(inode, file);
395 if (ret)
396 return ret;
398 log = get_log_from_minor(MINOR(inode->i_rdev));
399 if (!log)
400 return -ENODEV;
402 if (file->f_mode & FMODE_READ) {
403 struct logger_reader *reader;
405 reader = kmalloc(sizeof(struct logger_reader), GFP_KERNEL);
406 if (!reader)
407 return -ENOMEM;
409 reader->log = log;
410 INIT_LIST_HEAD(&reader->list);
412 mutex_lock(&log->mutex);
413 reader->r_off = log->head;
414 list_add_tail(&reader->list, &log->readers);
415 mutex_unlock(&log->mutex);
417 file->private_data = reader;
418 } else
419 file->private_data = log;
421 return 0;
425 * logger_release - the log's release file operation
427 * Note this is a total no-op in the write-only case. Keep it that way!
429 static int logger_release(struct inode *ignored, struct file *file)
431 if (file->f_mode & FMODE_READ) {
432 struct logger_reader *reader = file->private_data;
433 list_del(&reader->list);
434 kfree(reader);
437 return 0;
441 * logger_poll - the log's poll file operation, for poll/select/epoll
443 * Note we always return POLLOUT, because you can always write() to the log.
444 * Note also that, strictly speaking, a return value of POLLIN does not
445 * guarantee that the log is readable without blocking, as there is a small
446 * chance that the writer can lap the reader in the interim between poll()
447 * returning and the read() request.
449 static unsigned int logger_poll(struct file *file, poll_table *wait)
451 struct logger_reader *reader;
452 struct logger_log *log;
453 unsigned int ret = POLLOUT | POLLWRNORM;
455 if (!(file->f_mode & FMODE_READ))
456 return ret;
458 reader = file->private_data;
459 log = reader->log;
461 poll_wait(file, &log->wq, wait);
463 mutex_lock(&log->mutex);
464 if (log->w_off != reader->r_off)
465 ret |= POLLIN | POLLRDNORM;
466 mutex_unlock(&log->mutex);
468 return ret;
471 static long logger_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
473 struct logger_log *log = file_get_log(file);
474 struct logger_reader *reader;
475 long ret = -ENOTTY;
477 mutex_lock(&log->mutex);
479 switch (cmd) {
480 case LOGGER_GET_LOG_BUF_SIZE:
481 ret = log->size;
482 break;
483 case LOGGER_GET_LOG_LEN:
484 if (!(file->f_mode & FMODE_READ)) {
485 ret = -EBADF;
486 break;
488 reader = file->private_data;
489 if (log->w_off >= reader->r_off)
490 ret = log->w_off - reader->r_off;
491 else
492 ret = (log->size - reader->r_off) + log->w_off;
493 break;
494 case LOGGER_GET_NEXT_ENTRY_LEN:
495 if (!(file->f_mode & FMODE_READ)) {
496 ret = -EBADF;
497 break;
499 reader = file->private_data;
500 if (log->w_off != reader->r_off)
501 ret = get_entry_len(log, reader->r_off);
502 else
503 ret = 0;
504 break;
505 case LOGGER_FLUSH_LOG:
506 if (!(file->f_mode & FMODE_WRITE)) {
507 ret = -EBADF;
508 break;
510 list_for_each_entry(reader, &log->readers, list)
511 reader->r_off = log->w_off;
512 log->head = log->w_off;
513 ret = 0;
514 break;
517 mutex_unlock(&log->mutex);
519 return ret;
522 static const struct file_operations logger_fops = {
523 .owner = THIS_MODULE,
524 .read = logger_read,
525 .aio_write = logger_aio_write,
526 .poll = logger_poll,
527 .unlocked_ioctl = logger_ioctl,
528 .compat_ioctl = logger_ioctl,
529 .open = logger_open,
530 .release = logger_release,
534 * Defines a log structure with name 'NAME' and a size of 'SIZE' bytes, which
535 * must be a power of two, greater than LOGGER_ENTRY_MAX_LEN, and less than
536 * LONG_MAX minus LOGGER_ENTRY_MAX_LEN.
538 #define DEFINE_LOGGER_DEVICE(VAR, NAME, SIZE) \
539 static unsigned char _buf_ ## VAR[SIZE]; \
540 static struct logger_log VAR = { \
541 .buffer = _buf_ ## VAR, \
542 .misc = { \
543 .minor = MISC_DYNAMIC_MINOR, \
544 .name = NAME, \
545 .fops = &logger_fops, \
546 .parent = NULL, \
547 }, \
548 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(VAR .wq), \
549 .readers = LIST_HEAD_INIT(VAR .readers), \
550 .mutex = __MUTEX_INITIALIZER(VAR .mutex), \
551 .w_off = 0, \
552 .head = 0, \
553 .size = SIZE, \
556 DEFINE_LOGGER_DEVICE(log_main, LOGGER_LOG_MAIN, 64*1024)
557 DEFINE_LOGGER_DEVICE(log_events, LOGGER_LOG_EVENTS, 256*1024)
558 DEFINE_LOGGER_DEVICE(log_radio, LOGGER_LOG_RADIO, 64*1024)
560 static struct logger_log *get_log_from_minor(int minor)
562 if (log_main.misc.minor == minor)
563 return &log_main;
564 if (log_events.misc.minor == minor)
565 return &log_events;
566 if (log_radio.misc.minor == minor)
567 return &log_radio;
568 return NULL;
571 static int __init init_log(struct logger_log *log)
573 int ret;
575 ret = misc_register(&log->misc);
576 if (unlikely(ret)) {
577 printk(KERN_ERR "logger: failed to register misc "
578 "device for log '%s'!\n", log->misc.name);
579 return ret;
582 printk(KERN_INFO "logger: created %luK log '%s'\n",
583 (unsigned long) log->size >> 10, log->misc.name);
585 return 0;
588 static int __init logger_init(void)
590 int ret;
592 ret = init_log(&log_main);
593 if (unlikely(ret))
594 goto out;
596 ret = init_log(&log_events);
597 if (unlikely(ret))
598 goto out;
600 ret = init_log(&log_radio);
601 if (unlikely(ret))
602 goto out;
604 out:
605 return ret;
607 device_initcall(logger_init);