ALSA: ASoC: TLV320AIC3X: Modify only interface related bits in aic3x_set_dai_fmt
[linux-ginger.git] / drivers / net / korina.c
blobe18576316bda93050cdd5849da80ef67cd85333a
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Writing to a DMA status register:
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
70 #define DRV_NAME "korina"
71 #define DRV_VERSION "0.10"
72 #define DRV_RELDATE "04Mar2008"
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75 ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
77 ((dev)->dev_addr[3] << 16) | \
78 ((dev)->dev_addr[4] << 8) | \
79 ((dev)->dev_addr[5]))
81 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
85 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
87 #define KORINA_RBSIZE 536 /* size of one resource buffer = Ether MTU */
88 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
89 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
90 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
91 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
93 #define TX_TIMEOUT (6000 * HZ / 1000)
95 enum chain_status { desc_filled, desc_empty };
96 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
97 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
98 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
100 /* Information that need to be kept for each board. */
101 struct korina_private {
102 struct eth_regs *eth_regs;
103 struct dma_reg *rx_dma_regs;
104 struct dma_reg *tx_dma_regs;
105 struct dma_desc *td_ring; /* transmit descriptor ring */
106 struct dma_desc *rd_ring; /* receive descriptor ring */
108 struct sk_buff *tx_skb[KORINA_NUM_TDS];
109 struct sk_buff *rx_skb[KORINA_NUM_RDS];
111 int rx_next_done;
112 int rx_chain_head;
113 int rx_chain_tail;
114 enum chain_status rx_chain_status;
116 int tx_next_done;
117 int tx_chain_head;
118 int tx_chain_tail;
119 enum chain_status tx_chain_status;
120 int tx_count;
121 int tx_full;
123 int rx_irq;
124 int tx_irq;
125 int ovr_irq;
126 int und_irq;
128 spinlock_t lock; /* NIC xmit lock */
130 int dma_halt_cnt;
131 int dma_run_cnt;
132 struct napi_struct napi;
133 struct mii_if_info mii_if;
134 struct net_device *dev;
135 int phy_addr;
138 extern unsigned int idt_cpu_freq;
140 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
142 writel(0, &ch->dmandptr);
143 writel(dma_addr, &ch->dmadptr);
146 static inline void korina_abort_dma(struct net_device *dev,
147 struct dma_reg *ch)
149 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
150 writel(0x10, &ch->dmac);
152 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
153 dev->trans_start = jiffies;
155 writel(0, &ch->dmas);
158 writel(0, &ch->dmadptr);
159 writel(0, &ch->dmandptr);
162 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
164 writel(dma_addr, &ch->dmandptr);
167 static void korina_abort_tx(struct net_device *dev)
169 struct korina_private *lp = netdev_priv(dev);
171 korina_abort_dma(dev, lp->tx_dma_regs);
174 static void korina_abort_rx(struct net_device *dev)
176 struct korina_private *lp = netdev_priv(dev);
178 korina_abort_dma(dev, lp->rx_dma_regs);
181 static void korina_start_rx(struct korina_private *lp,
182 struct dma_desc *rd)
184 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
187 static void korina_chain_rx(struct korina_private *lp,
188 struct dma_desc *rd)
190 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
193 /* transmit packet */
194 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
196 struct korina_private *lp = netdev_priv(dev);
197 unsigned long flags;
198 u32 length;
199 u32 chain_index;
200 struct dma_desc *td;
202 spin_lock_irqsave(&lp->lock, flags);
204 td = &lp->td_ring[lp->tx_chain_tail];
206 /* stop queue when full, drop pkts if queue already full */
207 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
208 lp->tx_full = 1;
210 if (lp->tx_count == (KORINA_NUM_TDS - 2))
211 netif_stop_queue(dev);
212 else {
213 dev->stats.tx_dropped++;
214 dev_kfree_skb_any(skb);
215 spin_unlock_irqrestore(&lp->lock, flags);
217 return NETDEV_TX_BUSY;
221 lp->tx_count++;
223 lp->tx_skb[lp->tx_chain_tail] = skb;
225 length = skb->len;
226 dma_cache_wback((u32)skb->data, skb->len);
228 /* Setup the transmit descriptor. */
229 dma_cache_inv((u32) td, sizeof(*td));
230 td->ca = CPHYSADDR(skb->data);
231 chain_index = (lp->tx_chain_tail - 1) &
232 KORINA_TDS_MASK;
234 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
235 if (lp->tx_chain_status == desc_empty) {
236 /* Update tail */
237 td->control = DMA_COUNT(length) |
238 DMA_DESC_COF | DMA_DESC_IOF;
239 /* Move tail */
240 lp->tx_chain_tail = chain_index;
241 /* Write to NDPTR */
242 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
243 &lp->tx_dma_regs->dmandptr);
244 /* Move head to tail */
245 lp->tx_chain_head = lp->tx_chain_tail;
246 } else {
247 /* Update tail */
248 td->control = DMA_COUNT(length) |
249 DMA_DESC_COF | DMA_DESC_IOF;
250 /* Link to prev */
251 lp->td_ring[chain_index].control &=
252 ~DMA_DESC_COF;
253 /* Link to prev */
254 lp->td_ring[chain_index].link = CPHYSADDR(td);
255 /* Move tail */
256 lp->tx_chain_tail = chain_index;
257 /* Write to NDPTR */
258 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
259 &(lp->tx_dma_regs->dmandptr));
260 /* Move head to tail */
261 lp->tx_chain_head = lp->tx_chain_tail;
262 lp->tx_chain_status = desc_empty;
264 } else {
265 if (lp->tx_chain_status == desc_empty) {
266 /* Update tail */
267 td->control = DMA_COUNT(length) |
268 DMA_DESC_COF | DMA_DESC_IOF;
269 /* Move tail */
270 lp->tx_chain_tail = chain_index;
271 lp->tx_chain_status = desc_filled;
272 netif_stop_queue(dev);
273 } else {
274 /* Update tail */
275 td->control = DMA_COUNT(length) |
276 DMA_DESC_COF | DMA_DESC_IOF;
277 lp->td_ring[chain_index].control &=
278 ~DMA_DESC_COF;
279 lp->td_ring[chain_index].link = CPHYSADDR(td);
280 lp->tx_chain_tail = chain_index;
283 dma_cache_wback((u32) td, sizeof(*td));
285 dev->trans_start = jiffies;
286 spin_unlock_irqrestore(&lp->lock, flags);
288 return NETDEV_TX_OK;
291 static int mdio_read(struct net_device *dev, int mii_id, int reg)
293 struct korina_private *lp = netdev_priv(dev);
294 int ret;
296 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
298 writel(0, &lp->eth_regs->miimcfg);
299 writel(0, &lp->eth_regs->miimcmd);
300 writel(mii_id | reg, &lp->eth_regs->miimaddr);
301 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
303 ret = (int)(readl(&lp->eth_regs->miimrdd));
304 return ret;
307 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
309 struct korina_private *lp = netdev_priv(dev);
311 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
313 writel(0, &lp->eth_regs->miimcfg);
314 writel(1, &lp->eth_regs->miimcmd);
315 writel(mii_id | reg, &lp->eth_regs->miimaddr);
316 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
317 writel(val, &lp->eth_regs->miimwtd);
320 /* Ethernet Rx DMA interrupt */
321 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
323 struct net_device *dev = dev_id;
324 struct korina_private *lp = netdev_priv(dev);
325 u32 dmas, dmasm;
326 irqreturn_t retval;
328 dmas = readl(&lp->rx_dma_regs->dmas);
329 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
330 netif_rx_schedule_prep(dev, &lp->napi);
332 dmasm = readl(&lp->rx_dma_regs->dmasm);
333 writel(dmasm | (DMA_STAT_DONE |
334 DMA_STAT_HALT | DMA_STAT_ERR),
335 &lp->rx_dma_regs->dmasm);
337 if (dmas & DMA_STAT_ERR)
338 printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
340 retval = IRQ_HANDLED;
341 } else
342 retval = IRQ_NONE;
344 return retval;
347 static int korina_rx(struct net_device *dev, int limit)
349 struct korina_private *lp = netdev_priv(dev);
350 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
351 struct sk_buff *skb, *skb_new;
352 u8 *pkt_buf;
353 u32 devcs, pkt_len, dmas, rx_free_desc;
354 int count;
356 dma_cache_inv((u32)rd, sizeof(*rd));
358 for (count = 0; count < limit; count++) {
360 devcs = rd->devcs;
362 /* Update statistics counters */
363 if (devcs & ETH_RX_CRC)
364 dev->stats.rx_crc_errors++;
365 if (devcs & ETH_RX_LOR)
366 dev->stats.rx_length_errors++;
367 if (devcs & ETH_RX_LE)
368 dev->stats.rx_length_errors++;
369 if (devcs & ETH_RX_OVR)
370 dev->stats.rx_over_errors++;
371 if (devcs & ETH_RX_CV)
372 dev->stats.rx_frame_errors++;
373 if (devcs & ETH_RX_CES)
374 dev->stats.rx_length_errors++;
375 if (devcs & ETH_RX_MP)
376 dev->stats.multicast++;
378 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
379 /* check that this is a whole packet
380 * WARNING: DMA_FD bit incorrectly set
381 * in Rc32434 (errata ref #077) */
382 dev->stats.rx_errors++;
383 dev->stats.rx_dropped++;
386 while ((rx_free_desc = KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) != 0) {
387 /* init the var. used for the later
388 * operations within the while loop */
389 skb_new = NULL;
390 pkt_len = RCVPKT_LENGTH(devcs);
391 skb = lp->rx_skb[lp->rx_next_done];
393 if ((devcs & ETH_RX_ROK)) {
394 /* must be the (first and) last
395 * descriptor then */
396 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
398 /* invalidate the cache */
399 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
401 /* Malloc up new buffer. */
402 skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
404 if (!skb_new)
405 break;
406 /* Do not count the CRC */
407 skb_put(skb, pkt_len - 4);
408 skb->protocol = eth_type_trans(skb, dev);
410 /* Pass the packet to upper layers */
411 netif_receive_skb(skb);
412 dev->last_rx = jiffies;
413 dev->stats.rx_packets++;
414 dev->stats.rx_bytes += pkt_len;
416 /* Update the mcast stats */
417 if (devcs & ETH_RX_MP)
418 dev->stats.multicast++;
420 lp->rx_skb[lp->rx_next_done] = skb_new;
423 rd->devcs = 0;
425 /* Restore descriptor's curr_addr */
426 if (skb_new)
427 rd->ca = CPHYSADDR(skb_new->data);
428 else
429 rd->ca = CPHYSADDR(skb->data);
431 rd->control = DMA_COUNT(KORINA_RBSIZE) |
432 DMA_DESC_COD | DMA_DESC_IOD;
433 lp->rd_ring[(lp->rx_next_done - 1) &
434 KORINA_RDS_MASK].control &=
435 ~DMA_DESC_COD;
437 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
438 dma_cache_wback((u32)rd, sizeof(*rd));
439 rd = &lp->rd_ring[lp->rx_next_done];
440 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
444 dmas = readl(&lp->rx_dma_regs->dmas);
446 if (dmas & DMA_STAT_HALT) {
447 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
448 &lp->rx_dma_regs->dmas);
450 lp->dma_halt_cnt++;
451 rd->devcs = 0;
452 skb = lp->rx_skb[lp->rx_next_done];
453 rd->ca = CPHYSADDR(skb->data);
454 dma_cache_wback((u32)rd, sizeof(*rd));
455 korina_chain_rx(lp, rd);
458 return count;
461 static int korina_poll(struct napi_struct *napi, int budget)
463 struct korina_private *lp =
464 container_of(napi, struct korina_private, napi);
465 struct net_device *dev = lp->dev;
466 int work_done;
468 work_done = korina_rx(dev, budget);
469 if (work_done < budget) {
470 netif_rx_complete(dev, napi);
472 writel(readl(&lp->rx_dma_regs->dmasm) &
473 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
474 &lp->rx_dma_regs->dmasm);
476 return work_done;
480 * Set or clear the multicast filter for this adaptor.
482 static void korina_multicast_list(struct net_device *dev)
484 struct korina_private *lp = netdev_priv(dev);
485 unsigned long flags;
486 struct dev_mc_list *dmi = dev->mc_list;
487 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
488 int i;
490 /* Set promiscuous mode */
491 if (dev->flags & IFF_PROMISC)
492 recognise |= ETH_ARC_PRO;
494 else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
495 /* All multicast and broadcast */
496 recognise |= ETH_ARC_AM;
498 /* Build the hash table */
499 if (dev->mc_count > 4) {
500 u16 hash_table[4];
501 u32 crc;
503 for (i = 0; i < 4; i++)
504 hash_table[i] = 0;
506 for (i = 0; i < dev->mc_count; i++) {
507 char *addrs = dmi->dmi_addr;
509 dmi = dmi->next;
511 if (!(*addrs & 1))
512 continue;
514 crc = ether_crc_le(6, addrs);
515 crc >>= 26;
516 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
518 /* Accept filtered multicast */
519 recognise |= ETH_ARC_AFM;
521 /* Fill the MAC hash tables with their values */
522 writel((u32)(hash_table[1] << 16 | hash_table[0]),
523 &lp->eth_regs->ethhash0);
524 writel((u32)(hash_table[3] << 16 | hash_table[2]),
525 &lp->eth_regs->ethhash1);
528 spin_lock_irqsave(&lp->lock, flags);
529 writel(recognise, &lp->eth_regs->etharc);
530 spin_unlock_irqrestore(&lp->lock, flags);
533 static void korina_tx(struct net_device *dev)
535 struct korina_private *lp = netdev_priv(dev);
536 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
537 u32 devcs;
538 u32 dmas;
540 spin_lock(&lp->lock);
542 /* Process all desc that are done */
543 while (IS_DMA_FINISHED(td->control)) {
544 if (lp->tx_full == 1) {
545 netif_wake_queue(dev);
546 lp->tx_full = 0;
549 devcs = lp->td_ring[lp->tx_next_done].devcs;
550 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
551 (ETH_TX_FD | ETH_TX_LD)) {
552 dev->stats.tx_errors++;
553 dev->stats.tx_dropped++;
555 /* Should never happen */
556 printk(KERN_ERR DRV_NAME "%s: split tx ignored\n",
557 dev->name);
558 } else if (devcs & ETH_TX_TOK) {
559 dev->stats.tx_packets++;
560 dev->stats.tx_bytes +=
561 lp->tx_skb[lp->tx_next_done]->len;
562 } else {
563 dev->stats.tx_errors++;
564 dev->stats.tx_dropped++;
566 /* Underflow */
567 if (devcs & ETH_TX_UND)
568 dev->stats.tx_fifo_errors++;
570 /* Oversized frame */
571 if (devcs & ETH_TX_OF)
572 dev->stats.tx_aborted_errors++;
574 /* Excessive deferrals */
575 if (devcs & ETH_TX_ED)
576 dev->stats.tx_carrier_errors++;
578 /* Collisions: medium busy */
579 if (devcs & ETH_TX_EC)
580 dev->stats.collisions++;
582 /* Late collision */
583 if (devcs & ETH_TX_LC)
584 dev->stats.tx_window_errors++;
587 /* We must always free the original skb */
588 if (lp->tx_skb[lp->tx_next_done]) {
589 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
590 lp->tx_skb[lp->tx_next_done] = NULL;
593 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
594 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
595 lp->td_ring[lp->tx_next_done].link = 0;
596 lp->td_ring[lp->tx_next_done].ca = 0;
597 lp->tx_count--;
599 /* Go on to next transmission */
600 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
601 td = &lp->td_ring[lp->tx_next_done];
605 /* Clear the DMA status register */
606 dmas = readl(&lp->tx_dma_regs->dmas);
607 writel(~dmas, &lp->tx_dma_regs->dmas);
609 writel(readl(&lp->tx_dma_regs->dmasm) &
610 ~(DMA_STAT_FINI | DMA_STAT_ERR),
611 &lp->tx_dma_regs->dmasm);
613 spin_unlock(&lp->lock);
616 static irqreturn_t
617 korina_tx_dma_interrupt(int irq, void *dev_id)
619 struct net_device *dev = dev_id;
620 struct korina_private *lp = netdev_priv(dev);
621 u32 dmas, dmasm;
622 irqreturn_t retval;
624 dmas = readl(&lp->tx_dma_regs->dmas);
626 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
627 korina_tx(dev);
629 dmasm = readl(&lp->tx_dma_regs->dmasm);
630 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
631 &lp->tx_dma_regs->dmasm);
633 if (lp->tx_chain_status == desc_filled &&
634 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
635 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
636 &(lp->tx_dma_regs->dmandptr));
637 lp->tx_chain_status = desc_empty;
638 lp->tx_chain_head = lp->tx_chain_tail;
639 dev->trans_start = jiffies;
641 if (dmas & DMA_STAT_ERR)
642 printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
644 retval = IRQ_HANDLED;
645 } else
646 retval = IRQ_NONE;
648 return retval;
652 static void korina_check_media(struct net_device *dev, unsigned int init_media)
654 struct korina_private *lp = netdev_priv(dev);
656 mii_check_media(&lp->mii_if, 0, init_media);
658 if (lp->mii_if.full_duplex)
659 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
660 &lp->eth_regs->ethmac2);
661 else
662 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
663 &lp->eth_regs->ethmac2);
666 static void korina_set_carrier(struct mii_if_info *mii)
668 if (mii->force_media) {
669 /* autoneg is off: Link is always assumed to be up */
670 if (!netif_carrier_ok(mii->dev))
671 netif_carrier_on(mii->dev);
672 } else /* Let MMI library update carrier status */
673 korina_check_media(mii->dev, 0);
676 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
678 struct korina_private *lp = netdev_priv(dev);
679 struct mii_ioctl_data *data = if_mii(rq);
680 int rc;
682 if (!netif_running(dev))
683 return -EINVAL;
684 spin_lock_irq(&lp->lock);
685 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
686 spin_unlock_irq(&lp->lock);
687 korina_set_carrier(&lp->mii_if);
689 return rc;
692 /* ethtool helpers */
693 static void netdev_get_drvinfo(struct net_device *dev,
694 struct ethtool_drvinfo *info)
696 struct korina_private *lp = netdev_priv(dev);
698 strcpy(info->driver, DRV_NAME);
699 strcpy(info->version, DRV_VERSION);
700 strcpy(info->bus_info, lp->dev->name);
703 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
705 struct korina_private *lp = netdev_priv(dev);
706 int rc;
708 spin_lock_irq(&lp->lock);
709 rc = mii_ethtool_gset(&lp->mii_if, cmd);
710 spin_unlock_irq(&lp->lock);
712 return rc;
715 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
717 struct korina_private *lp = netdev_priv(dev);
718 int rc;
720 spin_lock_irq(&lp->lock);
721 rc = mii_ethtool_sset(&lp->mii_if, cmd);
722 spin_unlock_irq(&lp->lock);
723 korina_set_carrier(&lp->mii_if);
725 return rc;
728 static u32 netdev_get_link(struct net_device *dev)
730 struct korina_private *lp = netdev_priv(dev);
732 return mii_link_ok(&lp->mii_if);
735 static struct ethtool_ops netdev_ethtool_ops = {
736 .get_drvinfo = netdev_get_drvinfo,
737 .get_settings = netdev_get_settings,
738 .set_settings = netdev_set_settings,
739 .get_link = netdev_get_link,
742 static void korina_alloc_ring(struct net_device *dev)
744 struct korina_private *lp = netdev_priv(dev);
745 int i;
747 /* Initialize the transmit descriptors */
748 for (i = 0; i < KORINA_NUM_TDS; i++) {
749 lp->td_ring[i].control = DMA_DESC_IOF;
750 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
751 lp->td_ring[i].ca = 0;
752 lp->td_ring[i].link = 0;
754 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
755 lp->tx_full = lp->tx_count = 0;
756 lp->tx_chain_status = desc_empty;
758 /* Initialize the receive descriptors */
759 for (i = 0; i < KORINA_NUM_RDS; i++) {
760 struct sk_buff *skb = lp->rx_skb[i];
762 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
763 if (!skb)
764 break;
765 skb_reserve(skb, 2);
766 lp->rx_skb[i] = skb;
767 lp->rd_ring[i].control = DMA_DESC_IOD |
768 DMA_COUNT(KORINA_RBSIZE);
769 lp->rd_ring[i].devcs = 0;
770 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
771 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
774 /* loop back */
775 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[0]);
776 lp->rx_next_done = 0;
778 lp->rd_ring[i].control |= DMA_DESC_COD;
779 lp->rx_chain_head = 0;
780 lp->rx_chain_tail = 0;
781 lp->rx_chain_status = desc_empty;
784 static void korina_free_ring(struct net_device *dev)
786 struct korina_private *lp = netdev_priv(dev);
787 int i;
789 for (i = 0; i < KORINA_NUM_RDS; i++) {
790 lp->rd_ring[i].control = 0;
791 if (lp->rx_skb[i])
792 dev_kfree_skb_any(lp->rx_skb[i]);
793 lp->rx_skb[i] = NULL;
796 for (i = 0; i < KORINA_NUM_TDS; i++) {
797 lp->td_ring[i].control = 0;
798 if (lp->tx_skb[i])
799 dev_kfree_skb_any(lp->tx_skb[i]);
800 lp->tx_skb[i] = NULL;
805 * Initialize the RC32434 ethernet controller.
807 static int korina_init(struct net_device *dev)
809 struct korina_private *lp = netdev_priv(dev);
811 /* Disable DMA */
812 korina_abort_tx(dev);
813 korina_abort_rx(dev);
815 /* reset ethernet logic */
816 writel(0, &lp->eth_regs->ethintfc);
817 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
818 dev->trans_start = jiffies;
820 /* Enable Ethernet Interface */
821 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
823 /* Allocate rings */
824 korina_alloc_ring(dev);
826 writel(0, &lp->rx_dma_regs->dmas);
827 /* Start Rx DMA */
828 korina_start_rx(lp, &lp->rd_ring[0]);
830 writel(readl(&lp->tx_dma_regs->dmasm) &
831 ~(DMA_STAT_FINI | DMA_STAT_ERR),
832 &lp->tx_dma_regs->dmasm);
833 writel(readl(&lp->rx_dma_regs->dmasm) &
834 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
835 &lp->rx_dma_regs->dmasm);
837 /* Accept only packets destined for this Ethernet device address */
838 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
840 /* Set all Ether station address registers to their initial values */
841 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
842 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
844 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
845 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
847 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
848 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
850 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
851 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
854 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
855 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
856 &lp->eth_regs->ethmac2);
858 /* Back to back inter-packet-gap */
859 writel(0x15, &lp->eth_regs->ethipgt);
860 /* Non - Back to back inter-packet-gap */
861 writel(0x12, &lp->eth_regs->ethipgr);
863 /* Management Clock Prescaler Divisor
864 * Clock independent setting */
865 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
866 &lp->eth_regs->ethmcp);
868 /* don't transmit until fifo contains 48b */
869 writel(48, &lp->eth_regs->ethfifott);
871 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
873 napi_enable(&lp->napi);
874 netif_start_queue(dev);
876 return 0;
880 * Restart the RC32434 ethernet controller.
881 * FIXME: check the return status where we call it
883 static int korina_restart(struct net_device *dev)
885 struct korina_private *lp = netdev_priv(dev);
886 int ret;
889 * Disable interrupts
891 disable_irq(lp->rx_irq);
892 disable_irq(lp->tx_irq);
893 disable_irq(lp->ovr_irq);
894 disable_irq(lp->und_irq);
896 writel(readl(&lp->tx_dma_regs->dmasm) |
897 DMA_STAT_FINI | DMA_STAT_ERR,
898 &lp->tx_dma_regs->dmasm);
899 writel(readl(&lp->rx_dma_regs->dmasm) |
900 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
901 &lp->rx_dma_regs->dmasm);
903 korina_free_ring(dev);
905 ret = korina_init(dev);
906 if (ret < 0) {
907 printk(KERN_ERR DRV_NAME "%s: cannot restart device\n",
908 dev->name);
909 return ret;
911 korina_multicast_list(dev);
913 enable_irq(lp->und_irq);
914 enable_irq(lp->ovr_irq);
915 enable_irq(lp->tx_irq);
916 enable_irq(lp->rx_irq);
918 return ret;
921 static void korina_clear_and_restart(struct net_device *dev, u32 value)
923 struct korina_private *lp = netdev_priv(dev);
925 netif_stop_queue(dev);
926 writel(value, &lp->eth_regs->ethintfc);
927 korina_restart(dev);
930 /* Ethernet Tx Underflow interrupt */
931 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
933 struct net_device *dev = dev_id;
934 struct korina_private *lp = netdev_priv(dev);
935 unsigned int und;
937 spin_lock(&lp->lock);
939 und = readl(&lp->eth_regs->ethintfc);
941 if (und & ETH_INT_FC_UND)
942 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
944 spin_unlock(&lp->lock);
946 return IRQ_HANDLED;
949 static void korina_tx_timeout(struct net_device *dev)
951 struct korina_private *lp = netdev_priv(dev);
952 unsigned long flags;
954 spin_lock_irqsave(&lp->lock, flags);
955 korina_restart(dev);
956 spin_unlock_irqrestore(&lp->lock, flags);
959 /* Ethernet Rx Overflow interrupt */
960 static irqreturn_t
961 korina_ovr_interrupt(int irq, void *dev_id)
963 struct net_device *dev = dev_id;
964 struct korina_private *lp = netdev_priv(dev);
965 unsigned int ovr;
967 spin_lock(&lp->lock);
968 ovr = readl(&lp->eth_regs->ethintfc);
970 if (ovr & ETH_INT_FC_OVR)
971 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
973 spin_unlock(&lp->lock);
975 return IRQ_HANDLED;
978 #ifdef CONFIG_NET_POLL_CONTROLLER
979 static void korina_poll_controller(struct net_device *dev)
981 disable_irq(dev->irq);
982 korina_tx_dma_interrupt(dev->irq, dev);
983 enable_irq(dev->irq);
985 #endif
987 static int korina_open(struct net_device *dev)
989 struct korina_private *lp = netdev_priv(dev);
990 int ret;
992 /* Initialize */
993 ret = korina_init(dev);
994 if (ret < 0) {
995 printk(KERN_ERR DRV_NAME "%s: cannot open device\n", dev->name);
996 goto out;
999 /* Install the interrupt handler
1000 * that handles the Done Finished
1001 * Ovr and Und Events */
1002 ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
1003 IRQF_SHARED | IRQF_DISABLED, "Korina ethernet Rx", dev);
1004 if (ret < 0) {
1005 printk(KERN_ERR DRV_NAME "%s: unable to get Rx DMA IRQ %d\n",
1006 dev->name, lp->rx_irq);
1007 goto err_release;
1009 ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
1010 IRQF_SHARED | IRQF_DISABLED, "Korina ethernet Tx", dev);
1011 if (ret < 0) {
1012 printk(KERN_ERR DRV_NAME "%s: unable to get Tx DMA IRQ %d\n",
1013 dev->name, lp->tx_irq);
1014 goto err_free_rx_irq;
1017 /* Install handler for overrun error. */
1018 ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
1019 IRQF_SHARED | IRQF_DISABLED, "Ethernet Overflow", dev);
1020 if (ret < 0) {
1021 printk(KERN_ERR DRV_NAME"%s: unable to get OVR IRQ %d\n",
1022 dev->name, lp->ovr_irq);
1023 goto err_free_tx_irq;
1026 /* Install handler for underflow error. */
1027 ret = request_irq(lp->und_irq, &korina_und_interrupt,
1028 IRQF_SHARED | IRQF_DISABLED, "Ethernet Underflow", dev);
1029 if (ret < 0) {
1030 printk(KERN_ERR DRV_NAME "%s: unable to get UND IRQ %d\n",
1031 dev->name, lp->und_irq);
1032 goto err_free_ovr_irq;
1034 out:
1035 return ret;
1037 err_free_ovr_irq:
1038 free_irq(lp->ovr_irq, dev);
1039 err_free_tx_irq:
1040 free_irq(lp->tx_irq, dev);
1041 err_free_rx_irq:
1042 free_irq(lp->rx_irq, dev);
1043 err_release:
1044 korina_free_ring(dev);
1045 goto out;
1048 static int korina_close(struct net_device *dev)
1050 struct korina_private *lp = netdev_priv(dev);
1051 u32 tmp;
1053 /* Disable interrupts */
1054 disable_irq(lp->rx_irq);
1055 disable_irq(lp->tx_irq);
1056 disable_irq(lp->ovr_irq);
1057 disable_irq(lp->und_irq);
1059 korina_abort_tx(dev);
1060 tmp = readl(&lp->tx_dma_regs->dmasm);
1061 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1062 writel(tmp, &lp->tx_dma_regs->dmasm);
1064 korina_abort_rx(dev);
1065 tmp = readl(&lp->rx_dma_regs->dmasm);
1066 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1067 writel(tmp, &lp->rx_dma_regs->dmasm);
1069 korina_free_ring(dev);
1071 free_irq(lp->rx_irq, dev);
1072 free_irq(lp->tx_irq, dev);
1073 free_irq(lp->ovr_irq, dev);
1074 free_irq(lp->und_irq, dev);
1076 return 0;
1079 static int korina_probe(struct platform_device *pdev)
1081 struct korina_device *bif = platform_get_drvdata(pdev);
1082 struct korina_private *lp;
1083 struct net_device *dev;
1084 struct resource *r;
1085 int rc;
1087 dev = alloc_etherdev(sizeof(struct korina_private));
1088 if (!dev) {
1089 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1090 return -ENOMEM;
1092 SET_NETDEV_DEV(dev, &pdev->dev);
1093 platform_set_drvdata(pdev, dev);
1094 lp = netdev_priv(dev);
1096 bif->dev = dev;
1097 memcpy(dev->dev_addr, bif->mac, 6);
1099 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1100 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1101 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1102 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1104 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1105 dev->base_addr = r->start;
1106 lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
1107 if (!lp->eth_regs) {
1108 printk(KERN_ERR DRV_NAME "cannot remap registers\n");
1109 rc = -ENXIO;
1110 goto probe_err_out;
1113 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1114 lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1115 if (!lp->rx_dma_regs) {
1116 printk(KERN_ERR DRV_NAME "cannot remap Rx DMA registers\n");
1117 rc = -ENXIO;
1118 goto probe_err_dma_rx;
1121 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1122 lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1123 if (!lp->tx_dma_regs) {
1124 printk(KERN_ERR DRV_NAME "cannot remap Tx DMA registers\n");
1125 rc = -ENXIO;
1126 goto probe_err_dma_tx;
1129 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1130 if (!lp->td_ring) {
1131 printk(KERN_ERR DRV_NAME "cannot allocate descriptors\n");
1132 rc = -ENXIO;
1133 goto probe_err_td_ring;
1136 dma_cache_inv((unsigned long)(lp->td_ring),
1137 TD_RING_SIZE + RD_RING_SIZE);
1139 /* now convert TD_RING pointer to KSEG1 */
1140 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1141 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1143 spin_lock_init(&lp->lock);
1144 /* just use the rx dma irq */
1145 dev->irq = lp->rx_irq;
1146 lp->dev = dev;
1148 dev->open = korina_open;
1149 dev->stop = korina_close;
1150 dev->hard_start_xmit = korina_send_packet;
1151 dev->set_multicast_list = &korina_multicast_list;
1152 dev->ethtool_ops = &netdev_ethtool_ops;
1153 dev->tx_timeout = korina_tx_timeout;
1154 dev->watchdog_timeo = TX_TIMEOUT;
1155 dev->do_ioctl = &korina_ioctl;
1156 #ifdef CONFIG_NET_POLL_CONTROLLER
1157 dev->poll_controller = korina_poll_controller;
1158 #endif
1159 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1161 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1162 lp->mii_if.dev = dev;
1163 lp->mii_if.mdio_read = mdio_read;
1164 lp->mii_if.mdio_write = mdio_write;
1165 lp->mii_if.phy_id = lp->phy_addr;
1166 lp->mii_if.phy_id_mask = 0x1f;
1167 lp->mii_if.reg_num_mask = 0x1f;
1169 rc = register_netdev(dev);
1170 if (rc < 0) {
1171 printk(KERN_ERR DRV_NAME
1172 ": cannot register net device %d\n", rc);
1173 goto probe_err_register;
1175 out:
1176 return rc;
1178 probe_err_register:
1179 kfree(lp->td_ring);
1180 probe_err_td_ring:
1181 iounmap(lp->tx_dma_regs);
1182 probe_err_dma_tx:
1183 iounmap(lp->rx_dma_regs);
1184 probe_err_dma_rx:
1185 iounmap(lp->eth_regs);
1186 probe_err_out:
1187 free_netdev(dev);
1188 goto out;
1191 static int korina_remove(struct platform_device *pdev)
1193 struct korina_device *bif = platform_get_drvdata(pdev);
1194 struct korina_private *lp = netdev_priv(bif->dev);
1196 iounmap(lp->eth_regs);
1197 iounmap(lp->rx_dma_regs);
1198 iounmap(lp->tx_dma_regs);
1200 platform_set_drvdata(pdev, NULL);
1201 unregister_netdev(bif->dev);
1202 free_netdev(bif->dev);
1204 return 0;
1207 static struct platform_driver korina_driver = {
1208 .driver.name = "korina",
1209 .probe = korina_probe,
1210 .remove = korina_remove,
1213 static int __init korina_init_module(void)
1215 return platform_driver_register(&korina_driver);
1218 static void korina_cleanup_module(void)
1220 return platform_driver_unregister(&korina_driver);
1223 module_init(korina_init_module);
1224 module_exit(korina_cleanup_module);
1226 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1227 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1228 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1229 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1230 MODULE_LICENSE("GPL");