ALSA: ASoC: TLV320AIC3X: Modify only interface related bits in aic3x_set_dai_fmt
[linux-ginger.git] / drivers / net / sfc / tx.c
blob5cdd082ab8f6aba562838dada2af5bd9ec214067
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include "net_driver.h"
18 #include "tx.h"
19 #include "efx.h"
20 #include "falcon.h"
21 #include "workarounds.h"
24 * TX descriptor ring full threshold
26 * The tx_queue descriptor ring fill-level must fall below this value
27 * before we restart the netif queue
29 #define EFX_NETDEV_TX_THRESHOLD(_tx_queue) \
30 (_tx_queue->efx->type->txd_ring_mask / 2u)
32 /* We want to be able to nest calls to netif_stop_queue(), since each
33 * channel can have an individual stop on the queue.
35 void efx_stop_queue(struct efx_nic *efx)
37 spin_lock_bh(&efx->netif_stop_lock);
38 EFX_TRACE(efx, "stop TX queue\n");
40 atomic_inc(&efx->netif_stop_count);
41 netif_stop_queue(efx->net_dev);
43 spin_unlock_bh(&efx->netif_stop_lock);
46 /* Wake netif's TX queue
47 * We want to be able to nest calls to netif_stop_queue(), since each
48 * channel can have an individual stop on the queue.
50 inline void efx_wake_queue(struct efx_nic *efx)
52 local_bh_disable();
53 if (atomic_dec_and_lock(&efx->netif_stop_count,
54 &efx->netif_stop_lock)) {
55 EFX_TRACE(efx, "waking TX queue\n");
56 netif_wake_queue(efx->net_dev);
57 spin_unlock(&efx->netif_stop_lock);
59 local_bh_enable();
62 static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63 struct efx_tx_buffer *buffer)
65 if (buffer->unmap_len) {
66 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
67 if (buffer->unmap_single)
68 pci_unmap_single(pci_dev, buffer->unmap_addr,
69 buffer->unmap_len, PCI_DMA_TODEVICE);
70 else
71 pci_unmap_page(pci_dev, buffer->unmap_addr,
72 buffer->unmap_len, PCI_DMA_TODEVICE);
73 buffer->unmap_len = 0;
74 buffer->unmap_single = 0;
77 if (buffer->skb) {
78 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
79 buffer->skb = NULL;
80 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
81 "complete\n", tx_queue->queue, read_ptr);
85 /**
86 * struct efx_tso_header - a DMA mapped buffer for packet headers
87 * @next: Linked list of free ones.
88 * The list is protected by the TX queue lock.
89 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
90 * @dma_addr: The DMA address of the header below.
92 * This controls the memory used for a TSO header. Use TSOH_DATA()
93 * to find the packet header data. Use TSOH_SIZE() to calculate the
94 * total size required for a given packet header length. TSO headers
95 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
97 struct efx_tso_header {
98 union {
99 struct efx_tso_header *next;
100 size_t unmap_len;
102 dma_addr_t dma_addr;
105 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
106 const struct sk_buff *skb);
107 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
108 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
109 struct efx_tso_header *tsoh);
111 static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue,
112 struct efx_tx_buffer *buffer)
114 if (buffer->tsoh) {
115 if (likely(!buffer->tsoh->unmap_len)) {
116 buffer->tsoh->next = tx_queue->tso_headers_free;
117 tx_queue->tso_headers_free = buffer->tsoh;
118 } else {
119 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
121 buffer->tsoh = NULL;
127 * Add a socket buffer to a TX queue
129 * This maps all fragments of a socket buffer for DMA and adds them to
130 * the TX queue. The queue's insert pointer will be incremented by
131 * the number of fragments in the socket buffer.
133 * If any DMA mapping fails, any mapped fragments will be unmapped,
134 * the queue's insert pointer will be restored to its original value.
136 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
137 * You must hold netif_tx_lock() to call this function.
139 static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
140 const struct sk_buff *skb)
142 struct efx_nic *efx = tx_queue->efx;
143 struct pci_dev *pci_dev = efx->pci_dev;
144 struct efx_tx_buffer *buffer;
145 skb_frag_t *fragment;
146 struct page *page;
147 int page_offset;
148 unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
149 dma_addr_t dma_addr, unmap_addr = 0;
150 unsigned int dma_len;
151 unsigned unmap_single;
152 int q_space, i = 0;
153 int rc = NETDEV_TX_OK;
155 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
157 if (skb_shinfo((struct sk_buff *)skb)->gso_size)
158 return efx_enqueue_skb_tso(tx_queue, skb);
160 /* Get size of the initial fragment */
161 len = skb_headlen(skb);
163 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
164 q_space = efx->type->txd_ring_mask - 1 - fill_level;
166 /* Map for DMA. Use pci_map_single rather than pci_map_page
167 * since this is more efficient on machines with sparse
168 * memory.
170 unmap_single = 1;
171 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
173 /* Process all fragments */
174 while (1) {
175 if (unlikely(pci_dma_mapping_error(dma_addr)))
176 goto pci_err;
178 /* Store fields for marking in the per-fragment final
179 * descriptor */
180 unmap_len = len;
181 unmap_addr = dma_addr;
183 /* Add to TX queue, splitting across DMA boundaries */
184 do {
185 if (unlikely(q_space-- <= 0)) {
186 /* It might be that completions have
187 * happened since the xmit path last
188 * checked. Update the xmit path's
189 * copy of read_count.
191 ++tx_queue->stopped;
192 /* This memory barrier protects the
193 * change of stopped from the access
194 * of read_count. */
195 smp_mb();
196 tx_queue->old_read_count =
197 *(volatile unsigned *)
198 &tx_queue->read_count;
199 fill_level = (tx_queue->insert_count
200 - tx_queue->old_read_count);
201 q_space = (efx->type->txd_ring_mask - 1 -
202 fill_level);
203 if (unlikely(q_space-- <= 0))
204 goto stop;
205 smp_mb();
206 --tx_queue->stopped;
209 insert_ptr = (tx_queue->insert_count &
210 efx->type->txd_ring_mask);
211 buffer = &tx_queue->buffer[insert_ptr];
212 efx_tsoh_free(tx_queue, buffer);
213 EFX_BUG_ON_PARANOID(buffer->tsoh);
214 EFX_BUG_ON_PARANOID(buffer->skb);
215 EFX_BUG_ON_PARANOID(buffer->len);
216 EFX_BUG_ON_PARANOID(buffer->continuation != 1);
217 EFX_BUG_ON_PARANOID(buffer->unmap_len);
219 dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
220 if (likely(dma_len > len))
221 dma_len = len;
223 misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
224 if (misalign && dma_len + misalign > 512)
225 dma_len = 512 - misalign;
227 /* Fill out per descriptor fields */
228 buffer->len = dma_len;
229 buffer->dma_addr = dma_addr;
230 len -= dma_len;
231 dma_addr += dma_len;
232 ++tx_queue->insert_count;
233 } while (len);
235 /* Transfer ownership of the unmapping to the final buffer */
236 buffer->unmap_addr = unmap_addr;
237 buffer->unmap_single = unmap_single;
238 buffer->unmap_len = unmap_len;
239 unmap_len = 0;
241 /* Get address and size of next fragment */
242 if (i >= skb_shinfo(skb)->nr_frags)
243 break;
244 fragment = &skb_shinfo(skb)->frags[i];
245 len = fragment->size;
246 page = fragment->page;
247 page_offset = fragment->page_offset;
248 i++;
249 /* Map for DMA */
250 unmap_single = 0;
251 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
252 PCI_DMA_TODEVICE);
255 /* Transfer ownership of the skb to the final buffer */
256 buffer->skb = skb;
257 buffer->continuation = 0;
259 /* Pass off to hardware */
260 falcon_push_buffers(tx_queue);
262 return NETDEV_TX_OK;
264 pci_err:
265 EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
266 "fragments for DMA\n", tx_queue->queue, skb->len,
267 skb_shinfo(skb)->nr_frags + 1);
269 /* Mark the packet as transmitted, and free the SKB ourselves */
270 dev_kfree_skb_any((struct sk_buff *)skb);
271 goto unwind;
273 stop:
274 rc = NETDEV_TX_BUSY;
276 if (tx_queue->stopped == 1)
277 efx_stop_queue(efx);
279 unwind:
280 /* Work backwards until we hit the original insert pointer value */
281 while (tx_queue->insert_count != tx_queue->write_count) {
282 --tx_queue->insert_count;
283 insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
284 buffer = &tx_queue->buffer[insert_ptr];
285 efx_dequeue_buffer(tx_queue, buffer);
286 buffer->len = 0;
289 /* Free the fragment we were mid-way through pushing */
290 if (unmap_len)
291 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
292 PCI_DMA_TODEVICE);
294 return rc;
297 /* Remove packets from the TX queue
299 * This removes packets from the TX queue, up to and including the
300 * specified index.
302 static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303 unsigned int index)
305 struct efx_nic *efx = tx_queue->efx;
306 unsigned int stop_index, read_ptr;
307 unsigned int mask = tx_queue->efx->type->txd_ring_mask;
309 stop_index = (index + 1) & mask;
310 read_ptr = tx_queue->read_count & mask;
312 while (read_ptr != stop_index) {
313 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
314 if (unlikely(buffer->len == 0)) {
315 EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
316 "completion id %x\n", tx_queue->queue,
317 read_ptr);
318 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
319 return;
322 efx_dequeue_buffer(tx_queue, buffer);
323 buffer->continuation = 1;
324 buffer->len = 0;
326 ++tx_queue->read_count;
327 read_ptr = tx_queue->read_count & mask;
331 /* Initiate a packet transmission on the specified TX queue.
332 * Note that returning anything other than NETDEV_TX_OK will cause the
333 * OS to free the skb.
335 * This function is split out from efx_hard_start_xmit to allow the
336 * loopback test to direct packets via specific TX queues. It is
337 * therefore a non-static inline, so as not to penalise performance
338 * for non-loopback transmissions.
340 * Context: netif_tx_lock held
342 inline int efx_xmit(struct efx_nic *efx,
343 struct efx_tx_queue *tx_queue, struct sk_buff *skb)
345 int rc;
347 /* Map fragments for DMA and add to TX queue */
348 rc = efx_enqueue_skb(tx_queue, skb);
349 if (unlikely(rc != NETDEV_TX_OK))
350 goto out;
352 /* Update last TX timer */
353 efx->net_dev->trans_start = jiffies;
355 out:
356 return rc;
359 /* Initiate a packet transmission. We use one channel per CPU
360 * (sharing when we have more CPUs than channels). On Falcon, the TX
361 * completion events will be directed back to the CPU that transmitted
362 * the packet, which should be cache-efficient.
364 * Context: non-blocking.
365 * Note that returning anything other than NETDEV_TX_OK will cause the
366 * OS to free the skb.
368 int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
370 struct efx_nic *efx = net_dev->priv;
371 return efx_xmit(efx, &efx->tx_queue[0], skb);
374 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
376 unsigned fill_level;
377 struct efx_nic *efx = tx_queue->efx;
379 EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);
381 efx_dequeue_buffers(tx_queue, index);
383 /* See if we need to restart the netif queue. This barrier
384 * separates the update of read_count from the test of
385 * stopped. */
386 smp_mb();
387 if (unlikely(tx_queue->stopped)) {
388 fill_level = tx_queue->insert_count - tx_queue->read_count;
389 if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
390 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
392 /* Do this under netif_tx_lock(), to avoid racing
393 * with efx_xmit(). */
394 netif_tx_lock(efx->net_dev);
395 if (tx_queue->stopped) {
396 tx_queue->stopped = 0;
397 efx_wake_queue(efx);
399 netif_tx_unlock(efx->net_dev);
404 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
406 struct efx_nic *efx = tx_queue->efx;
407 unsigned int txq_size;
408 int i, rc;
410 EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
412 /* Allocate software ring */
413 txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
414 tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
415 if (!tx_queue->buffer) {
416 rc = -ENOMEM;
417 goto fail1;
419 for (i = 0; i <= efx->type->txd_ring_mask; ++i)
420 tx_queue->buffer[i].continuation = 1;
422 /* Allocate hardware ring */
423 rc = falcon_probe_tx(tx_queue);
424 if (rc)
425 goto fail2;
427 return 0;
429 fail2:
430 kfree(tx_queue->buffer);
431 tx_queue->buffer = NULL;
432 fail1:
433 tx_queue->used = 0;
435 return rc;
438 int efx_init_tx_queue(struct efx_tx_queue *tx_queue)
440 EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
442 tx_queue->insert_count = 0;
443 tx_queue->write_count = 0;
444 tx_queue->read_count = 0;
445 tx_queue->old_read_count = 0;
446 BUG_ON(tx_queue->stopped);
448 /* Set up TX descriptor ring */
449 return falcon_init_tx(tx_queue);
452 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
454 struct efx_tx_buffer *buffer;
456 if (!tx_queue->buffer)
457 return;
459 /* Free any buffers left in the ring */
460 while (tx_queue->read_count != tx_queue->write_count) {
461 buffer = &tx_queue->buffer[tx_queue->read_count &
462 tx_queue->efx->type->txd_ring_mask];
463 efx_dequeue_buffer(tx_queue, buffer);
464 buffer->continuation = 1;
465 buffer->len = 0;
467 ++tx_queue->read_count;
471 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
473 EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
475 /* Flush TX queue, remove descriptor ring */
476 falcon_fini_tx(tx_queue);
478 efx_release_tx_buffers(tx_queue);
480 /* Free up TSO header cache */
481 efx_fini_tso(tx_queue);
483 /* Release queue's stop on port, if any */
484 if (tx_queue->stopped) {
485 tx_queue->stopped = 0;
486 efx_wake_queue(tx_queue->efx);
490 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
492 EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
493 falcon_remove_tx(tx_queue);
495 kfree(tx_queue->buffer);
496 tx_queue->buffer = NULL;
497 tx_queue->used = 0;
501 /* Efx TCP segmentation acceleration.
503 * Why? Because by doing it here in the driver we can go significantly
504 * faster than the GSO.
506 * Requires TX checksum offload support.
509 /* Number of bytes inserted at the start of a TSO header buffer,
510 * similar to NET_IP_ALIGN.
512 #if defined(__i386__) || defined(__x86_64__)
513 #define TSOH_OFFSET 0
514 #else
515 #define TSOH_OFFSET NET_IP_ALIGN
516 #endif
518 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
520 /* Total size of struct efx_tso_header, buffer and padding */
521 #define TSOH_SIZE(hdr_len) \
522 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
524 /* Size of blocks on free list. Larger blocks must be allocated from
525 * the heap.
527 #define TSOH_STD_SIZE 128
529 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
530 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
531 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
532 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
535 * struct tso_state - TSO state for an SKB
536 * @remaining_len: Bytes of data we've yet to segment
537 * @seqnum: Current sequence number
538 * @packet_space: Remaining space in current packet
539 * @ifc: Input fragment cursor.
540 * Where we are in the current fragment of the incoming SKB. These
541 * values get updated in place when we split a fragment over
542 * multiple packets.
543 * @p: Parameters.
544 * These values are set once at the start of the TSO send and do
545 * not get changed as the routine progresses.
547 * The state used during segmentation. It is put into this data structure
548 * just to make it easy to pass into inline functions.
550 struct tso_state {
551 unsigned remaining_len;
552 unsigned seqnum;
553 unsigned packet_space;
555 struct {
556 /* DMA address of current position */
557 dma_addr_t dma_addr;
558 /* Remaining length */
559 unsigned int len;
560 /* DMA address and length of the whole fragment */
561 unsigned int unmap_len;
562 dma_addr_t unmap_addr;
563 struct page *page;
564 unsigned page_off;
565 } ifc;
567 struct {
568 /* The number of bytes of header */
569 unsigned int header_length;
571 /* The number of bytes to put in each outgoing segment. */
572 int full_packet_size;
574 /* Current IPv4 ID, host endian. */
575 unsigned ipv4_id;
576 } p;
581 * Verify that our various assumptions about sk_buffs and the conditions
582 * under which TSO will be attempted hold true.
584 static inline void efx_tso_check_safe(const struct sk_buff *skb)
586 EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP));
587 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
588 skb->protocol);
589 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
590 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
591 + (tcp_hdr(skb)->doff << 2u)) >
592 skb_headlen(skb));
597 * Allocate a page worth of efx_tso_header structures, and string them
598 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
600 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
603 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
604 struct efx_tso_header *tsoh;
605 dma_addr_t dma_addr;
606 u8 *base_kva, *kva;
608 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
609 if (base_kva == NULL) {
610 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
611 " headers\n");
612 return -ENOMEM;
615 /* pci_alloc_consistent() allocates pages. */
616 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
618 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
619 tsoh = (struct efx_tso_header *)kva;
620 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
621 tsoh->next = tx_queue->tso_headers_free;
622 tx_queue->tso_headers_free = tsoh;
625 return 0;
629 /* Free up a TSO header, and all others in the same page. */
630 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
631 struct efx_tso_header *tsoh,
632 struct pci_dev *pci_dev)
634 struct efx_tso_header **p;
635 unsigned long base_kva;
636 dma_addr_t base_dma;
638 base_kva = (unsigned long)tsoh & PAGE_MASK;
639 base_dma = tsoh->dma_addr & PAGE_MASK;
641 p = &tx_queue->tso_headers_free;
642 while (*p != NULL) {
643 if (((unsigned long)*p & PAGE_MASK) == base_kva)
644 *p = (*p)->next;
645 else
646 p = &(*p)->next;
649 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
652 static struct efx_tso_header *
653 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
655 struct efx_tso_header *tsoh;
657 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
658 if (unlikely(!tsoh))
659 return NULL;
661 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
662 TSOH_BUFFER(tsoh), header_len,
663 PCI_DMA_TODEVICE);
664 if (unlikely(pci_dma_mapping_error(tsoh->dma_addr))) {
665 kfree(tsoh);
666 return NULL;
669 tsoh->unmap_len = header_len;
670 return tsoh;
673 static void
674 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
676 pci_unmap_single(tx_queue->efx->pci_dev,
677 tsoh->dma_addr, tsoh->unmap_len,
678 PCI_DMA_TODEVICE);
679 kfree(tsoh);
683 * efx_tx_queue_insert - push descriptors onto the TX queue
684 * @tx_queue: Efx TX queue
685 * @dma_addr: DMA address of fragment
686 * @len: Length of fragment
687 * @skb: Only non-null for end of last segment
688 * @end_of_packet: True if last fragment in a packet
689 * @unmap_addr: DMA address of fragment for unmapping
690 * @unmap_len: Only set this in last segment of a fragment
692 * Push descriptors onto the TX queue. Return 0 on success or 1 if
693 * @tx_queue full.
695 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
696 dma_addr_t dma_addr, unsigned len,
697 const struct sk_buff *skb, int end_of_packet,
698 dma_addr_t unmap_addr, unsigned unmap_len)
700 struct efx_tx_buffer *buffer;
701 struct efx_nic *efx = tx_queue->efx;
702 unsigned dma_len, fill_level, insert_ptr, misalign;
703 int q_space;
705 EFX_BUG_ON_PARANOID(len <= 0);
707 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
708 /* -1 as there is no way to represent all descriptors used */
709 q_space = efx->type->txd_ring_mask - 1 - fill_level;
711 while (1) {
712 if (unlikely(q_space-- <= 0)) {
713 /* It might be that completions have happened
714 * since the xmit path last checked. Update
715 * the xmit path's copy of read_count.
717 ++tx_queue->stopped;
718 /* This memory barrier protects the change of
719 * stopped from the access of read_count. */
720 smp_mb();
721 tx_queue->old_read_count =
722 *(volatile unsigned *)&tx_queue->read_count;
723 fill_level = (tx_queue->insert_count
724 - tx_queue->old_read_count);
725 q_space = efx->type->txd_ring_mask - 1 - fill_level;
726 if (unlikely(q_space-- <= 0))
727 return 1;
728 smp_mb();
729 --tx_queue->stopped;
732 insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
733 buffer = &tx_queue->buffer[insert_ptr];
734 ++tx_queue->insert_count;
736 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
737 tx_queue->read_count >
738 efx->type->txd_ring_mask);
740 efx_tsoh_free(tx_queue, buffer);
741 EFX_BUG_ON_PARANOID(buffer->len);
742 EFX_BUG_ON_PARANOID(buffer->unmap_len);
743 EFX_BUG_ON_PARANOID(buffer->skb);
744 EFX_BUG_ON_PARANOID(buffer->continuation != 1);
745 EFX_BUG_ON_PARANOID(buffer->tsoh);
747 buffer->dma_addr = dma_addr;
749 /* Ensure we do not cross a boundary unsupported by H/W */
750 dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1;
752 misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
753 if (misalign && dma_len + misalign > 512)
754 dma_len = 512 - misalign;
756 /* If there is enough space to send then do so */
757 if (dma_len >= len)
758 break;
760 buffer->len = dma_len; /* Don't set the other members */
761 dma_addr += dma_len;
762 len -= dma_len;
765 EFX_BUG_ON_PARANOID(!len);
766 buffer->len = len;
767 buffer->skb = skb;
768 buffer->continuation = !end_of_packet;
769 buffer->unmap_addr = unmap_addr;
770 buffer->unmap_len = unmap_len;
771 return 0;
776 * Put a TSO header into the TX queue.
778 * This is special-cased because we know that it is small enough to fit in
779 * a single fragment, and we know it doesn't cross a page boundary. It
780 * also allows us to not worry about end-of-packet etc.
782 static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue,
783 struct efx_tso_header *tsoh, unsigned len)
785 struct efx_tx_buffer *buffer;
787 buffer = &tx_queue->buffer[tx_queue->insert_count &
788 tx_queue->efx->type->txd_ring_mask];
789 efx_tsoh_free(tx_queue, buffer);
790 EFX_BUG_ON_PARANOID(buffer->len);
791 EFX_BUG_ON_PARANOID(buffer->unmap_len);
792 EFX_BUG_ON_PARANOID(buffer->skb);
793 EFX_BUG_ON_PARANOID(buffer->continuation != 1);
794 EFX_BUG_ON_PARANOID(buffer->tsoh);
795 buffer->len = len;
796 buffer->dma_addr = tsoh->dma_addr;
797 buffer->tsoh = tsoh;
799 ++tx_queue->insert_count;
803 /* Remove descriptors put into a tx_queue. */
804 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
806 struct efx_tx_buffer *buffer;
808 /* Work backwards until we hit the original insert pointer value */
809 while (tx_queue->insert_count != tx_queue->write_count) {
810 --tx_queue->insert_count;
811 buffer = &tx_queue->buffer[tx_queue->insert_count &
812 tx_queue->efx->type->txd_ring_mask];
813 efx_tsoh_free(tx_queue, buffer);
814 EFX_BUG_ON_PARANOID(buffer->skb);
815 buffer->len = 0;
816 buffer->continuation = 1;
817 if (buffer->unmap_len) {
818 pci_unmap_page(tx_queue->efx->pci_dev,
819 buffer->unmap_addr,
820 buffer->unmap_len, PCI_DMA_TODEVICE);
821 buffer->unmap_len = 0;
827 /* Parse the SKB header and initialise state. */
828 static inline void tso_start(struct tso_state *st, const struct sk_buff *skb)
830 /* All ethernet/IP/TCP headers combined size is TCP header size
831 * plus offset of TCP header relative to start of packet.
833 st->p.header_length = ((tcp_hdr(skb)->doff << 2u)
834 + PTR_DIFF(tcp_hdr(skb), skb->data));
835 st->p.full_packet_size = (st->p.header_length
836 + skb_shinfo(skb)->gso_size);
838 st->p.ipv4_id = ntohs(ip_hdr(skb)->id);
839 st->seqnum = ntohl(tcp_hdr(skb)->seq);
841 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
842 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
843 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
845 st->packet_space = st->p.full_packet_size;
846 st->remaining_len = skb->len - st->p.header_length;
851 * tso_get_fragment - record fragment details and map for DMA
852 * @st: TSO state
853 * @efx: Efx NIC
854 * @data: Pointer to fragment data
855 * @len: Length of fragment
857 * Record fragment details and map for DMA. Return 0 on success, or
858 * -%ENOMEM if DMA mapping fails.
860 static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
861 int len, struct page *page, int page_off)
864 st->ifc.unmap_addr = pci_map_page(efx->pci_dev, page, page_off,
865 len, PCI_DMA_TODEVICE);
866 if (likely(!pci_dma_mapping_error(st->ifc.unmap_addr))) {
867 st->ifc.unmap_len = len;
868 st->ifc.len = len;
869 st->ifc.dma_addr = st->ifc.unmap_addr;
870 st->ifc.page = page;
871 st->ifc.page_off = page_off;
872 return 0;
874 return -ENOMEM;
879 * tso_fill_packet_with_fragment - form descriptors for the current fragment
880 * @tx_queue: Efx TX queue
881 * @skb: Socket buffer
882 * @st: TSO state
884 * Form descriptors for the current fragment, until we reach the end
885 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
886 * space in @tx_queue.
888 static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
889 const struct sk_buff *skb,
890 struct tso_state *st)
893 int n, end_of_packet, rc;
895 if (st->ifc.len == 0)
896 return 0;
897 if (st->packet_space == 0)
898 return 0;
900 EFX_BUG_ON_PARANOID(st->ifc.len <= 0);
901 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
903 n = min(st->ifc.len, st->packet_space);
905 st->packet_space -= n;
906 st->remaining_len -= n;
907 st->ifc.len -= n;
908 st->ifc.page_off += n;
909 end_of_packet = st->remaining_len == 0 || st->packet_space == 0;
911 rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n,
912 st->remaining_len ? NULL : skb,
913 end_of_packet, st->ifc.unmap_addr,
914 st->ifc.len ? 0 : st->ifc.unmap_len);
916 st->ifc.dma_addr += n;
918 return rc;
923 * tso_start_new_packet - generate a new header and prepare for the new packet
924 * @tx_queue: Efx TX queue
925 * @skb: Socket buffer
926 * @st: TSO state
928 * Generate a new header and prepare for the new packet. Return 0 on
929 * success, or -1 if failed to alloc header.
931 static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue,
932 const struct sk_buff *skb,
933 struct tso_state *st)
935 struct efx_tso_header *tsoh;
936 struct iphdr *tsoh_iph;
937 struct tcphdr *tsoh_th;
938 unsigned ip_length;
939 u8 *header;
941 /* Allocate a DMA-mapped header buffer. */
942 if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) {
943 if (tx_queue->tso_headers_free == NULL) {
944 if (efx_tsoh_block_alloc(tx_queue))
945 return -1;
947 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
948 tsoh = tx_queue->tso_headers_free;
949 tx_queue->tso_headers_free = tsoh->next;
950 tsoh->unmap_len = 0;
951 } else {
952 tx_queue->tso_long_headers++;
953 tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length);
954 if (unlikely(!tsoh))
955 return -1;
958 header = TSOH_BUFFER(tsoh);
959 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
960 tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));
962 /* Copy and update the headers. */
963 memcpy(header, skb->data, st->p.header_length);
965 tsoh_th->seq = htonl(st->seqnum);
966 st->seqnum += skb_shinfo(skb)->gso_size;
967 if (st->remaining_len > skb_shinfo(skb)->gso_size) {
968 /* This packet will not finish the TSO burst. */
969 ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb);
970 tsoh_th->fin = 0;
971 tsoh_th->psh = 0;
972 } else {
973 /* This packet will be the last in the TSO burst. */
974 ip_length = (st->p.header_length - ETH_HDR_LEN(skb)
975 + st->remaining_len);
976 tsoh_th->fin = tcp_hdr(skb)->fin;
977 tsoh_th->psh = tcp_hdr(skb)->psh;
979 tsoh_iph->tot_len = htons(ip_length);
981 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
982 tsoh_iph->id = htons(st->p.ipv4_id);
983 st->p.ipv4_id++;
985 st->packet_space = skb_shinfo(skb)->gso_size;
986 ++tx_queue->tso_packets;
988 /* Form a descriptor for this header. */
989 efx_tso_put_header(tx_queue, tsoh, st->p.header_length);
991 return 0;
996 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
997 * @tx_queue: Efx TX queue
998 * @skb: Socket buffer
1000 * Context: You must hold netif_tx_lock() to call this function.
1002 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1003 * @skb was not enqueued. In all cases @skb is consumed. Return
1004 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1006 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1007 const struct sk_buff *skb)
1009 int frag_i, rc, rc2 = NETDEV_TX_OK;
1010 struct tso_state state;
1011 skb_frag_t *f;
1013 /* Verify TSO is safe - these checks should never fail. */
1014 efx_tso_check_safe(skb);
1016 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1018 tso_start(&state, skb);
1020 /* Assume that skb header area contains exactly the headers, and
1021 * all payload is in the frag list.
1023 if (skb_headlen(skb) == state.p.header_length) {
1024 /* Grab the first payload fragment. */
1025 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1026 frag_i = 0;
1027 f = &skb_shinfo(skb)->frags[frag_i];
1028 rc = tso_get_fragment(&state, tx_queue->efx,
1029 f->size, f->page, f->page_offset);
1030 if (rc)
1031 goto mem_err;
1032 } else {
1033 /* It may look like this code fragment assumes that the
1034 * skb->data portion does not cross a page boundary, but
1035 * that is not the case. It is guaranteed to be direct
1036 * mapped memory, and therefore is physically contiguous,
1037 * and so DMA will work fine. kmap_atomic() on this region
1038 * will just return the direct mapping, so that will work
1039 * too.
1041 int page_off = (unsigned long)skb->data & (PAGE_SIZE - 1);
1042 int hl = state.p.header_length;
1043 rc = tso_get_fragment(&state, tx_queue->efx,
1044 skb_headlen(skb) - hl,
1045 virt_to_page(skb->data), page_off + hl);
1046 if (rc)
1047 goto mem_err;
1048 frag_i = -1;
1051 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1052 goto mem_err;
1054 while (1) {
1055 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1056 if (unlikely(rc))
1057 goto stop;
1059 /* Move onto the next fragment? */
1060 if (state.ifc.len == 0) {
1061 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1062 /* End of payload reached. */
1063 break;
1064 f = &skb_shinfo(skb)->frags[frag_i];
1065 rc = tso_get_fragment(&state, tx_queue->efx,
1066 f->size, f->page, f->page_offset);
1067 if (rc)
1068 goto mem_err;
1071 /* Start at new packet? */
1072 if (state.packet_space == 0 &&
1073 tso_start_new_packet(tx_queue, skb, &state) < 0)
1074 goto mem_err;
1077 /* Pass off to hardware */
1078 falcon_push_buffers(tx_queue);
1080 tx_queue->tso_bursts++;
1081 return NETDEV_TX_OK;
1083 mem_err:
1084 EFX_ERR(tx_queue->efx, "Out of memory for TSO headers, or PCI mapping"
1085 " error\n");
1086 dev_kfree_skb_any((struct sk_buff *)skb);
1087 goto unwind;
1089 stop:
1090 rc2 = NETDEV_TX_BUSY;
1092 /* Stop the queue if it wasn't stopped before. */
1093 if (tx_queue->stopped == 1)
1094 efx_stop_queue(tx_queue->efx);
1096 unwind:
1097 efx_enqueue_unwind(tx_queue);
1098 return rc2;
1103 * Free up all TSO datastructures associated with tx_queue. This
1104 * routine should be called only once the tx_queue is both empty and
1105 * will no longer be used.
1107 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1109 unsigned i;
1111 if (tx_queue->buffer) {
1112 for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i)
1113 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1116 while (tx_queue->tso_headers_free != NULL)
1117 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1118 tx_queue->efx->pci_dev);