2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/spinlock.h>
27 #include <linux/compiler.h>
30 #include <mach/cputype.h>
31 #include <mach/memory.h>
32 #include <mach/hardware.h>
33 #include <mach/irqs.h>
34 #include <mach/edma.h>
38 /* Offsets matching "struct edmacc_param" */
41 #define PARM_A_B_CNT 0x08
43 #define PARM_SRC_DST_BIDX 0x10
44 #define PARM_LINK_BCNTRLD 0x14
45 #define PARM_SRC_DST_CIDX 0x18
46 #define PARM_CCNT 0x1c
48 #define PARM_SIZE 0x20
50 /* Offsets for EDMA CC global channel registers and their shadows */
51 #define SH_ER 0x00 /* 64 bits */
52 #define SH_ECR 0x08 /* 64 bits */
53 #define SH_ESR 0x10 /* 64 bits */
54 #define SH_CER 0x18 /* 64 bits */
55 #define SH_EER 0x20 /* 64 bits */
56 #define SH_EECR 0x28 /* 64 bits */
57 #define SH_EESR 0x30 /* 64 bits */
58 #define SH_SER 0x38 /* 64 bits */
59 #define SH_SECR 0x40 /* 64 bits */
60 #define SH_IER 0x50 /* 64 bits */
61 #define SH_IECR 0x58 /* 64 bits */
62 #define SH_IESR 0x60 /* 64 bits */
63 #define SH_IPR 0x68 /* 64 bits */
64 #define SH_ICR 0x70 /* 64 bits */
74 /* Offsets for EDMA CC global registers */
75 #define EDMA_REV 0x0000
76 #define EDMA_CCCFG 0x0004
77 #define EDMA_QCHMAP 0x0200 /* 8 registers */
78 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
79 #define EDMA_QDMAQNUM 0x0260
80 #define EDMA_QUETCMAP 0x0280
81 #define EDMA_QUEPRI 0x0284
82 #define EDMA_EMR 0x0300 /* 64 bits */
83 #define EDMA_EMCR 0x0308 /* 64 bits */
84 #define EDMA_QEMR 0x0310
85 #define EDMA_QEMCR 0x0314
86 #define EDMA_CCERR 0x0318
87 #define EDMA_CCERRCLR 0x031c
88 #define EDMA_EEVAL 0x0320
89 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
90 #define EDMA_QRAE 0x0380 /* 4 registers */
91 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
92 #define EDMA_QSTAT 0x0600 /* 2 registers */
93 #define EDMA_QWMTHRA 0x0620
94 #define EDMA_QWMTHRB 0x0624
95 #define EDMA_CCSTAT 0x0640
97 #define EDMA_M 0x1000 /* global channel registers */
98 #define EDMA_ECR 0x1008
99 #define EDMA_ECRH 0x100C
100 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
101 #define EDMA_PARM 0x4000 /* 128 param entries */
103 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105 #define EDMA_DCHMAP 0x0100 /* 64 registers */
106 #define CHMAP_EXIST BIT(24)
108 #define EDMA_MAX_DMACH 64
109 #define EDMA_MAX_PARAMENTRY 512
110 #define EDMA_MAX_CC 2
113 /*****************************************************************************/
115 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
117 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
119 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
122 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
124 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
126 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
129 unsigned val
= edma_read(ctlr
, offset
);
132 edma_write(ctlr
, offset
, val
);
134 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
136 unsigned val
= edma_read(ctlr
, offset
);
138 edma_write(ctlr
, offset
, val
);
140 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
142 unsigned val
= edma_read(ctlr
, offset
);
144 edma_write(ctlr
, offset
, val
);
146 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
148 return edma_read(ctlr
, offset
+ (i
<< 2));
150 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
153 edma_write(ctlr
, offset
+ (i
<< 2), val
);
155 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
156 unsigned and, unsigned or)
158 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
160 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
162 edma_or(ctlr
, offset
+ (i
<< 2), or);
164 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
167 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
169 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
172 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
174 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
176 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
178 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
181 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
183 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
185 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
187 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
190 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
192 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
195 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
197 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
200 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
202 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
203 unsigned and, unsigned or)
205 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
207 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
210 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
212 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
215 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
218 /*****************************************************************************/
220 /* actual number of DMA channels and slots on this silicon */
222 /* how many dma resources of each type */
223 unsigned num_channels
;
228 enum dma_event_q default_queue
;
230 /* list of channels with no even trigger; terminated by "-1" */
233 /* The edma_inuse bit for each PaRAM slot is clear unless the
234 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
236 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
238 /* The edma_noevent bit for each channel is clear unless
239 * it doesn't trigger DMA events on this platform. It uses a
240 * bit of SOC-specific initialization code.
242 DECLARE_BITMAP(edma_noevent
, EDMA_MAX_DMACH
);
244 unsigned irq_res_start
;
245 unsigned irq_res_end
;
247 struct dma_interrupt_data
{
248 void (*callback
)(unsigned channel
, unsigned short ch_status
,
251 } intr_data
[EDMA_MAX_DMACH
];
254 static struct edma
*edma_info
[EDMA_MAX_CC
];
256 /* dummy param set used to (re)initialize parameter RAM slots */
257 static const struct edmacc_param dummy_paramset
= {
258 .link_bcntrld
= 0xffff,
262 /*****************************************************************************/
264 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
265 enum dma_event_q queue_no
)
267 int bit
= (ch_no
& 0x7) * 4;
269 /* default to low priority queue */
270 if (queue_no
== EVENTQ_DEFAULT
)
271 queue_no
= edma_info
[ctlr
]->default_queue
;
274 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
275 ~(0x7 << bit
), queue_no
<< bit
);
278 static void __init
map_queue_tc(unsigned ctlr
, int queue_no
, int tc_no
)
280 int bit
= queue_no
* 4;
281 edma_modify(ctlr
, EDMA_QUETCMAP
, ~(0x7 << bit
), ((tc_no
& 0x7) << bit
));
284 static void __init
assign_priority_to_queue(unsigned ctlr
, int queue_no
,
287 int bit
= queue_no
* 4;
288 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
289 ((priority
& 0x7) << bit
));
293 * map_dmach_param - Maps channel number to param entry number
295 * This maps the dma channel number to param entry numberter. In
296 * other words using the DMA channel mapping registers a param entry
297 * can be mapped to any channel
299 * Callers are responsible for ensuring the channel mapping logic is
300 * included in that particular EDMA variant (Eg : dm646x)
303 static void __init
map_dmach_param(unsigned ctlr
)
306 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
307 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
311 setup_dma_interrupt(unsigned lch
,
312 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
317 ctlr
= EDMA_CTLR(lch
);
318 lch
= EDMA_CHAN_SLOT(lch
);
321 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
322 (1 << (lch
& 0x1f)));
325 edma_info
[ctlr
]->intr_data
[lch
].callback
= callback
;
326 edma_info
[ctlr
]->intr_data
[lch
].data
= data
;
329 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
330 (1 << (lch
& 0x1f)));
331 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
332 (1 << (lch
& 0x1f)));
336 static int irq2ctlr(int irq
)
338 if (irq
>= edma_info
[0]->irq_res_start
&&
339 irq
<= edma_info
[0]->irq_res_end
)
341 else if (irq
>= edma_info
[1]->irq_res_start
&&
342 irq
<= edma_info
[1]->irq_res_end
)
348 /******************************************************************************
350 * DMA interrupt handler
352 *****************************************************************************/
353 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
357 unsigned int cnt
= 0;
359 ctlr
= irq2ctlr(irq
);
361 dev_dbg(data
, "dma_irq_handler\n");
363 if ((edma_shadow0_read_array(ctlr
, SH_IPR
, 0) == 0)
364 && (edma_shadow0_read_array(ctlr
, SH_IPR
, 1) == 0))
369 if (edma_shadow0_read_array(ctlr
, SH_IPR
, 0))
371 else if (edma_shadow0_read_array(ctlr
, SH_IPR
, 1))
375 dev_dbg(data
, "IPR%d %08x\n", j
,
376 edma_shadow0_read_array(ctlr
, SH_IPR
, j
));
377 for (i
= 0; i
< 32; i
++) {
378 int k
= (j
<< 5) + i
;
379 if (edma_shadow0_read_array(ctlr
, SH_IPR
, j
) &
381 /* Clear the corresponding IPR bits */
382 edma_shadow0_write_array(ctlr
, SH_ICR
, j
,
384 if (edma_info
[ctlr
]->intr_data
[k
].callback
) {
385 edma_info
[ctlr
]->intr_data
[k
].callback(
387 edma_info
[ctlr
]->intr_data
[k
].
396 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
400 /******************************************************************************
402 * DMA error interrupt handler
404 *****************************************************************************/
405 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
409 unsigned int cnt
= 0;
411 ctlr
= irq2ctlr(irq
);
413 dev_dbg(data
, "dma_ccerr_handler\n");
415 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
416 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
417 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
418 (edma_read(ctlr
, EDMA_CCERR
) == 0))
423 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
425 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
428 dev_dbg(data
, "EMR%d %08x\n", j
,
429 edma_read_array(ctlr
, EDMA_EMR
, j
));
430 for (i
= 0; i
< 32; i
++) {
431 int k
= (j
<< 5) + i
;
432 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
434 /* Clear the corresponding EMR bits */
435 edma_write_array(ctlr
, EDMA_EMCR
, j
,
438 edma_shadow0_write_array(ctlr
, SH_SECR
,
440 if (edma_info
[ctlr
]->intr_data
[k
].
442 edma_info
[ctlr
]->intr_data
[k
].
445 edma_info
[ctlr
]->intr_data
450 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
451 dev_dbg(data
, "QEMR %02x\n",
452 edma_read(ctlr
, EDMA_QEMR
));
453 for (i
= 0; i
< 8; i
++) {
454 if (edma_read(ctlr
, EDMA_QEMR
) & (1 << i
)) {
455 /* Clear the corresponding IPR bits */
456 edma_write(ctlr
, EDMA_QEMCR
, 1 << i
);
457 edma_shadow0_write(ctlr
, SH_QSECR
,
460 /* NOTE: not reported!! */
463 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
464 dev_dbg(data
, "CCERR %08x\n",
465 edma_read(ctlr
, EDMA_CCERR
));
466 /* FIXME: CCERR.BIT(16) ignored! much better
467 * to just write CCERRCLR with CCERR value...
469 for (i
= 0; i
< 8; i
++) {
470 if (edma_read(ctlr
, EDMA_CCERR
) & (1 << i
)) {
471 /* Clear the corresponding IPR bits */
472 edma_write(ctlr
, EDMA_CCERRCLR
, 1 << i
);
474 /* NOTE: not reported!! */
478 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0)
479 && (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0)
480 && (edma_read(ctlr
, EDMA_QEMR
) == 0)
481 && (edma_read(ctlr
, EDMA_CCERR
) == 0)) {
488 edma_write(ctlr
, EDMA_EEVAL
, 1);
492 /******************************************************************************
494 * Transfer controller error interrupt handlers
496 *****************************************************************************/
498 #define tc_errs_handled false /* disabled as long as they're NOPs */
500 static irqreturn_t
dma_tc0err_handler(int irq
, void *data
)
502 dev_dbg(data
, "dma_tc0err_handler\n");
506 static irqreturn_t
dma_tc1err_handler(int irq
, void *data
)
508 dev_dbg(data
, "dma_tc1err_handler\n");
512 static int reserve_contiguous_params(int ctlr
, unsigned int id
,
513 unsigned int num_params
,
514 unsigned int start_param
)
517 unsigned int count
= num_params
;
519 for (i
= start_param
; i
< edma_info
[ctlr
]->num_slots
; ++i
) {
520 j
= EDMA_CHAN_SLOT(i
);
521 if (!test_and_set_bit(j
, edma_info
[ctlr
]->edma_inuse
))
525 else if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
)
532 * We have to clear any bits that we set
533 * if we run out parameter RAMs, i.e we do find a set
534 * of contiguous parameter RAMs but do not find the exact number
535 * requested as we may reach the total number of parameter RAMs
538 for (j
= i
- num_params
+ count
+ 1; j
<= i
; ++j
)
539 clear_bit(j
, edma_info
[ctlr
]->edma_inuse
);
544 for (j
= i
- num_params
+ 1; j
<= i
; ++j
)
545 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
546 &dummy_paramset
, PARM_SIZE
);
548 return EDMA_CTLR_CHAN(ctlr
, i
- num_params
+ 1);
551 /*-----------------------------------------------------------------------*/
553 /* Resource alloc/free: dma channels, parameter RAM slots */
556 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
557 * @channel: specific channel to allocate; negative for "any unmapped channel"
558 * @callback: optional; to be issued on DMA completion or errors
559 * @data: passed to callback
560 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
561 * Controller (TC) executes requests using this channel. Use
562 * EVENTQ_DEFAULT unless you really need a high priority queue.
564 * This allocates a DMA channel and its associated parameter RAM slot.
565 * The parameter RAM is initialized to hold a dummy transfer.
567 * Normal use is to pass a specific channel number as @channel, to make
568 * use of hardware events mapped to that channel. When the channel will
569 * be used only for software triggering or event chaining, channels not
570 * mapped to hardware events (or mapped to unused events) are preferable.
572 * DMA transfers start from a channel using edma_start(), or by
573 * chaining. When the transfer described in that channel's parameter RAM
574 * slot completes, that slot's data may be reloaded through a link.
576 * DMA errors are only reported to the @callback associated with the
577 * channel driving that transfer, but transfer completion callbacks can
578 * be sent to another channel under control of the TCC field in
579 * the option word of the transfer's parameter RAM set. Drivers must not
580 * use DMA transfer completion callbacks for channels they did not allocate.
581 * (The same applies to TCC codes used in transfer chaining.)
583 * Returns the number of the channel, else negative errno.
585 int edma_alloc_channel(int channel
,
586 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
588 enum dma_event_q eventq_no
)
590 unsigned i
, done
, ctlr
= 0;
593 ctlr
= EDMA_CTLR(channel
);
594 channel
= EDMA_CHAN_SLOT(channel
);
598 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
601 channel
= find_next_bit(edma_info
[i
]->
603 edma_info
[i
]->num_channels
,
605 if (channel
== edma_info
[i
]->num_channels
)
607 if (!test_and_set_bit(channel
,
608 edma_info
[i
]->edma_inuse
)) {
618 } else if (channel
>= edma_info
[ctlr
]->num_channels
) {
620 } else if (test_and_set_bit(channel
, edma_info
[ctlr
]->edma_inuse
)) {
624 /* ensure access through shadow region 0 */
625 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, 1 << (channel
& 0x1f));
627 /* ensure no events are pending */
628 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
629 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
630 &dummy_paramset
, PARM_SIZE
);
633 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
636 map_dmach_queue(ctlr
, channel
, eventq_no
);
640 EXPORT_SYMBOL(edma_alloc_channel
);
644 * edma_free_channel - deallocate DMA channel
645 * @channel: dma channel returned from edma_alloc_channel()
647 * This deallocates the DMA channel and associated parameter RAM slot
648 * allocated by edma_alloc_channel().
650 * Callers are responsible for ensuring the channel is inactive, and
651 * will not be reactivated by linking, chaining, or software calls to
654 void edma_free_channel(unsigned channel
)
658 ctlr
= EDMA_CTLR(channel
);
659 channel
= EDMA_CHAN_SLOT(channel
);
661 if (channel
>= edma_info
[ctlr
]->num_channels
)
664 setup_dma_interrupt(channel
, NULL
, NULL
);
665 /* REVISIT should probably take out of shadow region 0 */
667 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
668 &dummy_paramset
, PARM_SIZE
);
669 clear_bit(channel
, edma_info
[ctlr
]->edma_inuse
);
671 EXPORT_SYMBOL(edma_free_channel
);
674 * edma_alloc_slot - allocate DMA parameter RAM
675 * @slot: specific slot to allocate; negative for "any unused slot"
677 * This allocates a parameter RAM slot, initializing it to hold a
678 * dummy transfer. Slots allocated using this routine have not been
679 * mapped to a hardware DMA channel, and will normally be used by
680 * linking to them from a slot associated with a DMA channel.
682 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
683 * slots may be allocated on behalf of DSP firmware.
685 * Returns the number of the slot, else negative errno.
687 int edma_alloc_slot(unsigned ctlr
, int slot
)
690 slot
= EDMA_CHAN_SLOT(slot
);
693 slot
= edma_info
[ctlr
]->num_channels
;
695 slot
= find_next_zero_bit(edma_info
[ctlr
]->edma_inuse
,
696 edma_info
[ctlr
]->num_slots
, slot
);
697 if (slot
== edma_info
[ctlr
]->num_slots
)
699 if (!test_and_set_bit(slot
,
700 edma_info
[ctlr
]->edma_inuse
))
703 } else if (slot
< edma_info
[ctlr
]->num_channels
||
704 slot
>= edma_info
[ctlr
]->num_slots
) {
706 } else if (test_and_set_bit(slot
, edma_info
[ctlr
]->edma_inuse
)) {
710 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
711 &dummy_paramset
, PARM_SIZE
);
713 return EDMA_CTLR_CHAN(ctlr
, slot
);
715 EXPORT_SYMBOL(edma_alloc_slot
);
718 * edma_free_slot - deallocate DMA parameter RAM
719 * @slot: parameter RAM slot returned from edma_alloc_slot()
721 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
722 * Callers are responsible for ensuring the slot is inactive, and will
725 void edma_free_slot(unsigned slot
)
729 ctlr
= EDMA_CTLR(slot
);
730 slot
= EDMA_CHAN_SLOT(slot
);
732 if (slot
< edma_info
[ctlr
]->num_channels
||
733 slot
>= edma_info
[ctlr
]->num_slots
)
736 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
737 &dummy_paramset
, PARM_SIZE
);
738 clear_bit(slot
, edma_info
[ctlr
]->edma_inuse
);
740 EXPORT_SYMBOL(edma_free_slot
);
744 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
745 * The API will return the starting point of a set of
746 * contiguous PARAM's that have been requested
748 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
749 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
750 * @count: number of contiguous Paramter RAM's
751 * @param - the start value of Parameter RAM that should be passed if id
752 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
754 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
755 * contiguous Parameter RAMs from parameter RAM 64 in the case of DaVinci SOCs
756 * and 32 in the case of Primus
758 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
759 * set of contiguous parameter RAMs from the "param" that is passed as an
760 * argument to the API.
762 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
763 * starts looking for a set of contiguous parameter RAMs from the "param"
764 * that is passed as an argument to the API. On failure the API will try to
765 * find a set of contiguous Parameter RAMs in the remaining Parameter RAMs
767 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
770 * The start slot requested should be greater than
771 * the number of channels and lesser than the total number
774 if (slot
< edma_info
[ctlr
]->num_channels
||
775 slot
>= edma_info
[ctlr
]->num_slots
)
779 * The number of parameter RAMs requested cannot be less than 1
780 * and cannot be more than the number of slots minus the number of
783 if (count
< 1 || count
>
784 (edma_info
[ctlr
]->num_slots
- edma_info
[ctlr
]->num_channels
))
788 case EDMA_CONT_PARAMS_ANY
:
789 return reserve_contiguous_params(ctlr
, id
, count
,
790 edma_info
[ctlr
]->num_channels
);
791 case EDMA_CONT_PARAMS_FIXED_EXACT
:
792 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
793 return reserve_contiguous_params(ctlr
, id
, count
, slot
);
799 EXPORT_SYMBOL(edma_alloc_cont_slots
);
802 * edma_free_cont_slots - deallocate DMA parameter RAMs
803 * @slot: first parameter RAM of a set of parameter RAMs to be freed
804 * @count: the number of contiguous parameter RAMs to be freed
806 * This deallocates the parameter RAM slots allocated by
807 * edma_alloc_cont_slots.
808 * Callers/applications need to keep track of sets of contiguous
809 * parameter RAMs that have been allocated using the edma_alloc_cont_slots
811 * Callers are responsible for ensuring the slots are inactive, and will
814 int edma_free_cont_slots(unsigned slot
, int count
)
819 ctlr
= EDMA_CTLR(slot
);
820 slot
= EDMA_CHAN_SLOT(slot
);
822 if (slot
< edma_info
[ctlr
]->num_channels
||
823 slot
>= edma_info
[ctlr
]->num_slots
||
827 for (i
= slot
; i
< slot
+ count
; ++i
) {
829 slot
= EDMA_CHAN_SLOT(i
);
831 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
832 &dummy_paramset
, PARM_SIZE
);
833 clear_bit(slot
, edma_info
[ctlr
]->edma_inuse
);
838 EXPORT_SYMBOL(edma_free_cont_slots
);
840 /*-----------------------------------------------------------------------*/
842 /* Parameter RAM operations (i) -- read/write partial slots */
845 * edma_set_src - set initial DMA source address in parameter RAM slot
846 * @slot: parameter RAM slot being configured
847 * @src_port: physical address of source (memory, controller FIFO, etc)
848 * @addressMode: INCR, except in very rare cases
849 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
850 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
852 * Note that the source address is modified during the DMA transfer
853 * according to edma_set_src_index().
855 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
856 enum address_mode mode
, enum fifo_width width
)
860 ctlr
= EDMA_CTLR(slot
);
861 slot
= EDMA_CHAN_SLOT(slot
);
863 if (slot
< edma_info
[ctlr
]->num_slots
) {
864 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
867 /* set SAM and program FWID */
868 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
873 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
875 /* set the source port address
876 in source register of param structure */
877 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
880 EXPORT_SYMBOL(edma_set_src
);
883 * edma_set_dest - set initial DMA destination address in parameter RAM slot
884 * @slot: parameter RAM slot being configured
885 * @dest_port: physical address of destination (memory, controller FIFO, etc)
886 * @addressMode: INCR, except in very rare cases
887 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
888 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
890 * Note that the destination address is modified during the DMA transfer
891 * according to edma_set_dest_index().
893 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
894 enum address_mode mode
, enum fifo_width width
)
898 ctlr
= EDMA_CTLR(slot
);
899 slot
= EDMA_CHAN_SLOT(slot
);
901 if (slot
< edma_info
[ctlr
]->num_slots
) {
902 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
905 /* set DAM and program FWID */
906 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
911 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
912 /* set the destination port address
913 in dest register of param structure */
914 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
917 EXPORT_SYMBOL(edma_set_dest
);
920 * edma_get_position - returns the current transfer points
921 * @slot: parameter RAM slot being examined
922 * @src: pointer to source port position
923 * @dst: pointer to destination port position
925 * Returns current source and destination addresses for a particular
926 * parameter RAM slot. Its channel should not be active when this is called.
928 void edma_get_position(unsigned slot
, dma_addr_t
*src
, dma_addr_t
*dst
)
930 struct edmacc_param temp
;
933 ctlr
= EDMA_CTLR(slot
);
934 slot
= EDMA_CHAN_SLOT(slot
);
936 edma_read_slot(EDMA_CTLR_CHAN(ctlr
, slot
), &temp
);
942 EXPORT_SYMBOL(edma_get_position
);
945 * edma_set_src_index - configure DMA source address indexing
946 * @slot: parameter RAM slot being configured
947 * @src_bidx: byte offset between source arrays in a frame
948 * @src_cidx: byte offset between source frames in a block
950 * Offsets are specified to support either contiguous or discontiguous
951 * memory transfers, or repeated access to a hardware register, as needed.
952 * When accessing hardware registers, both offsets are normally zero.
954 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
958 ctlr
= EDMA_CTLR(slot
);
959 slot
= EDMA_CHAN_SLOT(slot
);
961 if (slot
< edma_info
[ctlr
]->num_slots
) {
962 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
963 0xffff0000, src_bidx
);
964 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
965 0xffff0000, src_cidx
);
968 EXPORT_SYMBOL(edma_set_src_index
);
971 * edma_set_dest_index - configure DMA destination address indexing
972 * @slot: parameter RAM slot being configured
973 * @dest_bidx: byte offset between destination arrays in a frame
974 * @dest_cidx: byte offset between destination frames in a block
976 * Offsets are specified to support either contiguous or discontiguous
977 * memory transfers, or repeated access to a hardware register, as needed.
978 * When accessing hardware registers, both offsets are normally zero.
980 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
984 ctlr
= EDMA_CTLR(slot
);
985 slot
= EDMA_CHAN_SLOT(slot
);
987 if (slot
< edma_info
[ctlr
]->num_slots
) {
988 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
989 0x0000ffff, dest_bidx
<< 16);
990 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
991 0x0000ffff, dest_cidx
<< 16);
994 EXPORT_SYMBOL(edma_set_dest_index
);
997 * edma_set_transfer_params - configure DMA transfer parameters
998 * @slot: parameter RAM slot being configured
999 * @acnt: how many bytes per array (at least one)
1000 * @bcnt: how many arrays per frame (at least one)
1001 * @ccnt: how many frames per block (at least one)
1002 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1003 * the value to reload into bcnt when it decrements to zero
1004 * @sync_mode: ASYNC or ABSYNC
1006 * See the EDMA3 documentation to understand how to configure and link
1007 * transfers using the fields in PaRAM slots. If you are not doing it
1008 * all at once with edma_write_slot(), you will use this routine
1009 * plus two calls each for source and destination, setting the initial
1010 * address and saying how to index that address.
1012 * An example of an A-Synchronized transfer is a serial link using a
1013 * single word shift register. In that case, @acnt would be equal to
1014 * that word size; the serial controller issues a DMA synchronization
1015 * event to transfer each word, and memory access by the DMA transfer
1016 * controller will be word-at-a-time.
1018 * An example of an AB-Synchronized transfer is a device using a FIFO.
1019 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1020 * The controller with the FIFO issues DMA synchronization events when
1021 * the FIFO threshold is reached, and the DMA transfer controller will
1022 * transfer one frame to (or from) the FIFO. It will probably use
1023 * efficient burst modes to access memory.
1025 void edma_set_transfer_params(unsigned slot
,
1026 u16 acnt
, u16 bcnt
, u16 ccnt
,
1027 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1031 ctlr
= EDMA_CTLR(slot
);
1032 slot
= EDMA_CHAN_SLOT(slot
);
1034 if (slot
< edma_info
[ctlr
]->num_slots
) {
1035 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1036 0x0000ffff, bcnt_rld
<< 16);
1037 if (sync_mode
== ASYNC
)
1038 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1040 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1041 /* Set the acount, bcount, ccount registers */
1042 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1043 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1046 EXPORT_SYMBOL(edma_set_transfer_params
);
1049 * edma_link - link one parameter RAM slot to another
1050 * @from: parameter RAM slot originating the link
1051 * @to: parameter RAM slot which is the link target
1053 * The originating slot should not be part of any active DMA transfer.
1055 void edma_link(unsigned from
, unsigned to
)
1057 unsigned ctlr_from
, ctlr_to
;
1059 ctlr_from
= EDMA_CTLR(from
);
1060 from
= EDMA_CHAN_SLOT(from
);
1061 ctlr_to
= EDMA_CTLR(to
);
1062 to
= EDMA_CHAN_SLOT(to
);
1064 if (from
>= edma_info
[ctlr_from
]->num_slots
)
1066 if (to
>= edma_info
[ctlr_to
]->num_slots
)
1068 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1071 EXPORT_SYMBOL(edma_link
);
1074 * edma_unlink - cut link from one parameter RAM slot
1075 * @from: parameter RAM slot originating the link
1077 * The originating slot should not be part of any active DMA transfer.
1078 * Its link is set to 0xffff.
1080 void edma_unlink(unsigned from
)
1084 ctlr
= EDMA_CTLR(from
);
1085 from
= EDMA_CHAN_SLOT(from
);
1087 if (from
>= edma_info
[ctlr
]->num_slots
)
1089 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1091 EXPORT_SYMBOL(edma_unlink
);
1093 /*-----------------------------------------------------------------------*/
1095 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1098 * edma_write_slot - write parameter RAM data for slot
1099 * @slot: number of parameter RAM slot being modified
1100 * @param: data to be written into parameter RAM slot
1102 * Use this to assign all parameters of a transfer at once. This
1103 * allows more efficient setup of transfers than issuing multiple
1104 * calls to set up those parameters in small pieces, and provides
1105 * complete control over all transfer options.
1107 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1111 ctlr
= EDMA_CTLR(slot
);
1112 slot
= EDMA_CHAN_SLOT(slot
);
1114 if (slot
>= edma_info
[ctlr
]->num_slots
)
1116 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1119 EXPORT_SYMBOL(edma_write_slot
);
1122 * edma_read_slot - read parameter RAM data from slot
1123 * @slot: number of parameter RAM slot being copied
1124 * @param: where to store copy of parameter RAM data
1126 * Use this to read data from a parameter RAM slot, perhaps to
1127 * save them as a template for later reuse.
1129 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1133 ctlr
= EDMA_CTLR(slot
);
1134 slot
= EDMA_CHAN_SLOT(slot
);
1136 if (slot
>= edma_info
[ctlr
]->num_slots
)
1138 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1141 EXPORT_SYMBOL(edma_read_slot
);
1143 /*-----------------------------------------------------------------------*/
1145 /* Various EDMA channel control operations */
1148 * edma_pause - pause dma on a channel
1149 * @channel: on which edma_start() has been called
1151 * This temporarily disables EDMA hardware events on the specified channel,
1152 * preventing them from triggering new transfers on its behalf
1154 void edma_pause(unsigned channel
)
1158 ctlr
= EDMA_CTLR(channel
);
1159 channel
= EDMA_CHAN_SLOT(channel
);
1161 if (channel
< edma_info
[ctlr
]->num_channels
) {
1162 unsigned int mask
= (1 << (channel
& 0x1f));
1164 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1167 EXPORT_SYMBOL(edma_pause
);
1170 * edma_resume - resumes dma on a paused channel
1171 * @channel: on which edma_pause() has been called
1173 * This re-enables EDMA hardware events on the specified channel.
1175 void edma_resume(unsigned channel
)
1179 ctlr
= EDMA_CTLR(channel
);
1180 channel
= EDMA_CHAN_SLOT(channel
);
1182 if (channel
< edma_info
[ctlr
]->num_channels
) {
1183 unsigned int mask
= (1 << (channel
& 0x1f));
1185 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1188 EXPORT_SYMBOL(edma_resume
);
1191 * edma_start - start dma on a channel
1192 * @channel: channel being activated
1194 * Channels with event associations will be triggered by their hardware
1195 * events, and channels without such associations will be triggered by
1196 * software. (At this writing there is no interface for using software
1197 * triggers except with channels that don't support hardware triggers.)
1199 * Returns zero on success, else negative errno.
1201 int edma_start(unsigned channel
)
1205 ctlr
= EDMA_CTLR(channel
);
1206 channel
= EDMA_CHAN_SLOT(channel
);
1208 if (channel
< edma_info
[ctlr
]->num_channels
) {
1209 int j
= channel
>> 5;
1210 unsigned int mask
= (1 << (channel
& 0x1f));
1212 /* EDMA channels without event association */
1213 if (test_bit(channel
, edma_info
[ctlr
]->edma_noevent
)) {
1214 pr_debug("EDMA: ESR%d %08x\n", j
,
1215 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1216 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1220 /* EDMA channel with event association */
1221 pr_debug("EDMA: ER%d %08x\n", j
,
1222 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1223 /* Clear any pending error */
1224 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1226 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1227 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1228 pr_debug("EDMA: EER%d %08x\n", j
,
1229 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1235 EXPORT_SYMBOL(edma_start
);
1238 * edma_stop - stops dma on the channel passed
1239 * @channel: channel being deactivated
1241 * When @lch is a channel, any active transfer is paused and
1242 * all pending hardware events are cleared. The current transfer
1243 * may not be resumed, and the channel's Parameter RAM should be
1244 * reinitialized before being reused.
1246 void edma_stop(unsigned channel
)
1250 ctlr
= EDMA_CTLR(channel
);
1251 channel
= EDMA_CHAN_SLOT(channel
);
1253 if (channel
< edma_info
[ctlr
]->num_channels
) {
1254 int j
= channel
>> 5;
1255 unsigned int mask
= (1 << (channel
& 0x1f));
1257 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1258 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1259 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1260 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1262 pr_debug("EDMA: EER%d %08x\n", j
,
1263 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1265 /* REVISIT: consider guarding against inappropriate event
1266 * chaining by overwriting with dummy_paramset.
1270 EXPORT_SYMBOL(edma_stop
);
1272 /******************************************************************************
1274 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1275 * been removed before EDMA has finished.It is usedful for removable media.
1277 * ch_no - channel no
1279 * Return: zero on success, or corresponding error no on failure
1281 * FIXME this should not be needed ... edma_stop() should suffice.
1283 *****************************************************************************/
1285 void edma_clean_channel(unsigned channel
)
1289 ctlr
= EDMA_CTLR(channel
);
1290 channel
= EDMA_CHAN_SLOT(channel
);
1292 if (channel
< edma_info
[ctlr
]->num_channels
) {
1293 int j
= (channel
>> 5);
1294 unsigned int mask
= 1 << (channel
& 0x1f);
1296 pr_debug("EDMA: EMR%d %08x\n", j
,
1297 edma_read_array(ctlr
, EDMA_EMR
, j
));
1298 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1299 /* Clear the corresponding EMR bits */
1300 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1302 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1303 edma_write(ctlr
, EDMA_CCERRCLR
, (1 << 16) | 0x3);
1306 EXPORT_SYMBOL(edma_clean_channel
);
1309 * edma_clear_event - clear an outstanding event on the DMA channel
1311 * channel - channel number
1313 void edma_clear_event(unsigned channel
)
1317 ctlr
= EDMA_CTLR(channel
);
1318 channel
= EDMA_CHAN_SLOT(channel
);
1320 if (channel
>= edma_info
[ctlr
]->num_channels
)
1323 edma_write(ctlr
, EDMA_ECR
, 1 << channel
);
1325 edma_write(ctlr
, EDMA_ECRH
, 1 << (channel
- 32));
1327 EXPORT_SYMBOL(edma_clear_event
);
1329 /*-----------------------------------------------------------------------*/
1331 static int __init
edma_probe(struct platform_device
*pdev
)
1333 struct edma_soc_info
*info
= pdev
->dev
.platform_data
;
1334 const s8 (*queue_priority_mapping
)[2];
1335 const s8 (*queue_tc_mapping
)[2];
1336 int i
, j
, found
= 0;
1339 int irq
[EDMA_MAX_CC
] = {0, 0};
1340 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1341 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1342 resource_size_t len
[EDMA_MAX_CC
];
1349 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1350 sprintf(res_name
, "edma_cc%d", j
);
1351 r
[j
] = platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1361 len
[j
] = resource_size(r
[j
]);
1363 r
[j
] = request_mem_region(r
[j
]->start
, len
[j
],
1364 dev_name(&pdev
->dev
));
1370 edmacc_regs_base
[j
] = ioremap(r
[j
]->start
, len
[j
]);
1371 if (!edmacc_regs_base
[j
]) {
1376 edma_info
[j
] = kmalloc(sizeof(struct edma
), GFP_KERNEL
);
1377 if (!edma_info
[j
]) {
1381 memset(edma_info
[j
], 0, sizeof(struct edma
));
1383 edma_info
[j
]->num_channels
= min_t(unsigned, info
[j
].n_channel
,
1385 edma_info
[j
]->num_slots
= min_t(unsigned, info
[j
].n_slot
,
1386 EDMA_MAX_PARAMENTRY
);
1387 edma_info
[j
]->num_cc
= min_t(unsigned, info
[j
].n_cc
,
1390 edma_info
[j
]->default_queue
= info
[j
].default_queue
;
1391 if (!edma_info
[j
]->default_queue
)
1392 edma_info
[j
]->default_queue
= EVENTQ_1
;
1394 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1395 edmacc_regs_base
[j
]);
1397 for (i
= 0; i
< edma_info
[j
]->num_slots
; i
++)
1398 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1399 &dummy_paramset
, PARM_SIZE
);
1401 noevent
= info
[j
].noevent
;
1403 while (*noevent
!= -1)
1404 set_bit(*noevent
++, edma_info
[j
]->edma_noevent
);
1407 sprintf(irq_name
, "edma%d", j
);
1408 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1409 edma_info
[j
]->irq_res_start
= irq
[j
];
1410 status
= request_irq(irq
[j
], dma_irq_handler
, 0, "edma",
1413 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1418 sprintf(irq_name
, "edma%d_err", j
);
1419 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1420 edma_info
[j
]->irq_res_end
= err_irq
[j
];
1421 status
= request_irq(err_irq
[j
], dma_ccerr_handler
, 0,
1422 "edma_error", &pdev
->dev
);
1424 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1425 err_irq
[j
], status
);
1429 /* Everything lives on transfer controller 1 until otherwise
1430 * specified. This way, long transfers on the low priority queue
1431 * started by the codec engine will not cause audio defects.
1433 for (i
= 0; i
< edma_info
[j
]->num_channels
; i
++)
1434 map_dmach_queue(j
, i
, EVENTQ_1
);
1436 queue_tc_mapping
= info
[j
].queue_tc_mapping
;
1437 queue_priority_mapping
= info
[j
].queue_priority_mapping
;
1439 /* Event queue to TC mapping */
1440 for (i
= 0; queue_tc_mapping
[i
][0] != -1; i
++)
1441 map_queue_tc(j
, queue_tc_mapping
[i
][0],
1442 queue_tc_mapping
[i
][1]);
1444 /* Event queue priority mapping */
1445 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1446 assign_priority_to_queue(j
,
1447 queue_priority_mapping
[i
][0],
1448 queue_priority_mapping
[i
][1]);
1450 /* Map the channel to param entry if channel mapping logic
1453 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1456 for (i
= 0; i
< info
[j
].n_region
; i
++) {
1457 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1458 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1459 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1463 if (tc_errs_handled
) {
1464 status
= request_irq(IRQ_TCERRINT0
, dma_tc0err_handler
, 0,
1465 "edma_tc0", &pdev
->dev
);
1467 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1468 IRQ_TCERRINT0
, status
);
1471 status
= request_irq(IRQ_TCERRINT
, dma_tc1err_handler
, 0,
1472 "edma_tc1", &pdev
->dev
);
1474 dev_dbg(&pdev
->dev
, "request_irq %d --> %d\n",
1475 IRQ_TCERRINT
, status
);
1483 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1485 free_irq(err_irq
[i
], &pdev
->dev
);
1487 free_irq(irq
[i
], &pdev
->dev
);
1490 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1492 release_mem_region(r
[i
]->start
, len
[i
]);
1493 if (edmacc_regs_base
[i
])
1494 iounmap(edmacc_regs_base
[i
]);
1495 kfree(edma_info
[i
]);
1501 static struct platform_driver edma_driver
= {
1502 .driver
.name
= "edma",
1505 static int __init
edma_init(void)
1507 return platform_driver_probe(&edma_driver
, edma_probe
);
1509 arch_initcall(edma_init
);