OMAP3: SR: Update VDD1/2 voltages at boot
[linux-ginger.git] / arch / arm / mach-davinci / dma.c
blobf2e57d2729583f0c430d02a745e5c4779e6f10e0
1 /*
2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/spinlock.h>
27 #include <linux/compiler.h>
28 #include <linux/io.h>
30 #include <mach/cputype.h>
31 #include <mach/memory.h>
32 #include <mach/hardware.h>
33 #include <mach/irqs.h>
34 #include <mach/edma.h>
35 #include <mach/mux.h>
38 /* Offsets matching "struct edmacc_param" */
39 #define PARM_OPT 0x00
40 #define PARM_SRC 0x04
41 #define PARM_A_B_CNT 0x08
42 #define PARM_DST 0x0c
43 #define PARM_SRC_DST_BIDX 0x10
44 #define PARM_LINK_BCNTRLD 0x14
45 #define PARM_SRC_DST_CIDX 0x18
46 #define PARM_CCNT 0x1c
48 #define PARM_SIZE 0x20
50 /* Offsets for EDMA CC global channel registers and their shadows */
51 #define SH_ER 0x00 /* 64 bits */
52 #define SH_ECR 0x08 /* 64 bits */
53 #define SH_ESR 0x10 /* 64 bits */
54 #define SH_CER 0x18 /* 64 bits */
55 #define SH_EER 0x20 /* 64 bits */
56 #define SH_EECR 0x28 /* 64 bits */
57 #define SH_EESR 0x30 /* 64 bits */
58 #define SH_SER 0x38 /* 64 bits */
59 #define SH_SECR 0x40 /* 64 bits */
60 #define SH_IER 0x50 /* 64 bits */
61 #define SH_IECR 0x58 /* 64 bits */
62 #define SH_IESR 0x60 /* 64 bits */
63 #define SH_IPR 0x68 /* 64 bits */
64 #define SH_ICR 0x70 /* 64 bits */
65 #define SH_IEVAL 0x78
66 #define SH_QER 0x80
67 #define SH_QEER 0x84
68 #define SH_QEECR 0x88
69 #define SH_QEESR 0x8c
70 #define SH_QSER 0x90
71 #define SH_QSECR 0x94
72 #define SH_SIZE 0x200
74 /* Offsets for EDMA CC global registers */
75 #define EDMA_REV 0x0000
76 #define EDMA_CCCFG 0x0004
77 #define EDMA_QCHMAP 0x0200 /* 8 registers */
78 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
79 #define EDMA_QDMAQNUM 0x0260
80 #define EDMA_QUETCMAP 0x0280
81 #define EDMA_QUEPRI 0x0284
82 #define EDMA_EMR 0x0300 /* 64 bits */
83 #define EDMA_EMCR 0x0308 /* 64 bits */
84 #define EDMA_QEMR 0x0310
85 #define EDMA_QEMCR 0x0314
86 #define EDMA_CCERR 0x0318
87 #define EDMA_CCERRCLR 0x031c
88 #define EDMA_EEVAL 0x0320
89 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
90 #define EDMA_QRAE 0x0380 /* 4 registers */
91 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
92 #define EDMA_QSTAT 0x0600 /* 2 registers */
93 #define EDMA_QWMTHRA 0x0620
94 #define EDMA_QWMTHRB 0x0624
95 #define EDMA_CCSTAT 0x0640
97 #define EDMA_M 0x1000 /* global channel registers */
98 #define EDMA_ECR 0x1008
99 #define EDMA_ECRH 0x100C
100 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
101 #define EDMA_PARM 0x4000 /* 128 param entries */
103 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105 #define EDMA_DCHMAP 0x0100 /* 64 registers */
106 #define CHMAP_EXIST BIT(24)
108 #define EDMA_MAX_DMACH 64
109 #define EDMA_MAX_PARAMENTRY 512
110 #define EDMA_MAX_CC 2
113 /*****************************************************************************/
115 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
117 static inline unsigned int edma_read(unsigned ctlr, int offset)
119 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
122 static inline void edma_write(unsigned ctlr, int offset, int val)
124 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
126 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
127 unsigned or)
129 unsigned val = edma_read(ctlr, offset);
130 val &= and;
131 val |= or;
132 edma_write(ctlr, offset, val);
134 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
136 unsigned val = edma_read(ctlr, offset);
137 val &= and;
138 edma_write(ctlr, offset, val);
140 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
142 unsigned val = edma_read(ctlr, offset);
143 val |= or;
144 edma_write(ctlr, offset, val);
146 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
148 return edma_read(ctlr, offset + (i << 2));
150 static inline void edma_write_array(unsigned ctlr, int offset, int i,
151 unsigned val)
153 edma_write(ctlr, offset + (i << 2), val);
155 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
156 unsigned and, unsigned or)
158 edma_modify(ctlr, offset + (i << 2), and, or);
160 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
162 edma_or(ctlr, offset + (i << 2), or);
164 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
165 unsigned or)
167 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
169 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
170 unsigned val)
172 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
174 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
176 return edma_read(ctlr, EDMA_SHADOW0 + offset);
178 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
179 int i)
181 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
183 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
185 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
187 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
188 unsigned val)
190 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
192 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
193 int param_no)
195 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
197 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
198 unsigned val)
200 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
202 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
203 unsigned and, unsigned or)
205 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
207 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
208 unsigned and)
210 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
212 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
213 unsigned or)
215 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
218 /*****************************************************************************/
220 /* actual number of DMA channels and slots on this silicon */
221 struct edma {
222 /* how many dma resources of each type */
223 unsigned num_channels;
224 unsigned num_region;
225 unsigned num_slots;
226 unsigned num_tc;
227 unsigned num_cc;
228 enum dma_event_q default_queue;
230 /* list of channels with no even trigger; terminated by "-1" */
231 const s8 *noevent;
233 /* The edma_inuse bit for each PaRAM slot is clear unless the
234 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
236 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
238 /* The edma_noevent bit for each channel is clear unless
239 * it doesn't trigger DMA events on this platform. It uses a
240 * bit of SOC-specific initialization code.
242 DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
244 unsigned irq_res_start;
245 unsigned irq_res_end;
247 struct dma_interrupt_data {
248 void (*callback)(unsigned channel, unsigned short ch_status,
249 void *data);
250 void *data;
251 } intr_data[EDMA_MAX_DMACH];
254 static struct edma *edma_info[EDMA_MAX_CC];
256 /* dummy param set used to (re)initialize parameter RAM slots */
257 static const struct edmacc_param dummy_paramset = {
258 .link_bcntrld = 0xffff,
259 .ccnt = 1,
262 /*****************************************************************************/
264 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
265 enum dma_event_q queue_no)
267 int bit = (ch_no & 0x7) * 4;
269 /* default to low priority queue */
270 if (queue_no == EVENTQ_DEFAULT)
271 queue_no = edma_info[ctlr]->default_queue;
273 queue_no &= 7;
274 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
275 ~(0x7 << bit), queue_no << bit);
278 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
280 int bit = queue_no * 4;
281 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
284 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
285 int priority)
287 int bit = queue_no * 4;
288 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
289 ((priority & 0x7) << bit));
293 * map_dmach_param - Maps channel number to param entry number
295 * This maps the dma channel number to param entry numberter. In
296 * other words using the DMA channel mapping registers a param entry
297 * can be mapped to any channel
299 * Callers are responsible for ensuring the channel mapping logic is
300 * included in that particular EDMA variant (Eg : dm646x)
303 static void __init map_dmach_param(unsigned ctlr)
305 int i;
306 for (i = 0; i < EDMA_MAX_DMACH; i++)
307 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
310 static inline void
311 setup_dma_interrupt(unsigned lch,
312 void (*callback)(unsigned channel, u16 ch_status, void *data),
313 void *data)
315 unsigned ctlr;
317 ctlr = EDMA_CTLR(lch);
318 lch = EDMA_CHAN_SLOT(lch);
320 if (!callback) {
321 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
322 (1 << (lch & 0x1f)));
325 edma_info[ctlr]->intr_data[lch].callback = callback;
326 edma_info[ctlr]->intr_data[lch].data = data;
328 if (callback) {
329 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
330 (1 << (lch & 0x1f)));
331 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
332 (1 << (lch & 0x1f)));
336 static int irq2ctlr(int irq)
338 if (irq >= edma_info[0]->irq_res_start &&
339 irq <= edma_info[0]->irq_res_end)
340 return 0;
341 else if (irq >= edma_info[1]->irq_res_start &&
342 irq <= edma_info[1]->irq_res_end)
343 return 1;
345 return -1;
348 /******************************************************************************
350 * DMA interrupt handler
352 *****************************************************************************/
353 static irqreturn_t dma_irq_handler(int irq, void *data)
355 int i;
356 unsigned ctlr;
357 unsigned int cnt = 0;
359 ctlr = irq2ctlr(irq);
361 dev_dbg(data, "dma_irq_handler\n");
363 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
364 && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
365 return IRQ_NONE;
367 while (1) {
368 int j;
369 if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
370 j = 0;
371 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
372 j = 1;
373 else
374 break;
375 dev_dbg(data, "IPR%d %08x\n", j,
376 edma_shadow0_read_array(ctlr, SH_IPR, j));
377 for (i = 0; i < 32; i++) {
378 int k = (j << 5) + i;
379 if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
380 (1 << i)) {
381 /* Clear the corresponding IPR bits */
382 edma_shadow0_write_array(ctlr, SH_ICR, j,
383 (1 << i));
384 if (edma_info[ctlr]->intr_data[k].callback) {
385 edma_info[ctlr]->intr_data[k].callback(
386 k, DMA_COMPLETE,
387 edma_info[ctlr]->intr_data[k].
388 data);
392 cnt++;
393 if (cnt > 10)
394 break;
396 edma_shadow0_write(ctlr, SH_IEVAL, 1);
397 return IRQ_HANDLED;
400 /******************************************************************************
402 * DMA error interrupt handler
404 *****************************************************************************/
405 static irqreturn_t dma_ccerr_handler(int irq, void *data)
407 int i;
408 unsigned ctlr;
409 unsigned int cnt = 0;
411 ctlr = irq2ctlr(irq);
413 dev_dbg(data, "dma_ccerr_handler\n");
415 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
416 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
417 (edma_read(ctlr, EDMA_QEMR) == 0) &&
418 (edma_read(ctlr, EDMA_CCERR) == 0))
419 return IRQ_NONE;
421 while (1) {
422 int j = -1;
423 if (edma_read_array(ctlr, EDMA_EMR, 0))
424 j = 0;
425 else if (edma_read_array(ctlr, EDMA_EMR, 1))
426 j = 1;
427 if (j >= 0) {
428 dev_dbg(data, "EMR%d %08x\n", j,
429 edma_read_array(ctlr, EDMA_EMR, j));
430 for (i = 0; i < 32; i++) {
431 int k = (j << 5) + i;
432 if (edma_read_array(ctlr, EDMA_EMR, j) &
433 (1 << i)) {
434 /* Clear the corresponding EMR bits */
435 edma_write_array(ctlr, EDMA_EMCR, j,
436 1 << i);
437 /* Clear any SER */
438 edma_shadow0_write_array(ctlr, SH_SECR,
439 j, (1 << i));
440 if (edma_info[ctlr]->intr_data[k].
441 callback) {
442 edma_info[ctlr]->intr_data[k].
443 callback(k,
444 DMA_CC_ERROR,
445 edma_info[ctlr]->intr_data
446 [k].data);
450 } else if (edma_read(ctlr, EDMA_QEMR)) {
451 dev_dbg(data, "QEMR %02x\n",
452 edma_read(ctlr, EDMA_QEMR));
453 for (i = 0; i < 8; i++) {
454 if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
455 /* Clear the corresponding IPR bits */
456 edma_write(ctlr, EDMA_QEMCR, 1 << i);
457 edma_shadow0_write(ctlr, SH_QSECR,
458 (1 << i));
460 /* NOTE: not reported!! */
463 } else if (edma_read(ctlr, EDMA_CCERR)) {
464 dev_dbg(data, "CCERR %08x\n",
465 edma_read(ctlr, EDMA_CCERR));
466 /* FIXME: CCERR.BIT(16) ignored! much better
467 * to just write CCERRCLR with CCERR value...
469 for (i = 0; i < 8; i++) {
470 if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
471 /* Clear the corresponding IPR bits */
472 edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
474 /* NOTE: not reported!! */
478 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
479 && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
480 && (edma_read(ctlr, EDMA_QEMR) == 0)
481 && (edma_read(ctlr, EDMA_CCERR) == 0)) {
482 break;
484 cnt++;
485 if (cnt > 10)
486 break;
488 edma_write(ctlr, EDMA_EEVAL, 1);
489 return IRQ_HANDLED;
492 /******************************************************************************
494 * Transfer controller error interrupt handlers
496 *****************************************************************************/
498 #define tc_errs_handled false /* disabled as long as they're NOPs */
500 static irqreturn_t dma_tc0err_handler(int irq, void *data)
502 dev_dbg(data, "dma_tc0err_handler\n");
503 return IRQ_HANDLED;
506 static irqreturn_t dma_tc1err_handler(int irq, void *data)
508 dev_dbg(data, "dma_tc1err_handler\n");
509 return IRQ_HANDLED;
512 static int reserve_contiguous_params(int ctlr, unsigned int id,
513 unsigned int num_params,
514 unsigned int start_param)
516 int i, j;
517 unsigned int count = num_params;
519 for (i = start_param; i < edma_info[ctlr]->num_slots; ++i) {
520 j = EDMA_CHAN_SLOT(i);
521 if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse))
522 count--;
523 if (count == 0)
524 break;
525 else if (id == EDMA_CONT_PARAMS_FIXED_EXACT)
526 break;
527 else
528 count = num_params;
532 * We have to clear any bits that we set
533 * if we run out parameter RAMs, i.e we do find a set
534 * of contiguous parameter RAMs but do not find the exact number
535 * requested as we may reach the total number of parameter RAMs
537 if (count) {
538 for (j = i - num_params + count + 1; j <= i ; ++j)
539 clear_bit(j, edma_info[ctlr]->edma_inuse);
541 return -EBUSY;
544 for (j = i - num_params + 1; j <= i; ++j)
545 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
546 &dummy_paramset, PARM_SIZE);
548 return EDMA_CTLR_CHAN(ctlr, i - num_params + 1);
551 /*-----------------------------------------------------------------------*/
553 /* Resource alloc/free: dma channels, parameter RAM slots */
556 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
557 * @channel: specific channel to allocate; negative for "any unmapped channel"
558 * @callback: optional; to be issued on DMA completion or errors
559 * @data: passed to callback
560 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
561 * Controller (TC) executes requests using this channel. Use
562 * EVENTQ_DEFAULT unless you really need a high priority queue.
564 * This allocates a DMA channel and its associated parameter RAM slot.
565 * The parameter RAM is initialized to hold a dummy transfer.
567 * Normal use is to pass a specific channel number as @channel, to make
568 * use of hardware events mapped to that channel. When the channel will
569 * be used only for software triggering or event chaining, channels not
570 * mapped to hardware events (or mapped to unused events) are preferable.
572 * DMA transfers start from a channel using edma_start(), or by
573 * chaining. When the transfer described in that channel's parameter RAM
574 * slot completes, that slot's data may be reloaded through a link.
576 * DMA errors are only reported to the @callback associated with the
577 * channel driving that transfer, but transfer completion callbacks can
578 * be sent to another channel under control of the TCC field in
579 * the option word of the transfer's parameter RAM set. Drivers must not
580 * use DMA transfer completion callbacks for channels they did not allocate.
581 * (The same applies to TCC codes used in transfer chaining.)
583 * Returns the number of the channel, else negative errno.
585 int edma_alloc_channel(int channel,
586 void (*callback)(unsigned channel, u16 ch_status, void *data),
587 void *data,
588 enum dma_event_q eventq_no)
590 unsigned i, done, ctlr = 0;
592 if (channel >= 0) {
593 ctlr = EDMA_CTLR(channel);
594 channel = EDMA_CHAN_SLOT(channel);
597 if (channel < 0) {
598 for (i = 0; i < EDMA_MAX_CC; i++) {
599 channel = 0;
600 for (;;) {
601 channel = find_next_bit(edma_info[i]->
602 edma_noevent,
603 edma_info[i]->num_channels,
604 channel);
605 if (channel == edma_info[i]->num_channels)
606 return -ENOMEM;
607 if (!test_and_set_bit(channel,
608 edma_info[i]->edma_inuse)) {
609 done = 1;
610 ctlr = i;
611 break;
613 channel++;
615 if (done)
616 break;
618 } else if (channel >= edma_info[ctlr]->num_channels) {
619 return -EINVAL;
620 } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
621 return -EBUSY;
624 /* ensure access through shadow region 0 */
625 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
627 /* ensure no events are pending */
628 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
629 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
630 &dummy_paramset, PARM_SIZE);
632 if (callback)
633 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
634 callback, data);
636 map_dmach_queue(ctlr, channel, eventq_no);
638 return channel;
640 EXPORT_SYMBOL(edma_alloc_channel);
644 * edma_free_channel - deallocate DMA channel
645 * @channel: dma channel returned from edma_alloc_channel()
647 * This deallocates the DMA channel and associated parameter RAM slot
648 * allocated by edma_alloc_channel().
650 * Callers are responsible for ensuring the channel is inactive, and
651 * will not be reactivated by linking, chaining, or software calls to
652 * edma_start().
654 void edma_free_channel(unsigned channel)
656 unsigned ctlr;
658 ctlr = EDMA_CTLR(channel);
659 channel = EDMA_CHAN_SLOT(channel);
661 if (channel >= edma_info[ctlr]->num_channels)
662 return;
664 setup_dma_interrupt(channel, NULL, NULL);
665 /* REVISIT should probably take out of shadow region 0 */
667 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
668 &dummy_paramset, PARM_SIZE);
669 clear_bit(channel, edma_info[ctlr]->edma_inuse);
671 EXPORT_SYMBOL(edma_free_channel);
674 * edma_alloc_slot - allocate DMA parameter RAM
675 * @slot: specific slot to allocate; negative for "any unused slot"
677 * This allocates a parameter RAM slot, initializing it to hold a
678 * dummy transfer. Slots allocated using this routine have not been
679 * mapped to a hardware DMA channel, and will normally be used by
680 * linking to them from a slot associated with a DMA channel.
682 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
683 * slots may be allocated on behalf of DSP firmware.
685 * Returns the number of the slot, else negative errno.
687 int edma_alloc_slot(unsigned ctlr, int slot)
689 if (slot >= 0)
690 slot = EDMA_CHAN_SLOT(slot);
692 if (slot < 0) {
693 slot = edma_info[ctlr]->num_channels;
694 for (;;) {
695 slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
696 edma_info[ctlr]->num_slots, slot);
697 if (slot == edma_info[ctlr]->num_slots)
698 return -ENOMEM;
699 if (!test_and_set_bit(slot,
700 edma_info[ctlr]->edma_inuse))
701 break;
703 } else if (slot < edma_info[ctlr]->num_channels ||
704 slot >= edma_info[ctlr]->num_slots) {
705 return -EINVAL;
706 } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
707 return -EBUSY;
710 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
711 &dummy_paramset, PARM_SIZE);
713 return EDMA_CTLR_CHAN(ctlr, slot);
715 EXPORT_SYMBOL(edma_alloc_slot);
718 * edma_free_slot - deallocate DMA parameter RAM
719 * @slot: parameter RAM slot returned from edma_alloc_slot()
721 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
722 * Callers are responsible for ensuring the slot is inactive, and will
723 * not be activated.
725 void edma_free_slot(unsigned slot)
727 unsigned ctlr;
729 ctlr = EDMA_CTLR(slot);
730 slot = EDMA_CHAN_SLOT(slot);
732 if (slot < edma_info[ctlr]->num_channels ||
733 slot >= edma_info[ctlr]->num_slots)
734 return;
736 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
737 &dummy_paramset, PARM_SIZE);
738 clear_bit(slot, edma_info[ctlr]->edma_inuse);
740 EXPORT_SYMBOL(edma_free_slot);
744 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
745 * The API will return the starting point of a set of
746 * contiguous PARAM's that have been requested
748 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
749 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
750 * @count: number of contiguous Paramter RAM's
751 * @param - the start value of Parameter RAM that should be passed if id
752 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
754 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
755 * contiguous Parameter RAMs from parameter RAM 64 in the case of DaVinci SOCs
756 * and 32 in the case of Primus
758 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
759 * set of contiguous parameter RAMs from the "param" that is passed as an
760 * argument to the API.
762 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
763 * starts looking for a set of contiguous parameter RAMs from the "param"
764 * that is passed as an argument to the API. On failure the API will try to
765 * find a set of contiguous Parameter RAMs in the remaining Parameter RAMs
767 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
770 * The start slot requested should be greater than
771 * the number of channels and lesser than the total number
772 * of slots
774 if (slot < edma_info[ctlr]->num_channels ||
775 slot >= edma_info[ctlr]->num_slots)
776 return -EINVAL;
779 * The number of parameter RAMs requested cannot be less than 1
780 * and cannot be more than the number of slots minus the number of
781 * channels
783 if (count < 1 || count >
784 (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
785 return -EINVAL;
787 switch (id) {
788 case EDMA_CONT_PARAMS_ANY:
789 return reserve_contiguous_params(ctlr, id, count,
790 edma_info[ctlr]->num_channels);
791 case EDMA_CONT_PARAMS_FIXED_EXACT:
792 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
793 return reserve_contiguous_params(ctlr, id, count, slot);
794 default:
795 return -EINVAL;
799 EXPORT_SYMBOL(edma_alloc_cont_slots);
802 * edma_free_cont_slots - deallocate DMA parameter RAMs
803 * @slot: first parameter RAM of a set of parameter RAMs to be freed
804 * @count: the number of contiguous parameter RAMs to be freed
806 * This deallocates the parameter RAM slots allocated by
807 * edma_alloc_cont_slots.
808 * Callers/applications need to keep track of sets of contiguous
809 * parameter RAMs that have been allocated using the edma_alloc_cont_slots
810 * API.
811 * Callers are responsible for ensuring the slots are inactive, and will
812 * not be activated.
814 int edma_free_cont_slots(unsigned slot, int count)
816 unsigned ctlr;
817 int i;
819 ctlr = EDMA_CTLR(slot);
820 slot = EDMA_CHAN_SLOT(slot);
822 if (slot < edma_info[ctlr]->num_channels ||
823 slot >= edma_info[ctlr]->num_slots ||
824 count < 1)
825 return -EINVAL;
827 for (i = slot; i < slot + count; ++i) {
828 ctlr = EDMA_CTLR(i);
829 slot = EDMA_CHAN_SLOT(i);
831 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
832 &dummy_paramset, PARM_SIZE);
833 clear_bit(slot, edma_info[ctlr]->edma_inuse);
836 return 0;
838 EXPORT_SYMBOL(edma_free_cont_slots);
840 /*-----------------------------------------------------------------------*/
842 /* Parameter RAM operations (i) -- read/write partial slots */
845 * edma_set_src - set initial DMA source address in parameter RAM slot
846 * @slot: parameter RAM slot being configured
847 * @src_port: physical address of source (memory, controller FIFO, etc)
848 * @addressMode: INCR, except in very rare cases
849 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
850 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
852 * Note that the source address is modified during the DMA transfer
853 * according to edma_set_src_index().
855 void edma_set_src(unsigned slot, dma_addr_t src_port,
856 enum address_mode mode, enum fifo_width width)
858 unsigned ctlr;
860 ctlr = EDMA_CTLR(slot);
861 slot = EDMA_CHAN_SLOT(slot);
863 if (slot < edma_info[ctlr]->num_slots) {
864 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
866 if (mode) {
867 /* set SAM and program FWID */
868 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
869 } else {
870 /* clear SAM */
871 i &= ~SAM;
873 edma_parm_write(ctlr, PARM_OPT, slot, i);
875 /* set the source port address
876 in source register of param structure */
877 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
880 EXPORT_SYMBOL(edma_set_src);
883 * edma_set_dest - set initial DMA destination address in parameter RAM slot
884 * @slot: parameter RAM slot being configured
885 * @dest_port: physical address of destination (memory, controller FIFO, etc)
886 * @addressMode: INCR, except in very rare cases
887 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
888 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
890 * Note that the destination address is modified during the DMA transfer
891 * according to edma_set_dest_index().
893 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
894 enum address_mode mode, enum fifo_width width)
896 unsigned ctlr;
898 ctlr = EDMA_CTLR(slot);
899 slot = EDMA_CHAN_SLOT(slot);
901 if (slot < edma_info[ctlr]->num_slots) {
902 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
904 if (mode) {
905 /* set DAM and program FWID */
906 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
907 } else {
908 /* clear DAM */
909 i &= ~DAM;
911 edma_parm_write(ctlr, PARM_OPT, slot, i);
912 /* set the destination port address
913 in dest register of param structure */
914 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
917 EXPORT_SYMBOL(edma_set_dest);
920 * edma_get_position - returns the current transfer points
921 * @slot: parameter RAM slot being examined
922 * @src: pointer to source port position
923 * @dst: pointer to destination port position
925 * Returns current source and destination addresses for a particular
926 * parameter RAM slot. Its channel should not be active when this is called.
928 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
930 struct edmacc_param temp;
931 unsigned ctlr;
933 ctlr = EDMA_CTLR(slot);
934 slot = EDMA_CHAN_SLOT(slot);
936 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
937 if (src != NULL)
938 *src = temp.src;
939 if (dst != NULL)
940 *dst = temp.dst;
942 EXPORT_SYMBOL(edma_get_position);
945 * edma_set_src_index - configure DMA source address indexing
946 * @slot: parameter RAM slot being configured
947 * @src_bidx: byte offset between source arrays in a frame
948 * @src_cidx: byte offset between source frames in a block
950 * Offsets are specified to support either contiguous or discontiguous
951 * memory transfers, or repeated access to a hardware register, as needed.
952 * When accessing hardware registers, both offsets are normally zero.
954 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
956 unsigned ctlr;
958 ctlr = EDMA_CTLR(slot);
959 slot = EDMA_CHAN_SLOT(slot);
961 if (slot < edma_info[ctlr]->num_slots) {
962 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
963 0xffff0000, src_bidx);
964 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
965 0xffff0000, src_cidx);
968 EXPORT_SYMBOL(edma_set_src_index);
971 * edma_set_dest_index - configure DMA destination address indexing
972 * @slot: parameter RAM slot being configured
973 * @dest_bidx: byte offset between destination arrays in a frame
974 * @dest_cidx: byte offset between destination frames in a block
976 * Offsets are specified to support either contiguous or discontiguous
977 * memory transfers, or repeated access to a hardware register, as needed.
978 * When accessing hardware registers, both offsets are normally zero.
980 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
982 unsigned ctlr;
984 ctlr = EDMA_CTLR(slot);
985 slot = EDMA_CHAN_SLOT(slot);
987 if (slot < edma_info[ctlr]->num_slots) {
988 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
989 0x0000ffff, dest_bidx << 16);
990 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
991 0x0000ffff, dest_cidx << 16);
994 EXPORT_SYMBOL(edma_set_dest_index);
997 * edma_set_transfer_params - configure DMA transfer parameters
998 * @slot: parameter RAM slot being configured
999 * @acnt: how many bytes per array (at least one)
1000 * @bcnt: how many arrays per frame (at least one)
1001 * @ccnt: how many frames per block (at least one)
1002 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1003 * the value to reload into bcnt when it decrements to zero
1004 * @sync_mode: ASYNC or ABSYNC
1006 * See the EDMA3 documentation to understand how to configure and link
1007 * transfers using the fields in PaRAM slots. If you are not doing it
1008 * all at once with edma_write_slot(), you will use this routine
1009 * plus two calls each for source and destination, setting the initial
1010 * address and saying how to index that address.
1012 * An example of an A-Synchronized transfer is a serial link using a
1013 * single word shift register. In that case, @acnt would be equal to
1014 * that word size; the serial controller issues a DMA synchronization
1015 * event to transfer each word, and memory access by the DMA transfer
1016 * controller will be word-at-a-time.
1018 * An example of an AB-Synchronized transfer is a device using a FIFO.
1019 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1020 * The controller with the FIFO issues DMA synchronization events when
1021 * the FIFO threshold is reached, and the DMA transfer controller will
1022 * transfer one frame to (or from) the FIFO. It will probably use
1023 * efficient burst modes to access memory.
1025 void edma_set_transfer_params(unsigned slot,
1026 u16 acnt, u16 bcnt, u16 ccnt,
1027 u16 bcnt_rld, enum sync_dimension sync_mode)
1029 unsigned ctlr;
1031 ctlr = EDMA_CTLR(slot);
1032 slot = EDMA_CHAN_SLOT(slot);
1034 if (slot < edma_info[ctlr]->num_slots) {
1035 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1036 0x0000ffff, bcnt_rld << 16);
1037 if (sync_mode == ASYNC)
1038 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1039 else
1040 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1041 /* Set the acount, bcount, ccount registers */
1042 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1043 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1046 EXPORT_SYMBOL(edma_set_transfer_params);
1049 * edma_link - link one parameter RAM slot to another
1050 * @from: parameter RAM slot originating the link
1051 * @to: parameter RAM slot which is the link target
1053 * The originating slot should not be part of any active DMA transfer.
1055 void edma_link(unsigned from, unsigned to)
1057 unsigned ctlr_from, ctlr_to;
1059 ctlr_from = EDMA_CTLR(from);
1060 from = EDMA_CHAN_SLOT(from);
1061 ctlr_to = EDMA_CTLR(to);
1062 to = EDMA_CHAN_SLOT(to);
1064 if (from >= edma_info[ctlr_from]->num_slots)
1065 return;
1066 if (to >= edma_info[ctlr_to]->num_slots)
1067 return;
1068 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1069 PARM_OFFSET(to));
1071 EXPORT_SYMBOL(edma_link);
1074 * edma_unlink - cut link from one parameter RAM slot
1075 * @from: parameter RAM slot originating the link
1077 * The originating slot should not be part of any active DMA transfer.
1078 * Its link is set to 0xffff.
1080 void edma_unlink(unsigned from)
1082 unsigned ctlr;
1084 ctlr = EDMA_CTLR(from);
1085 from = EDMA_CHAN_SLOT(from);
1087 if (from >= edma_info[ctlr]->num_slots)
1088 return;
1089 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1091 EXPORT_SYMBOL(edma_unlink);
1093 /*-----------------------------------------------------------------------*/
1095 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1098 * edma_write_slot - write parameter RAM data for slot
1099 * @slot: number of parameter RAM slot being modified
1100 * @param: data to be written into parameter RAM slot
1102 * Use this to assign all parameters of a transfer at once. This
1103 * allows more efficient setup of transfers than issuing multiple
1104 * calls to set up those parameters in small pieces, and provides
1105 * complete control over all transfer options.
1107 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1109 unsigned ctlr;
1111 ctlr = EDMA_CTLR(slot);
1112 slot = EDMA_CHAN_SLOT(slot);
1114 if (slot >= edma_info[ctlr]->num_slots)
1115 return;
1116 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1117 PARM_SIZE);
1119 EXPORT_SYMBOL(edma_write_slot);
1122 * edma_read_slot - read parameter RAM data from slot
1123 * @slot: number of parameter RAM slot being copied
1124 * @param: where to store copy of parameter RAM data
1126 * Use this to read data from a parameter RAM slot, perhaps to
1127 * save them as a template for later reuse.
1129 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1131 unsigned ctlr;
1133 ctlr = EDMA_CTLR(slot);
1134 slot = EDMA_CHAN_SLOT(slot);
1136 if (slot >= edma_info[ctlr]->num_slots)
1137 return;
1138 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1139 PARM_SIZE);
1141 EXPORT_SYMBOL(edma_read_slot);
1143 /*-----------------------------------------------------------------------*/
1145 /* Various EDMA channel control operations */
1148 * edma_pause - pause dma on a channel
1149 * @channel: on which edma_start() has been called
1151 * This temporarily disables EDMA hardware events on the specified channel,
1152 * preventing them from triggering new transfers on its behalf
1154 void edma_pause(unsigned channel)
1156 unsigned ctlr;
1158 ctlr = EDMA_CTLR(channel);
1159 channel = EDMA_CHAN_SLOT(channel);
1161 if (channel < edma_info[ctlr]->num_channels) {
1162 unsigned int mask = (1 << (channel & 0x1f));
1164 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1167 EXPORT_SYMBOL(edma_pause);
1170 * edma_resume - resumes dma on a paused channel
1171 * @channel: on which edma_pause() has been called
1173 * This re-enables EDMA hardware events on the specified channel.
1175 void edma_resume(unsigned channel)
1177 unsigned ctlr;
1179 ctlr = EDMA_CTLR(channel);
1180 channel = EDMA_CHAN_SLOT(channel);
1182 if (channel < edma_info[ctlr]->num_channels) {
1183 unsigned int mask = (1 << (channel & 0x1f));
1185 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1188 EXPORT_SYMBOL(edma_resume);
1191 * edma_start - start dma on a channel
1192 * @channel: channel being activated
1194 * Channels with event associations will be triggered by their hardware
1195 * events, and channels without such associations will be triggered by
1196 * software. (At this writing there is no interface for using software
1197 * triggers except with channels that don't support hardware triggers.)
1199 * Returns zero on success, else negative errno.
1201 int edma_start(unsigned channel)
1203 unsigned ctlr;
1205 ctlr = EDMA_CTLR(channel);
1206 channel = EDMA_CHAN_SLOT(channel);
1208 if (channel < edma_info[ctlr]->num_channels) {
1209 int j = channel >> 5;
1210 unsigned int mask = (1 << (channel & 0x1f));
1212 /* EDMA channels without event association */
1213 if (test_bit(channel, edma_info[ctlr]->edma_noevent)) {
1214 pr_debug("EDMA: ESR%d %08x\n", j,
1215 edma_shadow0_read_array(ctlr, SH_ESR, j));
1216 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1217 return 0;
1220 /* EDMA channel with event association */
1221 pr_debug("EDMA: ER%d %08x\n", j,
1222 edma_shadow0_read_array(ctlr, SH_ER, j));
1223 /* Clear any pending error */
1224 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1225 /* Clear any SER */
1226 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1227 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1228 pr_debug("EDMA: EER%d %08x\n", j,
1229 edma_shadow0_read_array(ctlr, SH_EER, j));
1230 return 0;
1233 return -EINVAL;
1235 EXPORT_SYMBOL(edma_start);
1238 * edma_stop - stops dma on the channel passed
1239 * @channel: channel being deactivated
1241 * When @lch is a channel, any active transfer is paused and
1242 * all pending hardware events are cleared. The current transfer
1243 * may not be resumed, and the channel's Parameter RAM should be
1244 * reinitialized before being reused.
1246 void edma_stop(unsigned channel)
1248 unsigned ctlr;
1250 ctlr = EDMA_CTLR(channel);
1251 channel = EDMA_CHAN_SLOT(channel);
1253 if (channel < edma_info[ctlr]->num_channels) {
1254 int j = channel >> 5;
1255 unsigned int mask = (1 << (channel & 0x1f));
1257 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1258 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1259 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1260 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1262 pr_debug("EDMA: EER%d %08x\n", j,
1263 edma_shadow0_read_array(ctlr, SH_EER, j));
1265 /* REVISIT: consider guarding against inappropriate event
1266 * chaining by overwriting with dummy_paramset.
1270 EXPORT_SYMBOL(edma_stop);
1272 /******************************************************************************
1274 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1275 * been removed before EDMA has finished.It is usedful for removable media.
1276 * Arguments:
1277 * ch_no - channel no
1279 * Return: zero on success, or corresponding error no on failure
1281 * FIXME this should not be needed ... edma_stop() should suffice.
1283 *****************************************************************************/
1285 void edma_clean_channel(unsigned channel)
1287 unsigned ctlr;
1289 ctlr = EDMA_CTLR(channel);
1290 channel = EDMA_CHAN_SLOT(channel);
1292 if (channel < edma_info[ctlr]->num_channels) {
1293 int j = (channel >> 5);
1294 unsigned int mask = 1 << (channel & 0x1f);
1296 pr_debug("EDMA: EMR%d %08x\n", j,
1297 edma_read_array(ctlr, EDMA_EMR, j));
1298 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1299 /* Clear the corresponding EMR bits */
1300 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1301 /* Clear any SER */
1302 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1303 edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
1306 EXPORT_SYMBOL(edma_clean_channel);
1309 * edma_clear_event - clear an outstanding event on the DMA channel
1310 * Arguments:
1311 * channel - channel number
1313 void edma_clear_event(unsigned channel)
1315 unsigned ctlr;
1317 ctlr = EDMA_CTLR(channel);
1318 channel = EDMA_CHAN_SLOT(channel);
1320 if (channel >= edma_info[ctlr]->num_channels)
1321 return;
1322 if (channel < 32)
1323 edma_write(ctlr, EDMA_ECR, 1 << channel);
1324 else
1325 edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
1327 EXPORT_SYMBOL(edma_clear_event);
1329 /*-----------------------------------------------------------------------*/
1331 static int __init edma_probe(struct platform_device *pdev)
1333 struct edma_soc_info *info = pdev->dev.platform_data;
1334 const s8 (*queue_priority_mapping)[2];
1335 const s8 (*queue_tc_mapping)[2];
1336 int i, j, found = 0;
1337 int status = -1;
1338 const s8 *noevent;
1339 int irq[EDMA_MAX_CC] = {0, 0};
1340 int err_irq[EDMA_MAX_CC] = {0, 0};
1341 struct resource *r[EDMA_MAX_CC] = {NULL};
1342 resource_size_t len[EDMA_MAX_CC];
1343 char res_name[10];
1344 char irq_name[10];
1346 if (!info)
1347 return -ENODEV;
1349 for (j = 0; j < EDMA_MAX_CC; j++) {
1350 sprintf(res_name, "edma_cc%d", j);
1351 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1352 res_name);
1353 if (!r[j]) {
1354 if (found)
1355 break;
1356 else
1357 return -ENODEV;
1358 } else
1359 found = 1;
1361 len[j] = resource_size(r[j]);
1363 r[j] = request_mem_region(r[j]->start, len[j],
1364 dev_name(&pdev->dev));
1365 if (!r[j]) {
1366 status = -EBUSY;
1367 goto fail1;
1370 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1371 if (!edmacc_regs_base[j]) {
1372 status = -EBUSY;
1373 goto fail1;
1376 edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1377 if (!edma_info[j]) {
1378 status = -ENOMEM;
1379 goto fail1;
1381 memset(edma_info[j], 0, sizeof(struct edma));
1383 edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
1384 EDMA_MAX_DMACH);
1385 edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
1386 EDMA_MAX_PARAMENTRY);
1387 edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
1388 EDMA_MAX_CC);
1390 edma_info[j]->default_queue = info[j].default_queue;
1391 if (!edma_info[j]->default_queue)
1392 edma_info[j]->default_queue = EVENTQ_1;
1394 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1395 edmacc_regs_base[j]);
1397 for (i = 0; i < edma_info[j]->num_slots; i++)
1398 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1399 &dummy_paramset, PARM_SIZE);
1401 noevent = info[j].noevent;
1402 if (noevent) {
1403 while (*noevent != -1)
1404 set_bit(*noevent++, edma_info[j]->edma_noevent);
1407 sprintf(irq_name, "edma%d", j);
1408 irq[j] = platform_get_irq_byname(pdev, irq_name);
1409 edma_info[j]->irq_res_start = irq[j];
1410 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1411 &pdev->dev);
1412 if (status < 0) {
1413 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1414 irq[j], status);
1415 goto fail;
1418 sprintf(irq_name, "edma%d_err", j);
1419 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1420 edma_info[j]->irq_res_end = err_irq[j];
1421 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1422 "edma_error", &pdev->dev);
1423 if (status < 0) {
1424 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1425 err_irq[j], status);
1426 goto fail;
1429 /* Everything lives on transfer controller 1 until otherwise
1430 * specified. This way, long transfers on the low priority queue
1431 * started by the codec engine will not cause audio defects.
1433 for (i = 0; i < edma_info[j]->num_channels; i++)
1434 map_dmach_queue(j, i, EVENTQ_1);
1436 queue_tc_mapping = info[j].queue_tc_mapping;
1437 queue_priority_mapping = info[j].queue_priority_mapping;
1439 /* Event queue to TC mapping */
1440 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1441 map_queue_tc(j, queue_tc_mapping[i][0],
1442 queue_tc_mapping[i][1]);
1444 /* Event queue priority mapping */
1445 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1446 assign_priority_to_queue(j,
1447 queue_priority_mapping[i][0],
1448 queue_priority_mapping[i][1]);
1450 /* Map the channel to param entry if channel mapping logic
1451 * exist
1453 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1454 map_dmach_param(j);
1456 for (i = 0; i < info[j].n_region; i++) {
1457 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1458 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1459 edma_write_array(j, EDMA_QRAE, i, 0x0);
1463 if (tc_errs_handled) {
1464 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1465 "edma_tc0", &pdev->dev);
1466 if (status < 0) {
1467 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1468 IRQ_TCERRINT0, status);
1469 return status;
1471 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1472 "edma_tc1", &pdev->dev);
1473 if (status < 0) {
1474 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1475 IRQ_TCERRINT, status);
1476 return status;
1480 return 0;
1482 fail:
1483 for (i = 0; i < EDMA_MAX_CC; i++) {
1484 if (err_irq[i])
1485 free_irq(err_irq[i], &pdev->dev);
1486 if (irq[i])
1487 free_irq(irq[i], &pdev->dev);
1489 fail1:
1490 for (i = 0; i < EDMA_MAX_CC; i++) {
1491 if (r[i])
1492 release_mem_region(r[i]->start, len[i]);
1493 if (edmacc_regs_base[i])
1494 iounmap(edmacc_regs_base[i]);
1495 kfree(edma_info[i]);
1497 return status;
1501 static struct platform_driver edma_driver = {
1502 .driver.name = "edma",
1505 static int __init edma_init(void)
1507 return platform_driver_probe(&edma_driver, edma_probe);
1509 arch_initcall(edma_init);