2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
10 #include <linux/init.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
19 #include <asm/pgalloc.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
27 #define PAGE_SHIFT_64K 16
28 #define PAGE_SHIFT_16M 24
29 #define PAGE_SHIFT_16G 34
31 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
32 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #define MAX_NUMBER_GPAGES 1024
35 /* Tracks the 16G pages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. */
37 static unsigned long gpage_freearray
[MAX_NUMBER_GPAGES
];
38 static unsigned nr_gpages
;
40 /* Array of valid huge page sizes - non-zero value(hugepte_shift) is
41 * stored for the huge page sizes that are valid.
43 unsigned int mmu_huge_psizes
[MMU_PAGE_COUNT
] = { }; /* initialize all to 0 */
45 #define hugepte_shift mmu_huge_psizes
46 #define PTRS_PER_HUGEPTE(psize) (1 << hugepte_shift[psize])
47 #define HUGEPTE_TABLE_SIZE(psize) (sizeof(pte_t) << hugepte_shift[psize])
49 #define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \
50 + hugepte_shift[psize])
51 #define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize))
52 #define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1))
54 /* Subtract one from array size because we don't need a cache for 4K since
55 * is not a huge page size */
56 #define HUGE_PGTABLE_INDEX(psize) (HUGEPTE_CACHE_NUM + psize - 1)
57 #define HUGEPTE_CACHE_NAME(psize) (huge_pgtable_cache_name[psize])
59 static const char *huge_pgtable_cache_name
[MMU_PAGE_COUNT
] = {
60 [MMU_PAGE_64K
] = "hugepte_cache_64K",
61 [MMU_PAGE_1M
] = "hugepte_cache_1M",
62 [MMU_PAGE_16M
] = "hugepte_cache_16M",
63 [MMU_PAGE_16G
] = "hugepte_cache_16G",
66 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
67 * will choke on pointers to hugepte tables, which is handy for
68 * catching screwups early. */
71 typedef struct { unsigned long pd
; } hugepd_t
;
73 #define hugepd_none(hpd) ((hpd).pd == 0)
75 static inline int shift_to_mmu_psize(unsigned int shift
)
78 #ifndef CONFIG_PPC_64K_PAGES
90 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize
)
92 if (mmu_psize_defs
[mmu_psize
].shift
)
93 return mmu_psize_defs
[mmu_psize
].shift
;
97 static inline pte_t
*hugepd_page(hugepd_t hpd
)
99 BUG_ON(!(hpd
.pd
& HUGEPD_OK
));
100 return (pte_t
*)(hpd
.pd
& ~HUGEPD_OK
);
103 static inline pte_t
*hugepte_offset(hugepd_t
*hpdp
, unsigned long addr
,
104 struct hstate
*hstate
)
106 unsigned int shift
= huge_page_shift(hstate
);
107 int psize
= shift_to_mmu_psize(shift
);
108 unsigned long idx
= ((addr
>> shift
) & (PTRS_PER_HUGEPTE(psize
)-1));
109 pte_t
*dir
= hugepd_page(*hpdp
);
114 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
115 unsigned long address
, unsigned int psize
)
117 pte_t
*new = kmem_cache_zalloc(pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)],
118 GFP_KERNEL
|__GFP_REPEAT
);
123 spin_lock(&mm
->page_table_lock
);
124 if (!hugepd_none(*hpdp
))
125 kmem_cache_free(pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)], new);
127 hpdp
->pd
= (unsigned long)new | HUGEPD_OK
;
128 spin_unlock(&mm
->page_table_lock
);
133 static pud_t
*hpud_offset(pgd_t
*pgd
, unsigned long addr
, struct hstate
*hstate
)
135 if (huge_page_shift(hstate
) < PUD_SHIFT
)
136 return pud_offset(pgd
, addr
);
138 return (pud_t
*) pgd
;
140 static pud_t
*hpud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long addr
,
141 struct hstate
*hstate
)
143 if (huge_page_shift(hstate
) < PUD_SHIFT
)
144 return pud_alloc(mm
, pgd
, addr
);
146 return (pud_t
*) pgd
;
148 static pmd_t
*hpmd_offset(pud_t
*pud
, unsigned long addr
, struct hstate
*hstate
)
150 if (huge_page_shift(hstate
) < PMD_SHIFT
)
151 return pmd_offset(pud
, addr
);
153 return (pmd_t
*) pud
;
155 static pmd_t
*hpmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long addr
,
156 struct hstate
*hstate
)
158 if (huge_page_shift(hstate
) < PMD_SHIFT
)
159 return pmd_alloc(mm
, pud
, addr
);
161 return (pmd_t
*) pud
;
164 /* Build list of addresses of gigantic pages. This function is used in early
165 * boot before the buddy or bootmem allocator is setup.
167 void add_gpage(unsigned long addr
, unsigned long page_size
,
168 unsigned long number_of_pages
)
172 while (number_of_pages
> 0) {
173 gpage_freearray
[nr_gpages
] = addr
;
180 /* Moves the gigantic page addresses from the temporary list to the
181 * huge_boot_pages list.
183 int alloc_bootmem_huge_page(struct hstate
*hstate
)
185 struct huge_bootmem_page
*m
;
188 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
189 gpage_freearray
[nr_gpages
] = 0;
190 list_add(&m
->list
, &huge_boot_pages
);
196 /* Modelled after find_linux_pte() */
197 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
206 struct hstate
*hstate
;
207 psize
= get_slice_psize(mm
, addr
);
208 shift
= mmu_psize_to_shift(psize
);
209 sz
= ((1UL) << shift
);
210 hstate
= size_to_hstate(sz
);
212 addr
&= hstate
->mask
;
214 pg
= pgd_offset(mm
, addr
);
215 if (!pgd_none(*pg
)) {
216 pu
= hpud_offset(pg
, addr
, hstate
);
217 if (!pud_none(*pu
)) {
218 pm
= hpmd_offset(pu
, addr
, hstate
);
220 return hugepte_offset((hugepd_t
*)pm
, addr
,
228 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
229 unsigned long addr
, unsigned long sz
)
234 hugepd_t
*hpdp
= NULL
;
235 struct hstate
*hstate
;
237 hstate
= size_to_hstate(sz
);
239 psize
= get_slice_psize(mm
, addr
);
240 BUG_ON(!mmu_huge_psizes
[psize
]);
242 addr
&= hstate
->mask
;
244 pg
= pgd_offset(mm
, addr
);
245 pu
= hpud_alloc(mm
, pg
, addr
, hstate
);
248 pm
= hpmd_alloc(mm
, pu
, addr
, hstate
);
250 hpdp
= (hugepd_t
*)pm
;
256 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, psize
))
259 return hugepte_offset(hpdp
, addr
, hstate
);
262 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
267 static void free_hugepte_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
,
270 pte_t
*hugepte
= hugepd_page(*hpdp
);
274 pgtable_free_tlb(tlb
, pgtable_free_cache(hugepte
,
275 HUGEPTE_CACHE_NUM
+psize
-1,
279 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
280 unsigned long addr
, unsigned long end
,
281 unsigned long floor
, unsigned long ceiling
,
289 pmd
= pmd_offset(pud
, addr
);
291 next
= pmd_addr_end(addr
, end
);
294 free_hugepte_range(tlb
, (hugepd_t
*)pmd
, psize
);
295 } while (pmd
++, addr
= next
, addr
!= end
);
305 if (end
- 1 > ceiling
- 1)
308 pmd
= pmd_offset(pud
, start
);
310 pmd_free_tlb(tlb
, pmd
, start
);
313 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
314 unsigned long addr
, unsigned long end
,
315 unsigned long floor
, unsigned long ceiling
)
321 unsigned int psize
= get_slice_psize(tlb
->mm
, addr
);
322 shift
= mmu_psize_to_shift(psize
);
325 pud
= pud_offset(pgd
, addr
);
327 next
= pud_addr_end(addr
, end
);
328 if (shift
< PMD_SHIFT
) {
329 if (pud_none_or_clear_bad(pud
))
331 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
336 free_hugepte_range(tlb
, (hugepd_t
*)pud
, psize
);
338 } while (pud
++, addr
= next
, addr
!= end
);
344 ceiling
&= PGDIR_MASK
;
348 if (end
- 1 > ceiling
- 1)
351 pud
= pud_offset(pgd
, start
);
353 pud_free_tlb(tlb
, pud
, start
);
357 * This function frees user-level page tables of a process.
359 * Must be called with pagetable lock held.
361 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
362 unsigned long addr
, unsigned long end
,
363 unsigned long floor
, unsigned long ceiling
)
370 * Comments below take from the normal free_pgd_range(). They
371 * apply here too. The tests against HUGEPD_MASK below are
372 * essential, because we *don't* test for this at the bottom
373 * level. Without them we'll attempt to free a hugepte table
374 * when we unmap just part of it, even if there are other
375 * active mappings using it.
377 * The next few lines have given us lots of grief...
379 * Why are we testing HUGEPD* at this top level? Because
380 * often there will be no work to do at all, and we'd prefer
381 * not to go all the way down to the bottom just to discover
384 * Why all these "- 1"s? Because 0 represents both the bottom
385 * of the address space and the top of it (using -1 for the
386 * top wouldn't help much: the masks would do the wrong thing).
387 * The rule is that addr 0 and floor 0 refer to the bottom of
388 * the address space, but end 0 and ceiling 0 refer to the top
389 * Comparisons need to use "end - 1" and "ceiling - 1" (though
390 * that end 0 case should be mythical).
392 * Wherever addr is brought up or ceiling brought down, we
393 * must be careful to reject "the opposite 0" before it
394 * confuses the subsequent tests. But what about where end is
395 * brought down by HUGEPD_SIZE below? no, end can't go down to
398 * Whereas we round start (addr) and ceiling down, by different
399 * masks at different levels, in order to test whether a table
400 * now has no other vmas using it, so can be freed, we don't
401 * bother to round floor or end up - the tests don't need that.
403 unsigned int psize
= get_slice_psize(tlb
->mm
, addr
);
405 addr
&= HUGEPD_MASK(psize
);
407 addr
+= HUGEPD_SIZE(psize
);
412 ceiling
&= HUGEPD_MASK(psize
);
416 if (end
- 1 > ceiling
- 1)
417 end
-= HUGEPD_SIZE(psize
);
422 pgd
= pgd_offset(tlb
->mm
, addr
);
424 psize
= get_slice_psize(tlb
->mm
, addr
);
425 BUG_ON(!mmu_huge_psizes
[psize
]);
426 next
= pgd_addr_end(addr
, end
);
427 if (mmu_psize_to_shift(psize
) < PUD_SHIFT
) {
428 if (pgd_none_or_clear_bad(pgd
))
430 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
434 free_hugepte_range(tlb
, (hugepd_t
*)pgd
, psize
);
436 } while (pgd
++, addr
= next
, addr
!= end
);
439 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
440 pte_t
*ptep
, pte_t pte
)
442 if (pte_present(*ptep
)) {
443 /* We open-code pte_clear because we need to pass the right
444 * argument to hpte_need_flush (huge / !huge). Might not be
445 * necessary anymore if we make hpte_need_flush() get the
446 * page size from the slices
448 unsigned int psize
= get_slice_psize(mm
, addr
);
449 unsigned int shift
= mmu_psize_to_shift(psize
);
450 unsigned long sz
= ((1UL) << shift
);
451 struct hstate
*hstate
= size_to_hstate(sz
);
452 pte_update(mm
, addr
& hstate
->mask
, ptep
, ~0UL, 1);
454 *ptep
= __pte(pte_val(pte
) & ~_PAGE_HPTEFLAGS
);
457 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
460 unsigned long old
= pte_update(mm
, addr
, ptep
, ~0UL, 1);
465 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
469 unsigned int mmu_psize
= get_slice_psize(mm
, address
);
471 /* Verify it is a huge page else bail. */
472 if (!mmu_huge_psizes
[mmu_psize
])
473 return ERR_PTR(-EINVAL
);
475 ptep
= huge_pte_offset(mm
, address
);
476 page
= pte_page(*ptep
);
478 unsigned int shift
= mmu_psize_to_shift(mmu_psize
);
479 unsigned long sz
= ((1UL) << shift
);
480 page
+= (address
% sz
) / PAGE_SIZE
;
486 int pmd_huge(pmd_t pmd
)
491 int pud_huge(pud_t pud
)
497 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
498 pmd_t
*pmd
, int write
)
505 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
506 unsigned long len
, unsigned long pgoff
,
509 struct hstate
*hstate
= hstate_file(file
);
510 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
512 if (!mmu_huge_psizes
[mmu_psize
])
514 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1, 0);
517 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
519 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
521 return 1UL << mmu_psize_to_shift(psize
);
525 * Called by asm hashtable.S for doing lazy icache flush
527 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags
,
528 pte_t pte
, int trap
, unsigned long sz
)
533 if (!pfn_valid(pte_pfn(pte
)))
536 page
= pte_page(pte
);
539 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
541 for (i
= 0; i
< (sz
/ PAGE_SIZE
); i
++)
542 __flush_dcache_icache(page_address(page
+i
));
543 set_bit(PG_arch_1
, &page
->flags
);
551 int hash_huge_page(struct mm_struct
*mm
, unsigned long access
,
552 unsigned long ea
, unsigned long vsid
, int local
,
556 unsigned long old_pte
, new_pte
;
557 unsigned long va
, rflags
, pa
, sz
;
560 int ssize
= user_segment_size(ea
);
561 unsigned int mmu_psize
;
563 mmu_psize
= get_slice_psize(mm
, ea
);
565 if (!mmu_huge_psizes
[mmu_psize
])
567 ptep
= huge_pte_offset(mm
, ea
);
569 /* Search the Linux page table for a match with va */
570 va
= hpt_va(ea
, vsid
, ssize
);
573 * If no pte found or not present, send the problem up to
576 if (unlikely(!ptep
|| pte_none(*ptep
)))
580 * Check the user's access rights to the page. If access should be
581 * prevented then send the problem up to do_page_fault.
583 if (unlikely(access
& ~pte_val(*ptep
)))
586 * At this point, we have a pte (old_pte) which can be used to build
587 * or update an HPTE. There are 2 cases:
589 * 1. There is a valid (present) pte with no associated HPTE (this is
590 * the most common case)
591 * 2. There is a valid (present) pte with an associated HPTE. The
592 * current values of the pp bits in the HPTE prevent access
593 * because we are doing software DIRTY bit management and the
594 * page is currently not DIRTY.
599 old_pte
= pte_val(*ptep
);
600 if (old_pte
& _PAGE_BUSY
)
602 new_pte
= old_pte
| _PAGE_BUSY
| _PAGE_ACCESSED
;
603 } while(old_pte
!= __cmpxchg_u64((unsigned long *)ptep
,
606 rflags
= 0x2 | (!(new_pte
& _PAGE_RW
));
607 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
608 rflags
|= ((new_pte
& _PAGE_EXEC
) ? 0 : HPTE_R_N
);
609 shift
= mmu_psize_to_shift(mmu_psize
);
610 sz
= ((1UL) << shift
);
611 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
612 /* No CPU has hugepages but lacks no execute, so we
613 * don't need to worry about that case */
614 rflags
= hash_huge_page_do_lazy_icache(rflags
, __pte(old_pte
),
617 /* Check if pte already has an hpte (case 2) */
618 if (unlikely(old_pte
& _PAGE_HASHPTE
)) {
619 /* There MIGHT be an HPTE for this pte */
620 unsigned long hash
, slot
;
622 hash
= hpt_hash(va
, shift
, ssize
);
623 if (old_pte
& _PAGE_F_SECOND
)
625 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
626 slot
+= (old_pte
& _PAGE_F_GIX
) >> 12;
628 if (ppc_md
.hpte_updatepp(slot
, rflags
, va
, mmu_psize
,
630 old_pte
&= ~_PAGE_HPTEFLAGS
;
633 if (likely(!(old_pte
& _PAGE_HASHPTE
))) {
634 unsigned long hash
= hpt_hash(va
, shift
, ssize
);
635 unsigned long hpte_group
;
637 pa
= pte_pfn(__pte(old_pte
)) << PAGE_SHIFT
;
640 hpte_group
= ((hash
& htab_hash_mask
) *
641 HPTES_PER_GROUP
) & ~0x7UL
;
643 /* clear HPTE slot informations in new PTE */
644 #ifdef CONFIG_PPC_64K_PAGES
645 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HPTE_SUB0
;
647 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HASHPTE
;
649 /* Add in WIMG bits */
650 rflags
|= (new_pte
& (_PAGE_WRITETHRU
| _PAGE_NO_CACHE
|
651 _PAGE_COHERENT
| _PAGE_GUARDED
));
653 /* Insert into the hash table, primary slot */
654 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
, 0,
657 /* Primary is full, try the secondary */
658 if (unlikely(slot
== -1)) {
659 hpte_group
= ((~hash
& htab_hash_mask
) *
660 HPTES_PER_GROUP
) & ~0x7UL
;
661 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
,
666 hpte_group
= ((hash
& htab_hash_mask
) *
667 HPTES_PER_GROUP
)&~0x7UL
;
669 ppc_md
.hpte_remove(hpte_group
);
674 if (unlikely(slot
== -2))
675 panic("hash_huge_page: pte_insert failed\n");
677 new_pte
|= (slot
<< 12) & (_PAGE_F_SECOND
| _PAGE_F_GIX
);
681 * No need to use ldarx/stdcx here
683 *ptep
= __pte(new_pte
& ~_PAGE_BUSY
);
691 static void __init
set_huge_psize(int psize
)
693 /* Check that it is a page size supported by the hardware and
694 * that it fits within pagetable limits. */
695 if (mmu_psize_defs
[psize
].shift
&&
696 mmu_psize_defs
[psize
].shift
< SID_SHIFT_1T
&&
697 (mmu_psize_defs
[psize
].shift
> MIN_HUGEPTE_SHIFT
||
698 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT_64K
||
699 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT_16G
)) {
700 /* Return if huge page size has already been setup or is the
701 * same as the base page size. */
702 if (mmu_huge_psizes
[psize
] ||
703 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT
)
705 if (WARN_ON(HUGEPTE_CACHE_NAME(psize
) == NULL
))
707 hugetlb_add_hstate(mmu_psize_defs
[psize
].shift
- PAGE_SHIFT
);
709 switch (mmu_psize_defs
[psize
].shift
) {
711 /* We only allow 64k hpages with 4k base page,
712 * which was checked above, and always put them
714 hugepte_shift
[psize
] = PMD_SHIFT
;
717 /* 16M pages can be at two different levels
718 * of pagestables based on base page size */
719 if (PAGE_SHIFT
== PAGE_SHIFT_64K
)
720 hugepte_shift
[psize
] = PMD_SHIFT
;
721 else /* 4k base page */
722 hugepte_shift
[psize
] = PUD_SHIFT
;
725 /* 16G pages are always at PGD level */
726 hugepte_shift
[psize
] = PGDIR_SHIFT
;
729 hugepte_shift
[psize
] -= mmu_psize_defs
[psize
].shift
;
731 hugepte_shift
[psize
] = 0;
734 static int __init
hugepage_setup_sz(char *str
)
736 unsigned long long size
;
740 size
= memparse(str
, &str
);
743 mmu_psize
= shift_to_mmu_psize(shift
);
744 if (mmu_psize
>= 0 && mmu_psize_defs
[mmu_psize
].shift
)
745 set_huge_psize(mmu_psize
);
747 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
751 __setup("hugepagesz=", hugepage_setup_sz
);
753 static int __init
hugetlbpage_init(void)
757 if (!cpu_has_feature(CPU_FTR_16M_PAGE
))
760 /* Add supported huge page sizes. Need to change HUGE_MAX_HSTATE
761 * and adjust PTE_NONCACHE_NUM if the number of supported huge page
764 set_huge_psize(MMU_PAGE_16M
);
765 set_huge_psize(MMU_PAGE_16G
);
767 /* Temporarily disable support for 64K huge pages when 64K SPU local
768 * store support is enabled as the current implementation conflicts.
770 #ifndef CONFIG_SPU_FS_64K_LS
771 set_huge_psize(MMU_PAGE_64K
);
774 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
775 if (mmu_huge_psizes
[psize
]) {
776 pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)] =
778 HUGEPTE_CACHE_NAME(psize
),
779 HUGEPTE_TABLE_SIZE(psize
),
780 HUGEPTE_TABLE_SIZE(psize
),
783 if (!pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)])
784 panic("hugetlbpage_init(): could not create %s"\
785 "\n", HUGEPTE_CACHE_NAME(psize
));
792 module_init(hugetlbpage_init
);