OMAP3: SR: Replace printk's with pr_* calls
[linux-ginger.git] / arch / powerpc / platforms / iseries / mf.c
blob0d9343df35bc7658e54cd823eef7660631aa1003
1 /*
2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
37 #include <asm/time.h>
38 #include <asm/uaccess.h>
39 #include <asm/paca.h>
40 #include <asm/abs_addr.h>
41 #include <asm/firmware.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/hv_lp_event.h>
45 #include <asm/iseries/it_lp_queue.h>
47 #include "setup.h"
49 static int mf_initialized;
52 * This is the structure layout for the Machine Facilites LPAR event
53 * flows.
55 struct vsp_cmd_data {
56 u64 token;
57 u16 cmd;
58 HvLpIndex lp_index;
59 u8 result_code;
60 u32 reserved;
61 union {
62 u64 state; /* GetStateOut */
63 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
64 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
65 u64 page[4]; /* GetSrcHistoryIn */
66 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
67 SetAutoIplWhenPrimaryIplsIn,
68 WhiteButtonPowerOffIn,
69 Function08FastPowerOffIn,
70 IsSpcnRackPowerIncompleteOut */
71 struct {
72 u64 token;
73 u64 address_type;
74 u64 side;
75 u32 length;
76 u32 offset;
77 } kern; /* SetKernelImageIn, GetKernelImageIn,
78 SetKernelCmdLineIn, GetKernelCmdLineIn */
79 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
80 u8 reserved[80];
81 } sub_data;
84 struct vsp_rsp_data {
85 struct completion com;
86 struct vsp_cmd_data *response;
89 struct alloc_data {
90 u16 size;
91 u16 type;
92 u32 count;
93 u16 reserved1;
94 u8 reserved2;
95 HvLpIndex target_lp;
98 struct ce_msg_data;
100 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
102 struct ce_msg_comp_data {
103 ce_msg_comp_hdlr handler;
104 void *token;
107 struct ce_msg_data {
108 u8 ce_msg[12];
109 char reserved[4];
110 struct ce_msg_comp_data *completion;
113 struct io_mf_lp_event {
114 struct HvLpEvent hp_lp_event;
115 u16 subtype_result_code;
116 u16 reserved1;
117 u32 reserved2;
118 union {
119 struct alloc_data alloc;
120 struct ce_msg_data ce_msg;
121 struct vsp_cmd_data vsp_cmd;
122 } data;
125 #define subtype_data(a, b, c, d) \
126 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
129 * All outgoing event traffic is kept on a FIFO queue. The first
130 * pointer points to the one that is outstanding, and all new
131 * requests get stuck on the end. Also, we keep a certain number of
132 * preallocated pending events so that we can operate very early in
133 * the boot up sequence (before kmalloc is ready).
135 struct pending_event {
136 struct pending_event *next;
137 struct io_mf_lp_event event;
138 MFCompleteHandler hdlr;
139 char dma_data[72];
140 unsigned dma_data_length;
141 unsigned remote_address;
143 static spinlock_t pending_event_spinlock;
144 static struct pending_event *pending_event_head;
145 static struct pending_event *pending_event_tail;
146 static struct pending_event *pending_event_avail;
147 #define PENDING_EVENT_PREALLOC_LEN 16
148 static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
151 * Put a pending event onto the available queue, so it can get reused.
152 * Attention! You must have the pending_event_spinlock before calling!
154 static void free_pending_event(struct pending_event *ev)
156 if (ev != NULL) {
157 ev->next = pending_event_avail;
158 pending_event_avail = ev;
163 * Enqueue the outbound event onto the stack. If the queue was
164 * empty to begin with, we must also issue it via the Hypervisor
165 * interface. There is a section of code below that will touch
166 * the first stack pointer without the protection of the pending_event_spinlock.
167 * This is OK, because we know that nobody else will be modifying
168 * the first pointer when we do this.
170 static int signal_event(struct pending_event *ev)
172 int rc = 0;
173 unsigned long flags;
174 int go = 1;
175 struct pending_event *ev1;
176 HvLpEvent_Rc hv_rc;
178 /* enqueue the event */
179 if (ev != NULL) {
180 ev->next = NULL;
181 spin_lock_irqsave(&pending_event_spinlock, flags);
182 if (pending_event_head == NULL)
183 pending_event_head = ev;
184 else {
185 go = 0;
186 pending_event_tail->next = ev;
188 pending_event_tail = ev;
189 spin_unlock_irqrestore(&pending_event_spinlock, flags);
192 /* send the event */
193 while (go) {
194 go = 0;
196 /* any DMA data to send beforehand? */
197 if (pending_event_head->dma_data_length > 0)
198 HvCallEvent_dmaToSp(pending_event_head->dma_data,
199 pending_event_head->remote_address,
200 pending_event_head->dma_data_length,
201 HvLpDma_Direction_LocalToRemote);
203 hv_rc = HvCallEvent_signalLpEvent(
204 &pending_event_head->event.hp_lp_event);
205 if (hv_rc != HvLpEvent_Rc_Good) {
206 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
207 "failed with %d\n", (int)hv_rc);
209 spin_lock_irqsave(&pending_event_spinlock, flags);
210 ev1 = pending_event_head;
211 pending_event_head = pending_event_head->next;
212 if (pending_event_head != NULL)
213 go = 1;
214 spin_unlock_irqrestore(&pending_event_spinlock, flags);
216 if (ev1 == ev)
217 rc = -EIO;
218 else if (ev1->hdlr != NULL)
219 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
221 spin_lock_irqsave(&pending_event_spinlock, flags);
222 free_pending_event(ev1);
223 spin_unlock_irqrestore(&pending_event_spinlock, flags);
227 return rc;
231 * Allocate a new pending_event structure, and initialize it.
233 static struct pending_event *new_pending_event(void)
235 struct pending_event *ev = NULL;
236 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
237 unsigned long flags;
238 struct HvLpEvent *hev;
240 spin_lock_irqsave(&pending_event_spinlock, flags);
241 if (pending_event_avail != NULL) {
242 ev = pending_event_avail;
243 pending_event_avail = pending_event_avail->next;
245 spin_unlock_irqrestore(&pending_event_spinlock, flags);
246 if (ev == NULL) {
247 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
248 if (ev == NULL) {
249 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
250 sizeof(struct pending_event));
251 return NULL;
254 memset(ev, 0, sizeof(struct pending_event));
255 hev = &ev->event.hp_lp_event;
256 hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
257 hev->xType = HvLpEvent_Type_MachineFac;
258 hev->xSourceLp = HvLpConfig_getLpIndex();
259 hev->xTargetLp = primary_lp;
260 hev->xSizeMinus1 = sizeof(ev->event) - 1;
261 hev->xRc = HvLpEvent_Rc_Good;
262 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
263 HvLpEvent_Type_MachineFac);
264 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
265 HvLpEvent_Type_MachineFac);
267 return ev;
270 static int __maybe_unused
271 signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
273 struct pending_event *ev = new_pending_event();
274 int rc;
275 struct vsp_rsp_data response;
277 if (ev == NULL)
278 return -ENOMEM;
280 init_completion(&response.com);
281 response.response = vsp_cmd;
282 ev->event.hp_lp_event.xSubtype = 6;
283 ev->event.hp_lp_event.x.xSubtypeData =
284 subtype_data('M', 'F', 'V', 'I');
285 ev->event.data.vsp_cmd.token = (u64)&response;
286 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
287 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
288 ev->event.data.vsp_cmd.result_code = 0xFF;
289 ev->event.data.vsp_cmd.reserved = 0;
290 memcpy(&(ev->event.data.vsp_cmd.sub_data),
291 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
292 mb();
294 rc = signal_event(ev);
295 if (rc == 0)
296 wait_for_completion(&response.com);
297 return rc;
302 * Send a 12-byte CE message to the primary partition VSP object
304 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
306 struct pending_event *ev = new_pending_event();
308 if (ev == NULL)
309 return -ENOMEM;
311 ev->event.hp_lp_event.xSubtype = 0;
312 ev->event.hp_lp_event.x.xSubtypeData =
313 subtype_data('M', 'F', 'C', 'E');
314 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
315 ev->event.data.ce_msg.completion = completion;
316 return signal_event(ev);
320 * Send a 12-byte CE message (with no data) to the primary partition VSP object
322 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
324 u8 ce_msg[12];
326 memset(ce_msg, 0, sizeof(ce_msg));
327 ce_msg[3] = ce_op;
328 return signal_ce_msg(ce_msg, completion);
332 * Send a 12-byte CE message and DMA data to the primary partition VSP object
334 static int dma_and_signal_ce_msg(char *ce_msg,
335 struct ce_msg_comp_data *completion, void *dma_data,
336 unsigned dma_data_length, unsigned remote_address)
338 struct pending_event *ev = new_pending_event();
340 if (ev == NULL)
341 return -ENOMEM;
343 ev->event.hp_lp_event.xSubtype = 0;
344 ev->event.hp_lp_event.x.xSubtypeData =
345 subtype_data('M', 'F', 'C', 'E');
346 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
347 ev->event.data.ce_msg.completion = completion;
348 memcpy(ev->dma_data, dma_data, dma_data_length);
349 ev->dma_data_length = dma_data_length;
350 ev->remote_address = remote_address;
351 return signal_event(ev);
355 * Initiate a nice (hopefully) shutdown of Linux. We simply are
356 * going to try and send the init process a SIGINT signal. If
357 * this fails (why?), we'll simply force it off in a not-so-nice
358 * manner.
360 static int shutdown(void)
362 int rc = kill_cad_pid(SIGINT, 1);
364 if (rc) {
365 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
366 "hard shutdown commencing\n", rc);
367 mf_power_off();
368 } else
369 printk(KERN_INFO "mf.c: init has been successfully notified "
370 "to proceed with shutdown\n");
371 return rc;
375 * The primary partition VSP object is sending us a new
376 * event flow. Handle it...
378 static void handle_int(struct io_mf_lp_event *event)
380 struct ce_msg_data *ce_msg_data;
381 struct ce_msg_data *pce_msg_data;
382 unsigned long flags;
383 struct pending_event *pev;
385 /* ack the interrupt */
386 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
387 HvCallEvent_ackLpEvent(&event->hp_lp_event);
389 /* process interrupt */
390 switch (event->hp_lp_event.xSubtype) {
391 case 0: /* CE message */
392 ce_msg_data = &event->data.ce_msg;
393 switch (ce_msg_data->ce_msg[3]) {
394 case 0x5B: /* power control notification */
395 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
396 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
397 if (shutdown() == 0)
398 signal_ce_msg_simple(0xDB, NULL);
400 break;
401 case 0xC0: /* get time */
402 spin_lock_irqsave(&pending_event_spinlock, flags);
403 pev = pending_event_head;
404 if (pev != NULL)
405 pending_event_head = pending_event_head->next;
406 spin_unlock_irqrestore(&pending_event_spinlock, flags);
407 if (pev == NULL)
408 break;
409 pce_msg_data = &pev->event.data.ce_msg;
410 if (pce_msg_data->ce_msg[3] != 0x40)
411 break;
412 if (pce_msg_data->completion != NULL) {
413 ce_msg_comp_hdlr handler =
414 pce_msg_data->completion->handler;
415 void *token = pce_msg_data->completion->token;
417 if (handler != NULL)
418 (*handler)(token, ce_msg_data);
420 spin_lock_irqsave(&pending_event_spinlock, flags);
421 free_pending_event(pev);
422 spin_unlock_irqrestore(&pending_event_spinlock, flags);
423 /* send next waiting event */
424 if (pending_event_head != NULL)
425 signal_event(NULL);
426 break;
428 break;
429 case 1: /* IT sys shutdown */
430 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
431 shutdown();
432 break;
437 * The primary partition VSP object is acknowledging the receipt
438 * of a flow we sent to them. If there are other flows queued
439 * up, we must send another one now...
441 static void handle_ack(struct io_mf_lp_event *event)
443 unsigned long flags;
444 struct pending_event *two = NULL;
445 unsigned long free_it = 0;
446 struct ce_msg_data *ce_msg_data;
447 struct ce_msg_data *pce_msg_data;
448 struct vsp_rsp_data *rsp;
450 /* handle current event */
451 if (pending_event_head == NULL) {
452 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
453 return;
456 switch (event->hp_lp_event.xSubtype) {
457 case 0: /* CE msg */
458 ce_msg_data = &event->data.ce_msg;
459 if (ce_msg_data->ce_msg[3] != 0x40) {
460 free_it = 1;
461 break;
463 if (ce_msg_data->ce_msg[2] == 0)
464 break;
465 free_it = 1;
466 pce_msg_data = &pending_event_head->event.data.ce_msg;
467 if (pce_msg_data->completion != NULL) {
468 ce_msg_comp_hdlr handler =
469 pce_msg_data->completion->handler;
470 void *token = pce_msg_data->completion->token;
472 if (handler != NULL)
473 (*handler)(token, ce_msg_data);
475 break;
476 case 4: /* allocate */
477 case 5: /* deallocate */
478 if (pending_event_head->hdlr != NULL)
479 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
480 free_it = 1;
481 break;
482 case 6:
483 free_it = 1;
484 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
485 if (rsp == NULL) {
486 printk(KERN_ERR "mf.c: no rsp\n");
487 break;
489 if (rsp->response != NULL)
490 memcpy(rsp->response, &event->data.vsp_cmd,
491 sizeof(event->data.vsp_cmd));
492 complete(&rsp->com);
493 break;
496 /* remove from queue */
497 spin_lock_irqsave(&pending_event_spinlock, flags);
498 if ((pending_event_head != NULL) && (free_it == 1)) {
499 struct pending_event *oldHead = pending_event_head;
501 pending_event_head = pending_event_head->next;
502 two = pending_event_head;
503 free_pending_event(oldHead);
505 spin_unlock_irqrestore(&pending_event_spinlock, flags);
507 /* send next waiting event */
508 if (two != NULL)
509 signal_event(NULL);
513 * This is the generic event handler we are registering with
514 * the Hypervisor. Ensure the flows are for us, and then
515 * parse it enough to know if it is an interrupt or an
516 * acknowledge.
518 static void hv_handler(struct HvLpEvent *event)
520 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
521 if (hvlpevent_is_ack(event))
522 handle_ack((struct io_mf_lp_event *)event);
523 else
524 handle_int((struct io_mf_lp_event *)event);
525 } else
526 printk(KERN_ERR "mf.c: alien event received\n");
530 * Global kernel interface to allocate and seed events into the
531 * Hypervisor.
533 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
534 unsigned size, unsigned count, MFCompleteHandler hdlr,
535 void *user_token)
537 struct pending_event *ev = new_pending_event();
538 int rc;
540 if (ev == NULL) {
541 rc = -ENOMEM;
542 } else {
543 ev->event.hp_lp_event.xSubtype = 4;
544 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
545 ev->event.hp_lp_event.x.xSubtypeData =
546 subtype_data('M', 'F', 'M', 'A');
547 ev->event.data.alloc.target_lp = target_lp;
548 ev->event.data.alloc.type = type;
549 ev->event.data.alloc.size = size;
550 ev->event.data.alloc.count = count;
551 ev->hdlr = hdlr;
552 rc = signal_event(ev);
554 if ((rc != 0) && (hdlr != NULL))
555 (*hdlr)(user_token, rc);
557 EXPORT_SYMBOL(mf_allocate_lp_events);
560 * Global kernel interface to unseed and deallocate events already in
561 * Hypervisor.
563 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
564 unsigned count, MFCompleteHandler hdlr, void *user_token)
566 struct pending_event *ev = new_pending_event();
567 int rc;
569 if (ev == NULL)
570 rc = -ENOMEM;
571 else {
572 ev->event.hp_lp_event.xSubtype = 5;
573 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
574 ev->event.hp_lp_event.x.xSubtypeData =
575 subtype_data('M', 'F', 'M', 'D');
576 ev->event.data.alloc.target_lp = target_lp;
577 ev->event.data.alloc.type = type;
578 ev->event.data.alloc.count = count;
579 ev->hdlr = hdlr;
580 rc = signal_event(ev);
582 if ((rc != 0) && (hdlr != NULL))
583 (*hdlr)(user_token, rc);
585 EXPORT_SYMBOL(mf_deallocate_lp_events);
588 * Global kernel interface to tell the VSP object in the primary
589 * partition to power this partition off.
591 void mf_power_off(void)
593 printk(KERN_INFO "mf.c: Down it goes...\n");
594 signal_ce_msg_simple(0x4d, NULL);
595 for (;;)
600 * Global kernel interface to tell the VSP object in the primary
601 * partition to reboot this partition.
603 void mf_reboot(char *cmd)
605 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
606 signal_ce_msg_simple(0x4e, NULL);
607 for (;;)
612 * Display a single word SRC onto the VSP control panel.
614 void mf_display_src(u32 word)
616 u8 ce[12];
618 memset(ce, 0, sizeof(ce));
619 ce[3] = 0x4a;
620 ce[7] = 0x01;
621 ce[8] = word >> 24;
622 ce[9] = word >> 16;
623 ce[10] = word >> 8;
624 ce[11] = word;
625 signal_ce_msg(ce, NULL);
629 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
631 static __init void mf_display_progress_src(u16 value)
633 u8 ce[12];
634 u8 src[72];
636 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
637 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
638 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
639 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
640 "\x00\x00\x00\x00PROGxxxx ",
641 72);
642 src[6] = value >> 8;
643 src[7] = value & 255;
644 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
645 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
646 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
647 src[47] = "0123456789ABCDEF"[value & 15];
648 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
652 * Clear the VSP control panel. Used to "erase" an SRC that was
653 * previously displayed.
655 static void mf_clear_src(void)
657 signal_ce_msg_simple(0x4b, NULL);
660 void __init mf_display_progress(u16 value)
662 if (!mf_initialized)
663 return;
665 if (0xFFFF == value)
666 mf_clear_src();
667 else
668 mf_display_progress_src(value);
672 * Initialization code here.
674 void __init mf_init(void)
676 int i;
678 spin_lock_init(&pending_event_spinlock);
680 for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
681 free_pending_event(&pending_event_prealloc[i]);
683 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
685 /* virtual continue ack */
686 signal_ce_msg_simple(0x57, NULL);
688 mf_initialized = 1;
689 mb();
691 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
692 "initialized\n");
695 struct rtc_time_data {
696 struct completion com;
697 struct ce_msg_data ce_msg;
698 int rc;
701 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
703 struct rtc_time_data *rtc = token;
705 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
706 rtc->rc = 0;
707 complete(&rtc->com);
710 static int mf_set_rtc(struct rtc_time *tm)
712 char ce_time[12];
713 u8 day, mon, hour, min, sec, y1, y2;
714 unsigned year;
716 year = 1900 + tm->tm_year;
717 y1 = year / 100;
718 y2 = year % 100;
720 sec = tm->tm_sec;
721 min = tm->tm_min;
722 hour = tm->tm_hour;
723 day = tm->tm_mday;
724 mon = tm->tm_mon + 1;
726 sec = bin2bcd(sec);
727 min = bin2bcd(min);
728 hour = bin2bcd(hour);
729 mon = bin2bcd(mon);
730 day = bin2bcd(day);
731 y1 = bin2bcd(y1);
732 y2 = bin2bcd(y2);
734 memset(ce_time, 0, sizeof(ce_time));
735 ce_time[3] = 0x41;
736 ce_time[4] = y1;
737 ce_time[5] = y2;
738 ce_time[6] = sec;
739 ce_time[7] = min;
740 ce_time[8] = hour;
741 ce_time[10] = day;
742 ce_time[11] = mon;
744 return signal_ce_msg(ce_time, NULL);
747 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
749 tm->tm_wday = 0;
750 tm->tm_yday = 0;
751 tm->tm_isdst = 0;
752 if (rc) {
753 tm->tm_sec = 0;
754 tm->tm_min = 0;
755 tm->tm_hour = 0;
756 tm->tm_mday = 15;
757 tm->tm_mon = 5;
758 tm->tm_year = 52;
759 return rc;
762 if ((ce_msg[2] == 0xa9) ||
763 (ce_msg[2] == 0xaf)) {
764 /* TOD clock is not set */
765 tm->tm_sec = 1;
766 tm->tm_min = 1;
767 tm->tm_hour = 1;
768 tm->tm_mday = 10;
769 tm->tm_mon = 8;
770 tm->tm_year = 71;
771 mf_set_rtc(tm);
774 u8 year = ce_msg[5];
775 u8 sec = ce_msg[6];
776 u8 min = ce_msg[7];
777 u8 hour = ce_msg[8];
778 u8 day = ce_msg[10];
779 u8 mon = ce_msg[11];
781 sec = bcd2bin(sec);
782 min = bcd2bin(min);
783 hour = bcd2bin(hour);
784 day = bcd2bin(day);
785 mon = bcd2bin(mon);
786 year = bcd2bin(year);
788 if (year <= 69)
789 year += 100;
791 tm->tm_sec = sec;
792 tm->tm_min = min;
793 tm->tm_hour = hour;
794 tm->tm_mday = day;
795 tm->tm_mon = mon;
796 tm->tm_year = year;
799 return 0;
802 static int mf_get_rtc(struct rtc_time *tm)
804 struct ce_msg_comp_data ce_complete;
805 struct rtc_time_data rtc_data;
806 int rc;
808 memset(&ce_complete, 0, sizeof(ce_complete));
809 memset(&rtc_data, 0, sizeof(rtc_data));
810 init_completion(&rtc_data.com);
811 ce_complete.handler = &get_rtc_time_complete;
812 ce_complete.token = &rtc_data;
813 rc = signal_ce_msg_simple(0x40, &ce_complete);
814 if (rc)
815 return rc;
816 wait_for_completion(&rtc_data.com);
817 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
820 struct boot_rtc_time_data {
821 int busy;
822 struct ce_msg_data ce_msg;
823 int rc;
826 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
828 struct boot_rtc_time_data *rtc = token;
830 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
831 rtc->rc = 0;
832 rtc->busy = 0;
835 static int mf_get_boot_rtc(struct rtc_time *tm)
837 struct ce_msg_comp_data ce_complete;
838 struct boot_rtc_time_data rtc_data;
839 int rc;
841 memset(&ce_complete, 0, sizeof(ce_complete));
842 memset(&rtc_data, 0, sizeof(rtc_data));
843 rtc_data.busy = 1;
844 ce_complete.handler = &get_boot_rtc_time_complete;
845 ce_complete.token = &rtc_data;
846 rc = signal_ce_msg_simple(0x40, &ce_complete);
847 if (rc)
848 return rc;
849 /* We need to poll here as we are not yet taking interrupts */
850 while (rtc_data.busy) {
851 if (hvlpevent_is_pending())
852 process_hvlpevents();
854 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
857 #ifdef CONFIG_PROC_FS
859 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
860 int count, int *eof, void *data)
862 int len;
863 char *p;
864 struct vsp_cmd_data vsp_cmd;
865 int rc;
866 dma_addr_t dma_addr;
868 /* The HV appears to return no more than 256 bytes of command line */
869 if (off >= 256)
870 return 0;
871 if ((off + count) > 256)
872 count = 256 - off;
874 dma_addr = iseries_hv_map(page, off + count, DMA_FROM_DEVICE);
875 if (dma_addr == DMA_ERROR_CODE)
876 return -ENOMEM;
877 memset(page, 0, off + count);
878 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
879 vsp_cmd.cmd = 33;
880 vsp_cmd.sub_data.kern.token = dma_addr;
881 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
882 vsp_cmd.sub_data.kern.side = (u64)data;
883 vsp_cmd.sub_data.kern.length = off + count;
884 mb();
885 rc = signal_vsp_instruction(&vsp_cmd);
886 iseries_hv_unmap(dma_addr, off + count, DMA_FROM_DEVICE);
887 if (rc)
888 return rc;
889 if (vsp_cmd.result_code != 0)
890 return -ENOMEM;
891 p = page;
892 len = 0;
893 while (len < (off + count)) {
894 if ((*p == '\0') || (*p == '\n')) {
895 if (*p == '\0')
896 *p = '\n';
897 p++;
898 len++;
899 *eof = 1;
900 break;
902 p++;
903 len++;
906 if (len < off) {
907 *eof = 1;
908 len = 0;
910 return len;
913 #if 0
914 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
916 struct vsp_cmd_data vsp_cmd;
917 int rc;
918 int len = *size;
919 dma_addr_t dma_addr;
921 dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
922 memset(buffer, 0, len);
923 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
924 vsp_cmd.cmd = 32;
925 vsp_cmd.sub_data.kern.token = dma_addr;
926 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
927 vsp_cmd.sub_data.kern.side = side;
928 vsp_cmd.sub_data.kern.offset = offset;
929 vsp_cmd.sub_data.kern.length = len;
930 mb();
931 rc = signal_vsp_instruction(&vsp_cmd);
932 if (rc == 0) {
933 if (vsp_cmd.result_code == 0)
934 *size = vsp_cmd.sub_data.length_out;
935 else
936 rc = -ENOMEM;
939 iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
941 return rc;
944 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
945 int count, int *eof, void *data)
947 int sizeToGet = count;
949 if (!capable(CAP_SYS_ADMIN))
950 return -EACCES;
952 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
953 if (sizeToGet != 0) {
954 *start = page + off;
955 return sizeToGet;
957 *eof = 1;
958 return 0;
960 *eof = 1;
961 return 0;
963 #endif
965 static int proc_mf_dump_side(char *page, char **start, off_t off,
966 int count, int *eof, void *data)
968 int len;
969 char mf_current_side = ' ';
970 struct vsp_cmd_data vsp_cmd;
972 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
973 vsp_cmd.cmd = 2;
974 vsp_cmd.sub_data.ipl_type = 0;
975 mb();
977 if (signal_vsp_instruction(&vsp_cmd) == 0) {
978 if (vsp_cmd.result_code == 0) {
979 switch (vsp_cmd.sub_data.ipl_type) {
980 case 0: mf_current_side = 'A';
981 break;
982 case 1: mf_current_side = 'B';
983 break;
984 case 2: mf_current_side = 'C';
985 break;
986 default: mf_current_side = 'D';
987 break;
992 len = sprintf(page, "%c\n", mf_current_side);
994 if (len <= (off + count))
995 *eof = 1;
996 *start = page + off;
997 len -= off;
998 if (len > count)
999 len = count;
1000 if (len < 0)
1001 len = 0;
1002 return len;
1005 static int proc_mf_change_side(struct file *file, const char __user *buffer,
1006 unsigned long count, void *data)
1008 char side;
1009 u64 newSide;
1010 struct vsp_cmd_data vsp_cmd;
1012 if (!capable(CAP_SYS_ADMIN))
1013 return -EACCES;
1015 if (count == 0)
1016 return 0;
1018 if (get_user(side, buffer))
1019 return -EFAULT;
1021 switch (side) {
1022 case 'A': newSide = 0;
1023 break;
1024 case 'B': newSide = 1;
1025 break;
1026 case 'C': newSide = 2;
1027 break;
1028 case 'D': newSide = 3;
1029 break;
1030 default:
1031 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1032 return -EINVAL;
1035 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1036 vsp_cmd.sub_data.ipl_type = newSide;
1037 vsp_cmd.cmd = 10;
1039 (void)signal_vsp_instruction(&vsp_cmd);
1041 return count;
1044 #if 0
1045 static void mf_getSrcHistory(char *buffer, int size)
1047 struct IplTypeReturnStuff return_stuff;
1048 struct pending_event *ev = new_pending_event();
1049 int rc = 0;
1050 char *pages[4];
1052 pages[0] = kmalloc(4096, GFP_ATOMIC);
1053 pages[1] = kmalloc(4096, GFP_ATOMIC);
1054 pages[2] = kmalloc(4096, GFP_ATOMIC);
1055 pages[3] = kmalloc(4096, GFP_ATOMIC);
1056 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1057 || (pages[2] == NULL) || (pages[3] == NULL))
1058 return -ENOMEM;
1060 return_stuff.xType = 0;
1061 return_stuff.xRc = 0;
1062 return_stuff.xDone = 0;
1063 ev->event.hp_lp_event.xSubtype = 6;
1064 ev->event.hp_lp_event.x.xSubtypeData =
1065 subtype_data('M', 'F', 'V', 'I');
1066 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1067 ev->event.data.vsp_cmd.cmd = 4;
1068 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1069 ev->event.data.vsp_cmd.result_code = 0xFF;
1070 ev->event.data.vsp_cmd.reserved = 0;
1071 ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1072 ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1073 ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1074 ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1075 mb();
1076 if (signal_event(ev) != 0)
1077 return;
1079 while (return_stuff.xDone != 1)
1080 udelay(10);
1081 if (return_stuff.xRc == 0)
1082 memcpy(buffer, pages[0], size);
1083 kfree(pages[0]);
1084 kfree(pages[1]);
1085 kfree(pages[2]);
1086 kfree(pages[3]);
1088 #endif
1090 static int proc_mf_dump_src(char *page, char **start, off_t off,
1091 int count, int *eof, void *data)
1093 #if 0
1094 int len;
1096 mf_getSrcHistory(page, count);
1097 len = count;
1098 len -= off;
1099 if (len < count) {
1100 *eof = 1;
1101 if (len <= 0)
1102 return 0;
1103 } else
1104 len = count;
1105 *start = page + off;
1106 return len;
1107 #else
1108 return 0;
1109 #endif
1112 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1113 unsigned long count, void *data)
1115 char stkbuf[10];
1117 if (!capable(CAP_SYS_ADMIN))
1118 return -EACCES;
1120 if ((count < 4) && (count != 1)) {
1121 printk(KERN_ERR "mf_proc: invalid src\n");
1122 return -EINVAL;
1125 if (count > (sizeof(stkbuf) - 1))
1126 count = sizeof(stkbuf) - 1;
1127 if (copy_from_user(stkbuf, buffer, count))
1128 return -EFAULT;
1130 if ((count == 1) && (*stkbuf == '\0'))
1131 mf_clear_src();
1132 else
1133 mf_display_src(*(u32 *)stkbuf);
1135 return count;
1138 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1139 unsigned long count, void *data)
1141 struct vsp_cmd_data vsp_cmd;
1142 dma_addr_t dma_addr;
1143 char *page;
1144 int ret = -EACCES;
1146 if (!capable(CAP_SYS_ADMIN))
1147 goto out;
1149 dma_addr = 0;
1150 page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1151 ret = -ENOMEM;
1152 if (page == NULL)
1153 goto out;
1155 ret = -EFAULT;
1156 if (copy_from_user(page, buffer, count))
1157 goto out_free;
1159 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1160 vsp_cmd.cmd = 31;
1161 vsp_cmd.sub_data.kern.token = dma_addr;
1162 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1163 vsp_cmd.sub_data.kern.side = (u64)data;
1164 vsp_cmd.sub_data.kern.length = count;
1165 mb();
1166 (void)signal_vsp_instruction(&vsp_cmd);
1167 ret = count;
1169 out_free:
1170 iseries_hv_free(count, page, dma_addr);
1171 out:
1172 return ret;
1175 static ssize_t proc_mf_change_vmlinux(struct file *file,
1176 const char __user *buf,
1177 size_t count, loff_t *ppos)
1179 struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1180 ssize_t rc;
1181 dma_addr_t dma_addr;
1182 char *page;
1183 struct vsp_cmd_data vsp_cmd;
1185 rc = -EACCES;
1186 if (!capable(CAP_SYS_ADMIN))
1187 goto out;
1189 dma_addr = 0;
1190 page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1191 rc = -ENOMEM;
1192 if (page == NULL) {
1193 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1194 goto out;
1196 rc = -EFAULT;
1197 if (copy_from_user(page, buf, count))
1198 goto out_free;
1200 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1201 vsp_cmd.cmd = 30;
1202 vsp_cmd.sub_data.kern.token = dma_addr;
1203 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1204 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1205 vsp_cmd.sub_data.kern.offset = *ppos;
1206 vsp_cmd.sub_data.kern.length = count;
1207 mb();
1208 rc = signal_vsp_instruction(&vsp_cmd);
1209 if (rc)
1210 goto out_free;
1211 rc = -ENOMEM;
1212 if (vsp_cmd.result_code != 0)
1213 goto out_free;
1215 *ppos += count;
1216 rc = count;
1217 out_free:
1218 iseries_hv_free(count, page, dma_addr);
1219 out:
1220 return rc;
1223 static const struct file_operations proc_vmlinux_operations = {
1224 .write = proc_mf_change_vmlinux,
1227 static int __init mf_proc_init(void)
1229 struct proc_dir_entry *mf_proc_root;
1230 struct proc_dir_entry *ent;
1231 struct proc_dir_entry *mf;
1232 char name[2];
1233 int i;
1235 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1236 return 0;
1238 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1239 if (!mf_proc_root)
1240 return 1;
1242 name[1] = '\0';
1243 for (i = 0; i < 4; i++) {
1244 name[0] = 'A' + i;
1245 mf = proc_mkdir(name, mf_proc_root);
1246 if (!mf)
1247 return 1;
1249 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1250 if (!ent)
1251 return 1;
1252 ent->data = (void *)(long)i;
1253 ent->read_proc = proc_mf_dump_cmdline;
1254 ent->write_proc = proc_mf_change_cmdline;
1256 if (i == 3) /* no vmlinux entry for 'D' */
1257 continue;
1259 ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf,
1260 &proc_vmlinux_operations,
1261 (void *)(long)i);
1262 if (!ent)
1263 return 1;
1266 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1267 if (!ent)
1268 return 1;
1269 ent->data = (void *)0;
1270 ent->read_proc = proc_mf_dump_side;
1271 ent->write_proc = proc_mf_change_side;
1273 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1274 if (!ent)
1275 return 1;
1276 ent->data = (void *)0;
1277 ent->read_proc = proc_mf_dump_src;
1278 ent->write_proc = proc_mf_change_src;
1280 return 0;
1283 __initcall(mf_proc_init);
1285 #endif /* CONFIG_PROC_FS */
1288 * Get the RTC from the virtual service processor
1289 * This requires flowing LpEvents to the primary partition
1291 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1293 mf_get_rtc(rtc_tm);
1294 rtc_tm->tm_mon--;
1298 * Set the RTC in the virtual service processor
1299 * This requires flowing LpEvents to the primary partition
1301 int iSeries_set_rtc_time(struct rtc_time *tm)
1303 mf_set_rtc(tm);
1304 return 0;
1307 unsigned long iSeries_get_boot_time(void)
1309 struct rtc_time tm;
1311 mf_get_boot_rtc(&tm);
1312 return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1313 tm.tm_hour, tm.tm_min, tm.tm_sec);