OMAP3: SR: Replace printk's with pr_* calls
[linux-ginger.git] / drivers / gpu / drm / i915 / intel_display.c
blob3c14240cc0028d32cada1af63a069e78776ea306
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
57 typedef struct {
58 int min, max;
59 } intel_range_t;
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
73 bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define IGD_VCO_MIN 1700000
106 #define IGD_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN 3
111 #define IGD_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define IGD_M_MIN 2
115 #define IGD_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN 0
122 #define IGD_M1_MAX 0
123 #define IGD_M2_MIN 0
124 #define IGD_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define IGD_P_LVDS_MIN 7
130 #define IGD_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
241 #define IGDNG_DOT_MIN 25000
242 #define IGDNG_DOT_MAX 350000
243 #define IGDNG_VCO_MIN 1760000
244 #define IGDNG_VCO_MAX 3510000
245 #define IGDNG_N_MIN 1
246 #define IGDNG_N_MAX 5
247 #define IGDNG_M_MIN 79
248 #define IGDNG_M_MAX 118
249 #define IGDNG_M1_MIN 12
250 #define IGDNG_M1_MAX 23
251 #define IGDNG_M2_MIN 5
252 #define IGDNG_M2_MAX 9
253 #define IGDNG_P_SDVO_DAC_MIN 5
254 #define IGDNG_P_SDVO_DAC_MAX 80
255 #define IGDNG_P_LVDS_MIN 28
256 #define IGDNG_P_LVDS_MAX 112
257 #define IGDNG_P1_MIN 1
258 #define IGDNG_P1_MAX 8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
263 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267 int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273 int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276 int target, int refclk, intel_clock_t *best_clock);
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280 int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283 int target, int refclk, intel_clock_t *best_clock);
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
287 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
288 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
289 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
290 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
291 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
292 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
293 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
294 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
296 .find_pll = intel_find_best_PLL,
297 .find_reduced_pll = intel_find_best_reduced_PLL,
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
302 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
303 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
304 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
305 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
306 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
307 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
308 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
309 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
311 .find_pll = intel_find_best_PLL,
312 .find_reduced_pll = intel_find_best_reduced_PLL,
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
317 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
318 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
319 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
320 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
321 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
322 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
323 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
324 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326 .find_pll = intel_find_best_PLL,
327 .find_reduced_pll = intel_find_best_reduced_PLL,
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
332 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
333 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
334 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
335 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
336 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
337 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
338 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
342 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
344 .find_pll = intel_find_best_PLL,
345 .find_reduced_pll = intel_find_best_reduced_PLL,
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
351 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
352 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
353 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
354 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
355 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
356 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
357 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
358 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
359 .p2_slow = G4X_P2_SDVO_SLOW,
360 .p2_fast = G4X_P2_SDVO_FAST
362 .find_pll = intel_g4x_find_best_PLL,
363 .find_reduced_pll = intel_g4x_find_best_PLL,
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
368 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
369 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
370 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
371 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
372 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
373 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
374 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
375 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377 .p2_fast = G4X_P2_HDMI_DAC_FAST
379 .find_pll = intel_g4x_find_best_PLL,
380 .find_reduced_pll = intel_g4x_find_best_PLL,
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386 .vco = { .min = G4X_VCO_MIN,
387 .max = G4X_VCO_MAX },
388 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
404 .find_pll = intel_g4x_find_best_PLL,
405 .find_reduced_pll = intel_g4x_find_best_PLL,
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411 .vco = { .min = G4X_VCO_MIN,
412 .max = G4X_VCO_MAX },
413 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
429 .find_pll = intel_g4x_find_best_PLL,
430 .find_reduced_pll = intel_g4x_find_best_PLL,
433 static const intel_limit_t intel_limits_g4x_display_port = {
434 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435 .max = G4X_DOT_DISPLAY_PORT_MAX },
436 .vco = { .min = G4X_VCO_MIN,
437 .max = G4X_VCO_MAX},
438 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
439 .max = G4X_N_DISPLAY_PORT_MAX },
440 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
441 .max = G4X_M_DISPLAY_PORT_MAX },
442 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
443 .max = G4X_M1_DISPLAY_PORT_MAX },
444 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
445 .max = G4X_M2_DISPLAY_PORT_MAX },
446 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
447 .max = G4X_P_DISPLAY_PORT_MAX },
448 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
449 .max = G4X_P1_DISPLAY_PORT_MAX},
450 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453 .find_pll = intel_find_pll_g4x_dp,
456 static const intel_limit_t intel_limits_igd_sdvo = {
457 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
458 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
459 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
460 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
461 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
462 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
463 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
464 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
465 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467 .find_pll = intel_find_best_PLL,
468 .find_reduced_pll = intel_find_best_reduced_PLL,
471 static const intel_limit_t intel_limits_igd_lvds = {
472 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
473 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
474 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
475 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
476 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
477 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
478 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
480 /* IGD only supports single-channel mode. */
481 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
483 .find_pll = intel_find_best_PLL,
484 .find_reduced_pll = intel_find_best_reduced_PLL,
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
489 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
490 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
491 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
492 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
493 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
494 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
495 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
496 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499 .find_pll = intel_igdng_find_best_PLL,
502 static const intel_limit_t intel_limits_igdng_lvds = {
503 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
504 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
505 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
506 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
507 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
508 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
509 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
510 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
511 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512 .p2_slow = IGDNG_P2_LVDS_SLOW,
513 .p2_fast = IGDNG_P2_LVDS_FAST },
514 .find_pll = intel_igdng_find_best_PLL,
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
519 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521 limit = &intel_limits_igdng_lvds;
522 else
523 limit = &intel_limits_igdng_sdvo;
525 return limit;
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
530 struct drm_device *dev = crtc->dev;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 const intel_limit_t *limit;
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 /* LVDS with dual channel */
538 limit = &intel_limits_g4x_dual_channel_lvds;
539 else
540 /* LVDS with dual channel */
541 limit = &intel_limits_g4x_single_channel_lvds;
542 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544 limit = &intel_limits_g4x_hdmi;
545 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546 limit = &intel_limits_g4x_sdvo;
547 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548 limit = &intel_limits_g4x_display_port;
549 } else /* The option is for other outputs */
550 limit = &intel_limits_i9xx_sdvo;
552 return limit;
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
557 struct drm_device *dev = crtc->dev;
558 const intel_limit_t *limit;
560 if (IS_IGDNG(dev))
561 limit = intel_igdng_limit(crtc);
562 else if (IS_G4X(dev)) {
563 limit = intel_g4x_limit(crtc);
564 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566 limit = &intel_limits_i9xx_lvds;
567 else
568 limit = &intel_limits_i9xx_sdvo;
569 } else if (IS_IGD(dev)) {
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571 limit = &intel_limits_igd_lvds;
572 else
573 limit = &intel_limits_igd_sdvo;
574 } else {
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576 limit = &intel_limits_i8xx_lvds;
577 else
578 limit = &intel_limits_i8xx_dvo;
580 return limit;
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
586 clock->m = clock->m2 + 2;
587 clock->p = clock->p1 * clock->p2;
588 clock->vco = refclk * clock->m / clock->n;
589 clock->dot = clock->vco / clock->p;
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
594 if (IS_IGD(dev)) {
595 igd_clock(refclk, clock);
596 return;
598 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599 clock->p = clock->p1 * clock->p2;
600 clock->vco = refclk * clock->m / (clock->n + 2);
601 clock->dot = clock->vco / clock->p;
605 * Returns whether any output on the specified pipe is of the specified type
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry;
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 struct intel_output *intel_output = to_intel_output(l_entry);
617 if (intel_output->type == type)
618 return true;
621 return false;
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
627 struct drm_device *dev = crtc->dev;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *l_entry, *ret = NULL;
631 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632 if (l_entry->encoder &&
633 l_entry->encoder->crtc == crtc) {
634 ret = l_entry;
635 break;
638 return ret;
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
649 const intel_limit_t *limit = intel_limit (crtc);
650 struct drm_device *dev = crtc->dev;
652 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock->p < limit->p.min || limit->p.max < clock->p)
655 INTELPllInvalid ("p out of range\n");
656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid ("m out of range\n");
664 if (clock->n < limit->n.min || limit->n.max < clock->n)
665 INTELPllInvalid ("n out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid ("dot out of range\n");
674 return true;
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *best_clock)
682 struct drm_device *dev = crtc->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 intel_clock_t clock;
685 int err = target;
687 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688 (I915_READ(LVDS)) != 0) {
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
693 * even can.
695 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696 LVDS_CLKB_POWER_UP)
697 clock.p2 = limit->p2.p2_fast;
698 else
699 clock.p2 = limit->p2.p2_slow;
700 } else {
701 if (target < limit->p2.dot_limit)
702 clock.p2 = limit->p2.p2_slow;
703 else
704 clock.p2 = limit->p2.p2_fast;
707 memset (best_clock, 0, sizeof (*best_clock));
709 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711 clock.m1++) {
712 for (clock.m2 = limit->m2.min;
713 clock.m2 <= limit->m2.max; clock.m2++) {
714 /* m1 is always 0 in IGD */
715 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716 break;
717 for (clock.n = limit->n.min;
718 clock.n <= limit->n.max; clock.n++) {
719 int this_err;
721 intel_clock(dev, refclk, &clock);
723 if (!intel_PLL_is_valid(crtc, &clock))
724 continue;
726 this_err = abs(clock.dot - target);
727 if (this_err < err) {
728 *best_clock = clock;
729 err = this_err;
736 return (err != target);
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *best_clock)
745 struct drm_device *dev = crtc->dev;
746 intel_clock_t clock;
747 int err = target;
748 bool found = false;
750 memcpy(&clock, best_clock, sizeof(intel_clock_t));
752 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754 /* m1 is always 0 in IGD */
755 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756 break;
757 for (clock.n = limit->n.min; clock.n <= limit->n.max;
758 clock.n++) {
759 int this_err;
761 intel_clock(dev, refclk, &clock);
763 if (!intel_PLL_is_valid(crtc, &clock))
764 continue;
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 found = true;
776 return found;
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781 int target, int refclk, intel_clock_t *best_clock)
783 struct drm_device *dev = crtc->dev;
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 intel_clock_t clock;
786 int max_n;
787 bool found;
788 /* approximately equals target * 0.00488 */
789 int err_most = (target >> 8) + (target >> 10);
790 found = false;
792 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794 LVDS_CLKB_POWER_UP)
795 clock.p2 = limit->p2.p2_fast;
796 else
797 clock.p2 = limit->p2.p2_slow;
798 } else {
799 if (target < limit->p2.dot_limit)
800 clock.p2 = limit->p2.p2_slow;
801 else
802 clock.p2 = limit->p2.p2_fast;
805 memset(best_clock, 0, sizeof(*best_clock));
806 max_n = limit->n.max;
807 /* based on hardware requriment prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirment prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
818 intel_clock(dev, refclk, &clock);
819 if (!intel_PLL_is_valid(crtc, &clock))
820 continue;
821 this_err = abs(clock.dot - target) ;
822 if (this_err < err_most) {
823 *best_clock = clock;
824 err_most = this_err;
825 max_n = clock.n;
826 found = true;
832 return found;
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *best_clock)
839 struct drm_device *dev = crtc->dev;
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.n = 1;
843 clock.p1 = 2;
844 clock.p2 = 10;
845 clock.m1 = 12;
846 clock.m2 = 9;
847 } else {
848 clock.n = 2;
849 clock.p1 = 1;
850 clock.p2 = 10;
851 clock.m1 = 14;
852 clock.m2 = 8;
854 intel_clock(dev, refclk, &clock);
855 memcpy(best_clock, &clock, sizeof(intel_clock_t));
856 return true;
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861 int target, int refclk, intel_clock_t *best_clock)
863 struct drm_device *dev = crtc->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865 intel_clock_t clock;
866 int max_n;
867 bool found;
868 int err_most = 47;
869 found = false;
871 /* eDP has only 2 clock choice, no n/m/p setting */
872 if (HAS_eDP)
873 return true;
875 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
876 return intel_find_pll_igdng_dp(limit, crtc, target,
877 refclk, best_clock);
879 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
881 LVDS_CLKB_POWER_UP)
882 clock.p2 = limit->p2.p2_fast;
883 else
884 clock.p2 = limit->p2.p2_slow;
885 } else {
886 if (target < limit->p2.dot_limit)
887 clock.p2 = limit->p2.p2_slow;
888 else
889 clock.p2 = limit->p2.p2_fast;
892 memset(best_clock, 0, sizeof(*best_clock));
893 max_n = limit->n.max;
894 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895 /* based on hardware requriment prefer smaller n to precision */
896 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897 /* based on hardware requirment prefere larger m1,m2 */
898 for (clock.m1 = limit->m1.max;
899 clock.m1 >= limit->m1.min; clock.m1--) {
900 for (clock.m2 = limit->m2.max;
901 clock.m2 >= limit->m2.min; clock.m2--) {
902 int this_err;
904 intel_clock(dev, refclk, &clock);
905 if (!intel_PLL_is_valid(crtc, &clock))
906 continue;
907 this_err = abs((10000 - (target*10000/clock.dot)));
908 if (this_err < err_most) {
909 *best_clock = clock;
910 err_most = this_err;
911 max_n = clock.n;
912 found = true;
913 /* found on first matching */
914 goto out;
920 out:
921 return found;
924 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
925 static bool
926 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
927 int target, int refclk, intel_clock_t *best_clock)
929 intel_clock_t clock;
930 if (target < 200000) {
931 clock.p1 = 2;
932 clock.p2 = 10;
933 clock.n = 2;
934 clock.m1 = 23;
935 clock.m2 = 8;
936 } else {
937 clock.p1 = 1;
938 clock.p2 = 10;
939 clock.n = 1;
940 clock.m1 = 14;
941 clock.m2 = 2;
943 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
944 clock.p = (clock.p1 * clock.p2);
945 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
946 memcpy(best_clock, &clock, sizeof(intel_clock_t));
947 return true;
950 void
951 intel_wait_for_vblank(struct drm_device *dev)
953 /* Wait for 20ms, i.e. one cycle at 50hz. */
954 mdelay(20);
957 /* Parameters have changed, update FBC info */
958 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
960 struct drm_device *dev = crtc->dev;
961 struct drm_i915_private *dev_priv = dev->dev_private;
962 struct drm_framebuffer *fb = crtc->fb;
963 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
964 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
966 int plane, i;
967 u32 fbc_ctl, fbc_ctl2;
969 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
971 if (fb->pitch < dev_priv->cfb_pitch)
972 dev_priv->cfb_pitch = fb->pitch;
974 /* FBC_CTL wants 64B units */
975 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
976 dev_priv->cfb_fence = obj_priv->fence_reg;
977 dev_priv->cfb_plane = intel_crtc->plane;
978 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
980 /* Clear old tags */
981 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
982 I915_WRITE(FBC_TAG + (i * 4), 0);
984 /* Set it up... */
985 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
986 if (obj_priv->tiling_mode != I915_TILING_NONE)
987 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
988 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
989 I915_WRITE(FBC_FENCE_OFF, crtc->y);
991 /* enable it... */
992 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
993 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
994 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
995 if (obj_priv->tiling_mode != I915_TILING_NONE)
996 fbc_ctl |= dev_priv->cfb_fence;
997 I915_WRITE(FBC_CONTROL, fbc_ctl);
999 DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1000 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1003 void i8xx_disable_fbc(struct drm_device *dev)
1005 struct drm_i915_private *dev_priv = dev->dev_private;
1006 u32 fbc_ctl;
1008 if (!I915_HAS_FBC(dev))
1009 return;
1011 /* Disable compression */
1012 fbc_ctl = I915_READ(FBC_CONTROL);
1013 fbc_ctl &= ~FBC_CTL_EN;
1014 I915_WRITE(FBC_CONTROL, fbc_ctl);
1016 /* Wait for compressing bit to clear */
1017 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1018 ; /* nothing */
1020 intel_wait_for_vblank(dev);
1022 DRM_DEBUG("disabled FBC\n");
1025 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1027 struct drm_device *dev = crtc->dev;
1028 struct drm_i915_private *dev_priv = dev->dev_private;
1030 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1033 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1035 struct drm_device *dev = crtc->dev;
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037 struct drm_framebuffer *fb = crtc->fb;
1038 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1039 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1041 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1042 DPFC_CTL_PLANEB);
1043 unsigned long stall_watermark = 200;
1044 u32 dpfc_ctl;
1046 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1047 dev_priv->cfb_fence = obj_priv->fence_reg;
1048 dev_priv->cfb_plane = intel_crtc->plane;
1050 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1051 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1052 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1053 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1054 } else {
1055 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1058 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1059 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1060 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1061 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1062 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1064 /* enable it... */
1065 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1067 DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc->plane);
1070 void g4x_disable_fbc(struct drm_device *dev)
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 u32 dpfc_ctl;
1075 /* Disable compression */
1076 dpfc_ctl = I915_READ(DPFC_CONTROL);
1077 dpfc_ctl &= ~DPFC_CTL_EN;
1078 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1079 intel_wait_for_vblank(dev);
1081 DRM_DEBUG("disabled FBC\n");
1084 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1086 struct drm_device *dev = crtc->dev;
1087 struct drm_i915_private *dev_priv = dev->dev_private;
1089 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1093 * intel_update_fbc - enable/disable FBC as needed
1094 * @crtc: CRTC to point the compressor at
1095 * @mode: mode in use
1097 * Set up the framebuffer compression hardware at mode set time. We
1098 * enable it if possible:
1099 * - plane A only (on pre-965)
1100 * - no pixel mulitply/line duplication
1101 * - no alpha buffer discard
1102 * - no dual wide
1103 * - framebuffer <= 2048 in width, 1536 in height
1105 * We can't assume that any compression will take place (worst case),
1106 * so the compressed buffer has to be the same size as the uncompressed
1107 * one. It also must reside (along with the line length buffer) in
1108 * stolen memory.
1110 * We need to enable/disable FBC on a global basis.
1112 static void intel_update_fbc(struct drm_crtc *crtc,
1113 struct drm_display_mode *mode)
1115 struct drm_device *dev = crtc->dev;
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 struct drm_framebuffer *fb = crtc->fb;
1118 struct intel_framebuffer *intel_fb;
1119 struct drm_i915_gem_object *obj_priv;
1120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1121 int plane = intel_crtc->plane;
1123 if (!i915_powersave)
1124 return;
1126 if (!dev_priv->display.fbc_enabled ||
1127 !dev_priv->display.enable_fbc ||
1128 !dev_priv->display.disable_fbc)
1129 return;
1131 if (!crtc->fb)
1132 return;
1134 intel_fb = to_intel_framebuffer(fb);
1135 obj_priv = intel_fb->obj->driver_private;
1138 * If FBC is already on, we just have to verify that we can
1139 * keep it that way...
1140 * Need to disable if:
1141 * - changing FBC params (stride, fence, mode)
1142 * - new fb is too large to fit in compressed buffer
1143 * - going to an unsupported config (interlace, pixel multiply, etc.)
1145 if (intel_fb->obj->size > dev_priv->cfb_size) {
1146 DRM_DEBUG("framebuffer too large, disabling compression\n");
1147 goto out_disable;
1149 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1150 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1151 DRM_DEBUG("mode incompatible with compression, disabling\n");
1152 goto out_disable;
1154 if ((mode->hdisplay > 2048) ||
1155 (mode->vdisplay > 1536)) {
1156 DRM_DEBUG("mode too large for compression, disabling\n");
1157 goto out_disable;
1159 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1160 DRM_DEBUG("plane not 0, disabling compression\n");
1161 goto out_disable;
1163 if (obj_priv->tiling_mode != I915_TILING_X) {
1164 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1165 goto out_disable;
1168 if (dev_priv->display.fbc_enabled(crtc)) {
1169 /* We can re-enable it in this case, but need to update pitch */
1170 if (fb->pitch > dev_priv->cfb_pitch)
1171 dev_priv->display.disable_fbc(dev);
1172 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1173 dev_priv->display.disable_fbc(dev);
1174 if (plane != dev_priv->cfb_plane)
1175 dev_priv->display.disable_fbc(dev);
1178 if (!dev_priv->display.fbc_enabled(crtc)) {
1179 /* Now try to turn it back on if possible */
1180 dev_priv->display.enable_fbc(crtc, 500);
1183 return;
1185 out_disable:
1186 DRM_DEBUG("unsupported config, disabling FBC\n");
1187 /* Multiple disables should be harmless */
1188 if (dev_priv->display.fbc_enabled(crtc))
1189 dev_priv->display.disable_fbc(dev);
1192 static int
1193 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1194 struct drm_framebuffer *old_fb)
1196 struct drm_device *dev = crtc->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 struct drm_i915_master_private *master_priv;
1199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1200 struct intel_framebuffer *intel_fb;
1201 struct drm_i915_gem_object *obj_priv;
1202 struct drm_gem_object *obj;
1203 int pipe = intel_crtc->pipe;
1204 int plane = intel_crtc->plane;
1205 unsigned long Start, Offset;
1206 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1207 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1208 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1209 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1210 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1211 u32 dspcntr, alignment;
1212 int ret;
1214 /* no fb bound */
1215 if (!crtc->fb) {
1216 DRM_DEBUG("No FB bound\n");
1217 return 0;
1220 switch (plane) {
1221 case 0:
1222 case 1:
1223 break;
1224 default:
1225 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1226 return -EINVAL;
1229 intel_fb = to_intel_framebuffer(crtc->fb);
1230 obj = intel_fb->obj;
1231 obj_priv = obj->driver_private;
1233 switch (obj_priv->tiling_mode) {
1234 case I915_TILING_NONE:
1235 alignment = 64 * 1024;
1236 break;
1237 case I915_TILING_X:
1238 /* pin() will align the object as required by fence */
1239 alignment = 0;
1240 break;
1241 case I915_TILING_Y:
1242 /* FIXME: Is this true? */
1243 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1244 return -EINVAL;
1245 default:
1246 BUG();
1249 mutex_lock(&dev->struct_mutex);
1250 ret = i915_gem_object_pin(obj, alignment);
1251 if (ret != 0) {
1252 mutex_unlock(&dev->struct_mutex);
1253 return ret;
1256 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1257 if (ret != 0) {
1258 i915_gem_object_unpin(obj);
1259 mutex_unlock(&dev->struct_mutex);
1260 return ret;
1263 /* Pre-i965 needs to install a fence for tiled scan-out */
1264 if (!IS_I965G(dev) &&
1265 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1266 obj_priv->tiling_mode != I915_TILING_NONE) {
1267 ret = i915_gem_object_get_fence_reg(obj);
1268 if (ret != 0) {
1269 i915_gem_object_unpin(obj);
1270 mutex_unlock(&dev->struct_mutex);
1271 return ret;
1275 dspcntr = I915_READ(dspcntr_reg);
1276 /* Mask out pixel format bits in case we change it */
1277 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1278 switch (crtc->fb->bits_per_pixel) {
1279 case 8:
1280 dspcntr |= DISPPLANE_8BPP;
1281 break;
1282 case 16:
1283 if (crtc->fb->depth == 15)
1284 dspcntr |= DISPPLANE_15_16BPP;
1285 else
1286 dspcntr |= DISPPLANE_16BPP;
1287 break;
1288 case 24:
1289 case 32:
1290 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1291 break;
1292 default:
1293 DRM_ERROR("Unknown color depth\n");
1294 i915_gem_object_unpin(obj);
1295 mutex_unlock(&dev->struct_mutex);
1296 return -EINVAL;
1298 if (IS_I965G(dev)) {
1299 if (obj_priv->tiling_mode != I915_TILING_NONE)
1300 dspcntr |= DISPPLANE_TILED;
1301 else
1302 dspcntr &= ~DISPPLANE_TILED;
1305 if (IS_IGDNG(dev))
1306 /* must disable */
1307 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1309 I915_WRITE(dspcntr_reg, dspcntr);
1311 Start = obj_priv->gtt_offset;
1312 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1314 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1315 I915_WRITE(dspstride, crtc->fb->pitch);
1316 if (IS_I965G(dev)) {
1317 I915_WRITE(dspbase, Offset);
1318 I915_READ(dspbase);
1319 I915_WRITE(dspsurf, Start);
1320 I915_READ(dspsurf);
1321 I915_WRITE(dsptileoff, (y << 16) | x);
1322 } else {
1323 I915_WRITE(dspbase, Start + Offset);
1324 I915_READ(dspbase);
1327 if ((IS_I965G(dev) || plane == 0))
1328 intel_update_fbc(crtc, &crtc->mode);
1330 intel_wait_for_vblank(dev);
1332 if (old_fb) {
1333 intel_fb = to_intel_framebuffer(old_fb);
1334 obj_priv = intel_fb->obj->driver_private;
1335 i915_gem_object_unpin(intel_fb->obj);
1337 intel_increase_pllclock(crtc, true);
1339 mutex_unlock(&dev->struct_mutex);
1341 if (!dev->primary->master)
1342 return 0;
1344 master_priv = dev->primary->master->driver_priv;
1345 if (!master_priv->sarea_priv)
1346 return 0;
1348 if (pipe) {
1349 master_priv->sarea_priv->pipeB_x = x;
1350 master_priv->sarea_priv->pipeB_y = y;
1351 } else {
1352 master_priv->sarea_priv->pipeA_x = x;
1353 master_priv->sarea_priv->pipeA_y = y;
1356 return 0;
1359 /* Disable the VGA plane that we never use */
1360 static void i915_disable_vga (struct drm_device *dev)
1362 struct drm_i915_private *dev_priv = dev->dev_private;
1363 u8 sr1;
1364 u32 vga_reg;
1366 if (IS_IGDNG(dev))
1367 vga_reg = CPU_VGACNTRL;
1368 else
1369 vga_reg = VGACNTRL;
1371 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1372 return;
1374 I915_WRITE8(VGA_SR_INDEX, 1);
1375 sr1 = I915_READ8(VGA_SR_DATA);
1376 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1377 udelay(100);
1379 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1382 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1384 struct drm_device *dev = crtc->dev;
1385 struct drm_i915_private *dev_priv = dev->dev_private;
1386 u32 dpa_ctl;
1388 DRM_DEBUG("\n");
1389 dpa_ctl = I915_READ(DP_A);
1390 dpa_ctl &= ~DP_PLL_ENABLE;
1391 I915_WRITE(DP_A, dpa_ctl);
1394 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1396 struct drm_device *dev = crtc->dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 u32 dpa_ctl;
1400 dpa_ctl = I915_READ(DP_A);
1401 dpa_ctl |= DP_PLL_ENABLE;
1402 I915_WRITE(DP_A, dpa_ctl);
1403 udelay(200);
1407 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1409 struct drm_device *dev = crtc->dev;
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 u32 dpa_ctl;
1413 DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1414 dpa_ctl = I915_READ(DP_A);
1415 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1417 if (clock < 200000) {
1418 u32 temp;
1419 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1420 /* workaround for 160Mhz:
1421 1) program 0x4600c bits 15:0 = 0x8124
1422 2) program 0x46010 bit 0 = 1
1423 3) program 0x46034 bit 24 = 1
1424 4) program 0x64000 bit 14 = 1
1426 temp = I915_READ(0x4600c);
1427 temp &= 0xffff0000;
1428 I915_WRITE(0x4600c, temp | 0x8124);
1430 temp = I915_READ(0x46010);
1431 I915_WRITE(0x46010, temp | 1);
1433 temp = I915_READ(0x46034);
1434 I915_WRITE(0x46034, temp | (1 << 24));
1435 } else {
1436 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1438 I915_WRITE(DP_A, dpa_ctl);
1440 udelay(500);
1443 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1445 struct drm_device *dev = crtc->dev;
1446 struct drm_i915_private *dev_priv = dev->dev_private;
1447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1448 int pipe = intel_crtc->pipe;
1449 int plane = intel_crtc->plane;
1450 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1451 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1452 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1453 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1454 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1455 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1456 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1457 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1458 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1459 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1460 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1461 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1462 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1463 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1464 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1465 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1466 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1467 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1468 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1469 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1470 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1471 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1472 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1473 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1474 u32 temp;
1475 int tries = 5, j, n;
1477 /* XXX: When our outputs are all unaware of DPMS modes other than off
1478 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1480 switch (mode) {
1481 case DRM_MODE_DPMS_ON:
1482 case DRM_MODE_DPMS_STANDBY:
1483 case DRM_MODE_DPMS_SUSPEND:
1484 DRM_DEBUG("crtc %d dpms on\n", pipe);
1485 if (HAS_eDP) {
1486 /* enable eDP PLL */
1487 igdng_enable_pll_edp(crtc);
1488 } else {
1489 /* enable PCH DPLL */
1490 temp = I915_READ(pch_dpll_reg);
1491 if ((temp & DPLL_VCO_ENABLE) == 0) {
1492 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1493 I915_READ(pch_dpll_reg);
1496 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1497 temp = I915_READ(fdi_rx_reg);
1498 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1499 FDI_SEL_PCDCLK |
1500 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1501 I915_READ(fdi_rx_reg);
1502 udelay(200);
1504 /* Enable CPU FDI TX PLL, always on for IGDNG */
1505 temp = I915_READ(fdi_tx_reg);
1506 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1507 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1508 I915_READ(fdi_tx_reg);
1509 udelay(100);
1513 /* Enable panel fitting for LVDS */
1514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1515 temp = I915_READ(pf_ctl_reg);
1516 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE);
1518 /* currently full aspect */
1519 I915_WRITE(pf_win_pos, 0);
1521 I915_WRITE(pf_win_size,
1522 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1523 (dev_priv->panel_fixed_mode->vdisplay));
1526 /* Enable CPU pipe */
1527 temp = I915_READ(pipeconf_reg);
1528 if ((temp & PIPEACONF_ENABLE) == 0) {
1529 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1530 I915_READ(pipeconf_reg);
1531 udelay(100);
1534 /* configure and enable CPU plane */
1535 temp = I915_READ(dspcntr_reg);
1536 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1537 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1538 /* Flush the plane changes */
1539 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1542 if (!HAS_eDP) {
1543 /* enable CPU FDI TX and PCH FDI RX */
1544 temp = I915_READ(fdi_tx_reg);
1545 temp |= FDI_TX_ENABLE;
1546 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1547 temp &= ~FDI_LINK_TRAIN_NONE;
1548 temp |= FDI_LINK_TRAIN_PATTERN_1;
1549 I915_WRITE(fdi_tx_reg, temp);
1550 I915_READ(fdi_tx_reg);
1552 temp = I915_READ(fdi_rx_reg);
1553 temp &= ~FDI_LINK_TRAIN_NONE;
1554 temp |= FDI_LINK_TRAIN_PATTERN_1;
1555 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556 I915_READ(fdi_rx_reg);
1558 udelay(150);
1560 /* Train FDI. */
1561 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1562 for train result */
1563 temp = I915_READ(fdi_rx_imr_reg);
1564 temp &= ~FDI_RX_SYMBOL_LOCK;
1565 temp &= ~FDI_RX_BIT_LOCK;
1566 I915_WRITE(fdi_rx_imr_reg, temp);
1567 I915_READ(fdi_rx_imr_reg);
1568 udelay(150);
1570 temp = I915_READ(fdi_rx_iir_reg);
1571 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1573 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1574 for (j = 0; j < tries; j++) {
1575 temp = I915_READ(fdi_rx_iir_reg);
1576 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1577 if (temp & FDI_RX_BIT_LOCK)
1578 break;
1579 udelay(200);
1581 if (j != tries)
1582 I915_WRITE(fdi_rx_iir_reg,
1583 temp | FDI_RX_BIT_LOCK);
1584 else
1585 DRM_DEBUG("train 1 fail\n");
1586 } else {
1587 I915_WRITE(fdi_rx_iir_reg,
1588 temp | FDI_RX_BIT_LOCK);
1589 DRM_DEBUG("train 1 ok 2!\n");
1591 temp = I915_READ(fdi_tx_reg);
1592 temp &= ~FDI_LINK_TRAIN_NONE;
1593 temp |= FDI_LINK_TRAIN_PATTERN_2;
1594 I915_WRITE(fdi_tx_reg, temp);
1596 temp = I915_READ(fdi_rx_reg);
1597 temp &= ~FDI_LINK_TRAIN_NONE;
1598 temp |= FDI_LINK_TRAIN_PATTERN_2;
1599 I915_WRITE(fdi_rx_reg, temp);
1601 udelay(150);
1603 temp = I915_READ(fdi_rx_iir_reg);
1604 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1606 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1607 for (j = 0; j < tries; j++) {
1608 temp = I915_READ(fdi_rx_iir_reg);
1609 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1610 if (temp & FDI_RX_SYMBOL_LOCK)
1611 break;
1612 udelay(200);
1614 if (j != tries) {
1615 I915_WRITE(fdi_rx_iir_reg,
1616 temp | FDI_RX_SYMBOL_LOCK);
1617 DRM_DEBUG("train 2 ok 1!\n");
1618 } else
1619 DRM_DEBUG("train 2 fail\n");
1620 } else {
1621 I915_WRITE(fdi_rx_iir_reg,
1622 temp | FDI_RX_SYMBOL_LOCK);
1623 DRM_DEBUG("train 2 ok 2!\n");
1625 DRM_DEBUG("train done\n");
1627 /* set transcoder timing */
1628 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1629 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1630 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1632 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1633 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1634 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1636 /* enable PCH transcoder */
1637 temp = I915_READ(transconf_reg);
1638 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1639 I915_READ(transconf_reg);
1641 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1644 /* enable normal */
1646 temp = I915_READ(fdi_tx_reg);
1647 temp &= ~FDI_LINK_TRAIN_NONE;
1648 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1649 FDI_TX_ENHANCE_FRAME_ENABLE);
1650 I915_READ(fdi_tx_reg);
1652 temp = I915_READ(fdi_rx_reg);
1653 temp &= ~FDI_LINK_TRAIN_NONE;
1654 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1655 FDI_RX_ENHANCE_FRAME_ENABLE);
1656 I915_READ(fdi_rx_reg);
1658 /* wait one idle pattern time */
1659 udelay(100);
1663 intel_crtc_load_lut(crtc);
1665 break;
1666 case DRM_MODE_DPMS_OFF:
1667 DRM_DEBUG("crtc %d dpms off\n", pipe);
1669 i915_disable_vga(dev);
1671 /* Disable display plane */
1672 temp = I915_READ(dspcntr_reg);
1673 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1674 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1675 /* Flush the plane changes */
1676 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1677 I915_READ(dspbase_reg);
1680 /* disable cpu pipe, disable after all planes disabled */
1681 temp = I915_READ(pipeconf_reg);
1682 if ((temp & PIPEACONF_ENABLE) != 0) {
1683 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1684 I915_READ(pipeconf_reg);
1685 n = 0;
1686 /* wait for cpu pipe off, pipe state */
1687 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1688 n++;
1689 if (n < 60) {
1690 udelay(500);
1691 continue;
1692 } else {
1693 DRM_DEBUG("pipe %d off delay\n", pipe);
1694 break;
1697 } else
1698 DRM_DEBUG("crtc %d is disabled\n", pipe);
1700 if (HAS_eDP) {
1701 igdng_disable_pll_edp(crtc);
1704 /* disable CPU FDI tx and PCH FDI rx */
1705 temp = I915_READ(fdi_tx_reg);
1706 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1707 I915_READ(fdi_tx_reg);
1709 temp = I915_READ(fdi_rx_reg);
1710 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1711 I915_READ(fdi_rx_reg);
1713 udelay(100);
1715 /* still set train pattern 1 */
1716 temp = I915_READ(fdi_tx_reg);
1717 temp &= ~FDI_LINK_TRAIN_NONE;
1718 temp |= FDI_LINK_TRAIN_PATTERN_1;
1719 I915_WRITE(fdi_tx_reg, temp);
1721 temp = I915_READ(fdi_rx_reg);
1722 temp &= ~FDI_LINK_TRAIN_NONE;
1723 temp |= FDI_LINK_TRAIN_PATTERN_1;
1724 I915_WRITE(fdi_rx_reg, temp);
1726 udelay(100);
1728 /* disable PCH transcoder */
1729 temp = I915_READ(transconf_reg);
1730 if ((temp & TRANS_ENABLE) != 0) {
1731 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1732 I915_READ(transconf_reg);
1733 n = 0;
1734 /* wait for PCH transcoder off, transcoder state */
1735 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1736 n++;
1737 if (n < 60) {
1738 udelay(500);
1739 continue;
1740 } else {
1741 DRM_DEBUG("transcoder %d off delay\n", pipe);
1742 break;
1747 /* disable PCH DPLL */
1748 temp = I915_READ(pch_dpll_reg);
1749 if ((temp & DPLL_VCO_ENABLE) != 0) {
1750 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1751 I915_READ(pch_dpll_reg);
1754 temp = I915_READ(fdi_rx_reg);
1755 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1756 temp &= ~FDI_SEL_PCDCLK;
1757 temp &= ~FDI_RX_PLL_ENABLE;
1758 I915_WRITE(fdi_rx_reg, temp);
1759 I915_READ(fdi_rx_reg);
1762 /* Disable CPU FDI TX PLL */
1763 temp = I915_READ(fdi_tx_reg);
1764 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1765 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1766 I915_READ(fdi_tx_reg);
1767 udelay(100);
1770 /* Disable PF */
1771 temp = I915_READ(pf_ctl_reg);
1772 if ((temp & PF_ENABLE) != 0) {
1773 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1774 I915_READ(pf_ctl_reg);
1776 I915_WRITE(pf_win_size, 0);
1778 /* Wait for the clocks to turn off. */
1779 udelay(150);
1780 break;
1784 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1786 struct drm_device *dev = crtc->dev;
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1789 int pipe = intel_crtc->pipe;
1790 int plane = intel_crtc->plane;
1791 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1792 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1793 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1794 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1795 u32 temp;
1797 /* XXX: When our outputs are all unaware of DPMS modes other than off
1798 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1800 switch (mode) {
1801 case DRM_MODE_DPMS_ON:
1802 case DRM_MODE_DPMS_STANDBY:
1803 case DRM_MODE_DPMS_SUSPEND:
1804 /* Enable the DPLL */
1805 temp = I915_READ(dpll_reg);
1806 if ((temp & DPLL_VCO_ENABLE) == 0) {
1807 I915_WRITE(dpll_reg, temp);
1808 I915_READ(dpll_reg);
1809 /* Wait for the clocks to stabilize. */
1810 udelay(150);
1811 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1812 I915_READ(dpll_reg);
1813 /* Wait for the clocks to stabilize. */
1814 udelay(150);
1815 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1816 I915_READ(dpll_reg);
1817 /* Wait for the clocks to stabilize. */
1818 udelay(150);
1821 /* Enable the pipe */
1822 temp = I915_READ(pipeconf_reg);
1823 if ((temp & PIPEACONF_ENABLE) == 0)
1824 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1826 /* Enable the plane */
1827 temp = I915_READ(dspcntr_reg);
1828 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1829 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1830 /* Flush the plane changes */
1831 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1834 intel_crtc_load_lut(crtc);
1836 if ((IS_I965G(dev) || plane == 0))
1837 intel_update_fbc(crtc, &crtc->mode);
1839 /* Give the overlay scaler a chance to enable if it's on this pipe */
1840 //intel_crtc_dpms_video(crtc, true); TODO
1841 intel_update_watermarks(dev);
1842 break;
1843 case DRM_MODE_DPMS_OFF:
1844 intel_update_watermarks(dev);
1845 /* Give the overlay scaler a chance to disable if it's on this pipe */
1846 //intel_crtc_dpms_video(crtc, FALSE); TODO
1848 if (dev_priv->cfb_plane == plane &&
1849 dev_priv->display.disable_fbc)
1850 dev_priv->display.disable_fbc(dev);
1852 /* Disable the VGA plane that we never use */
1853 i915_disable_vga(dev);
1855 /* Disable display plane */
1856 temp = I915_READ(dspcntr_reg);
1857 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1858 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1859 /* Flush the plane changes */
1860 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1861 I915_READ(dspbase_reg);
1864 if (!IS_I9XX(dev)) {
1865 /* Wait for vblank for the disable to take effect */
1866 intel_wait_for_vblank(dev);
1869 /* Next, disable display pipes */
1870 temp = I915_READ(pipeconf_reg);
1871 if ((temp & PIPEACONF_ENABLE) != 0) {
1872 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1873 I915_READ(pipeconf_reg);
1876 /* Wait for vblank for the disable to take effect. */
1877 intel_wait_for_vblank(dev);
1879 temp = I915_READ(dpll_reg);
1880 if ((temp & DPLL_VCO_ENABLE) != 0) {
1881 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1882 I915_READ(dpll_reg);
1885 /* Wait for the clocks to turn off. */
1886 udelay(150);
1887 break;
1892 * Sets the power management mode of the pipe and plane.
1894 * This code should probably grow support for turning the cursor off and back
1895 * on appropriately at the same time as we're turning the pipe off/on.
1897 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1899 struct drm_device *dev = crtc->dev;
1900 struct drm_i915_private *dev_priv = dev->dev_private;
1901 struct drm_i915_master_private *master_priv;
1902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1903 int pipe = intel_crtc->pipe;
1904 bool enabled;
1906 dev_priv->display.dpms(crtc, mode);
1908 intel_crtc->dpms_mode = mode;
1910 if (!dev->primary->master)
1911 return;
1913 master_priv = dev->primary->master->driver_priv;
1914 if (!master_priv->sarea_priv)
1915 return;
1917 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1919 switch (pipe) {
1920 case 0:
1921 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1922 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1923 break;
1924 case 1:
1925 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1926 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1927 break;
1928 default:
1929 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1930 break;
1934 static void intel_crtc_prepare (struct drm_crtc *crtc)
1936 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1937 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1940 static void intel_crtc_commit (struct drm_crtc *crtc)
1942 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1943 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1946 void intel_encoder_prepare (struct drm_encoder *encoder)
1948 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1949 /* lvds has its own version of prepare see intel_lvds_prepare */
1950 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1953 void intel_encoder_commit (struct drm_encoder *encoder)
1955 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1956 /* lvds has its own version of commit see intel_lvds_commit */
1957 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1960 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1961 struct drm_display_mode *mode,
1962 struct drm_display_mode *adjusted_mode)
1964 struct drm_device *dev = crtc->dev;
1965 if (IS_IGDNG(dev)) {
1966 /* FDI link clock is fixed at 2.7G */
1967 if (mode->clock * 3 > 27000 * 4)
1968 return MODE_CLOCK_HIGH;
1970 return true;
1973 static int i945_get_display_clock_speed(struct drm_device *dev)
1975 return 400000;
1978 static int i915_get_display_clock_speed(struct drm_device *dev)
1980 return 333000;
1983 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
1985 return 200000;
1988 static int i915gm_get_display_clock_speed(struct drm_device *dev)
1990 u16 gcfgc = 0;
1992 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1994 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1995 return 133000;
1996 else {
1997 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1998 case GC_DISPLAY_CLOCK_333_MHZ:
1999 return 333000;
2000 default:
2001 case GC_DISPLAY_CLOCK_190_200_MHZ:
2002 return 190000;
2007 static int i865_get_display_clock_speed(struct drm_device *dev)
2009 return 266000;
2012 static int i855_get_display_clock_speed(struct drm_device *dev)
2014 u16 hpllcc = 0;
2015 /* Assume that the hardware is in the high speed state. This
2016 * should be the default.
2018 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2019 case GC_CLOCK_133_200:
2020 case GC_CLOCK_100_200:
2021 return 200000;
2022 case GC_CLOCK_166_250:
2023 return 250000;
2024 case GC_CLOCK_100_133:
2025 return 133000;
2028 /* Shouldn't happen */
2029 return 0;
2032 static int i830_get_display_clock_speed(struct drm_device *dev)
2034 return 133000;
2038 * Return the pipe currently connected to the panel fitter,
2039 * or -1 if the panel fitter is not present or not in use
2041 static int intel_panel_fitter_pipe (struct drm_device *dev)
2043 struct drm_i915_private *dev_priv = dev->dev_private;
2044 u32 pfit_control;
2046 /* i830 doesn't have a panel fitter */
2047 if (IS_I830(dev))
2048 return -1;
2050 pfit_control = I915_READ(PFIT_CONTROL);
2052 /* See if the panel fitter is in use */
2053 if ((pfit_control & PFIT_ENABLE) == 0)
2054 return -1;
2056 /* 965 can place panel fitter on either pipe */
2057 if (IS_I965G(dev))
2058 return (pfit_control >> 29) & 0x3;
2060 /* older chips can only use pipe 1 */
2061 return 1;
2064 struct fdi_m_n {
2065 u32 tu;
2066 u32 gmch_m;
2067 u32 gmch_n;
2068 u32 link_m;
2069 u32 link_n;
2072 static void
2073 fdi_reduce_ratio(u32 *num, u32 *den)
2075 while (*num > 0xffffff || *den > 0xffffff) {
2076 *num >>= 1;
2077 *den >>= 1;
2081 #define DATA_N 0x800000
2082 #define LINK_N 0x80000
2084 static void
2085 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
2086 int pixel_clock, int link_clock,
2087 struct fdi_m_n *m_n)
2089 u64 temp;
2091 m_n->tu = 64; /* default size */
2093 temp = (u64) DATA_N * pixel_clock;
2094 temp = div_u64(temp, link_clock);
2095 m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
2096 m_n->gmch_n = DATA_N;
2097 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2099 temp = (u64) LINK_N * pixel_clock;
2100 m_n->link_m = div_u64(temp, link_clock);
2101 m_n->link_n = LINK_N;
2102 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2106 struct intel_watermark_params {
2107 unsigned long fifo_size;
2108 unsigned long max_wm;
2109 unsigned long default_wm;
2110 unsigned long guard_size;
2111 unsigned long cacheline_size;
2114 /* IGD has different values for various configs */
2115 static struct intel_watermark_params igd_display_wm = {
2116 IGD_DISPLAY_FIFO,
2117 IGD_MAX_WM,
2118 IGD_DFT_WM,
2119 IGD_GUARD_WM,
2120 IGD_FIFO_LINE_SIZE
2122 static struct intel_watermark_params igd_display_hplloff_wm = {
2123 IGD_DISPLAY_FIFO,
2124 IGD_MAX_WM,
2125 IGD_DFT_HPLLOFF_WM,
2126 IGD_GUARD_WM,
2127 IGD_FIFO_LINE_SIZE
2129 static struct intel_watermark_params igd_cursor_wm = {
2130 IGD_CURSOR_FIFO,
2131 IGD_CURSOR_MAX_WM,
2132 IGD_CURSOR_DFT_WM,
2133 IGD_CURSOR_GUARD_WM,
2134 IGD_FIFO_LINE_SIZE,
2136 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2137 IGD_CURSOR_FIFO,
2138 IGD_CURSOR_MAX_WM,
2139 IGD_CURSOR_DFT_WM,
2140 IGD_CURSOR_GUARD_WM,
2141 IGD_FIFO_LINE_SIZE
2143 static struct intel_watermark_params i945_wm_info = {
2144 I945_FIFO_SIZE,
2145 I915_MAX_WM,
2148 I915_FIFO_LINE_SIZE
2150 static struct intel_watermark_params i915_wm_info = {
2151 I915_FIFO_SIZE,
2152 I915_MAX_WM,
2155 I915_FIFO_LINE_SIZE
2157 static struct intel_watermark_params i855_wm_info = {
2158 I855GM_FIFO_SIZE,
2159 I915_MAX_WM,
2162 I830_FIFO_LINE_SIZE
2164 static struct intel_watermark_params i830_wm_info = {
2165 I830_FIFO_SIZE,
2166 I915_MAX_WM,
2169 I830_FIFO_LINE_SIZE
2173 * intel_calculate_wm - calculate watermark level
2174 * @clock_in_khz: pixel clock
2175 * @wm: chip FIFO params
2176 * @pixel_size: display pixel size
2177 * @latency_ns: memory latency for the platform
2179 * Calculate the watermark level (the level at which the display plane will
2180 * start fetching from memory again). Each chip has a different display
2181 * FIFO size and allocation, so the caller needs to figure that out and pass
2182 * in the correct intel_watermark_params structure.
2184 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2185 * on the pixel size. When it reaches the watermark level, it'll start
2186 * fetching FIFO line sized based chunks from memory until the FIFO fills
2187 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2188 * will occur, and a display engine hang could result.
2190 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2191 struct intel_watermark_params *wm,
2192 int pixel_size,
2193 unsigned long latency_ns)
2195 long entries_required, wm_size;
2198 * Note: we need to make sure we don't overflow for various clock &
2199 * latency values.
2200 * clocks go from a few thousand to several hundred thousand.
2201 * latency is usually a few thousand
2203 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2204 1000;
2205 entries_required /= wm->cacheline_size;
2207 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2209 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2211 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2213 /* Don't promote wm_size to unsigned... */
2214 if (wm_size > (long)wm->max_wm)
2215 wm_size = wm->max_wm;
2216 if (wm_size <= 0)
2217 wm_size = wm->default_wm;
2218 return wm_size;
2221 struct cxsr_latency {
2222 int is_desktop;
2223 unsigned long fsb_freq;
2224 unsigned long mem_freq;
2225 unsigned long display_sr;
2226 unsigned long display_hpll_disable;
2227 unsigned long cursor_sr;
2228 unsigned long cursor_hpll_disable;
2231 static struct cxsr_latency cxsr_latency_table[] = {
2232 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2233 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2234 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2236 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2237 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2238 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2240 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2241 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2242 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2244 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2245 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2246 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2248 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2249 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2250 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2252 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2253 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2254 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2257 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2258 int mem)
2260 int i;
2261 struct cxsr_latency *latency;
2263 if (fsb == 0 || mem == 0)
2264 return NULL;
2266 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2267 latency = &cxsr_latency_table[i];
2268 if (is_desktop == latency->is_desktop &&
2269 fsb == latency->fsb_freq && mem == latency->mem_freq)
2270 return latency;
2273 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2275 return NULL;
2278 static void igd_disable_cxsr(struct drm_device *dev)
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281 u32 reg;
2283 /* deactivate cxsr */
2284 reg = I915_READ(DSPFW3);
2285 reg &= ~(IGD_SELF_REFRESH_EN);
2286 I915_WRITE(DSPFW3, reg);
2287 DRM_INFO("Big FIFO is disabled\n");
2290 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2291 int pixel_size)
2293 struct drm_i915_private *dev_priv = dev->dev_private;
2294 u32 reg;
2295 unsigned long wm;
2296 struct cxsr_latency *latency;
2298 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2299 dev_priv->mem_freq);
2300 if (!latency) {
2301 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2302 igd_disable_cxsr(dev);
2303 return;
2306 /* Display SR */
2307 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2308 latency->display_sr);
2309 reg = I915_READ(DSPFW1);
2310 reg &= 0x7fffff;
2311 reg |= wm << 23;
2312 I915_WRITE(DSPFW1, reg);
2313 DRM_DEBUG("DSPFW1 register is %x\n", reg);
2315 /* cursor SR */
2316 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2317 latency->cursor_sr);
2318 reg = I915_READ(DSPFW3);
2319 reg &= ~(0x3f << 24);
2320 reg |= (wm & 0x3f) << 24;
2321 I915_WRITE(DSPFW3, reg);
2323 /* Display HPLL off SR */
2324 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2325 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2326 reg = I915_READ(DSPFW3);
2327 reg &= 0xfffffe00;
2328 reg |= wm & 0x1ff;
2329 I915_WRITE(DSPFW3, reg);
2331 /* cursor HPLL off SR */
2332 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2333 latency->cursor_hpll_disable);
2334 reg = I915_READ(DSPFW3);
2335 reg &= ~(0x3f << 16);
2336 reg |= (wm & 0x3f) << 16;
2337 I915_WRITE(DSPFW3, reg);
2338 DRM_DEBUG("DSPFW3 register is %x\n", reg);
2340 /* activate cxsr */
2341 reg = I915_READ(DSPFW3);
2342 reg |= IGD_SELF_REFRESH_EN;
2343 I915_WRITE(DSPFW3, reg);
2345 DRM_INFO("Big FIFO is enabled\n");
2347 return;
2351 * Latency for FIFO fetches is dependent on several factors:
2352 * - memory configuration (speed, channels)
2353 * - chipset
2354 * - current MCH state
2355 * It can be fairly high in some situations, so here we assume a fairly
2356 * pessimal value. It's a tradeoff between extra memory fetches (if we
2357 * set this value too high, the FIFO will fetch frequently to stay full)
2358 * and power consumption (set it too low to save power and we might see
2359 * FIFO underruns and display "flicker").
2361 * A value of 5us seems to be a good balance; safe for very low end
2362 * platforms but not overly aggressive on lower latency configs.
2364 const static int latency_ns = 5000;
2366 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 uint32_t dsparb = I915_READ(DSPARB);
2370 int size;
2372 if (plane == 0)
2373 size = dsparb & 0x7f;
2374 else
2375 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2376 (dsparb & 0x7f);
2378 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2379 size);
2381 return size;
2384 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 uint32_t dsparb = I915_READ(DSPARB);
2388 int size;
2390 if (plane == 0)
2391 size = dsparb & 0x1ff;
2392 else
2393 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2394 (dsparb & 0x1ff);
2395 size >>= 1; /* Convert to cachelines */
2397 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2398 size);
2400 return size;
2403 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2405 struct drm_i915_private *dev_priv = dev->dev_private;
2406 uint32_t dsparb = I915_READ(DSPARB);
2407 int size;
2409 size = dsparb & 0x7f;
2410 size >>= 2; /* Convert to cachelines */
2412 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2413 size);
2415 return size;
2418 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 uint32_t dsparb = I915_READ(DSPARB);
2422 int size;
2424 size = dsparb & 0x7f;
2425 size >>= 1; /* Convert to cachelines */
2427 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2428 size);
2430 return size;
2433 static void g4x_update_wm(struct drm_device *dev, int unused, int unused2,
2434 int unused3, int unused4)
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 u32 fw_blc_self = I915_READ(FW_BLC_SELF);
2439 if (i915_powersave)
2440 fw_blc_self |= FW_BLC_SELF_EN;
2441 else
2442 fw_blc_self &= ~FW_BLC_SELF_EN;
2443 I915_WRITE(FW_BLC_SELF, fw_blc_self);
2446 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2447 int unused3, int unused4)
2449 struct drm_i915_private *dev_priv = dev->dev_private;
2451 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2453 /* 965 has limitations... */
2454 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2455 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2458 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2459 int planeb_clock, int sr_hdisplay, int pixel_size)
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462 uint32_t fwater_lo;
2463 uint32_t fwater_hi;
2464 int total_size, cacheline_size, cwm, srwm = 1;
2465 int planea_wm, planeb_wm;
2466 struct intel_watermark_params planea_params, planeb_params;
2467 unsigned long line_time_us;
2468 int sr_clock, sr_entries = 0;
2470 /* Create copies of the base settings for each pipe */
2471 if (IS_I965GM(dev) || IS_I945GM(dev))
2472 planea_params = planeb_params = i945_wm_info;
2473 else if (IS_I9XX(dev))
2474 planea_params = planeb_params = i915_wm_info;
2475 else
2476 planea_params = planeb_params = i855_wm_info;
2478 /* Grab a couple of global values before we overwrite them */
2479 total_size = planea_params.fifo_size;
2480 cacheline_size = planea_params.cacheline_size;
2482 /* Update per-plane FIFO sizes */
2483 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2484 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2486 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2487 pixel_size, latency_ns);
2488 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2489 pixel_size, latency_ns);
2490 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2493 * Overlay gets an aggressive default since video jitter is bad.
2495 cwm = 2;
2497 /* Calc sr entries for one plane configs */
2498 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2499 (!planea_clock || !planeb_clock)) {
2500 /* self-refresh has much higher latency */
2501 const static int sr_latency_ns = 6000;
2503 sr_clock = planea_clock ? planea_clock : planeb_clock;
2504 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2506 /* Use ns/us then divide to preserve precision */
2507 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2508 pixel_size * sr_hdisplay) / 1000;
2509 sr_entries = roundup(sr_entries / cacheline_size, 1);
2510 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2511 srwm = total_size - sr_entries;
2512 if (srwm < 0)
2513 srwm = 1;
2514 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2517 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2518 planea_wm, planeb_wm, cwm, srwm);
2520 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2521 fwater_hi = (cwm & 0x1f);
2523 /* Set request length to 8 cachelines per fetch */
2524 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2525 fwater_hi = fwater_hi | (1 << 8);
2527 I915_WRITE(FW_BLC, fwater_lo);
2528 I915_WRITE(FW_BLC2, fwater_hi);
2531 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2532 int unused2, int pixel_size)
2534 struct drm_i915_private *dev_priv = dev->dev_private;
2535 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2536 int planea_wm;
2538 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2540 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2541 pixel_size, latency_ns);
2542 fwater_lo |= (3<<8) | planea_wm;
2544 DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2546 I915_WRITE(FW_BLC, fwater_lo);
2550 * intel_update_watermarks - update FIFO watermark values based on current modes
2552 * Calculate watermark values for the various WM regs based on current mode
2553 * and plane configuration.
2555 * There are several cases to deal with here:
2556 * - normal (i.e. non-self-refresh)
2557 * - self-refresh (SR) mode
2558 * - lines are large relative to FIFO size (buffer can hold up to 2)
2559 * - lines are small relative to FIFO size (buffer can hold more than 2
2560 * lines), so need to account for TLB latency
2562 * The normal calculation is:
2563 * watermark = dotclock * bytes per pixel * latency
2564 * where latency is platform & configuration dependent (we assume pessimal
2565 * values here).
2567 * The SR calculation is:
2568 * watermark = (trunc(latency/line time)+1) * surface width *
2569 * bytes per pixel
2570 * where
2571 * line time = htotal / dotclock
2572 * and latency is assumed to be high, as above.
2574 * The final value programmed to the register should always be rounded up,
2575 * and include an extra 2 entries to account for clock crossings.
2577 * We don't use the sprite, so we can ignore that. And on Crestline we have
2578 * to set the non-SR watermarks to 8.
2580 static void intel_update_watermarks(struct drm_device *dev)
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct drm_crtc *crtc;
2584 struct intel_crtc *intel_crtc;
2585 int sr_hdisplay = 0;
2586 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2587 int enabled = 0, pixel_size = 0;
2589 /* Get the clock config from both planes */
2590 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2591 intel_crtc = to_intel_crtc(crtc);
2592 if (crtc->enabled) {
2593 enabled++;
2594 if (intel_crtc->plane == 0) {
2595 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2596 intel_crtc->pipe, crtc->mode.clock);
2597 planea_clock = crtc->mode.clock;
2598 } else {
2599 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2600 intel_crtc->pipe, crtc->mode.clock);
2601 planeb_clock = crtc->mode.clock;
2603 sr_hdisplay = crtc->mode.hdisplay;
2604 sr_clock = crtc->mode.clock;
2605 if (crtc->fb)
2606 pixel_size = crtc->fb->bits_per_pixel / 8;
2607 else
2608 pixel_size = 4; /* by default */
2612 if (enabled <= 0)
2613 return;
2615 /* Single plane configs can enable self refresh */
2616 if (enabled == 1 && IS_IGD(dev))
2617 igd_enable_cxsr(dev, sr_clock, pixel_size);
2618 else if (IS_IGD(dev))
2619 igd_disable_cxsr(dev);
2621 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2622 sr_hdisplay, pixel_size);
2625 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2626 struct drm_display_mode *mode,
2627 struct drm_display_mode *adjusted_mode,
2628 int x, int y,
2629 struct drm_framebuffer *old_fb)
2631 struct drm_device *dev = crtc->dev;
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2634 int pipe = intel_crtc->pipe;
2635 int plane = intel_crtc->plane;
2636 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2637 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2638 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2639 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2640 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2641 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2642 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2643 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2644 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2645 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2646 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2647 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2648 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2649 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2650 int refclk, num_outputs = 0;
2651 intel_clock_t clock, reduced_clock;
2652 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2653 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2654 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2655 bool is_edp = false;
2656 struct drm_mode_config *mode_config = &dev->mode_config;
2657 struct drm_connector *connector;
2658 const intel_limit_t *limit;
2659 int ret;
2660 struct fdi_m_n m_n = {0};
2661 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2662 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2663 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2664 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2665 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2666 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2667 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2668 int lvds_reg = LVDS;
2669 u32 temp;
2670 int sdvo_pixel_multiply;
2671 int target_clock;
2673 drm_vblank_pre_modeset(dev, pipe);
2675 list_for_each_entry(connector, &mode_config->connector_list, head) {
2676 struct intel_output *intel_output = to_intel_output(connector);
2678 if (!connector->encoder || connector->encoder->crtc != crtc)
2679 continue;
2681 switch (intel_output->type) {
2682 case INTEL_OUTPUT_LVDS:
2683 is_lvds = true;
2684 break;
2685 case INTEL_OUTPUT_SDVO:
2686 case INTEL_OUTPUT_HDMI:
2687 is_sdvo = true;
2688 if (intel_output->needs_tv_clock)
2689 is_tv = true;
2690 break;
2691 case INTEL_OUTPUT_DVO:
2692 is_dvo = true;
2693 break;
2694 case INTEL_OUTPUT_TVOUT:
2695 is_tv = true;
2696 break;
2697 case INTEL_OUTPUT_ANALOG:
2698 is_crt = true;
2699 break;
2700 case INTEL_OUTPUT_DISPLAYPORT:
2701 is_dp = true;
2702 break;
2703 case INTEL_OUTPUT_EDP:
2704 is_edp = true;
2705 break;
2708 num_outputs++;
2711 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2712 refclk = dev_priv->lvds_ssc_freq * 1000;
2713 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2714 } else if (IS_I9XX(dev)) {
2715 refclk = 96000;
2716 if (IS_IGDNG(dev))
2717 refclk = 120000; /* 120Mhz refclk */
2718 } else {
2719 refclk = 48000;
2724 * Returns a set of divisors for the desired target clock with the given
2725 * refclk, or FALSE. The returned values represent the clock equation:
2726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2728 limit = intel_limit(crtc);
2729 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2730 if (!ok) {
2731 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2732 drm_vblank_post_modeset(dev, pipe);
2733 return -EINVAL;
2736 if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2737 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2738 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2739 (adjusted_mode->clock*3/4),
2740 refclk,
2741 &reduced_clock);
2744 /* SDVO TV has fixed PLL values depend on its clock range,
2745 this mirrors vbios setting. */
2746 if (is_sdvo && is_tv) {
2747 if (adjusted_mode->clock >= 100000
2748 && adjusted_mode->clock < 140500) {
2749 clock.p1 = 2;
2750 clock.p2 = 10;
2751 clock.n = 3;
2752 clock.m1 = 16;
2753 clock.m2 = 8;
2754 } else if (adjusted_mode->clock >= 140500
2755 && adjusted_mode->clock <= 200000) {
2756 clock.p1 = 1;
2757 clock.p2 = 10;
2758 clock.n = 6;
2759 clock.m1 = 12;
2760 clock.m2 = 8;
2764 /* FDI link */
2765 if (IS_IGDNG(dev)) {
2766 int lane, link_bw;
2767 /* eDP doesn't require FDI link, so just set DP M/N
2768 according to current link config */
2769 if (is_edp) {
2770 struct drm_connector *edp;
2771 target_clock = mode->clock;
2772 edp = intel_pipe_get_output(crtc);
2773 intel_edp_link_config(to_intel_output(edp),
2774 &lane, &link_bw);
2775 } else {
2776 /* DP over FDI requires target mode clock
2777 instead of link clock */
2778 if (is_dp)
2779 target_clock = mode->clock;
2780 else
2781 target_clock = adjusted_mode->clock;
2782 lane = 4;
2783 link_bw = 270000;
2785 igdng_compute_m_n(3, lane, target_clock,
2786 link_bw, &m_n);
2789 if (IS_IGD(dev)) {
2790 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2791 if (has_reduced_clock)
2792 fp2 = (1 << reduced_clock.n) << 16 |
2793 reduced_clock.m1 << 8 | reduced_clock.m2;
2794 } else {
2795 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2796 if (has_reduced_clock)
2797 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2798 reduced_clock.m2;
2801 if (!IS_IGDNG(dev))
2802 dpll = DPLL_VGA_MODE_DIS;
2804 if (IS_I9XX(dev)) {
2805 if (is_lvds)
2806 dpll |= DPLLB_MODE_LVDS;
2807 else
2808 dpll |= DPLLB_MODE_DAC_SERIAL;
2809 if (is_sdvo) {
2810 dpll |= DPLL_DVO_HIGH_SPEED;
2811 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2812 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2813 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2814 else if (IS_IGDNG(dev))
2815 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2817 if (is_dp)
2818 dpll |= DPLL_DVO_HIGH_SPEED;
2820 /* compute bitmask from p1 value */
2821 if (IS_IGD(dev))
2822 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2823 else {
2824 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2825 /* also FPA1 */
2826 if (IS_IGDNG(dev))
2827 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2828 if (IS_G4X(dev) && has_reduced_clock)
2829 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2831 switch (clock.p2) {
2832 case 5:
2833 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2834 break;
2835 case 7:
2836 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2837 break;
2838 case 10:
2839 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2840 break;
2841 case 14:
2842 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2843 break;
2845 if (IS_I965G(dev) && !IS_IGDNG(dev))
2846 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2847 } else {
2848 if (is_lvds) {
2849 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2850 } else {
2851 if (clock.p1 == 2)
2852 dpll |= PLL_P1_DIVIDE_BY_TWO;
2853 else
2854 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2855 if (clock.p2 == 4)
2856 dpll |= PLL_P2_DIVIDE_BY_4;
2860 if (is_sdvo && is_tv)
2861 dpll |= PLL_REF_INPUT_TVCLKINBC;
2862 else if (is_tv)
2863 /* XXX: just matching BIOS for now */
2864 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
2865 dpll |= 3;
2866 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2867 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2868 else
2869 dpll |= PLL_REF_INPUT_DREFCLK;
2871 /* setup pipeconf */
2872 pipeconf = I915_READ(pipeconf_reg);
2874 /* Set up the display plane register */
2875 dspcntr = DISPPLANE_GAMMA_ENABLE;
2877 /* IGDNG's plane is forced to pipe, bit 24 is to
2878 enable color space conversion */
2879 if (!IS_IGDNG(dev)) {
2880 if (pipe == 0)
2881 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
2882 else
2883 dspcntr |= DISPPLANE_SEL_PIPE_B;
2886 if (pipe == 0 && !IS_I965G(dev)) {
2887 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2888 * core speed.
2890 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2891 * pipe == 0 check?
2893 if (mode->clock >
2894 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
2895 pipeconf |= PIPEACONF_DOUBLE_WIDE;
2896 else
2897 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2900 dspcntr |= DISPLAY_PLANE_ENABLE;
2901 pipeconf |= PIPEACONF_ENABLE;
2902 dpll |= DPLL_VCO_ENABLE;
2905 /* Disable the panel fitter if it was on our pipe */
2906 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2907 I915_WRITE(PFIT_CONTROL, 0);
2909 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2910 drm_mode_debug_printmodeline(mode);
2912 /* assign to IGDNG registers */
2913 if (IS_IGDNG(dev)) {
2914 fp_reg = pch_fp_reg;
2915 dpll_reg = pch_dpll_reg;
2918 if (is_edp) {
2919 igdng_disable_pll_edp(crtc);
2920 } else if ((dpll & DPLL_VCO_ENABLE)) {
2921 I915_WRITE(fp_reg, fp);
2922 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2923 I915_READ(dpll_reg);
2924 udelay(150);
2927 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2928 * This is an exception to the general rule that mode_set doesn't turn
2929 * things on.
2931 if (is_lvds) {
2932 u32 lvds;
2934 if (IS_IGDNG(dev))
2935 lvds_reg = PCH_LVDS;
2937 lvds = I915_READ(lvds_reg);
2938 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2939 /* Set the B0-B3 data pairs corresponding to whether we're going to
2940 * set the DPLLs for dual-channel mode or not.
2942 if (clock.p2 == 7)
2943 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2944 else
2945 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2947 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2948 * appropriately here, but we need to look more thoroughly into how
2949 * panels behave in the two modes.
2952 I915_WRITE(lvds_reg, lvds);
2953 I915_READ(lvds_reg);
2955 if (is_dp)
2956 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2958 if (!is_edp) {
2959 I915_WRITE(fp_reg, fp);
2960 I915_WRITE(dpll_reg, dpll);
2961 I915_READ(dpll_reg);
2962 /* Wait for the clocks to stabilize. */
2963 udelay(150);
2965 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2966 if (is_sdvo) {
2967 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2968 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2969 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2970 } else
2971 I915_WRITE(dpll_md_reg, 0);
2972 } else {
2973 /* write it again -- the BIOS does, after all */
2974 I915_WRITE(dpll_reg, dpll);
2976 I915_READ(dpll_reg);
2977 /* Wait for the clocks to stabilize. */
2978 udelay(150);
2981 if (is_lvds && has_reduced_clock && i915_powersave) {
2982 I915_WRITE(fp_reg + 4, fp2);
2983 intel_crtc->lowfreq_avail = true;
2984 if (HAS_PIPE_CXSR(dev)) {
2985 DRM_DEBUG("enabling CxSR downclocking\n");
2986 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
2988 } else {
2989 I915_WRITE(fp_reg + 4, fp);
2990 intel_crtc->lowfreq_avail = false;
2991 if (HAS_PIPE_CXSR(dev)) {
2992 DRM_DEBUG("disabling CxSR downclocking\n");
2993 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
2997 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2998 ((adjusted_mode->crtc_htotal - 1) << 16));
2999 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3000 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3001 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3002 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3003 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3004 ((adjusted_mode->crtc_vtotal - 1) << 16));
3005 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3006 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3007 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3008 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3009 /* pipesrc and dspsize control the size that is scaled from, which should
3010 * always be the user's requested size.
3012 if (!IS_IGDNG(dev)) {
3013 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3014 (mode->hdisplay - 1));
3015 I915_WRITE(dsppos_reg, 0);
3017 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3019 if (IS_IGDNG(dev)) {
3020 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3021 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3022 I915_WRITE(link_m1_reg, m_n.link_m);
3023 I915_WRITE(link_n1_reg, m_n.link_n);
3025 if (is_edp) {
3026 igdng_set_pll_edp(crtc, adjusted_mode->clock);
3027 } else {
3028 /* enable FDI RX PLL too */
3029 temp = I915_READ(fdi_rx_reg);
3030 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3031 udelay(200);
3035 I915_WRITE(pipeconf_reg, pipeconf);
3036 I915_READ(pipeconf_reg);
3038 intel_wait_for_vblank(dev);
3040 if (IS_IGDNG(dev)) {
3041 /* enable address swizzle for tiling buffer */
3042 temp = I915_READ(DISP_ARB_CTL);
3043 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3046 I915_WRITE(dspcntr_reg, dspcntr);
3048 /* Flush the plane changes */
3049 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3051 if ((IS_I965G(dev) || plane == 0))
3052 intel_update_fbc(crtc, &crtc->mode);
3054 intel_update_watermarks(dev);
3056 drm_vblank_post_modeset(dev, pipe);
3058 return ret;
3061 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3062 void intel_crtc_load_lut(struct drm_crtc *crtc)
3064 struct drm_device *dev = crtc->dev;
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3068 int i;
3070 /* The clocks have to be on to load the palette. */
3071 if (!crtc->enabled)
3072 return;
3074 /* use legacy palette for IGDNG */
3075 if (IS_IGDNG(dev))
3076 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3077 LGC_PALETTE_B;
3079 for (i = 0; i < 256; i++) {
3080 I915_WRITE(palreg + 4 * i,
3081 (intel_crtc->lut_r[i] << 16) |
3082 (intel_crtc->lut_g[i] << 8) |
3083 intel_crtc->lut_b[i]);
3087 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3088 struct drm_file *file_priv,
3089 uint32_t handle,
3090 uint32_t width, uint32_t height)
3092 struct drm_device *dev = crtc->dev;
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3095 struct drm_gem_object *bo;
3096 struct drm_i915_gem_object *obj_priv;
3097 int pipe = intel_crtc->pipe;
3098 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3099 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3100 uint32_t temp = I915_READ(control);
3101 size_t addr;
3102 int ret;
3104 DRM_DEBUG("\n");
3106 /* if we want to turn off the cursor ignore width and height */
3107 if (!handle) {
3108 DRM_DEBUG("cursor off\n");
3109 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3110 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3111 temp |= CURSOR_MODE_DISABLE;
3112 } else {
3113 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3115 addr = 0;
3116 bo = NULL;
3117 mutex_lock(&dev->struct_mutex);
3118 goto finish;
3121 /* Currently we only support 64x64 cursors */
3122 if (width != 64 || height != 64) {
3123 DRM_ERROR("we currently only support 64x64 cursors\n");
3124 return -EINVAL;
3127 bo = drm_gem_object_lookup(dev, file_priv, handle);
3128 if (!bo)
3129 return -ENOENT;
3131 obj_priv = bo->driver_private;
3133 if (bo->size < width * height * 4) {
3134 DRM_ERROR("buffer is to small\n");
3135 ret = -ENOMEM;
3136 goto fail;
3139 /* we only need to pin inside GTT if cursor is non-phy */
3140 mutex_lock(&dev->struct_mutex);
3141 if (!dev_priv->cursor_needs_physical) {
3142 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3143 if (ret) {
3144 DRM_ERROR("failed to pin cursor bo\n");
3145 goto fail_locked;
3147 addr = obj_priv->gtt_offset;
3148 } else {
3149 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3150 if (ret) {
3151 DRM_ERROR("failed to attach phys object\n");
3152 goto fail_locked;
3154 addr = obj_priv->phys_obj->handle->busaddr;
3157 if (!IS_I9XX(dev))
3158 I915_WRITE(CURSIZE, (height << 12) | width);
3160 /* Hooray for CUR*CNTR differences */
3161 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3162 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3163 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3164 temp |= (pipe << 28); /* Connect to correct pipe */
3165 } else {
3166 temp &= ~(CURSOR_FORMAT_MASK);
3167 temp |= CURSOR_ENABLE;
3168 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3171 finish:
3172 I915_WRITE(control, temp);
3173 I915_WRITE(base, addr);
3175 if (intel_crtc->cursor_bo) {
3176 if (dev_priv->cursor_needs_physical) {
3177 if (intel_crtc->cursor_bo != bo)
3178 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3179 } else
3180 i915_gem_object_unpin(intel_crtc->cursor_bo);
3181 drm_gem_object_unreference(intel_crtc->cursor_bo);
3184 mutex_unlock(&dev->struct_mutex);
3186 intel_crtc->cursor_addr = addr;
3187 intel_crtc->cursor_bo = bo;
3189 return 0;
3190 fail:
3191 mutex_lock(&dev->struct_mutex);
3192 fail_locked:
3193 drm_gem_object_unreference(bo);
3194 mutex_unlock(&dev->struct_mutex);
3195 return ret;
3198 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3200 struct drm_device *dev = crtc->dev;
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3203 struct intel_framebuffer *intel_fb;
3204 int pipe = intel_crtc->pipe;
3205 uint32_t temp = 0;
3206 uint32_t adder;
3208 if (crtc->fb) {
3209 intel_fb = to_intel_framebuffer(crtc->fb);
3210 intel_mark_busy(dev, intel_fb->obj);
3213 if (x < 0) {
3214 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3215 x = -x;
3217 if (y < 0) {
3218 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3219 y = -y;
3222 temp |= x << CURSOR_X_SHIFT;
3223 temp |= y << CURSOR_Y_SHIFT;
3225 adder = intel_crtc->cursor_addr;
3226 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3227 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3229 return 0;
3232 /** Sets the color ramps on behalf of RandR */
3233 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3234 u16 blue, int regno)
3236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3238 intel_crtc->lut_r[regno] = red >> 8;
3239 intel_crtc->lut_g[regno] = green >> 8;
3240 intel_crtc->lut_b[regno] = blue >> 8;
3243 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3244 u16 *blue, int regno)
3246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3248 *red = intel_crtc->lut_r[regno] << 8;
3249 *green = intel_crtc->lut_g[regno] << 8;
3250 *blue = intel_crtc->lut_b[regno] << 8;
3253 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3254 u16 *blue, uint32_t size)
3256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3257 int i;
3259 if (size != 256)
3260 return;
3262 for (i = 0; i < 256; i++) {
3263 intel_crtc->lut_r[i] = red[i] >> 8;
3264 intel_crtc->lut_g[i] = green[i] >> 8;
3265 intel_crtc->lut_b[i] = blue[i] >> 8;
3268 intel_crtc_load_lut(crtc);
3272 * Get a pipe with a simple mode set on it for doing load-based monitor
3273 * detection.
3275 * It will be up to the load-detect code to adjust the pipe as appropriate for
3276 * its requirements. The pipe will be connected to no other outputs.
3278 * Currently this code will only succeed if there is a pipe with no outputs
3279 * configured for it. In the future, it could choose to temporarily disable
3280 * some outputs to free up a pipe for its use.
3282 * \return crtc, or NULL if no pipes are available.
3285 /* VESA 640x480x72Hz mode to set on the pipe */
3286 static struct drm_display_mode load_detect_mode = {
3287 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3288 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3291 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3292 struct drm_display_mode *mode,
3293 int *dpms_mode)
3295 struct intel_crtc *intel_crtc;
3296 struct drm_crtc *possible_crtc;
3297 struct drm_crtc *supported_crtc =NULL;
3298 struct drm_encoder *encoder = &intel_output->enc;
3299 struct drm_crtc *crtc = NULL;
3300 struct drm_device *dev = encoder->dev;
3301 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3302 struct drm_crtc_helper_funcs *crtc_funcs;
3303 int i = -1;
3306 * Algorithm gets a little messy:
3307 * - if the connector already has an assigned crtc, use it (but make
3308 * sure it's on first)
3309 * - try to find the first unused crtc that can drive this connector,
3310 * and use that if we find one
3311 * - if there are no unused crtcs available, try to use the first
3312 * one we found that supports the connector
3315 /* See if we already have a CRTC for this connector */
3316 if (encoder->crtc) {
3317 crtc = encoder->crtc;
3318 /* Make sure the crtc and connector are running */
3319 intel_crtc = to_intel_crtc(crtc);
3320 *dpms_mode = intel_crtc->dpms_mode;
3321 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3322 crtc_funcs = crtc->helper_private;
3323 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3324 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3326 return crtc;
3329 /* Find an unused one (if possible) */
3330 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3331 i++;
3332 if (!(encoder->possible_crtcs & (1 << i)))
3333 continue;
3334 if (!possible_crtc->enabled) {
3335 crtc = possible_crtc;
3336 break;
3338 if (!supported_crtc)
3339 supported_crtc = possible_crtc;
3343 * If we didn't find an unused CRTC, don't use any.
3345 if (!crtc) {
3346 return NULL;
3349 encoder->crtc = crtc;
3350 intel_output->base.encoder = encoder;
3351 intel_output->load_detect_temp = true;
3353 intel_crtc = to_intel_crtc(crtc);
3354 *dpms_mode = intel_crtc->dpms_mode;
3356 if (!crtc->enabled) {
3357 if (!mode)
3358 mode = &load_detect_mode;
3359 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3360 } else {
3361 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3362 crtc_funcs = crtc->helper_private;
3363 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3366 /* Add this connector to the crtc */
3367 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3368 encoder_funcs->commit(encoder);
3370 /* let the connector get through one full cycle before testing */
3371 intel_wait_for_vblank(dev);
3373 return crtc;
3376 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3378 struct drm_encoder *encoder = &intel_output->enc;
3379 struct drm_device *dev = encoder->dev;
3380 struct drm_crtc *crtc = encoder->crtc;
3381 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3382 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3384 if (intel_output->load_detect_temp) {
3385 encoder->crtc = NULL;
3386 intel_output->base.encoder = NULL;
3387 intel_output->load_detect_temp = false;
3388 crtc->enabled = drm_helper_crtc_in_use(crtc);
3389 drm_helper_disable_unused_functions(dev);
3392 /* Switch crtc and output back off if necessary */
3393 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3394 if (encoder->crtc == crtc)
3395 encoder_funcs->dpms(encoder, dpms_mode);
3396 crtc_funcs->dpms(crtc, dpms_mode);
3400 /* Returns the clock of the currently programmed mode of the given pipe. */
3401 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3403 struct drm_i915_private *dev_priv = dev->dev_private;
3404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405 int pipe = intel_crtc->pipe;
3406 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3407 u32 fp;
3408 intel_clock_t clock;
3410 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3411 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3412 else
3413 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3415 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3416 if (IS_IGD(dev)) {
3417 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3418 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3419 } else {
3420 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3421 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3424 if (IS_I9XX(dev)) {
3425 if (IS_IGD(dev))
3426 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3427 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3428 else
3429 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3430 DPLL_FPA01_P1_POST_DIV_SHIFT);
3432 switch (dpll & DPLL_MODE_MASK) {
3433 case DPLLB_MODE_DAC_SERIAL:
3434 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3435 5 : 10;
3436 break;
3437 case DPLLB_MODE_LVDS:
3438 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3439 7 : 14;
3440 break;
3441 default:
3442 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3443 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3444 return 0;
3447 /* XXX: Handle the 100Mhz refclk */
3448 intel_clock(dev, 96000, &clock);
3449 } else {
3450 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3452 if (is_lvds) {
3453 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3454 DPLL_FPA01_P1_POST_DIV_SHIFT);
3455 clock.p2 = 14;
3457 if ((dpll & PLL_REF_INPUT_MASK) ==
3458 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3459 /* XXX: might not be 66MHz */
3460 intel_clock(dev, 66000, &clock);
3461 } else
3462 intel_clock(dev, 48000, &clock);
3463 } else {
3464 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3465 clock.p1 = 2;
3466 else {
3467 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3468 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3470 if (dpll & PLL_P2_DIVIDE_BY_4)
3471 clock.p2 = 4;
3472 else
3473 clock.p2 = 2;
3475 intel_clock(dev, 48000, &clock);
3479 /* XXX: It would be nice to validate the clocks, but we can't reuse
3480 * i830PllIsValid() because it relies on the xf86_config connector
3481 * configuration being accurate, which it isn't necessarily.
3484 return clock.dot;
3487 /** Returns the currently programmed mode of the given pipe. */
3488 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3489 struct drm_crtc *crtc)
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493 int pipe = intel_crtc->pipe;
3494 struct drm_display_mode *mode;
3495 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3496 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3497 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3498 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3500 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3501 if (!mode)
3502 return NULL;
3504 mode->clock = intel_crtc_clock_get(dev, crtc);
3505 mode->hdisplay = (htot & 0xffff) + 1;
3506 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3507 mode->hsync_start = (hsync & 0xffff) + 1;
3508 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3509 mode->vdisplay = (vtot & 0xffff) + 1;
3510 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3511 mode->vsync_start = (vsync & 0xffff) + 1;
3512 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3514 drm_mode_set_name(mode);
3515 drm_mode_set_crtcinfo(mode, 0);
3517 return mode;
3520 #define GPU_IDLE_TIMEOUT 500 /* ms */
3522 /* When this timer fires, we've been idle for awhile */
3523 static void intel_gpu_idle_timer(unsigned long arg)
3525 struct drm_device *dev = (struct drm_device *)arg;
3526 drm_i915_private_t *dev_priv = dev->dev_private;
3528 DRM_DEBUG("idle timer fired, downclocking\n");
3530 dev_priv->busy = false;
3532 queue_work(dev_priv->wq, &dev_priv->idle_work);
3535 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3537 drm_i915_private_t *dev_priv = dev->dev_private;
3539 if (IS_IGDNG(dev))
3540 return;
3542 if (!dev_priv->render_reclock_avail) {
3543 DRM_DEBUG("not reclocking render clock\n");
3544 return;
3547 /* Restore render clock frequency to original value */
3548 if (IS_G4X(dev) || IS_I9XX(dev))
3549 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3550 else if (IS_I85X(dev))
3551 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3552 DRM_DEBUG("increasing render clock frequency\n");
3554 /* Schedule downclock */
3555 if (schedule)
3556 mod_timer(&dev_priv->idle_timer, jiffies +
3557 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3560 void intel_decrease_renderclock(struct drm_device *dev)
3562 drm_i915_private_t *dev_priv = dev->dev_private;
3564 if (IS_IGDNG(dev))
3565 return;
3567 if (!dev_priv->render_reclock_avail) {
3568 DRM_DEBUG("not reclocking render clock\n");
3569 return;
3572 if (IS_G4X(dev)) {
3573 u16 gcfgc;
3575 /* Adjust render clock... */
3576 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3578 /* Down to minimum... */
3579 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3580 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3582 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3583 } else if (IS_I965G(dev)) {
3584 u16 gcfgc;
3586 /* Adjust render clock... */
3587 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3589 /* Down to minimum... */
3590 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3591 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3593 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3594 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3595 u16 gcfgc;
3597 /* Adjust render clock... */
3598 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3600 /* Down to minimum... */
3601 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3602 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3604 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3605 } else if (IS_I915G(dev)) {
3606 u16 gcfgc;
3608 /* Adjust render clock... */
3609 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3611 /* Down to minimum... */
3612 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3613 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3615 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3616 } else if (IS_I85X(dev)) {
3617 u16 hpllcc;
3619 /* Adjust render clock... */
3620 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3622 /* Up to maximum... */
3623 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3624 hpllcc |= GC_CLOCK_133_200;
3626 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3628 DRM_DEBUG("decreasing render clock frequency\n");
3631 /* Note that no increase function is needed for this - increase_renderclock()
3632 * will also rewrite these bits
3634 void intel_decrease_displayclock(struct drm_device *dev)
3636 if (IS_IGDNG(dev))
3637 return;
3639 if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3640 IS_I915GM(dev)) {
3641 u16 gcfgc;
3643 /* Adjust render clock... */
3644 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3646 /* Down to minimum... */
3647 gcfgc &= ~0xf0;
3648 gcfgc |= 0x80;
3650 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3654 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3656 static void intel_crtc_idle_timer(unsigned long arg)
3658 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3659 struct drm_crtc *crtc = &intel_crtc->base;
3660 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3662 DRM_DEBUG("idle timer fired, downclocking\n");
3664 intel_crtc->busy = false;
3666 queue_work(dev_priv->wq, &dev_priv->idle_work);
3669 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3671 struct drm_device *dev = crtc->dev;
3672 drm_i915_private_t *dev_priv = dev->dev_private;
3673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3674 int pipe = intel_crtc->pipe;
3675 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3676 int dpll = I915_READ(dpll_reg);
3678 if (IS_IGDNG(dev))
3679 return;
3681 if (!dev_priv->lvds_downclock_avail)
3682 return;
3684 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3685 DRM_DEBUG("upclocking LVDS\n");
3687 /* Unlock panel regs */
3688 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3690 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3691 I915_WRITE(dpll_reg, dpll);
3692 dpll = I915_READ(dpll_reg);
3693 intel_wait_for_vblank(dev);
3694 dpll = I915_READ(dpll_reg);
3695 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3696 DRM_DEBUG("failed to upclock LVDS!\n");
3698 /* ...and lock them again */
3699 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3702 /* Schedule downclock */
3703 if (schedule)
3704 mod_timer(&intel_crtc->idle_timer, jiffies +
3705 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3708 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3710 struct drm_device *dev = crtc->dev;
3711 drm_i915_private_t *dev_priv = dev->dev_private;
3712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3713 int pipe = intel_crtc->pipe;
3714 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3715 int dpll = I915_READ(dpll_reg);
3717 if (IS_IGDNG(dev))
3718 return;
3720 if (!dev_priv->lvds_downclock_avail)
3721 return;
3724 * Since this is called by a timer, we should never get here in
3725 * the manual case.
3727 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3728 DRM_DEBUG("downclocking LVDS\n");
3730 /* Unlock panel regs */
3731 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3733 dpll |= DISPLAY_RATE_SELECT_FPA1;
3734 I915_WRITE(dpll_reg, dpll);
3735 dpll = I915_READ(dpll_reg);
3736 intel_wait_for_vblank(dev);
3737 dpll = I915_READ(dpll_reg);
3738 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3739 DRM_DEBUG("failed to downclock LVDS!\n");
3741 /* ...and lock them again */
3742 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3748 * intel_idle_update - adjust clocks for idleness
3749 * @work: work struct
3751 * Either the GPU or display (or both) went idle. Check the busy status
3752 * here and adjust the CRTC and GPU clocks as necessary.
3754 static void intel_idle_update(struct work_struct *work)
3756 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3757 idle_work);
3758 struct drm_device *dev = dev_priv->dev;
3759 struct drm_crtc *crtc;
3760 struct intel_crtc *intel_crtc;
3762 if (!i915_powersave)
3763 return;
3765 mutex_lock(&dev->struct_mutex);
3767 /* GPU isn't processing, downclock it. */
3768 if (!dev_priv->busy) {
3769 intel_decrease_renderclock(dev);
3770 intel_decrease_displayclock(dev);
3773 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3774 /* Skip inactive CRTCs */
3775 if (!crtc->fb)
3776 continue;
3778 intel_crtc = to_intel_crtc(crtc);
3779 if (!intel_crtc->busy)
3780 intel_decrease_pllclock(crtc);
3783 mutex_unlock(&dev->struct_mutex);
3787 * intel_mark_busy - mark the GPU and possibly the display busy
3788 * @dev: drm device
3789 * @obj: object we're operating on
3791 * Callers can use this function to indicate that the GPU is busy processing
3792 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3793 * buffer), we'll also mark the display as busy, so we know to increase its
3794 * clock frequency.
3796 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3798 drm_i915_private_t *dev_priv = dev->dev_private;
3799 struct drm_crtc *crtc = NULL;
3800 struct intel_framebuffer *intel_fb;
3801 struct intel_crtc *intel_crtc;
3803 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3804 return;
3806 dev_priv->busy = true;
3807 intel_increase_renderclock(dev, true);
3809 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3810 if (!crtc->fb)
3811 continue;
3813 intel_crtc = to_intel_crtc(crtc);
3814 intel_fb = to_intel_framebuffer(crtc->fb);
3815 if (intel_fb->obj == obj) {
3816 if (!intel_crtc->busy) {
3817 /* Non-busy -> busy, upclock */
3818 intel_increase_pllclock(crtc, true);
3819 intel_crtc->busy = true;
3820 } else {
3821 /* Busy -> busy, put off timer */
3822 mod_timer(&intel_crtc->idle_timer, jiffies +
3823 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3829 static void intel_crtc_destroy(struct drm_crtc *crtc)
3831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3833 drm_crtc_cleanup(crtc);
3834 kfree(intel_crtc);
3837 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3838 .dpms = intel_crtc_dpms,
3839 .mode_fixup = intel_crtc_mode_fixup,
3840 .mode_set = intel_crtc_mode_set,
3841 .mode_set_base = intel_pipe_set_base,
3842 .prepare = intel_crtc_prepare,
3843 .commit = intel_crtc_commit,
3844 .load_lut = intel_crtc_load_lut,
3847 static const struct drm_crtc_funcs intel_crtc_funcs = {
3848 .cursor_set = intel_crtc_cursor_set,
3849 .cursor_move = intel_crtc_cursor_move,
3850 .gamma_set = intel_crtc_gamma_set,
3851 .set_config = drm_crtc_helper_set_config,
3852 .destroy = intel_crtc_destroy,
3856 static void intel_crtc_init(struct drm_device *dev, int pipe)
3858 struct intel_crtc *intel_crtc;
3859 int i;
3861 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3862 if (intel_crtc == NULL)
3863 return;
3865 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3867 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3868 intel_crtc->pipe = pipe;
3869 intel_crtc->plane = pipe;
3870 for (i = 0; i < 256; i++) {
3871 intel_crtc->lut_r[i] = i;
3872 intel_crtc->lut_g[i] = i;
3873 intel_crtc->lut_b[i] = i;
3876 /* Swap pipes & planes for FBC on pre-965 */
3877 intel_crtc->pipe = pipe;
3878 intel_crtc->plane = pipe;
3879 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
3880 DRM_DEBUG("swapping pipes & planes for FBC\n");
3881 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
3884 intel_crtc->cursor_addr = 0;
3885 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3886 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3888 intel_crtc->busy = false;
3890 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
3891 (unsigned long)intel_crtc);
3894 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3895 struct drm_file *file_priv)
3897 drm_i915_private_t *dev_priv = dev->dev_private;
3898 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3899 struct drm_mode_object *drmmode_obj;
3900 struct intel_crtc *crtc;
3902 if (!dev_priv) {
3903 DRM_ERROR("called with no initialization\n");
3904 return -EINVAL;
3907 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
3908 DRM_MODE_OBJECT_CRTC);
3910 if (!drmmode_obj) {
3911 DRM_ERROR("no such CRTC id\n");
3912 return -EINVAL;
3915 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
3916 pipe_from_crtc_id->pipe = crtc->pipe;
3918 return 0;
3921 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3923 struct drm_crtc *crtc = NULL;
3925 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3927 if (intel_crtc->pipe == pipe)
3928 break;
3930 return crtc;
3933 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3935 int index_mask = 0;
3936 struct drm_connector *connector;
3937 int entry = 0;
3939 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3940 struct intel_output *intel_output = to_intel_output(connector);
3941 if (type_mask & intel_output->clone_mask)
3942 index_mask |= (1 << entry);
3943 entry++;
3945 return index_mask;
3949 static void intel_setup_outputs(struct drm_device *dev)
3951 struct drm_i915_private *dev_priv = dev->dev_private;
3952 struct drm_connector *connector;
3954 intel_crt_init(dev);
3956 /* Set up integrated LVDS */
3957 if (IS_MOBILE(dev) && !IS_I830(dev))
3958 intel_lvds_init(dev);
3960 if (IS_IGDNG(dev)) {
3961 int found;
3963 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3964 intel_dp_init(dev, DP_A);
3966 if (I915_READ(HDMIB) & PORT_DETECTED) {
3967 /* check SDVOB */
3968 /* found = intel_sdvo_init(dev, HDMIB); */
3969 found = 0;
3970 if (!found)
3971 intel_hdmi_init(dev, HDMIB);
3972 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3973 intel_dp_init(dev, PCH_DP_B);
3976 if (I915_READ(HDMIC) & PORT_DETECTED)
3977 intel_hdmi_init(dev, HDMIC);
3979 if (I915_READ(HDMID) & PORT_DETECTED)
3980 intel_hdmi_init(dev, HDMID);
3982 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3983 intel_dp_init(dev, PCH_DP_C);
3985 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3986 intel_dp_init(dev, PCH_DP_D);
3988 } else if (IS_I9XX(dev)) {
3989 bool found = false;
3991 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3992 found = intel_sdvo_init(dev, SDVOB);
3993 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3994 intel_hdmi_init(dev, SDVOB);
3996 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3997 intel_dp_init(dev, DP_B);
4000 /* Before G4X SDVOC doesn't have its own detect register */
4002 if (I915_READ(SDVOB) & SDVO_DETECTED)
4003 found = intel_sdvo_init(dev, SDVOC);
4005 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4007 if (SUPPORTS_INTEGRATED_HDMI(dev))
4008 intel_hdmi_init(dev, SDVOC);
4009 if (SUPPORTS_INTEGRATED_DP(dev))
4010 intel_dp_init(dev, DP_C);
4013 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4014 intel_dp_init(dev, DP_D);
4015 } else
4016 intel_dvo_init(dev);
4018 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4019 intel_tv_init(dev);
4021 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4022 struct intel_output *intel_output = to_intel_output(connector);
4023 struct drm_encoder *encoder = &intel_output->enc;
4025 encoder->possible_crtcs = intel_output->crtc_mask;
4026 encoder->possible_clones = intel_connector_clones(dev,
4027 intel_output->clone_mask);
4031 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4033 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4034 struct drm_device *dev = fb->dev;
4036 if (fb->fbdev)
4037 intelfb_remove(dev, fb);
4039 drm_framebuffer_cleanup(fb);
4040 mutex_lock(&dev->struct_mutex);
4041 drm_gem_object_unreference(intel_fb->obj);
4042 mutex_unlock(&dev->struct_mutex);
4044 kfree(intel_fb);
4047 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4048 struct drm_file *file_priv,
4049 unsigned int *handle)
4051 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4052 struct drm_gem_object *object = intel_fb->obj;
4054 return drm_gem_handle_create(file_priv, object, handle);
4057 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4058 .destroy = intel_user_framebuffer_destroy,
4059 .create_handle = intel_user_framebuffer_create_handle,
4062 int intel_framebuffer_create(struct drm_device *dev,
4063 struct drm_mode_fb_cmd *mode_cmd,
4064 struct drm_framebuffer **fb,
4065 struct drm_gem_object *obj)
4067 struct intel_framebuffer *intel_fb;
4068 int ret;
4070 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4071 if (!intel_fb)
4072 return -ENOMEM;
4074 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4075 if (ret) {
4076 DRM_ERROR("framebuffer init failed %d\n", ret);
4077 return ret;
4080 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4082 intel_fb->obj = obj;
4084 *fb = &intel_fb->base;
4086 return 0;
4090 static struct drm_framebuffer *
4091 intel_user_framebuffer_create(struct drm_device *dev,
4092 struct drm_file *filp,
4093 struct drm_mode_fb_cmd *mode_cmd)
4095 struct drm_gem_object *obj;
4096 struct drm_framebuffer *fb;
4097 int ret;
4099 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4100 if (!obj)
4101 return NULL;
4103 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4104 if (ret) {
4105 mutex_lock(&dev->struct_mutex);
4106 drm_gem_object_unreference(obj);
4107 mutex_unlock(&dev->struct_mutex);
4108 return NULL;
4111 return fb;
4114 static const struct drm_mode_config_funcs intel_mode_funcs = {
4115 .fb_create = intel_user_framebuffer_create,
4116 .fb_changed = intelfb_probe,
4119 void intel_init_clock_gating(struct drm_device *dev)
4121 struct drm_i915_private *dev_priv = dev->dev_private;
4124 * Disable clock gating reported to work incorrectly according to the
4125 * specs, but enable as much else as we can.
4127 if (IS_G4X(dev)) {
4128 uint32_t dspclk_gate;
4129 I915_WRITE(RENCLK_GATE_D1, 0);
4130 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4131 GS_UNIT_CLOCK_GATE_DISABLE |
4132 CL_UNIT_CLOCK_GATE_DISABLE);
4133 I915_WRITE(RAMCLK_GATE_D, 0);
4134 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4135 OVRUNIT_CLOCK_GATE_DISABLE |
4136 OVCUNIT_CLOCK_GATE_DISABLE;
4137 if (IS_GM45(dev))
4138 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4139 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4140 } else if (IS_I965GM(dev)) {
4141 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4142 I915_WRITE(RENCLK_GATE_D2, 0);
4143 I915_WRITE(DSPCLK_GATE_D, 0);
4144 I915_WRITE(RAMCLK_GATE_D, 0);
4145 I915_WRITE16(DEUC, 0);
4146 } else if (IS_I965G(dev)) {
4147 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4148 I965_RCC_CLOCK_GATE_DISABLE |
4149 I965_RCPB_CLOCK_GATE_DISABLE |
4150 I965_ISC_CLOCK_GATE_DISABLE |
4151 I965_FBC_CLOCK_GATE_DISABLE);
4152 I915_WRITE(RENCLK_GATE_D2, 0);
4153 } else if (IS_I9XX(dev)) {
4154 u32 dstate = I915_READ(D_STATE);
4156 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4157 DSTATE_DOT_CLOCK_GATING;
4158 I915_WRITE(D_STATE, dstate);
4159 } else if (IS_I855(dev) || IS_I865G(dev)) {
4160 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4161 } else if (IS_I830(dev)) {
4162 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4166 /* Set up chip specific display functions */
4167 static void intel_init_display(struct drm_device *dev)
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4171 /* We always want a DPMS function */
4172 if (IS_IGDNG(dev))
4173 dev_priv->display.dpms = igdng_crtc_dpms;
4174 else
4175 dev_priv->display.dpms = i9xx_crtc_dpms;
4177 /* Only mobile has FBC, leave pointers NULL for other chips */
4178 if (IS_MOBILE(dev)) {
4179 if (IS_GM45(dev)) {
4180 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4181 dev_priv->display.enable_fbc = g4x_enable_fbc;
4182 dev_priv->display.disable_fbc = g4x_disable_fbc;
4183 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4184 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4185 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4186 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4188 /* 855GM needs testing */
4191 /* Returns the core display clock speed */
4192 if (IS_I945G(dev))
4193 dev_priv->display.get_display_clock_speed =
4194 i945_get_display_clock_speed;
4195 else if (IS_I915G(dev))
4196 dev_priv->display.get_display_clock_speed =
4197 i915_get_display_clock_speed;
4198 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4199 dev_priv->display.get_display_clock_speed =
4200 i9xx_misc_get_display_clock_speed;
4201 else if (IS_I915GM(dev))
4202 dev_priv->display.get_display_clock_speed =
4203 i915gm_get_display_clock_speed;
4204 else if (IS_I865G(dev))
4205 dev_priv->display.get_display_clock_speed =
4206 i865_get_display_clock_speed;
4207 else if (IS_I855(dev))
4208 dev_priv->display.get_display_clock_speed =
4209 i855_get_display_clock_speed;
4210 else /* 852, 830 */
4211 dev_priv->display.get_display_clock_speed =
4212 i830_get_display_clock_speed;
4214 /* For FIFO watermark updates */
4215 if (IS_G4X(dev))
4216 dev_priv->display.update_wm = g4x_update_wm;
4217 else if (IS_I965G(dev))
4218 dev_priv->display.update_wm = i965_update_wm;
4219 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4220 dev_priv->display.update_wm = i9xx_update_wm;
4221 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4222 } else {
4223 if (IS_I85X(dev))
4224 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4225 else if (IS_845G(dev))
4226 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4227 else
4228 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4229 dev_priv->display.update_wm = i830_update_wm;
4233 void intel_modeset_init(struct drm_device *dev)
4235 struct drm_i915_private *dev_priv = dev->dev_private;
4236 int num_pipe;
4237 int i;
4239 drm_mode_config_init(dev);
4241 dev->mode_config.min_width = 0;
4242 dev->mode_config.min_height = 0;
4244 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4246 intel_init_display(dev);
4248 if (IS_I965G(dev)) {
4249 dev->mode_config.max_width = 8192;
4250 dev->mode_config.max_height = 8192;
4251 } else if (IS_I9XX(dev)) {
4252 dev->mode_config.max_width = 4096;
4253 dev->mode_config.max_height = 4096;
4254 } else {
4255 dev->mode_config.max_width = 2048;
4256 dev->mode_config.max_height = 2048;
4259 /* set memory base */
4260 if (IS_I9XX(dev))
4261 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4262 else
4263 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4265 if (IS_MOBILE(dev) || IS_I9XX(dev))
4266 num_pipe = 2;
4267 else
4268 num_pipe = 1;
4269 DRM_DEBUG("%d display pipe%s available.\n",
4270 num_pipe, num_pipe > 1 ? "s" : "");
4272 if (IS_I85X(dev))
4273 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4274 else if (IS_I9XX(dev) || IS_G4X(dev))
4275 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4277 for (i = 0; i < num_pipe; i++) {
4278 intel_crtc_init(dev, i);
4281 intel_setup_outputs(dev);
4283 intel_init_clock_gating(dev);
4285 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4286 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4287 (unsigned long)dev);
4290 void intel_modeset_cleanup(struct drm_device *dev)
4292 struct drm_i915_private *dev_priv = dev->dev_private;
4293 struct drm_crtc *crtc;
4294 struct intel_crtc *intel_crtc;
4296 mutex_lock(&dev->struct_mutex);
4298 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4299 /* Skip inactive CRTCs */
4300 if (!crtc->fb)
4301 continue;
4303 intel_crtc = to_intel_crtc(crtc);
4304 intel_increase_pllclock(crtc, false);
4305 del_timer_sync(&intel_crtc->idle_timer);
4308 intel_increase_renderclock(dev, false);
4309 del_timer_sync(&dev_priv->idle_timer);
4311 mutex_unlock(&dev->struct_mutex);
4313 if (dev_priv->display.disable_fbc)
4314 dev_priv->display.disable_fbc(dev);
4316 drm_mode_config_cleanup(dev);
4320 /* current intel driver doesn't take advantage of encoders
4321 always give back the encoder for the connector
4323 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4325 struct intel_output *intel_output = to_intel_output(connector);
4327 return &intel_output->enc;
4331 * set vga decode state - true == enable VGA decode
4333 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4335 struct drm_i915_private *dev_priv = dev->dev_private;
4336 u16 gmch_ctrl;
4338 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4339 if (state)
4340 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4341 else
4342 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4343 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4344 return 0;