OMAP3: SR: Replace printk's with pr_* calls
[linux-ginger.git] / drivers / net / atlx / atl1.c
blob00569dc1313cd5c2a1f7ead4603ac8deb7bec4ff
1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
32 * This version is adapted from the Attansic reference driver.
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
47 #include <asm/atomic.h>
48 #include <asm/byteorder.h>
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
81 #include <net/checksum.h>
83 #include "atl1.h"
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, \
87 Chris Snook <csnook@redhat.com>, Jay Cliburn <jcliburn@gmail.com>");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(ATLX_DRIVER_VERSION);
91 /* Temporary hack for merging atl1 and atl2 */
92 #include "atlx.c"
95 * This is the only thing that needs to be changed to adjust the
96 * maximum number of ports that the driver can manage.
98 #define ATL1_MAX_NIC 4
100 #define OPTION_UNSET -1
101 #define OPTION_DISABLED 0
102 #define OPTION_ENABLED 1
104 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
107 * Interrupt Moderate Timer in units of 2 us
109 * Valid Range: 10-65535
111 * Default Value: 100 (200us)
113 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
114 static unsigned int num_int_mod_timer;
115 module_param_array_named(int_mod_timer, int_mod_timer, int,
116 &num_int_mod_timer, 0);
117 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
119 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
120 #define MAX_INT_MOD_CNT 65000
121 #define MIN_INT_MOD_CNT 50
123 struct atl1_option {
124 enum { enable_option, range_option, list_option } type;
125 char *name;
126 char *err;
127 int def;
128 union {
129 struct { /* range_option info */
130 int min;
131 int max;
132 } r;
133 struct { /* list_option info */
134 int nr;
135 struct atl1_opt_list {
136 int i;
137 char *str;
138 } *p;
139 } l;
140 } arg;
143 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
144 struct pci_dev *pdev)
146 if (*value == OPTION_UNSET) {
147 *value = opt->def;
148 return 0;
151 switch (opt->type) {
152 case enable_option:
153 switch (*value) {
154 case OPTION_ENABLED:
155 dev_info(&pdev->dev, "%s enabled\n", opt->name);
156 return 0;
157 case OPTION_DISABLED:
158 dev_info(&pdev->dev, "%s disabled\n", opt->name);
159 return 0;
161 break;
162 case range_option:
163 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
164 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
165 *value);
166 return 0;
168 break;
169 case list_option:{
170 int i;
171 struct atl1_opt_list *ent;
173 for (i = 0; i < opt->arg.l.nr; i++) {
174 ent = &opt->arg.l.p[i];
175 if (*value == ent->i) {
176 if (ent->str[0] != '\0')
177 dev_info(&pdev->dev, "%s\n",
178 ent->str);
179 return 0;
183 break;
185 default:
186 break;
189 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
190 opt->name, *value, opt->err);
191 *value = opt->def;
192 return -1;
196 * atl1_check_options - Range Checking for Command Line Parameters
197 * @adapter: board private structure
199 * This routine checks all command line parameters for valid user
200 * input. If an invalid value is given, or if no user specified
201 * value exists, a default value is used. The final value is stored
202 * in a variable in the adapter structure.
204 static void __devinit atl1_check_options(struct atl1_adapter *adapter)
206 struct pci_dev *pdev = adapter->pdev;
207 int bd = adapter->bd_number;
208 if (bd >= ATL1_MAX_NIC) {
209 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
210 dev_notice(&pdev->dev, "using defaults for all values\n");
212 { /* Interrupt Moderate Timer */
213 struct atl1_option opt = {
214 .type = range_option,
215 .name = "Interrupt Moderator Timer",
216 .err = "using default of "
217 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
218 .def = DEFAULT_INT_MOD_CNT,
219 .arg = {.r = {.min = MIN_INT_MOD_CNT,
220 .max = MAX_INT_MOD_CNT} }
222 int val;
223 if (num_int_mod_timer > bd) {
224 val = int_mod_timer[bd];
225 atl1_validate_option(&val, &opt, pdev);
226 adapter->imt = (u16) val;
227 } else
228 adapter->imt = (u16) (opt.def);
233 * atl1_pci_tbl - PCI Device ID Table
235 static const struct pci_device_id atl1_pci_tbl[] = {
236 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
237 /* required last entry */
238 {0,}
240 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
242 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
243 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
245 static int debug = -1;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
250 * Reset the transmit and receive units; mask and clear all interrupts.
251 * hw - Struct containing variables accessed by shared code
252 * return : 0 or idle status (if error)
254 static s32 atl1_reset_hw(struct atl1_hw *hw)
256 struct pci_dev *pdev = hw->back->pdev;
257 struct atl1_adapter *adapter = hw->back;
258 u32 icr;
259 int i;
262 * Clear Interrupt mask to stop board from generating
263 * interrupts & Clear any pending interrupt events
266 * iowrite32(0, hw->hw_addr + REG_IMR);
267 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271 * Issue Soft Reset to the MAC. This will reset the chip's
272 * transmit, receive, DMA. It will not effect
273 * the current PCI configuration. The global reset bit is self-
274 * clearing, and should clear within a microsecond.
276 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
277 ioread32(hw->hw_addr + REG_MASTER_CTRL);
279 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
280 ioread16(hw->hw_addr + REG_PHY_ENABLE);
282 /* delay about 1ms */
283 msleep(1);
285 /* Wait at least 10ms for All module to be Idle */
286 for (i = 0; i < 10; i++) {
287 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
288 if (!icr)
289 break;
290 /* delay 1 ms */
291 msleep(1);
292 /* FIXME: still the right way to do this? */
293 cpu_relax();
296 if (icr) {
297 if (netif_msg_hw(adapter))
298 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
299 return icr;
302 return 0;
305 /* function about EEPROM
307 * check_eeprom_exist
308 * return 0 if eeprom exist
310 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
312 u32 value;
313 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
314 if (value & SPI_FLASH_CTRL_EN_VPD) {
315 value &= ~SPI_FLASH_CTRL_EN_VPD;
316 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
319 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
320 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
323 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
325 int i;
326 u32 control;
328 if (offset & 3)
329 /* address do not align */
330 return false;
332 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
333 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
334 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
335 ioread32(hw->hw_addr + REG_VPD_CAP);
337 for (i = 0; i < 10; i++) {
338 msleep(2);
339 control = ioread32(hw->hw_addr + REG_VPD_CAP);
340 if (control & VPD_CAP_VPD_FLAG)
341 break;
343 if (control & VPD_CAP_VPD_FLAG) {
344 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
345 return true;
347 /* timeout */
348 return false;
352 * Reads the value from a PHY register
353 * hw - Struct containing variables accessed by shared code
354 * reg_addr - address of the PHY register to read
356 s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
358 u32 val;
359 int i;
361 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
362 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
363 MDIO_CLK_SEL_SHIFT;
364 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
365 ioread32(hw->hw_addr + REG_MDIO_CTRL);
367 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
368 udelay(2);
369 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
370 if (!(val & (MDIO_START | MDIO_BUSY)))
371 break;
373 if (!(val & (MDIO_START | MDIO_BUSY))) {
374 *phy_data = (u16) val;
375 return 0;
377 return ATLX_ERR_PHY;
380 #define CUSTOM_SPI_CS_SETUP 2
381 #define CUSTOM_SPI_CLK_HI 2
382 #define CUSTOM_SPI_CLK_LO 2
383 #define CUSTOM_SPI_CS_HOLD 2
384 #define CUSTOM_SPI_CS_HI 3
386 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
388 int i;
389 u32 value;
391 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
392 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
394 value = SPI_FLASH_CTRL_WAIT_READY |
395 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
396 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
397 SPI_FLASH_CTRL_CLK_HI_MASK) <<
398 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
399 SPI_FLASH_CTRL_CLK_LO_MASK) <<
400 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
401 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
402 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
403 SPI_FLASH_CTRL_CS_HI_MASK) <<
404 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
405 SPI_FLASH_CTRL_INS_SHIFT;
407 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
409 value |= SPI_FLASH_CTRL_START;
410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
413 for (i = 0; i < 10; i++) {
414 msleep(1);
415 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
416 if (!(value & SPI_FLASH_CTRL_START))
417 break;
420 if (value & SPI_FLASH_CTRL_START)
421 return false;
423 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
425 return true;
429 * get_permanent_address
430 * return 0 if get valid mac address,
432 static int atl1_get_permanent_address(struct atl1_hw *hw)
434 u32 addr[2];
435 u32 i, control;
436 u16 reg;
437 u8 eth_addr[ETH_ALEN];
438 bool key_valid;
440 if (is_valid_ether_addr(hw->perm_mac_addr))
441 return 0;
443 /* init */
444 addr[0] = addr[1] = 0;
446 if (!atl1_check_eeprom_exist(hw)) {
447 reg = 0;
448 key_valid = false;
449 /* Read out all EEPROM content */
450 i = 0;
451 while (1) {
452 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
453 if (key_valid) {
454 if (reg == REG_MAC_STA_ADDR)
455 addr[0] = control;
456 else if (reg == (REG_MAC_STA_ADDR + 4))
457 addr[1] = control;
458 key_valid = false;
459 } else if ((control & 0xff) == 0x5A) {
460 key_valid = true;
461 reg = (u16) (control >> 16);
462 } else
463 break;
464 } else
465 /* read error */
466 break;
467 i += 4;
470 *(u32 *) &eth_addr[2] = swab32(addr[0]);
471 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
472 if (is_valid_ether_addr(eth_addr)) {
473 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
474 return 0;
478 /* see if SPI FLAGS exist ? */
479 addr[0] = addr[1] = 0;
480 reg = 0;
481 key_valid = false;
482 i = 0;
483 while (1) {
484 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
485 if (key_valid) {
486 if (reg == REG_MAC_STA_ADDR)
487 addr[0] = control;
488 else if (reg == (REG_MAC_STA_ADDR + 4))
489 addr[1] = control;
490 key_valid = false;
491 } else if ((control & 0xff) == 0x5A) {
492 key_valid = true;
493 reg = (u16) (control >> 16);
494 } else
495 /* data end */
496 break;
497 } else
498 /* read error */
499 break;
500 i += 4;
503 *(u32 *) &eth_addr[2] = swab32(addr[0]);
504 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
505 if (is_valid_ether_addr(eth_addr)) {
506 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
507 return 0;
511 * On some motherboards, the MAC address is written by the
512 * BIOS directly to the MAC register during POST, and is
513 * not stored in eeprom. If all else thus far has failed
514 * to fetch the permanent MAC address, try reading it directly.
516 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
517 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
518 *(u32 *) &eth_addr[2] = swab32(addr[0]);
519 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
520 if (is_valid_ether_addr(eth_addr)) {
521 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
522 return 0;
525 return 1;
529 * Reads the adapter's MAC address from the EEPROM
530 * hw - Struct containing variables accessed by shared code
532 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
534 u16 i;
536 if (atl1_get_permanent_address(hw))
537 random_ether_addr(hw->perm_mac_addr);
539 for (i = 0; i < ETH_ALEN; i++)
540 hw->mac_addr[i] = hw->perm_mac_addr[i];
541 return 0;
545 * Hashes an address to determine its location in the multicast table
546 * hw - Struct containing variables accessed by shared code
547 * mc_addr - the multicast address to hash
549 * atl1_hash_mc_addr
550 * purpose
551 * set hash value for a multicast address
552 * hash calcu processing :
553 * 1. calcu 32bit CRC for multicast address
554 * 2. reverse crc with MSB to LSB
556 u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
558 u32 crc32, value = 0;
559 int i;
561 crc32 = ether_crc_le(6, mc_addr);
562 for (i = 0; i < 32; i++)
563 value |= (((crc32 >> i) & 1) << (31 - i));
565 return value;
569 * Sets the bit in the multicast table corresponding to the hash value.
570 * hw - Struct containing variables accessed by shared code
571 * hash_value - Multicast address hash value
573 void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
575 u32 hash_bit, hash_reg;
576 u32 mta;
579 * The HASH Table is a register array of 2 32-bit registers.
580 * It is treated like an array of 64 bits. We want to set
581 * bit BitArray[hash_value]. So we figure out what register
582 * the bit is in, read it, OR in the new bit, then write
583 * back the new value. The register is determined by the
584 * upper 7 bits of the hash value and the bit within that
585 * register are determined by the lower 5 bits of the value.
587 hash_reg = (hash_value >> 31) & 0x1;
588 hash_bit = (hash_value >> 26) & 0x1F;
589 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
590 mta |= (1 << hash_bit);
591 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
595 * Writes a value to a PHY register
596 * hw - Struct containing variables accessed by shared code
597 * reg_addr - address of the PHY register to write
598 * data - data to write to the PHY
600 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
602 int i;
603 u32 val;
605 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
606 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
607 MDIO_SUP_PREAMBLE |
608 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
609 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
610 ioread32(hw->hw_addr + REG_MDIO_CTRL);
612 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
613 udelay(2);
614 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
615 if (!(val & (MDIO_START | MDIO_BUSY)))
616 break;
619 if (!(val & (MDIO_START | MDIO_BUSY)))
620 return 0;
622 return ATLX_ERR_PHY;
626 * Make L001's PHY out of Power Saving State (bug)
627 * hw - Struct containing variables accessed by shared code
628 * when power on, L001's PHY always on Power saving State
629 * (Gigabit Link forbidden)
631 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
633 s32 ret;
634 ret = atl1_write_phy_reg(hw, 29, 0x0029);
635 if (ret)
636 return ret;
637 return atl1_write_phy_reg(hw, 30, 0);
641 * Resets the PHY and make all config validate
642 * hw - Struct containing variables accessed by shared code
644 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
646 static s32 atl1_phy_reset(struct atl1_hw *hw)
648 struct pci_dev *pdev = hw->back->pdev;
649 struct atl1_adapter *adapter = hw->back;
650 s32 ret_val;
651 u16 phy_data;
653 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
654 hw->media_type == MEDIA_TYPE_1000M_FULL)
655 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
656 else {
657 switch (hw->media_type) {
658 case MEDIA_TYPE_100M_FULL:
659 phy_data =
660 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
661 MII_CR_RESET;
662 break;
663 case MEDIA_TYPE_100M_HALF:
664 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
665 break;
666 case MEDIA_TYPE_10M_FULL:
667 phy_data =
668 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
669 break;
670 default:
671 /* MEDIA_TYPE_10M_HALF: */
672 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
673 break;
677 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
678 if (ret_val) {
679 u32 val;
680 int i;
681 /* pcie serdes link may be down! */
682 if (netif_msg_hw(adapter))
683 dev_dbg(&pdev->dev, "pcie phy link down\n");
685 for (i = 0; i < 25; i++) {
686 msleep(1);
687 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
688 if (!(val & (MDIO_START | MDIO_BUSY)))
689 break;
692 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
693 if (netif_msg_hw(adapter))
694 dev_warn(&pdev->dev,
695 "pcie link down at least 25ms\n");
696 return ret_val;
699 return 0;
703 * Configures PHY autoneg and flow control advertisement settings
704 * hw - Struct containing variables accessed by shared code
706 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
708 s32 ret_val;
709 s16 mii_autoneg_adv_reg;
710 s16 mii_1000t_ctrl_reg;
712 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
713 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
715 /* Read the MII 1000Base-T Control Register (Address 9). */
716 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
719 * First we clear all the 10/100 mb speed bits in the Auto-Neg
720 * Advertisement Register (Address 4) and the 1000 mb speed bits in
721 * the 1000Base-T Control Register (Address 9).
723 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
724 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
727 * Need to parse media_type and set up
728 * the appropriate PHY registers.
730 switch (hw->media_type) {
731 case MEDIA_TYPE_AUTO_SENSOR:
732 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
733 MII_AR_10T_FD_CAPS |
734 MII_AR_100TX_HD_CAPS |
735 MII_AR_100TX_FD_CAPS);
736 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
737 break;
739 case MEDIA_TYPE_1000M_FULL:
740 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
741 break;
743 case MEDIA_TYPE_100M_FULL:
744 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
745 break;
747 case MEDIA_TYPE_100M_HALF:
748 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
749 break;
751 case MEDIA_TYPE_10M_FULL:
752 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
753 break;
755 default:
756 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
757 break;
760 /* flow control fixed to enable all */
761 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
763 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
764 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
766 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
767 if (ret_val)
768 return ret_val;
770 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
771 if (ret_val)
772 return ret_val;
774 return 0;
778 * Configures link settings.
779 * hw - Struct containing variables accessed by shared code
780 * Assumes the hardware has previously been reset and the
781 * transmitter and receiver are not enabled.
783 static s32 atl1_setup_link(struct atl1_hw *hw)
785 struct pci_dev *pdev = hw->back->pdev;
786 struct atl1_adapter *adapter = hw->back;
787 s32 ret_val;
790 * Options:
791 * PHY will advertise value(s) parsed from
792 * autoneg_advertised and fc
793 * no matter what autoneg is , We will not wait link result.
795 ret_val = atl1_phy_setup_autoneg_adv(hw);
796 if (ret_val) {
797 if (netif_msg_link(adapter))
798 dev_dbg(&pdev->dev,
799 "error setting up autonegotiation\n");
800 return ret_val;
802 /* SW.Reset , En-Auto-Neg if needed */
803 ret_val = atl1_phy_reset(hw);
804 if (ret_val) {
805 if (netif_msg_link(adapter))
806 dev_dbg(&pdev->dev, "error resetting phy\n");
807 return ret_val;
809 hw->phy_configured = true;
810 return ret_val;
813 static void atl1_init_flash_opcode(struct atl1_hw *hw)
815 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
816 /* Atmel */
817 hw->flash_vendor = 0;
819 /* Init OP table */
820 iowrite8(flash_table[hw->flash_vendor].cmd_program,
821 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
822 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
823 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
824 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
825 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
826 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
827 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
828 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
829 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
830 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
831 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
832 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
833 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
834 iowrite8(flash_table[hw->flash_vendor].cmd_read,
835 hw->hw_addr + REG_SPI_FLASH_OP_READ);
839 * Performs basic configuration of the adapter.
840 * hw - Struct containing variables accessed by shared code
841 * Assumes that the controller has previously been reset and is in a
842 * post-reset uninitialized state. Initializes multicast table,
843 * and Calls routines to setup link
844 * Leaves the transmit and receive units disabled and uninitialized.
846 static s32 atl1_init_hw(struct atl1_hw *hw)
848 u32 ret_val = 0;
850 /* Zero out the Multicast HASH table */
851 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
852 /* clear the old settings from the multicast hash table */
853 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
855 atl1_init_flash_opcode(hw);
857 if (!hw->phy_configured) {
858 /* enable GPHY LinkChange Interrrupt */
859 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
860 if (ret_val)
861 return ret_val;
862 /* make PHY out of power-saving state */
863 ret_val = atl1_phy_leave_power_saving(hw);
864 if (ret_val)
865 return ret_val;
866 /* Call a subroutine to configure the link */
867 ret_val = atl1_setup_link(hw);
869 return ret_val;
873 * Detects the current speed and duplex settings of the hardware.
874 * hw - Struct containing variables accessed by shared code
875 * speed - Speed of the connection
876 * duplex - Duplex setting of the connection
878 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
880 struct pci_dev *pdev = hw->back->pdev;
881 struct atl1_adapter *adapter = hw->back;
882 s32 ret_val;
883 u16 phy_data;
885 /* ; --- Read PHY Specific Status Register (17) */
886 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
887 if (ret_val)
888 return ret_val;
890 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
891 return ATLX_ERR_PHY_RES;
893 switch (phy_data & MII_ATLX_PSSR_SPEED) {
894 case MII_ATLX_PSSR_1000MBS:
895 *speed = SPEED_1000;
896 break;
897 case MII_ATLX_PSSR_100MBS:
898 *speed = SPEED_100;
899 break;
900 case MII_ATLX_PSSR_10MBS:
901 *speed = SPEED_10;
902 break;
903 default:
904 if (netif_msg_hw(adapter))
905 dev_dbg(&pdev->dev, "error getting speed\n");
906 return ATLX_ERR_PHY_SPEED;
907 break;
909 if (phy_data & MII_ATLX_PSSR_DPLX)
910 *duplex = FULL_DUPLEX;
911 else
912 *duplex = HALF_DUPLEX;
914 return 0;
917 void atl1_set_mac_addr(struct atl1_hw *hw)
919 u32 value;
921 * 00-0B-6A-F6-00-DC
922 * 0: 6AF600DC 1: 000B
923 * low dword
925 value = (((u32) hw->mac_addr[2]) << 24) |
926 (((u32) hw->mac_addr[3]) << 16) |
927 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
928 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
929 /* high dword */
930 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
931 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
935 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
936 * @adapter: board private structure to initialize
938 * atl1_sw_init initializes the Adapter private data structure.
939 * Fields are initialized based on PCI device information and
940 * OS network device settings (MTU size).
942 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
944 struct atl1_hw *hw = &adapter->hw;
945 struct net_device *netdev = adapter->netdev;
947 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
948 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
950 adapter->wol = 0;
951 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
952 adapter->ict = 50000; /* 100ms */
953 adapter->link_speed = SPEED_0; /* hardware init */
954 adapter->link_duplex = FULL_DUPLEX;
956 hw->phy_configured = false;
957 hw->preamble_len = 7;
958 hw->ipgt = 0x60;
959 hw->min_ifg = 0x50;
960 hw->ipgr1 = 0x40;
961 hw->ipgr2 = 0x60;
962 hw->max_retry = 0xf;
963 hw->lcol = 0x37;
964 hw->jam_ipg = 7;
965 hw->rfd_burst = 8;
966 hw->rrd_burst = 8;
967 hw->rfd_fetch_gap = 1;
968 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
969 hw->rx_jumbo_lkah = 1;
970 hw->rrd_ret_timer = 16;
971 hw->tpd_burst = 4;
972 hw->tpd_fetch_th = 16;
973 hw->txf_burst = 0x100;
974 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
975 hw->tpd_fetch_gap = 1;
976 hw->rcb_value = atl1_rcb_64;
977 hw->dma_ord = atl1_dma_ord_enh;
978 hw->dmar_block = atl1_dma_req_256;
979 hw->dmaw_block = atl1_dma_req_256;
980 hw->cmb_rrd = 4;
981 hw->cmb_tpd = 4;
982 hw->cmb_rx_timer = 1; /* about 2us */
983 hw->cmb_tx_timer = 1; /* about 2us */
984 hw->smb_timer = 100000; /* about 200ms */
986 spin_lock_init(&adapter->lock);
987 spin_lock_init(&adapter->mb_lock);
989 return 0;
992 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
994 struct atl1_adapter *adapter = netdev_priv(netdev);
995 u16 result;
997 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
999 return result;
1002 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1003 int val)
1005 struct atl1_adapter *adapter = netdev_priv(netdev);
1007 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1011 * atl1_mii_ioctl -
1012 * @netdev:
1013 * @ifreq:
1014 * @cmd:
1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1018 struct atl1_adapter *adapter = netdev_priv(netdev);
1019 unsigned long flags;
1020 int retval;
1022 if (!netif_running(netdev))
1023 return -EINVAL;
1025 spin_lock_irqsave(&adapter->lock, flags);
1026 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027 spin_unlock_irqrestore(&adapter->lock, flags);
1029 return retval;
1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034 * @adapter: board private structure
1036 * Return 0 on success, negative on failure
1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1040 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043 struct atl1_ring_header *ring_header = &adapter->ring_header;
1044 struct pci_dev *pdev = adapter->pdev;
1045 int size;
1046 u8 offset = 0;
1048 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050 if (unlikely(!tpd_ring->buffer_info)) {
1051 if (netif_msg_drv(adapter))
1052 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053 size);
1054 goto err_nomem;
1056 rfd_ring->buffer_info =
1057 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1060 * real ring DMA buffer
1061 * each ring/block may need up to 8 bytes for alignment, hence the
1062 * additional 40 bytes tacked onto the end.
1064 ring_header->size = size =
1065 sizeof(struct tx_packet_desc) * tpd_ring->count
1066 + sizeof(struct rx_free_desc) * rfd_ring->count
1067 + sizeof(struct rx_return_desc) * rrd_ring->count
1068 + sizeof(struct coals_msg_block)
1069 + sizeof(struct stats_msg_block)
1070 + 40;
1072 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073 &ring_header->dma);
1074 if (unlikely(!ring_header->desc)) {
1075 if (netif_msg_drv(adapter))
1076 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077 goto err_nomem;
1080 memset(ring_header->desc, 0, ring_header->size);
1082 /* init TPD ring */
1083 tpd_ring->dma = ring_header->dma;
1084 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085 tpd_ring->dma += offset;
1086 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1089 /* init RFD ring */
1090 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092 rfd_ring->dma += offset;
1093 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1097 /* init RRD ring */
1098 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100 rrd_ring->dma += offset;
1101 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1105 /* init CMB */
1106 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108 adapter->cmb.dma += offset;
1109 adapter->cmb.cmb = (struct coals_msg_block *)
1110 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1112 /* init SMB */
1113 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115 adapter->smb.dma += offset;
1116 adapter->smb.smb = (struct stats_msg_block *)
1117 ((u8 *) adapter->cmb.cmb +
1118 (sizeof(struct coals_msg_block) + offset));
1120 return 0;
1122 err_nomem:
1123 kfree(tpd_ring->buffer_info);
1124 return -ENOMEM;
1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1129 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1133 atomic_set(&tpd_ring->next_to_use, 0);
1134 atomic_set(&tpd_ring->next_to_clean, 0);
1136 rfd_ring->next_to_clean = 0;
1137 atomic_set(&rfd_ring->next_to_use, 0);
1139 rrd_ring->next_to_use = 0;
1140 atomic_set(&rrd_ring->next_to_clean, 0);
1144 * atl1_clean_rx_ring - Free RFD Buffers
1145 * @adapter: board private structure
1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1149 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151 struct atl1_buffer *buffer_info;
1152 struct pci_dev *pdev = adapter->pdev;
1153 unsigned long size;
1154 unsigned int i;
1156 /* Free all the Rx ring sk_buffs */
1157 for (i = 0; i < rfd_ring->count; i++) {
1158 buffer_info = &rfd_ring->buffer_info[i];
1159 if (buffer_info->dma) {
1160 pci_unmap_page(pdev, buffer_info->dma,
1161 buffer_info->length, PCI_DMA_FROMDEVICE);
1162 buffer_info->dma = 0;
1164 if (buffer_info->skb) {
1165 dev_kfree_skb(buffer_info->skb);
1166 buffer_info->skb = NULL;
1170 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171 memset(rfd_ring->buffer_info, 0, size);
1173 /* Zero out the descriptor ring */
1174 memset(rfd_ring->desc, 0, rfd_ring->size);
1176 rfd_ring->next_to_clean = 0;
1177 atomic_set(&rfd_ring->next_to_use, 0);
1179 rrd_ring->next_to_use = 0;
1180 atomic_set(&rrd_ring->next_to_clean, 0);
1184 * atl1_clean_tx_ring - Free Tx Buffers
1185 * @adapter: board private structure
1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1189 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190 struct atl1_buffer *buffer_info;
1191 struct pci_dev *pdev = adapter->pdev;
1192 unsigned long size;
1193 unsigned int i;
1195 /* Free all the Tx ring sk_buffs */
1196 for (i = 0; i < tpd_ring->count; i++) {
1197 buffer_info = &tpd_ring->buffer_info[i];
1198 if (buffer_info->dma) {
1199 pci_unmap_page(pdev, buffer_info->dma,
1200 buffer_info->length, PCI_DMA_TODEVICE);
1201 buffer_info->dma = 0;
1205 for (i = 0; i < tpd_ring->count; i++) {
1206 buffer_info = &tpd_ring->buffer_info[i];
1207 if (buffer_info->skb) {
1208 dev_kfree_skb_any(buffer_info->skb);
1209 buffer_info->skb = NULL;
1213 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214 memset(tpd_ring->buffer_info, 0, size);
1216 /* Zero out the descriptor ring */
1217 memset(tpd_ring->desc, 0, tpd_ring->size);
1219 atomic_set(&tpd_ring->next_to_use, 0);
1220 atomic_set(&tpd_ring->next_to_clean, 0);
1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225 * @adapter: board private structure
1227 * Free all transmit software resources
1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1231 struct pci_dev *pdev = adapter->pdev;
1232 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235 struct atl1_ring_header *ring_header = &adapter->ring_header;
1237 atl1_clean_tx_ring(adapter);
1238 atl1_clean_rx_ring(adapter);
1240 kfree(tpd_ring->buffer_info);
1241 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242 ring_header->dma);
1244 tpd_ring->buffer_info = NULL;
1245 tpd_ring->desc = NULL;
1246 tpd_ring->dma = 0;
1248 rfd_ring->buffer_info = NULL;
1249 rfd_ring->desc = NULL;
1250 rfd_ring->dma = 0;
1252 rrd_ring->desc = NULL;
1253 rrd_ring->dma = 0;
1256 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1258 u32 value;
1259 struct atl1_hw *hw = &adapter->hw;
1260 struct net_device *netdev = adapter->netdev;
1261 /* Config MAC CTRL Register */
1262 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1263 /* duplex */
1264 if (FULL_DUPLEX == adapter->link_duplex)
1265 value |= MAC_CTRL_DUPLX;
1266 /* speed */
1267 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1268 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1269 MAC_CTRL_SPEED_SHIFT);
1270 /* flow control */
1271 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1272 /* PAD & CRC */
1273 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1274 /* preamble length */
1275 value |= (((u32) adapter->hw.preamble_len
1276 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1277 /* vlan */
1278 if (adapter->vlgrp)
1279 value |= MAC_CTRL_RMV_VLAN;
1280 /* rx checksum
1281 if (adapter->rx_csum)
1282 value |= MAC_CTRL_RX_CHKSUM_EN;
1284 /* filter mode */
1285 value |= MAC_CTRL_BC_EN;
1286 if (netdev->flags & IFF_PROMISC)
1287 value |= MAC_CTRL_PROMIS_EN;
1288 else if (netdev->flags & IFF_ALLMULTI)
1289 value |= MAC_CTRL_MC_ALL_EN;
1290 /* value |= MAC_CTRL_LOOPBACK; */
1291 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1294 static u32 atl1_check_link(struct atl1_adapter *adapter)
1296 struct atl1_hw *hw = &adapter->hw;
1297 struct net_device *netdev = adapter->netdev;
1298 u32 ret_val;
1299 u16 speed, duplex, phy_data;
1300 int reconfig = 0;
1302 /* MII_BMSR must read twice */
1303 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1304 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1305 if (!(phy_data & BMSR_LSTATUS)) {
1306 /* link down */
1307 if (netif_carrier_ok(netdev)) {
1308 /* old link state: Up */
1309 if (netif_msg_link(adapter))
1310 dev_info(&adapter->pdev->dev, "link is down\n");
1311 adapter->link_speed = SPEED_0;
1312 netif_carrier_off(netdev);
1314 return 0;
1317 /* Link Up */
1318 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1319 if (ret_val)
1320 return ret_val;
1322 switch (hw->media_type) {
1323 case MEDIA_TYPE_1000M_FULL:
1324 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1325 reconfig = 1;
1326 break;
1327 case MEDIA_TYPE_100M_FULL:
1328 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1329 reconfig = 1;
1330 break;
1331 case MEDIA_TYPE_100M_HALF:
1332 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1333 reconfig = 1;
1334 break;
1335 case MEDIA_TYPE_10M_FULL:
1336 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1337 reconfig = 1;
1338 break;
1339 case MEDIA_TYPE_10M_HALF:
1340 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1341 reconfig = 1;
1342 break;
1345 /* link result is our setting */
1346 if (!reconfig) {
1347 if (adapter->link_speed != speed
1348 || adapter->link_duplex != duplex) {
1349 adapter->link_speed = speed;
1350 adapter->link_duplex = duplex;
1351 atl1_setup_mac_ctrl(adapter);
1352 if (netif_msg_link(adapter))
1353 dev_info(&adapter->pdev->dev,
1354 "%s link is up %d Mbps %s\n",
1355 netdev->name, adapter->link_speed,
1356 adapter->link_duplex == FULL_DUPLEX ?
1357 "full duplex" : "half duplex");
1359 if (!netif_carrier_ok(netdev)) {
1360 /* Link down -> Up */
1361 netif_carrier_on(netdev);
1363 return 0;
1366 /* change original link status */
1367 if (netif_carrier_ok(netdev)) {
1368 adapter->link_speed = SPEED_0;
1369 netif_carrier_off(netdev);
1370 netif_stop_queue(netdev);
1373 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1374 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1375 switch (hw->media_type) {
1376 case MEDIA_TYPE_100M_FULL:
1377 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1378 MII_CR_RESET;
1379 break;
1380 case MEDIA_TYPE_100M_HALF:
1381 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1382 break;
1383 case MEDIA_TYPE_10M_FULL:
1384 phy_data =
1385 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1386 break;
1387 default:
1388 /* MEDIA_TYPE_10M_HALF: */
1389 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1390 break;
1392 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1393 return 0;
1396 /* auto-neg, insert timer to re-config phy */
1397 if (!adapter->phy_timer_pending) {
1398 adapter->phy_timer_pending = true;
1399 mod_timer(&adapter->phy_config_timer,
1400 round_jiffies(jiffies + 3 * HZ));
1403 return 0;
1406 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1408 u32 hi, lo, value;
1410 /* RFD Flow Control */
1411 value = adapter->rfd_ring.count;
1412 hi = value / 16;
1413 if (hi < 2)
1414 hi = 2;
1415 lo = value * 7 / 8;
1417 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1418 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1419 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1421 /* RRD Flow Control */
1422 value = adapter->rrd_ring.count;
1423 lo = value / 16;
1424 hi = value * 7 / 8;
1425 if (lo < 2)
1426 lo = 2;
1427 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1428 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1429 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1432 static void set_flow_ctrl_new(struct atl1_hw *hw)
1434 u32 hi, lo, value;
1436 /* RXF Flow Control */
1437 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1438 lo = value / 16;
1439 if (lo < 192)
1440 lo = 192;
1441 hi = value * 7 / 8;
1442 if (hi < lo)
1443 hi = lo + 16;
1444 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1445 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1446 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1448 /* RRD Flow Control */
1449 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1450 lo = value / 8;
1451 hi = value * 7 / 8;
1452 if (lo < 2)
1453 lo = 2;
1454 if (hi < lo)
1455 hi = lo + 3;
1456 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1457 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1458 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1462 * atl1_configure - Configure Transmit&Receive Unit after Reset
1463 * @adapter: board private structure
1465 * Configure the Tx /Rx unit of the MAC after a reset.
1467 static u32 atl1_configure(struct atl1_adapter *adapter)
1469 struct atl1_hw *hw = &adapter->hw;
1470 u32 value;
1472 /* clear interrupt status */
1473 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1475 /* set MAC Address */
1476 value = (((u32) hw->mac_addr[2]) << 24) |
1477 (((u32) hw->mac_addr[3]) << 16) |
1478 (((u32) hw->mac_addr[4]) << 8) |
1479 (((u32) hw->mac_addr[5]));
1480 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1481 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1482 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1484 /* tx / rx ring */
1486 /* HI base address */
1487 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1488 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1489 /* LO base address */
1490 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1491 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1492 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1493 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1494 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1495 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1496 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1497 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1498 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1499 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1501 /* element count */
1502 value = adapter->rrd_ring.count;
1503 value <<= 16;
1504 value += adapter->rfd_ring.count;
1505 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1506 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1507 REG_DESC_TPD_RING_SIZE);
1509 /* Load Ptr */
1510 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1512 /* config Mailbox */
1513 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1514 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1515 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1516 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1517 ((atomic_read(&adapter->rfd_ring.next_to_use)
1518 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1519 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1521 /* config IPG/IFG */
1522 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1523 << MAC_IPG_IFG_IPGT_SHIFT) |
1524 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1525 << MAC_IPG_IFG_MIFG_SHIFT) |
1526 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1527 << MAC_IPG_IFG_IPGR1_SHIFT) |
1528 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1529 << MAC_IPG_IFG_IPGR2_SHIFT);
1530 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1532 /* config Half-Duplex Control */
1533 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1534 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1535 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1536 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1537 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1538 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1539 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1540 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1542 /* set Interrupt Moderator Timer */
1543 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1544 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1546 /* set Interrupt Clear Timer */
1547 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1549 /* set max frame size hw will accept */
1550 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1552 /* jumbo size & rrd retirement timer */
1553 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1554 << RXQ_JMBOSZ_TH_SHIFT) |
1555 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1556 << RXQ_JMBO_LKAH_SHIFT) |
1557 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1558 << RXQ_RRD_TIMER_SHIFT);
1559 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1561 /* Flow Control */
1562 switch (hw->dev_rev) {
1563 case 0x8001:
1564 case 0x9001:
1565 case 0x9002:
1566 case 0x9003:
1567 set_flow_ctrl_old(adapter);
1568 break;
1569 default:
1570 set_flow_ctrl_new(hw);
1571 break;
1574 /* config TXQ */
1575 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1576 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1577 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1578 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1579 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1580 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1581 TXQ_CTRL_EN;
1582 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1584 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1585 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1586 << TX_JUMBO_TASK_TH_SHIFT) |
1587 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1588 << TX_TPD_MIN_IPG_SHIFT);
1589 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1591 /* config RXQ */
1592 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1593 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1594 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1595 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1596 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1597 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1598 RXQ_CTRL_EN;
1599 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1601 /* config DMA Engine */
1602 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1603 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1604 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1605 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1606 DMA_CTRL_DMAW_EN;
1607 value |= (u32) hw->dma_ord;
1608 if (atl1_rcb_128 == hw->rcb_value)
1609 value |= DMA_CTRL_RCB_VALUE;
1610 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1612 /* config CMB / SMB */
1613 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1614 hw->cmb_tpd : adapter->tpd_ring.count;
1615 value <<= 16;
1616 value |= hw->cmb_rrd;
1617 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1618 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1619 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1620 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1622 /* --- enable CMB / SMB */
1623 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1624 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1626 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1627 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1628 value = 1; /* config failed */
1629 else
1630 value = 0;
1632 /* clear all interrupt status */
1633 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1634 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1635 return value;
1639 * atl1_pcie_patch - Patch for PCIE module
1641 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1643 u32 value;
1645 /* much vendor magic here */
1646 value = 0x6500;
1647 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1648 /* pcie flow control mode change */
1649 value = ioread32(adapter->hw.hw_addr + 0x1008);
1650 value |= 0x8000;
1651 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1655 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1656 * on PCI Command register is disable.
1657 * The function enable this bit.
1658 * Brackett, 2006/03/15
1660 static void atl1_via_workaround(struct atl1_adapter *adapter)
1662 unsigned long value;
1664 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1665 if (value & PCI_COMMAND_INTX_DISABLE)
1666 value &= ~PCI_COMMAND_INTX_DISABLE;
1667 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1670 static void atl1_inc_smb(struct atl1_adapter *adapter)
1672 struct net_device *netdev = adapter->netdev;
1673 struct stats_msg_block *smb = adapter->smb.smb;
1675 /* Fill out the OS statistics structure */
1676 adapter->soft_stats.rx_packets += smb->rx_ok;
1677 adapter->soft_stats.tx_packets += smb->tx_ok;
1678 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1679 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1680 adapter->soft_stats.multicast += smb->rx_mcast;
1681 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1682 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1684 /* Rx Errors */
1685 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1686 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1687 smb->rx_rrd_ov + smb->rx_align_err);
1688 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1689 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1690 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1691 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1692 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1693 smb->rx_rxf_ov);
1695 adapter->soft_stats.rx_pause += smb->rx_pause;
1696 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1697 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1699 /* Tx Errors */
1700 adapter->soft_stats.tx_errors += (smb->tx_late_col +
1701 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1702 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1703 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1704 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1706 adapter->soft_stats.excecol += smb->tx_abort_col;
1707 adapter->soft_stats.deffer += smb->tx_defer;
1708 adapter->soft_stats.scc += smb->tx_1_col;
1709 adapter->soft_stats.mcc += smb->tx_2_col;
1710 adapter->soft_stats.latecol += smb->tx_late_col;
1711 adapter->soft_stats.tx_underun += smb->tx_underrun;
1712 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1713 adapter->soft_stats.tx_pause += smb->tx_pause;
1715 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1716 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1717 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1718 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1719 netdev->stats.multicast = adapter->soft_stats.multicast;
1720 netdev->stats.collisions = adapter->soft_stats.collisions;
1721 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1722 netdev->stats.rx_over_errors =
1723 adapter->soft_stats.rx_missed_errors;
1724 netdev->stats.rx_length_errors =
1725 adapter->soft_stats.rx_length_errors;
1726 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1727 netdev->stats.rx_frame_errors =
1728 adapter->soft_stats.rx_frame_errors;
1729 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1730 netdev->stats.rx_missed_errors =
1731 adapter->soft_stats.rx_missed_errors;
1732 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1733 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1734 netdev->stats.tx_aborted_errors =
1735 adapter->soft_stats.tx_aborted_errors;
1736 netdev->stats.tx_window_errors =
1737 adapter->soft_stats.tx_window_errors;
1738 netdev->stats.tx_carrier_errors =
1739 adapter->soft_stats.tx_carrier_errors;
1742 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1744 unsigned long flags;
1745 u32 tpd_next_to_use;
1746 u32 rfd_next_to_use;
1747 u32 rrd_next_to_clean;
1748 u32 value;
1750 spin_lock_irqsave(&adapter->mb_lock, flags);
1752 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1753 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1754 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1756 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1757 MB_RFD_PROD_INDX_SHIFT) |
1758 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1759 MB_RRD_CONS_INDX_SHIFT) |
1760 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1761 MB_TPD_PROD_INDX_SHIFT);
1762 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1764 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1767 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1768 struct rx_return_desc *rrd, u16 offset)
1770 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1772 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1773 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1774 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1775 rfd_ring->next_to_clean = 0;
1780 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1781 struct rx_return_desc *rrd)
1783 u16 num_buf;
1785 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1786 adapter->rx_buffer_len;
1787 if (rrd->num_buf == num_buf)
1788 /* clean alloc flag for bad rrd */
1789 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1792 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1793 struct rx_return_desc *rrd, struct sk_buff *skb)
1795 struct pci_dev *pdev = adapter->pdev;
1798 * The L1 hardware contains a bug that erroneously sets the
1799 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1800 * fragmented IP packet is received, even though the packet
1801 * is perfectly valid and its checksum is correct. There's
1802 * no way to distinguish between one of these good packets
1803 * and a packet that actually contains a TCP/UDP checksum
1804 * error, so all we can do is allow it to be handed up to
1805 * the higher layers and let it be sorted out there.
1808 skb->ip_summed = CHECKSUM_NONE;
1810 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1811 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1812 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1813 adapter->hw_csum_err++;
1814 if (netif_msg_rx_err(adapter))
1815 dev_printk(KERN_DEBUG, &pdev->dev,
1816 "rx checksum error\n");
1817 return;
1821 /* not IPv4 */
1822 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1823 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1824 return;
1826 /* IPv4 packet */
1827 if (likely(!(rrd->err_flg &
1828 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1829 skb->ip_summed = CHECKSUM_UNNECESSARY;
1830 adapter->hw_csum_good++;
1831 return;
1834 return;
1838 * atl1_alloc_rx_buffers - Replace used receive buffers
1839 * @adapter: address of board private structure
1841 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1843 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1844 struct pci_dev *pdev = adapter->pdev;
1845 struct page *page;
1846 unsigned long offset;
1847 struct atl1_buffer *buffer_info, *next_info;
1848 struct sk_buff *skb;
1849 u16 num_alloc = 0;
1850 u16 rfd_next_to_use, next_next;
1851 struct rx_free_desc *rfd_desc;
1853 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1854 if (++next_next == rfd_ring->count)
1855 next_next = 0;
1856 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1857 next_info = &rfd_ring->buffer_info[next_next];
1859 while (!buffer_info->alloced && !next_info->alloced) {
1860 if (buffer_info->skb) {
1861 buffer_info->alloced = 1;
1862 goto next;
1865 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1867 skb = netdev_alloc_skb(adapter->netdev,
1868 adapter->rx_buffer_len + NET_IP_ALIGN);
1869 if (unlikely(!skb)) {
1870 /* Better luck next round */
1871 adapter->netdev->stats.rx_dropped++;
1872 break;
1876 * Make buffer alignment 2 beyond a 16 byte boundary
1877 * this will result in a 16 byte aligned IP header after
1878 * the 14 byte MAC header is removed
1880 skb_reserve(skb, NET_IP_ALIGN);
1882 buffer_info->alloced = 1;
1883 buffer_info->skb = skb;
1884 buffer_info->length = (u16) adapter->rx_buffer_len;
1885 page = virt_to_page(skb->data);
1886 offset = (unsigned long)skb->data & ~PAGE_MASK;
1887 buffer_info->dma = pci_map_page(pdev, page, offset,
1888 adapter->rx_buffer_len,
1889 PCI_DMA_FROMDEVICE);
1890 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1891 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1892 rfd_desc->coalese = 0;
1894 next:
1895 rfd_next_to_use = next_next;
1896 if (unlikely(++next_next == rfd_ring->count))
1897 next_next = 0;
1899 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1900 next_info = &rfd_ring->buffer_info[next_next];
1901 num_alloc++;
1904 if (num_alloc) {
1906 * Force memory writes to complete before letting h/w
1907 * know there are new descriptors to fetch. (Only
1908 * applicable for weak-ordered memory model archs,
1909 * such as IA-64).
1911 wmb();
1912 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1914 return num_alloc;
1917 static void atl1_intr_rx(struct atl1_adapter *adapter)
1919 int i, count;
1920 u16 length;
1921 u16 rrd_next_to_clean;
1922 u32 value;
1923 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1924 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1925 struct atl1_buffer *buffer_info;
1926 struct rx_return_desc *rrd;
1927 struct sk_buff *skb;
1929 count = 0;
1931 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1933 while (1) {
1934 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1935 i = 1;
1936 if (likely(rrd->xsz.valid)) { /* packet valid */
1937 chk_rrd:
1938 /* check rrd status */
1939 if (likely(rrd->num_buf == 1))
1940 goto rrd_ok;
1941 else if (netif_msg_rx_err(adapter)) {
1942 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1943 "unexpected RRD buffer count\n");
1944 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945 "rx_buf_len = %d\n",
1946 adapter->rx_buffer_len);
1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 "RRD num_buf = %d\n",
1949 rrd->num_buf);
1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 "RRD pkt_len = %d\n",
1952 rrd->xsz.xsum_sz.pkt_size);
1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954 "RRD pkt_flg = 0x%08X\n",
1955 rrd->pkt_flg);
1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 "RRD err_flg = 0x%08X\n",
1958 rrd->err_flg);
1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960 "RRD vlan_tag = 0x%08X\n",
1961 rrd->vlan_tag);
1964 /* rrd seems to be bad */
1965 if (unlikely(i-- > 0)) {
1966 /* rrd may not be DMAed completely */
1967 udelay(1);
1968 goto chk_rrd;
1970 /* bad rrd */
1971 if (netif_msg_rx_err(adapter))
1972 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1973 "bad RRD\n");
1974 /* see if update RFD index */
1975 if (rrd->num_buf > 1)
1976 atl1_update_rfd_index(adapter, rrd);
1978 /* update rrd */
1979 rrd->xsz.valid = 0;
1980 if (++rrd_next_to_clean == rrd_ring->count)
1981 rrd_next_to_clean = 0;
1982 count++;
1983 continue;
1984 } else { /* current rrd still not be updated */
1986 break;
1988 rrd_ok:
1989 /* clean alloc flag for bad rrd */
1990 atl1_clean_alloc_flag(adapter, rrd, 0);
1992 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1993 if (++rfd_ring->next_to_clean == rfd_ring->count)
1994 rfd_ring->next_to_clean = 0;
1996 /* update rrd next to clean */
1997 if (++rrd_next_to_clean == rrd_ring->count)
1998 rrd_next_to_clean = 0;
1999 count++;
2001 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2002 if (!(rrd->err_flg &
2003 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2004 | ERR_FLAG_LEN))) {
2005 /* packet error, don't need upstream */
2006 buffer_info->alloced = 0;
2007 rrd->xsz.valid = 0;
2008 continue;
2012 /* Good Receive */
2013 pci_unmap_page(adapter->pdev, buffer_info->dma,
2014 buffer_info->length, PCI_DMA_FROMDEVICE);
2015 buffer_info->dma = 0;
2016 skb = buffer_info->skb;
2017 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2019 skb_put(skb, length - ETH_FCS_LEN);
2021 /* Receive Checksum Offload */
2022 atl1_rx_checksum(adapter, rrd, skb);
2023 skb->protocol = eth_type_trans(skb, adapter->netdev);
2025 if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
2026 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2027 ((rrd->vlan_tag & 7) << 13) |
2028 ((rrd->vlan_tag & 8) << 9);
2029 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
2030 } else
2031 netif_rx(skb);
2033 /* let protocol layer free skb */
2034 buffer_info->skb = NULL;
2035 buffer_info->alloced = 0;
2036 rrd->xsz.valid = 0;
2039 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2041 atl1_alloc_rx_buffers(adapter);
2043 /* update mailbox ? */
2044 if (count) {
2045 u32 tpd_next_to_use;
2046 u32 rfd_next_to_use;
2048 spin_lock(&adapter->mb_lock);
2050 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2051 rfd_next_to_use =
2052 atomic_read(&adapter->rfd_ring.next_to_use);
2053 rrd_next_to_clean =
2054 atomic_read(&adapter->rrd_ring.next_to_clean);
2055 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2056 MB_RFD_PROD_INDX_SHIFT) |
2057 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2058 MB_RRD_CONS_INDX_SHIFT) |
2059 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2060 MB_TPD_PROD_INDX_SHIFT);
2061 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2062 spin_unlock(&adapter->mb_lock);
2066 static void atl1_intr_tx(struct atl1_adapter *adapter)
2068 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2069 struct atl1_buffer *buffer_info;
2070 u16 sw_tpd_next_to_clean;
2071 u16 cmb_tpd_next_to_clean;
2073 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2074 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2076 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2077 struct tx_packet_desc *tpd;
2079 tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
2080 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2081 if (buffer_info->dma) {
2082 pci_unmap_page(adapter->pdev, buffer_info->dma,
2083 buffer_info->length, PCI_DMA_TODEVICE);
2084 buffer_info->dma = 0;
2087 if (buffer_info->skb) {
2088 dev_kfree_skb_irq(buffer_info->skb);
2089 buffer_info->skb = NULL;
2092 if (++sw_tpd_next_to_clean == tpd_ring->count)
2093 sw_tpd_next_to_clean = 0;
2095 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2097 if (netif_queue_stopped(adapter->netdev)
2098 && netif_carrier_ok(adapter->netdev))
2099 netif_wake_queue(adapter->netdev);
2102 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2104 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2105 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2106 return ((next_to_clean > next_to_use) ?
2107 next_to_clean - next_to_use - 1 :
2108 tpd_ring->count + next_to_clean - next_to_use - 1);
2111 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2112 struct tx_packet_desc *ptpd)
2114 u8 hdr_len, ip_off;
2115 u32 real_len;
2116 int err;
2118 if (skb_shinfo(skb)->gso_size) {
2119 if (skb_header_cloned(skb)) {
2120 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2121 if (unlikely(err))
2122 return -1;
2125 if (skb->protocol == htons(ETH_P_IP)) {
2126 struct iphdr *iph = ip_hdr(skb);
2128 real_len = (((unsigned char *)iph - skb->data) +
2129 ntohs(iph->tot_len));
2130 if (real_len < skb->len)
2131 pskb_trim(skb, real_len);
2132 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2133 if (skb->len == hdr_len) {
2134 iph->check = 0;
2135 tcp_hdr(skb)->check =
2136 ~csum_tcpudp_magic(iph->saddr,
2137 iph->daddr, tcp_hdrlen(skb),
2138 IPPROTO_TCP, 0);
2139 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2140 TPD_IPHL_SHIFT;
2141 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2142 TPD_TCPHDRLEN_MASK) <<
2143 TPD_TCPHDRLEN_SHIFT;
2144 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2145 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2146 return 1;
2149 iph->check = 0;
2150 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2151 iph->daddr, 0, IPPROTO_TCP, 0);
2152 ip_off = (unsigned char *)iph -
2153 (unsigned char *) skb_network_header(skb);
2154 if (ip_off == 8) /* 802.3-SNAP frame */
2155 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2156 else if (ip_off != 0)
2157 return -2;
2159 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2160 TPD_IPHL_SHIFT;
2161 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2162 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2163 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2164 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2165 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2166 return 3;
2169 return false;
2172 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2173 struct tx_packet_desc *ptpd)
2175 u8 css, cso;
2177 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2178 css = (u8) (skb->csum_start - skb_headroom(skb));
2179 cso = css + (u8) skb->csum_offset;
2180 if (unlikely(css & 0x1)) {
2181 /* L1 hardware requires an even number here */
2182 if (netif_msg_tx_err(adapter))
2183 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2184 "payload offset not an even number\n");
2185 return -1;
2187 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2188 TPD_PLOADOFFSET_SHIFT;
2189 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2190 TPD_CCSUMOFFSET_SHIFT;
2191 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2192 return true;
2194 return 0;
2197 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2198 struct tx_packet_desc *ptpd)
2200 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2201 struct atl1_buffer *buffer_info;
2202 u16 buf_len = skb->len;
2203 struct page *page;
2204 unsigned long offset;
2205 unsigned int nr_frags;
2206 unsigned int f;
2207 int retval;
2208 u16 next_to_use;
2209 u16 data_len;
2210 u8 hdr_len;
2212 buf_len -= skb->data_len;
2213 nr_frags = skb_shinfo(skb)->nr_frags;
2214 next_to_use = atomic_read(&tpd_ring->next_to_use);
2215 buffer_info = &tpd_ring->buffer_info[next_to_use];
2216 BUG_ON(buffer_info->skb);
2217 /* put skb in last TPD */
2218 buffer_info->skb = NULL;
2220 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2221 if (retval) {
2222 /* TSO */
2223 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2224 buffer_info->length = hdr_len;
2225 page = virt_to_page(skb->data);
2226 offset = (unsigned long)skb->data & ~PAGE_MASK;
2227 buffer_info->dma = pci_map_page(adapter->pdev, page,
2228 offset, hdr_len,
2229 PCI_DMA_TODEVICE);
2231 if (++next_to_use == tpd_ring->count)
2232 next_to_use = 0;
2234 if (buf_len > hdr_len) {
2235 int i, nseg;
2237 data_len = buf_len - hdr_len;
2238 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2239 ATL1_MAX_TX_BUF_LEN;
2240 for (i = 0; i < nseg; i++) {
2241 buffer_info =
2242 &tpd_ring->buffer_info[next_to_use];
2243 buffer_info->skb = NULL;
2244 buffer_info->length =
2245 (ATL1_MAX_TX_BUF_LEN >=
2246 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2247 data_len -= buffer_info->length;
2248 page = virt_to_page(skb->data +
2249 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2250 offset = (unsigned long)(skb->data +
2251 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2252 ~PAGE_MASK;
2253 buffer_info->dma = pci_map_page(adapter->pdev,
2254 page, offset, buffer_info->length,
2255 PCI_DMA_TODEVICE);
2256 if (++next_to_use == tpd_ring->count)
2257 next_to_use = 0;
2260 } else {
2261 /* not TSO */
2262 buffer_info->length = buf_len;
2263 page = virt_to_page(skb->data);
2264 offset = (unsigned long)skb->data & ~PAGE_MASK;
2265 buffer_info->dma = pci_map_page(adapter->pdev, page,
2266 offset, buf_len, PCI_DMA_TODEVICE);
2267 if (++next_to_use == tpd_ring->count)
2268 next_to_use = 0;
2271 for (f = 0; f < nr_frags; f++) {
2272 struct skb_frag_struct *frag;
2273 u16 i, nseg;
2275 frag = &skb_shinfo(skb)->frags[f];
2276 buf_len = frag->size;
2278 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2279 ATL1_MAX_TX_BUF_LEN;
2280 for (i = 0; i < nseg; i++) {
2281 buffer_info = &tpd_ring->buffer_info[next_to_use];
2282 BUG_ON(buffer_info->skb);
2284 buffer_info->skb = NULL;
2285 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2286 ATL1_MAX_TX_BUF_LEN : buf_len;
2287 buf_len -= buffer_info->length;
2288 buffer_info->dma = pci_map_page(adapter->pdev,
2289 frag->page,
2290 frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2291 buffer_info->length, PCI_DMA_TODEVICE);
2293 if (++next_to_use == tpd_ring->count)
2294 next_to_use = 0;
2298 /* last tpd's buffer-info */
2299 buffer_info->skb = skb;
2302 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2303 struct tx_packet_desc *ptpd)
2305 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2306 struct atl1_buffer *buffer_info;
2307 struct tx_packet_desc *tpd;
2308 u16 j;
2309 u32 val;
2310 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2312 for (j = 0; j < count; j++) {
2313 buffer_info = &tpd_ring->buffer_info[next_to_use];
2314 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2315 if (tpd != ptpd)
2316 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2317 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2318 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2319 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2320 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2323 * if this is the first packet in a TSO chain, set
2324 * TPD_HDRFLAG, otherwise, clear it.
2326 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2327 TPD_SEGMENT_EN_MASK;
2328 if (val) {
2329 if (!j)
2330 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2331 else
2332 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2335 if (j == (count - 1))
2336 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2338 if (++next_to_use == tpd_ring->count)
2339 next_to_use = 0;
2342 * Force memory writes to complete before letting h/w
2343 * know there are new descriptors to fetch. (Only
2344 * applicable for weak-ordered memory model archs,
2345 * such as IA-64).
2347 wmb();
2349 atomic_set(&tpd_ring->next_to_use, next_to_use);
2352 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2353 struct net_device *netdev)
2355 struct atl1_adapter *adapter = netdev_priv(netdev);
2356 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2357 int len = skb->len;
2358 int tso;
2359 int count = 1;
2360 int ret_val;
2361 struct tx_packet_desc *ptpd;
2362 u16 frag_size;
2363 u16 vlan_tag;
2364 unsigned int nr_frags = 0;
2365 unsigned int mss = 0;
2366 unsigned int f;
2367 unsigned int proto_hdr_len;
2369 len -= skb->data_len;
2371 if (unlikely(skb->len <= 0)) {
2372 dev_kfree_skb_any(skb);
2373 return NETDEV_TX_OK;
2376 nr_frags = skb_shinfo(skb)->nr_frags;
2377 for (f = 0; f < nr_frags; f++) {
2378 frag_size = skb_shinfo(skb)->frags[f].size;
2379 if (frag_size)
2380 count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2381 ATL1_MAX_TX_BUF_LEN;
2384 mss = skb_shinfo(skb)->gso_size;
2385 if (mss) {
2386 if (skb->protocol == htons(ETH_P_IP)) {
2387 proto_hdr_len = (skb_transport_offset(skb) +
2388 tcp_hdrlen(skb));
2389 if (unlikely(proto_hdr_len > len)) {
2390 dev_kfree_skb_any(skb);
2391 return NETDEV_TX_OK;
2393 /* need additional TPD ? */
2394 if (proto_hdr_len != len)
2395 count += (len - proto_hdr_len +
2396 ATL1_MAX_TX_BUF_LEN - 1) /
2397 ATL1_MAX_TX_BUF_LEN;
2401 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2402 /* not enough descriptors */
2403 netif_stop_queue(netdev);
2404 if (netif_msg_tx_queued(adapter))
2405 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2406 "tx busy\n");
2407 return NETDEV_TX_BUSY;
2410 ptpd = ATL1_TPD_DESC(tpd_ring,
2411 (u16) atomic_read(&tpd_ring->next_to_use));
2412 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2414 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2415 vlan_tag = vlan_tx_tag_get(skb);
2416 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2417 ((vlan_tag >> 9) & 0x8);
2418 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2419 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2420 TPD_VLANTAG_SHIFT;
2423 tso = atl1_tso(adapter, skb, ptpd);
2424 if (tso < 0) {
2425 dev_kfree_skb_any(skb);
2426 return NETDEV_TX_OK;
2429 if (!tso) {
2430 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2431 if (ret_val < 0) {
2432 dev_kfree_skb_any(skb);
2433 return NETDEV_TX_OK;
2437 atl1_tx_map(adapter, skb, ptpd);
2438 atl1_tx_queue(adapter, count, ptpd);
2439 atl1_update_mailbox(adapter);
2440 mmiowb();
2441 return NETDEV_TX_OK;
2445 * atl1_intr - Interrupt Handler
2446 * @irq: interrupt number
2447 * @data: pointer to a network interface device structure
2448 * @pt_regs: CPU registers structure
2450 static irqreturn_t atl1_intr(int irq, void *data)
2452 struct atl1_adapter *adapter = netdev_priv(data);
2453 u32 status;
2454 int max_ints = 10;
2456 status = adapter->cmb.cmb->int_stats;
2457 if (!status)
2458 return IRQ_NONE;
2460 do {
2461 /* clear CMB interrupt status at once */
2462 adapter->cmb.cmb->int_stats = 0;
2464 if (status & ISR_GPHY) /* clear phy status */
2465 atlx_clear_phy_int(adapter);
2467 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2468 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2470 /* check if SMB intr */
2471 if (status & ISR_SMB)
2472 atl1_inc_smb(adapter);
2474 /* check if PCIE PHY Link down */
2475 if (status & ISR_PHY_LINKDOWN) {
2476 if (netif_msg_intr(adapter))
2477 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2478 "pcie phy link down %x\n", status);
2479 if (netif_running(adapter->netdev)) { /* reset MAC */
2480 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2481 schedule_work(&adapter->pcie_dma_to_rst_task);
2482 return IRQ_HANDLED;
2486 /* check if DMA read/write error ? */
2487 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2488 if (netif_msg_intr(adapter))
2489 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2490 "pcie DMA r/w error (status = 0x%x)\n",
2491 status);
2492 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2493 schedule_work(&adapter->pcie_dma_to_rst_task);
2494 return IRQ_HANDLED;
2497 /* link event */
2498 if (status & ISR_GPHY) {
2499 adapter->soft_stats.tx_carrier_errors++;
2500 atl1_check_for_link(adapter);
2503 /* transmit event */
2504 if (status & ISR_CMB_TX)
2505 atl1_intr_tx(adapter);
2507 /* rx exception */
2508 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2509 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2510 ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2511 if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2512 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2513 ISR_HOST_RRD_OV))
2514 if (netif_msg_intr(adapter))
2515 dev_printk(KERN_DEBUG,
2516 &adapter->pdev->dev,
2517 "rx exception, ISR = 0x%x\n",
2518 status);
2519 atl1_intr_rx(adapter);
2522 if (--max_ints < 0)
2523 break;
2525 } while ((status = adapter->cmb.cmb->int_stats));
2527 /* re-enable Interrupt */
2528 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2529 return IRQ_HANDLED;
2534 * atl1_phy_config - Timer Call-back
2535 * @data: pointer to netdev cast into an unsigned long
2537 static void atl1_phy_config(unsigned long data)
2539 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2540 struct atl1_hw *hw = &adapter->hw;
2541 unsigned long flags;
2543 spin_lock_irqsave(&adapter->lock, flags);
2544 adapter->phy_timer_pending = false;
2545 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2546 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2547 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2548 spin_unlock_irqrestore(&adapter->lock, flags);
2552 * Orphaned vendor comment left intact here:
2553 * <vendor comment>
2554 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2555 * will assert. We do soft reset <0x1400=1> according
2556 * with the SPEC. BUT, it seemes that PCIE or DMA
2557 * state-machine will not be reset. DMAR_TO_INT will
2558 * assert again and again.
2559 * </vendor comment>
2562 static int atl1_reset(struct atl1_adapter *adapter)
2564 int ret;
2565 ret = atl1_reset_hw(&adapter->hw);
2566 if (ret)
2567 return ret;
2568 return atl1_init_hw(&adapter->hw);
2571 static s32 atl1_up(struct atl1_adapter *adapter)
2573 struct net_device *netdev = adapter->netdev;
2574 int err;
2575 int irq_flags = IRQF_SAMPLE_RANDOM;
2577 /* hardware has been reset, we need to reload some things */
2578 atlx_set_multi(netdev);
2579 atl1_init_ring_ptrs(adapter);
2580 atlx_restore_vlan(adapter);
2581 err = atl1_alloc_rx_buffers(adapter);
2582 if (unlikely(!err))
2583 /* no RX BUFFER allocated */
2584 return -ENOMEM;
2586 if (unlikely(atl1_configure(adapter))) {
2587 err = -EIO;
2588 goto err_up;
2591 err = pci_enable_msi(adapter->pdev);
2592 if (err) {
2593 if (netif_msg_ifup(adapter))
2594 dev_info(&adapter->pdev->dev,
2595 "Unable to enable MSI: %d\n", err);
2596 irq_flags |= IRQF_SHARED;
2599 err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
2600 netdev->name, netdev);
2601 if (unlikely(err))
2602 goto err_up;
2604 atlx_irq_enable(adapter);
2605 atl1_check_link(adapter);
2606 netif_start_queue(netdev);
2607 return 0;
2609 err_up:
2610 pci_disable_msi(adapter->pdev);
2611 /* free rx_buffers */
2612 atl1_clean_rx_ring(adapter);
2613 return err;
2616 static void atl1_down(struct atl1_adapter *adapter)
2618 struct net_device *netdev = adapter->netdev;
2620 netif_stop_queue(netdev);
2621 del_timer_sync(&adapter->phy_config_timer);
2622 adapter->phy_timer_pending = false;
2624 atlx_irq_disable(adapter);
2625 free_irq(adapter->pdev->irq, netdev);
2626 pci_disable_msi(adapter->pdev);
2627 atl1_reset_hw(&adapter->hw);
2628 adapter->cmb.cmb->int_stats = 0;
2630 adapter->link_speed = SPEED_0;
2631 adapter->link_duplex = -1;
2632 netif_carrier_off(netdev);
2634 atl1_clean_tx_ring(adapter);
2635 atl1_clean_rx_ring(adapter);
2638 static void atl1_tx_timeout_task(struct work_struct *work)
2640 struct atl1_adapter *adapter =
2641 container_of(work, struct atl1_adapter, tx_timeout_task);
2642 struct net_device *netdev = adapter->netdev;
2644 netif_device_detach(netdev);
2645 atl1_down(adapter);
2646 atl1_up(adapter);
2647 netif_device_attach(netdev);
2651 * atl1_change_mtu - Change the Maximum Transfer Unit
2652 * @netdev: network interface device structure
2653 * @new_mtu: new value for maximum frame size
2655 * Returns 0 on success, negative on failure
2657 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2659 struct atl1_adapter *adapter = netdev_priv(netdev);
2660 int old_mtu = netdev->mtu;
2661 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2663 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2664 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2665 if (netif_msg_link(adapter))
2666 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2667 return -EINVAL;
2670 adapter->hw.max_frame_size = max_frame;
2671 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2672 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2673 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2675 netdev->mtu = new_mtu;
2676 if ((old_mtu != new_mtu) && netif_running(netdev)) {
2677 atl1_down(adapter);
2678 atl1_up(adapter);
2681 return 0;
2685 * atl1_open - Called when a network interface is made active
2686 * @netdev: network interface device structure
2688 * Returns 0 on success, negative value on failure
2690 * The open entry point is called when a network interface is made
2691 * active by the system (IFF_UP). At this point all resources needed
2692 * for transmit and receive operations are allocated, the interrupt
2693 * handler is registered with the OS, the watchdog timer is started,
2694 * and the stack is notified that the interface is ready.
2696 static int atl1_open(struct net_device *netdev)
2698 struct atl1_adapter *adapter = netdev_priv(netdev);
2699 int err;
2701 netif_carrier_off(netdev);
2703 /* allocate transmit descriptors */
2704 err = atl1_setup_ring_resources(adapter);
2705 if (err)
2706 return err;
2708 err = atl1_up(adapter);
2709 if (err)
2710 goto err_up;
2712 return 0;
2714 err_up:
2715 atl1_reset(adapter);
2716 return err;
2720 * atl1_close - Disables a network interface
2721 * @netdev: network interface device structure
2723 * Returns 0, this is not allowed to fail
2725 * The close entry point is called when an interface is de-activated
2726 * by the OS. The hardware is still under the drivers control, but
2727 * needs to be disabled. A global MAC reset is issued to stop the
2728 * hardware, and all transmit and receive resources are freed.
2730 static int atl1_close(struct net_device *netdev)
2732 struct atl1_adapter *adapter = netdev_priv(netdev);
2733 atl1_down(adapter);
2734 atl1_free_ring_resources(adapter);
2735 return 0;
2738 #ifdef CONFIG_PM
2739 static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
2741 struct net_device *netdev = pci_get_drvdata(pdev);
2742 struct atl1_adapter *adapter = netdev_priv(netdev);
2743 struct atl1_hw *hw = &adapter->hw;
2744 u32 ctrl = 0;
2745 u32 wufc = adapter->wol;
2746 u32 val;
2747 int retval;
2748 u16 speed;
2749 u16 duplex;
2751 netif_device_detach(netdev);
2752 if (netif_running(netdev))
2753 atl1_down(adapter);
2755 retval = pci_save_state(pdev);
2756 if (retval)
2757 return retval;
2759 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2760 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2761 val = ctrl & BMSR_LSTATUS;
2762 if (val)
2763 wufc &= ~ATLX_WUFC_LNKC;
2765 if (val && wufc) {
2766 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2767 if (val) {
2768 if (netif_msg_ifdown(adapter))
2769 dev_printk(KERN_DEBUG, &pdev->dev,
2770 "error getting speed/duplex\n");
2771 goto disable_wol;
2774 ctrl = 0;
2776 /* enable magic packet WOL */
2777 if (wufc & ATLX_WUFC_MAG)
2778 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2779 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2780 ioread32(hw->hw_addr + REG_WOL_CTRL);
2782 /* configure the mac */
2783 ctrl = MAC_CTRL_RX_EN;
2784 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2785 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2786 if (duplex == FULL_DUPLEX)
2787 ctrl |= MAC_CTRL_DUPLX;
2788 ctrl |= (((u32)adapter->hw.preamble_len &
2789 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2790 if (adapter->vlgrp)
2791 ctrl |= MAC_CTRL_RMV_VLAN;
2792 if (wufc & ATLX_WUFC_MAG)
2793 ctrl |= MAC_CTRL_BC_EN;
2794 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2795 ioread32(hw->hw_addr + REG_MAC_CTRL);
2797 /* poke the PHY */
2798 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2799 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2800 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2801 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2803 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2804 goto exit;
2807 if (!val && wufc) {
2808 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2809 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2810 ioread32(hw->hw_addr + REG_WOL_CTRL);
2811 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2812 ioread32(hw->hw_addr + REG_MAC_CTRL);
2813 hw->phy_configured = false;
2814 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2815 goto exit;
2818 disable_wol:
2819 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2820 ioread32(hw->hw_addr + REG_WOL_CTRL);
2821 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2822 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2823 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2824 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2825 hw->phy_configured = false;
2826 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2827 exit:
2828 if (netif_running(netdev))
2829 pci_disable_msi(adapter->pdev);
2830 pci_disable_device(pdev);
2831 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2833 return 0;
2836 static int atl1_resume(struct pci_dev *pdev)
2838 struct net_device *netdev = pci_get_drvdata(pdev);
2839 struct atl1_adapter *adapter = netdev_priv(netdev);
2840 u32 err;
2842 pci_set_power_state(pdev, PCI_D0);
2843 pci_restore_state(pdev);
2845 err = pci_enable_device(pdev);
2846 if (err) {
2847 if (netif_msg_ifup(adapter))
2848 dev_printk(KERN_DEBUG, &pdev->dev,
2849 "error enabling pci device\n");
2850 return err;
2853 pci_set_master(pdev);
2854 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2855 pci_enable_wake(pdev, PCI_D3hot, 0);
2856 pci_enable_wake(pdev, PCI_D3cold, 0);
2858 atl1_reset_hw(&adapter->hw);
2859 adapter->cmb.cmb->int_stats = 0;
2861 if (netif_running(netdev))
2862 atl1_up(adapter);
2863 netif_device_attach(netdev);
2865 return 0;
2867 #else
2868 #define atl1_suspend NULL
2869 #define atl1_resume NULL
2870 #endif
2872 static void atl1_shutdown(struct pci_dev *pdev)
2874 #ifdef CONFIG_PM
2875 atl1_suspend(pdev, PMSG_SUSPEND);
2876 #endif
2879 #ifdef CONFIG_NET_POLL_CONTROLLER
2880 static void atl1_poll_controller(struct net_device *netdev)
2882 disable_irq(netdev->irq);
2883 atl1_intr(netdev->irq, netdev);
2884 enable_irq(netdev->irq);
2886 #endif
2888 static const struct net_device_ops atl1_netdev_ops = {
2889 .ndo_open = atl1_open,
2890 .ndo_stop = atl1_close,
2891 .ndo_start_xmit = atl1_xmit_frame,
2892 .ndo_set_multicast_list = atlx_set_multi,
2893 .ndo_validate_addr = eth_validate_addr,
2894 .ndo_set_mac_address = atl1_set_mac,
2895 .ndo_change_mtu = atl1_change_mtu,
2896 .ndo_do_ioctl = atlx_ioctl,
2897 .ndo_tx_timeout = atlx_tx_timeout,
2898 .ndo_vlan_rx_register = atlx_vlan_rx_register,
2899 #ifdef CONFIG_NET_POLL_CONTROLLER
2900 .ndo_poll_controller = atl1_poll_controller,
2901 #endif
2905 * atl1_probe - Device Initialization Routine
2906 * @pdev: PCI device information struct
2907 * @ent: entry in atl1_pci_tbl
2909 * Returns 0 on success, negative on failure
2911 * atl1_probe initializes an adapter identified by a pci_dev structure.
2912 * The OS initialization, configuring of the adapter private structure,
2913 * and a hardware reset occur.
2915 static int __devinit atl1_probe(struct pci_dev *pdev,
2916 const struct pci_device_id *ent)
2918 struct net_device *netdev;
2919 struct atl1_adapter *adapter;
2920 static int cards_found = 0;
2921 int err;
2923 err = pci_enable_device(pdev);
2924 if (err)
2925 return err;
2928 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2929 * shared register for the high 32 bits, so only a single, aligned,
2930 * 4 GB physical address range can be used at a time.
2932 * Supporting 64-bit DMA on this hardware is more trouble than it's
2933 * worth. It is far easier to limit to 32-bit DMA than update
2934 * various kernel subsystems to support the mechanics required by a
2935 * fixed-high-32-bit system.
2937 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2938 if (err) {
2939 dev_err(&pdev->dev, "no usable DMA configuration\n");
2940 goto err_dma;
2943 * Mark all PCI regions associated with PCI device
2944 * pdev as being reserved by owner atl1_driver_name
2946 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2947 if (err)
2948 goto err_request_regions;
2951 * Enables bus-mastering on the device and calls
2952 * pcibios_set_master to do the needed arch specific settings
2954 pci_set_master(pdev);
2956 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2957 if (!netdev) {
2958 err = -ENOMEM;
2959 goto err_alloc_etherdev;
2961 SET_NETDEV_DEV(netdev, &pdev->dev);
2963 pci_set_drvdata(pdev, netdev);
2964 adapter = netdev_priv(netdev);
2965 adapter->netdev = netdev;
2966 adapter->pdev = pdev;
2967 adapter->hw.back = adapter;
2968 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2970 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2971 if (!adapter->hw.hw_addr) {
2972 err = -EIO;
2973 goto err_pci_iomap;
2975 /* get device revision number */
2976 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2977 (REG_MASTER_CTRL + 2));
2978 if (netif_msg_probe(adapter))
2979 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2981 /* set default ring resource counts */
2982 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2983 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2985 adapter->mii.dev = netdev;
2986 adapter->mii.mdio_read = mdio_read;
2987 adapter->mii.mdio_write = mdio_write;
2988 adapter->mii.phy_id_mask = 0x1f;
2989 adapter->mii.reg_num_mask = 0x1f;
2991 netdev->netdev_ops = &atl1_netdev_ops;
2992 netdev->watchdog_timeo = 5 * HZ;
2994 netdev->ethtool_ops = &atl1_ethtool_ops;
2995 adapter->bd_number = cards_found;
2997 /* setup the private structure */
2998 err = atl1_sw_init(adapter);
2999 if (err)
3000 goto err_common;
3002 netdev->features = NETIF_F_HW_CSUM;
3003 netdev->features |= NETIF_F_SG;
3004 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
3007 * patch for some L1 of old version,
3008 * the final version of L1 may not need these
3009 * patches
3011 /* atl1_pcie_patch(adapter); */
3013 /* really reset GPHY core */
3014 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3017 * reset the controller to
3018 * put the device in a known good starting state
3020 if (atl1_reset_hw(&adapter->hw)) {
3021 err = -EIO;
3022 goto err_common;
3025 /* copy the MAC address out of the EEPROM */
3026 atl1_read_mac_addr(&adapter->hw);
3027 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3029 if (!is_valid_ether_addr(netdev->dev_addr)) {
3030 err = -EIO;
3031 goto err_common;
3034 atl1_check_options(adapter);
3036 /* pre-init the MAC, and setup link */
3037 err = atl1_init_hw(&adapter->hw);
3038 if (err) {
3039 err = -EIO;
3040 goto err_common;
3043 atl1_pcie_patch(adapter);
3044 /* assume we have no link for now */
3045 netif_carrier_off(netdev);
3046 netif_stop_queue(netdev);
3048 setup_timer(&adapter->phy_config_timer, &atl1_phy_config,
3049 (unsigned long)adapter);
3050 adapter->phy_timer_pending = false;
3052 INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3054 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3056 INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3058 err = register_netdev(netdev);
3059 if (err)
3060 goto err_common;
3062 cards_found++;
3063 atl1_via_workaround(adapter);
3064 return 0;
3066 err_common:
3067 pci_iounmap(pdev, adapter->hw.hw_addr);
3068 err_pci_iomap:
3069 free_netdev(netdev);
3070 err_alloc_etherdev:
3071 pci_release_regions(pdev);
3072 err_dma:
3073 err_request_regions:
3074 pci_disable_device(pdev);
3075 return err;
3079 * atl1_remove - Device Removal Routine
3080 * @pdev: PCI device information struct
3082 * atl1_remove is called by the PCI subsystem to alert the driver
3083 * that it should release a PCI device. The could be caused by a
3084 * Hot-Plug event, or because the driver is going to be removed from
3085 * memory.
3087 static void __devexit atl1_remove(struct pci_dev *pdev)
3089 struct net_device *netdev = pci_get_drvdata(pdev);
3090 struct atl1_adapter *adapter;
3091 /* Device not available. Return. */
3092 if (!netdev)
3093 return;
3095 adapter = netdev_priv(netdev);
3098 * Some atl1 boards lack persistent storage for their MAC, and get it
3099 * from the BIOS during POST. If we've been messing with the MAC
3100 * address, we need to save the permanent one.
3102 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3103 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3104 ETH_ALEN);
3105 atl1_set_mac_addr(&adapter->hw);
3108 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3109 unregister_netdev(netdev);
3110 pci_iounmap(pdev, adapter->hw.hw_addr);
3111 pci_release_regions(pdev);
3112 free_netdev(netdev);
3113 pci_disable_device(pdev);
3116 static struct pci_driver atl1_driver = {
3117 .name = ATLX_DRIVER_NAME,
3118 .id_table = atl1_pci_tbl,
3119 .probe = atl1_probe,
3120 .remove = __devexit_p(atl1_remove),
3121 .suspend = atl1_suspend,
3122 .resume = atl1_resume,
3123 .shutdown = atl1_shutdown
3127 * atl1_exit_module - Driver Exit Cleanup Routine
3129 * atl1_exit_module is called just before the driver is removed
3130 * from memory.
3132 static void __exit atl1_exit_module(void)
3134 pci_unregister_driver(&atl1_driver);
3138 * atl1_init_module - Driver Registration Routine
3140 * atl1_init_module is the first routine called when the driver is
3141 * loaded. All it does is register with the PCI subsystem.
3143 static int __init atl1_init_module(void)
3145 return pci_register_driver(&atl1_driver);
3148 module_init(atl1_init_module);
3149 module_exit(atl1_exit_module);
3151 struct atl1_stats {
3152 char stat_string[ETH_GSTRING_LEN];
3153 int sizeof_stat;
3154 int stat_offset;
3157 #define ATL1_STAT(m) \
3158 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3160 static struct atl1_stats atl1_gstrings_stats[] = {
3161 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3162 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3163 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3164 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3165 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3166 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3167 {"multicast", ATL1_STAT(soft_stats.multicast)},
3168 {"collisions", ATL1_STAT(soft_stats.collisions)},
3169 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3170 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3171 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3172 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3173 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3174 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3175 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3176 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3177 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3178 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3179 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3180 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3181 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3182 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3183 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3184 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3185 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3186 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3187 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3188 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3189 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3192 static void atl1_get_ethtool_stats(struct net_device *netdev,
3193 struct ethtool_stats *stats, u64 *data)
3195 struct atl1_adapter *adapter = netdev_priv(netdev);
3196 int i;
3197 char *p;
3199 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3200 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3201 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3202 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3207 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3209 switch (sset) {
3210 case ETH_SS_STATS:
3211 return ARRAY_SIZE(atl1_gstrings_stats);
3212 default:
3213 return -EOPNOTSUPP;
3217 static int atl1_get_settings(struct net_device *netdev,
3218 struct ethtool_cmd *ecmd)
3220 struct atl1_adapter *adapter = netdev_priv(netdev);
3221 struct atl1_hw *hw = &adapter->hw;
3223 ecmd->supported = (SUPPORTED_10baseT_Half |
3224 SUPPORTED_10baseT_Full |
3225 SUPPORTED_100baseT_Half |
3226 SUPPORTED_100baseT_Full |
3227 SUPPORTED_1000baseT_Full |
3228 SUPPORTED_Autoneg | SUPPORTED_TP);
3229 ecmd->advertising = ADVERTISED_TP;
3230 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3231 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3232 ecmd->advertising |= ADVERTISED_Autoneg;
3233 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3234 ecmd->advertising |= ADVERTISED_Autoneg;
3235 ecmd->advertising |=
3236 (ADVERTISED_10baseT_Half |
3237 ADVERTISED_10baseT_Full |
3238 ADVERTISED_100baseT_Half |
3239 ADVERTISED_100baseT_Full |
3240 ADVERTISED_1000baseT_Full);
3241 } else
3242 ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3244 ecmd->port = PORT_TP;
3245 ecmd->phy_address = 0;
3246 ecmd->transceiver = XCVR_INTERNAL;
3248 if (netif_carrier_ok(adapter->netdev)) {
3249 u16 link_speed, link_duplex;
3250 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3251 ecmd->speed = link_speed;
3252 if (link_duplex == FULL_DUPLEX)
3253 ecmd->duplex = DUPLEX_FULL;
3254 else
3255 ecmd->duplex = DUPLEX_HALF;
3256 } else {
3257 ecmd->speed = -1;
3258 ecmd->duplex = -1;
3260 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3261 hw->media_type == MEDIA_TYPE_1000M_FULL)
3262 ecmd->autoneg = AUTONEG_ENABLE;
3263 else
3264 ecmd->autoneg = AUTONEG_DISABLE;
3266 return 0;
3269 static int atl1_set_settings(struct net_device *netdev,
3270 struct ethtool_cmd *ecmd)
3272 struct atl1_adapter *adapter = netdev_priv(netdev);
3273 struct atl1_hw *hw = &adapter->hw;
3274 u16 phy_data;
3275 int ret_val = 0;
3276 u16 old_media_type = hw->media_type;
3278 if (netif_running(adapter->netdev)) {
3279 if (netif_msg_link(adapter))
3280 dev_dbg(&adapter->pdev->dev,
3281 "ethtool shutting down adapter\n");
3282 atl1_down(adapter);
3285 if (ecmd->autoneg == AUTONEG_ENABLE)
3286 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3287 else {
3288 if (ecmd->speed == SPEED_1000) {
3289 if (ecmd->duplex != DUPLEX_FULL) {
3290 if (netif_msg_link(adapter))
3291 dev_warn(&adapter->pdev->dev,
3292 "1000M half is invalid\n");
3293 ret_val = -EINVAL;
3294 goto exit_sset;
3296 hw->media_type = MEDIA_TYPE_1000M_FULL;
3297 } else if (ecmd->speed == SPEED_100) {
3298 if (ecmd->duplex == DUPLEX_FULL)
3299 hw->media_type = MEDIA_TYPE_100M_FULL;
3300 else
3301 hw->media_type = MEDIA_TYPE_100M_HALF;
3302 } else {
3303 if (ecmd->duplex == DUPLEX_FULL)
3304 hw->media_type = MEDIA_TYPE_10M_FULL;
3305 else
3306 hw->media_type = MEDIA_TYPE_10M_HALF;
3309 switch (hw->media_type) {
3310 case MEDIA_TYPE_AUTO_SENSOR:
3311 ecmd->advertising =
3312 ADVERTISED_10baseT_Half |
3313 ADVERTISED_10baseT_Full |
3314 ADVERTISED_100baseT_Half |
3315 ADVERTISED_100baseT_Full |
3316 ADVERTISED_1000baseT_Full |
3317 ADVERTISED_Autoneg | ADVERTISED_TP;
3318 break;
3319 case MEDIA_TYPE_1000M_FULL:
3320 ecmd->advertising =
3321 ADVERTISED_1000baseT_Full |
3322 ADVERTISED_Autoneg | ADVERTISED_TP;
3323 break;
3324 default:
3325 ecmd->advertising = 0;
3326 break;
3328 if (atl1_phy_setup_autoneg_adv(hw)) {
3329 ret_val = -EINVAL;
3330 if (netif_msg_link(adapter))
3331 dev_warn(&adapter->pdev->dev,
3332 "invalid ethtool speed/duplex setting\n");
3333 goto exit_sset;
3335 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3336 hw->media_type == MEDIA_TYPE_1000M_FULL)
3337 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3338 else {
3339 switch (hw->media_type) {
3340 case MEDIA_TYPE_100M_FULL:
3341 phy_data =
3342 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3343 MII_CR_RESET;
3344 break;
3345 case MEDIA_TYPE_100M_HALF:
3346 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3347 break;
3348 case MEDIA_TYPE_10M_FULL:
3349 phy_data =
3350 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3351 break;
3352 default:
3353 /* MEDIA_TYPE_10M_HALF: */
3354 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3355 break;
3358 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3359 exit_sset:
3360 if (ret_val)
3361 hw->media_type = old_media_type;
3363 if (netif_running(adapter->netdev)) {
3364 if (netif_msg_link(adapter))
3365 dev_dbg(&adapter->pdev->dev,
3366 "ethtool starting adapter\n");
3367 atl1_up(adapter);
3368 } else if (!ret_val) {
3369 if (netif_msg_link(adapter))
3370 dev_dbg(&adapter->pdev->dev,
3371 "ethtool resetting adapter\n");
3372 atl1_reset(adapter);
3374 return ret_val;
3377 static void atl1_get_drvinfo(struct net_device *netdev,
3378 struct ethtool_drvinfo *drvinfo)
3380 struct atl1_adapter *adapter = netdev_priv(netdev);
3382 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3383 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3384 sizeof(drvinfo->version));
3385 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3386 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3387 sizeof(drvinfo->bus_info));
3388 drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3391 static void atl1_get_wol(struct net_device *netdev,
3392 struct ethtool_wolinfo *wol)
3394 struct atl1_adapter *adapter = netdev_priv(netdev);
3396 wol->supported = WAKE_MAGIC;
3397 wol->wolopts = 0;
3398 if (adapter->wol & ATLX_WUFC_MAG)
3399 wol->wolopts |= WAKE_MAGIC;
3400 return;
3403 static int atl1_set_wol(struct net_device *netdev,
3404 struct ethtool_wolinfo *wol)
3406 struct atl1_adapter *adapter = netdev_priv(netdev);
3408 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3409 WAKE_ARP | WAKE_MAGICSECURE))
3410 return -EOPNOTSUPP;
3411 adapter->wol = 0;
3412 if (wol->wolopts & WAKE_MAGIC)
3413 adapter->wol |= ATLX_WUFC_MAG;
3414 return 0;
3417 static u32 atl1_get_msglevel(struct net_device *netdev)
3419 struct atl1_adapter *adapter = netdev_priv(netdev);
3420 return adapter->msg_enable;
3423 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3425 struct atl1_adapter *adapter = netdev_priv(netdev);
3426 adapter->msg_enable = value;
3429 static int atl1_get_regs_len(struct net_device *netdev)
3431 return ATL1_REG_COUNT * sizeof(u32);
3434 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3435 void *p)
3437 struct atl1_adapter *adapter = netdev_priv(netdev);
3438 struct atl1_hw *hw = &adapter->hw;
3439 unsigned int i;
3440 u32 *regbuf = p;
3442 for (i = 0; i < ATL1_REG_COUNT; i++) {
3444 * This switch statement avoids reserved regions
3445 * of register space.
3447 switch (i) {
3448 case 6 ... 9:
3449 case 14:
3450 case 29 ... 31:
3451 case 34 ... 63:
3452 case 75 ... 127:
3453 case 136 ... 1023:
3454 case 1027 ... 1087:
3455 case 1091 ... 1151:
3456 case 1194 ... 1195:
3457 case 1200 ... 1201:
3458 case 1206 ... 1213:
3459 case 1216 ... 1279:
3460 case 1290 ... 1311:
3461 case 1323 ... 1343:
3462 case 1358 ... 1359:
3463 case 1368 ... 1375:
3464 case 1378 ... 1383:
3465 case 1388 ... 1391:
3466 case 1393 ... 1395:
3467 case 1402 ... 1403:
3468 case 1410 ... 1471:
3469 case 1522 ... 1535:
3470 /* reserved region; don't read it */
3471 regbuf[i] = 0;
3472 break;
3473 default:
3474 /* unreserved region */
3475 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3480 static void atl1_get_ringparam(struct net_device *netdev,
3481 struct ethtool_ringparam *ring)
3483 struct atl1_adapter *adapter = netdev_priv(netdev);
3484 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3485 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3487 ring->rx_max_pending = ATL1_MAX_RFD;
3488 ring->tx_max_pending = ATL1_MAX_TPD;
3489 ring->rx_mini_max_pending = 0;
3490 ring->rx_jumbo_max_pending = 0;
3491 ring->rx_pending = rxdr->count;
3492 ring->tx_pending = txdr->count;
3493 ring->rx_mini_pending = 0;
3494 ring->rx_jumbo_pending = 0;
3497 static int atl1_set_ringparam(struct net_device *netdev,
3498 struct ethtool_ringparam *ring)
3500 struct atl1_adapter *adapter = netdev_priv(netdev);
3501 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3502 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3503 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3505 struct atl1_tpd_ring tpd_old, tpd_new;
3506 struct atl1_rfd_ring rfd_old, rfd_new;
3507 struct atl1_rrd_ring rrd_old, rrd_new;
3508 struct atl1_ring_header rhdr_old, rhdr_new;
3509 int err;
3511 tpd_old = adapter->tpd_ring;
3512 rfd_old = adapter->rfd_ring;
3513 rrd_old = adapter->rrd_ring;
3514 rhdr_old = adapter->ring_header;
3516 if (netif_running(adapter->netdev))
3517 atl1_down(adapter);
3519 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3520 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3521 rfdr->count;
3522 rfdr->count = (rfdr->count + 3) & ~3;
3523 rrdr->count = rfdr->count;
3525 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3526 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3527 tpdr->count;
3528 tpdr->count = (tpdr->count + 3) & ~3;
3530 if (netif_running(adapter->netdev)) {
3531 /* try to get new resources before deleting old */
3532 err = atl1_setup_ring_resources(adapter);
3533 if (err)
3534 goto err_setup_ring;
3537 * save the new, restore the old in order to free it,
3538 * then restore the new back again
3541 rfd_new = adapter->rfd_ring;
3542 rrd_new = adapter->rrd_ring;
3543 tpd_new = adapter->tpd_ring;
3544 rhdr_new = adapter->ring_header;
3545 adapter->rfd_ring = rfd_old;
3546 adapter->rrd_ring = rrd_old;
3547 adapter->tpd_ring = tpd_old;
3548 adapter->ring_header = rhdr_old;
3549 atl1_free_ring_resources(adapter);
3550 adapter->rfd_ring = rfd_new;
3551 adapter->rrd_ring = rrd_new;
3552 adapter->tpd_ring = tpd_new;
3553 adapter->ring_header = rhdr_new;
3555 err = atl1_up(adapter);
3556 if (err)
3557 return err;
3559 return 0;
3561 err_setup_ring:
3562 adapter->rfd_ring = rfd_old;
3563 adapter->rrd_ring = rrd_old;
3564 adapter->tpd_ring = tpd_old;
3565 adapter->ring_header = rhdr_old;
3566 atl1_up(adapter);
3567 return err;
3570 static void atl1_get_pauseparam(struct net_device *netdev,
3571 struct ethtool_pauseparam *epause)
3573 struct atl1_adapter *adapter = netdev_priv(netdev);
3574 struct atl1_hw *hw = &adapter->hw;
3576 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3577 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3578 epause->autoneg = AUTONEG_ENABLE;
3579 } else {
3580 epause->autoneg = AUTONEG_DISABLE;
3582 epause->rx_pause = 1;
3583 epause->tx_pause = 1;
3586 static int atl1_set_pauseparam(struct net_device *netdev,
3587 struct ethtool_pauseparam *epause)
3589 struct atl1_adapter *adapter = netdev_priv(netdev);
3590 struct atl1_hw *hw = &adapter->hw;
3592 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3593 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3594 epause->autoneg = AUTONEG_ENABLE;
3595 } else {
3596 epause->autoneg = AUTONEG_DISABLE;
3599 epause->rx_pause = 1;
3600 epause->tx_pause = 1;
3602 return 0;
3605 /* FIXME: is this right? -- CHS */
3606 static u32 atl1_get_rx_csum(struct net_device *netdev)
3608 return 1;
3611 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3612 u8 *data)
3614 u8 *p = data;
3615 int i;
3617 switch (stringset) {
3618 case ETH_SS_STATS:
3619 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3620 memcpy(p, atl1_gstrings_stats[i].stat_string,
3621 ETH_GSTRING_LEN);
3622 p += ETH_GSTRING_LEN;
3624 break;
3628 static int atl1_nway_reset(struct net_device *netdev)
3630 struct atl1_adapter *adapter = netdev_priv(netdev);
3631 struct atl1_hw *hw = &adapter->hw;
3633 if (netif_running(netdev)) {
3634 u16 phy_data;
3635 atl1_down(adapter);
3637 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3638 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3639 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3640 } else {
3641 switch (hw->media_type) {
3642 case MEDIA_TYPE_100M_FULL:
3643 phy_data = MII_CR_FULL_DUPLEX |
3644 MII_CR_SPEED_100 | MII_CR_RESET;
3645 break;
3646 case MEDIA_TYPE_100M_HALF:
3647 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3648 break;
3649 case MEDIA_TYPE_10M_FULL:
3650 phy_data = MII_CR_FULL_DUPLEX |
3651 MII_CR_SPEED_10 | MII_CR_RESET;
3652 break;
3653 default:
3654 /* MEDIA_TYPE_10M_HALF */
3655 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3658 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3659 atl1_up(adapter);
3661 return 0;
3664 const struct ethtool_ops atl1_ethtool_ops = {
3665 .get_settings = atl1_get_settings,
3666 .set_settings = atl1_set_settings,
3667 .get_drvinfo = atl1_get_drvinfo,
3668 .get_wol = atl1_get_wol,
3669 .set_wol = atl1_set_wol,
3670 .get_msglevel = atl1_get_msglevel,
3671 .set_msglevel = atl1_set_msglevel,
3672 .get_regs_len = atl1_get_regs_len,
3673 .get_regs = atl1_get_regs,
3674 .get_ringparam = atl1_get_ringparam,
3675 .set_ringparam = atl1_set_ringparam,
3676 .get_pauseparam = atl1_get_pauseparam,
3677 .set_pauseparam = atl1_set_pauseparam,
3678 .get_rx_csum = atl1_get_rx_csum,
3679 .set_tx_csum = ethtool_op_set_tx_hw_csum,
3680 .get_link = ethtool_op_get_link,
3681 .set_sg = ethtool_op_set_sg,
3682 .get_strings = atl1_get_strings,
3683 .nway_reset = atl1_nway_reset,
3684 .get_ethtool_stats = atl1_get_ethtool_stats,
3685 .get_sset_count = atl1_get_sset_count,
3686 .set_tso = ethtool_op_set_tso,