OMAP3: SR: Replace printk's with pr_* calls
[linux-ginger.git] / drivers / scsi / advansys.c
blobb756041f0b26ed454ad9e85441ec3cfea9456fd1
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
4 /*
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/dma.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_host.h>
53 /* FIXME:
55 * 1. Although all of the necessary command mapping places have the
56 * appropriate dma_map.. APIs, the driver still processes its internal
57 * queue using bus_to_virt() and virt_to_bus() which are illegal under
58 * the API. The entire queue processing structure will need to be
59 * altered to fix this.
60 * 2. Need to add memory mapping workaround. Test the memory mapping.
61 * If it doesn't work revert to I/O port access. Can a test be done
62 * safely?
63 * 3. Handle an interrupt not working. Keep an interrupt counter in
64 * the interrupt handler. In the timeout function if the interrupt
65 * has not occurred then print a message and run in polled mode.
66 * 4. Need to add support for target mode commands, cf. CAM XPT.
67 * 5. check DMA mapping functions for failure
68 * 6. Use scsi_transport_spi
69 * 7. advansys_info is not safe against multiple simultaneous callers
70 * 8. Add module_param to override ISA/VLB ioport array
72 #warning this driver is still not properly converted to the DMA API
74 /* Enable driver /proc statistics. */
75 #define ADVANSYS_STATS
77 /* Enable driver tracing. */
78 #undef ADVANSYS_DEBUG
81 * Portable Data Types
83 * Any instance where a 32-bit long or pointer type is assumed
84 * for precision or HW defined structures, the following define
85 * types must be used. In Linux the char, short, and int types
86 * are all consistent at 8, 16, and 32 bits respectively. Pointers
87 * and long types are 64 bits on Alpha and UltraSPARC.
89 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
90 #define ASC_VADDR __u32 /* Virtual address data type. */
91 #define ASC_DCNT __u32 /* Unsigned Data count type. */
92 #define ASC_SDCNT __s32 /* Signed Data count type. */
94 typedef unsigned char uchar;
96 #ifndef TRUE
97 #define TRUE (1)
98 #endif
99 #ifndef FALSE
100 #define FALSE (0)
101 #endif
103 #define ERR (-1)
104 #define UW_ERR (uint)(0xFFFF)
105 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
107 #define PCI_VENDOR_ID_ASP 0x10cd
108 #define PCI_DEVICE_ID_ASP_1200A 0x1100
109 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
110 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
111 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
112 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
113 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
116 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
117 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
118 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
119 * SRB structure.
121 #define CC_VERY_LONG_SG_LIST 0
122 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
124 #define PortAddr unsigned int /* port address size */
125 #define inp(port) inb(port)
126 #define outp(port, byte) outb((byte), (port))
128 #define inpw(port) inw(port)
129 #define outpw(port, word) outw((word), (port))
131 #define ASC_MAX_SG_QUEUE 7
132 #define ASC_MAX_SG_LIST 255
134 #define ASC_CS_TYPE unsigned short
136 #define ASC_IS_ISA (0x0001)
137 #define ASC_IS_ISAPNP (0x0081)
138 #define ASC_IS_EISA (0x0002)
139 #define ASC_IS_PCI (0x0004)
140 #define ASC_IS_PCI_ULTRA (0x0104)
141 #define ASC_IS_PCMCIA (0x0008)
142 #define ASC_IS_MCA (0x0020)
143 #define ASC_IS_VL (0x0040)
144 #define ASC_IS_WIDESCSI_16 (0x0100)
145 #define ASC_IS_WIDESCSI_32 (0x0200)
146 #define ASC_IS_BIG_ENDIAN (0x8000)
148 #define ASC_CHIP_MIN_VER_VL (0x01)
149 #define ASC_CHIP_MAX_VER_VL (0x07)
150 #define ASC_CHIP_MIN_VER_PCI (0x09)
151 #define ASC_CHIP_MAX_VER_PCI (0x0F)
152 #define ASC_CHIP_VER_PCI_BIT (0x08)
153 #define ASC_CHIP_MIN_VER_ISA (0x11)
154 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
155 #define ASC_CHIP_MAX_VER_ISA (0x27)
156 #define ASC_CHIP_VER_ISA_BIT (0x30)
157 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
158 #define ASC_CHIP_VER_ASYN_BUG (0x21)
159 #define ASC_CHIP_VER_PCI 0x08
160 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
161 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
162 #define ASC_CHIP_MIN_VER_EISA (0x41)
163 #define ASC_CHIP_MAX_VER_EISA (0x47)
164 #define ASC_CHIP_VER_EISA_BIT (0x40)
165 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
166 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
167 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
168 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
170 #define ASC_SCSI_ID_BITS 3
171 #define ASC_SCSI_TIX_TYPE uchar
172 #define ASC_ALL_DEVICE_BIT_SET 0xFF
173 #define ASC_SCSI_BIT_ID_TYPE uchar
174 #define ASC_MAX_TID 7
175 #define ASC_MAX_LUN 7
176 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
177 #define ASC_MAX_SENSE_LEN 32
178 #define ASC_MIN_SENSE_LEN 14
179 #define ASC_SCSI_RESET_HOLD_TIME_US 60
182 * Narrow boards only support 12-byte commands, while wide boards
183 * extend to 16-byte commands.
185 #define ASC_MAX_CDB_LEN 12
186 #define ADV_MAX_CDB_LEN 16
188 #define MS_SDTR_LEN 0x03
189 #define MS_WDTR_LEN 0x02
191 #define ASC_SG_LIST_PER_Q 7
192 #define QS_FREE 0x00
193 #define QS_READY 0x01
194 #define QS_DISC1 0x02
195 #define QS_DISC2 0x04
196 #define QS_BUSY 0x08
197 #define QS_ABORTED 0x40
198 #define QS_DONE 0x80
199 #define QC_NO_CALLBACK 0x01
200 #define QC_SG_SWAP_QUEUE 0x02
201 #define QC_SG_HEAD 0x04
202 #define QC_DATA_IN 0x08
203 #define QC_DATA_OUT 0x10
204 #define QC_URGENT 0x20
205 #define QC_MSG_OUT 0x40
206 #define QC_REQ_SENSE 0x80
207 #define QCSG_SG_XFER_LIST 0x02
208 #define QCSG_SG_XFER_MORE 0x04
209 #define QCSG_SG_XFER_END 0x08
210 #define QD_IN_PROGRESS 0x00
211 #define QD_NO_ERROR 0x01
212 #define QD_ABORTED_BY_HOST 0x02
213 #define QD_WITH_ERROR 0x04
214 #define QD_INVALID_REQUEST 0x80
215 #define QD_INVALID_HOST_NUM 0x81
216 #define QD_INVALID_DEVICE 0x82
217 #define QD_ERR_INTERNAL 0xFF
218 #define QHSTA_NO_ERROR 0x00
219 #define QHSTA_M_SEL_TIMEOUT 0x11
220 #define QHSTA_M_DATA_OVER_RUN 0x12
221 #define QHSTA_M_DATA_UNDER_RUN 0x12
222 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
223 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
224 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
225 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
226 #define QHSTA_D_HOST_ABORT_FAILED 0x23
227 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
228 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
229 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
230 #define QHSTA_M_WTM_TIMEOUT 0x41
231 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
232 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
233 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
234 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
235 #define QHSTA_M_BAD_TAG_CODE 0x46
236 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
237 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
238 #define QHSTA_D_LRAM_CMP_ERROR 0x81
239 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
240 #define ASC_FLAG_SCSIQ_REQ 0x01
241 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
242 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
243 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
244 #define ASC_FLAG_WIN16 0x10
245 #define ASC_FLAG_WIN32 0x20
246 #define ASC_FLAG_ISA_OVER_16MB 0x40
247 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
248 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
249 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
250 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
251 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
252 #define ASC_SCSIQ_CPY_BEG 4
253 #define ASC_SCSIQ_SGHD_CPY_BEG 2
254 #define ASC_SCSIQ_B_FWD 0
255 #define ASC_SCSIQ_B_BWD 1
256 #define ASC_SCSIQ_B_STATUS 2
257 #define ASC_SCSIQ_B_QNO 3
258 #define ASC_SCSIQ_B_CNTL 4
259 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
260 #define ASC_SCSIQ_D_DATA_ADDR 8
261 #define ASC_SCSIQ_D_DATA_CNT 12
262 #define ASC_SCSIQ_B_SENSE_LEN 20
263 #define ASC_SCSIQ_DONE_INFO_BEG 22
264 #define ASC_SCSIQ_D_SRBPTR 22
265 #define ASC_SCSIQ_B_TARGET_IX 26
266 #define ASC_SCSIQ_B_CDB_LEN 28
267 #define ASC_SCSIQ_B_TAG_CODE 29
268 #define ASC_SCSIQ_W_VM_ID 30
269 #define ASC_SCSIQ_DONE_STATUS 32
270 #define ASC_SCSIQ_HOST_STATUS 33
271 #define ASC_SCSIQ_SCSI_STATUS 34
272 #define ASC_SCSIQ_CDB_BEG 36
273 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
274 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
275 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
276 #define ASC_SCSIQ_B_SG_WK_QP 49
277 #define ASC_SCSIQ_B_SG_WK_IX 50
278 #define ASC_SCSIQ_W_ALT_DC1 52
279 #define ASC_SCSIQ_B_LIST_CNT 6
280 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
281 #define ASC_SGQ_B_SG_CNTL 4
282 #define ASC_SGQ_B_SG_HEAD_QP 5
283 #define ASC_SGQ_B_SG_LIST_CNT 6
284 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
285 #define ASC_SGQ_LIST_BEG 8
286 #define ASC_DEF_SCSI1_QNG 4
287 #define ASC_MAX_SCSI1_QNG 4
288 #define ASC_DEF_SCSI2_QNG 16
289 #define ASC_MAX_SCSI2_QNG 32
290 #define ASC_TAG_CODE_MASK 0x23
291 #define ASC_STOP_REQ_RISC_STOP 0x01
292 #define ASC_STOP_ACK_RISC_STOP 0x03
293 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
294 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
295 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
296 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
297 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
298 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
299 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
300 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
301 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
302 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
304 typedef struct asc_scsiq_1 {
305 uchar status;
306 uchar q_no;
307 uchar cntl;
308 uchar sg_queue_cnt;
309 uchar target_id;
310 uchar target_lun;
311 ASC_PADDR data_addr;
312 ASC_DCNT data_cnt;
313 ASC_PADDR sense_addr;
314 uchar sense_len;
315 uchar extra_bytes;
316 } ASC_SCSIQ_1;
318 typedef struct asc_scsiq_2 {
319 ASC_VADDR srb_ptr;
320 uchar target_ix;
321 uchar flag;
322 uchar cdb_len;
323 uchar tag_code;
324 ushort vm_id;
325 } ASC_SCSIQ_2;
327 typedef struct asc_scsiq_3 {
328 uchar done_stat;
329 uchar host_stat;
330 uchar scsi_stat;
331 uchar scsi_msg;
332 } ASC_SCSIQ_3;
334 typedef struct asc_scsiq_4 {
335 uchar cdb[ASC_MAX_CDB_LEN];
336 uchar y_first_sg_list_qp;
337 uchar y_working_sg_qp;
338 uchar y_working_sg_ix;
339 uchar y_res;
340 ushort x_req_count;
341 ushort x_reconnect_rtn;
342 ASC_PADDR x_saved_data_addr;
343 ASC_DCNT x_saved_data_cnt;
344 } ASC_SCSIQ_4;
346 typedef struct asc_q_done_info {
347 ASC_SCSIQ_2 d2;
348 ASC_SCSIQ_3 d3;
349 uchar q_status;
350 uchar q_no;
351 uchar cntl;
352 uchar sense_len;
353 uchar extra_bytes;
354 uchar res;
355 ASC_DCNT remain_bytes;
356 } ASC_QDONE_INFO;
358 typedef struct asc_sg_list {
359 ASC_PADDR addr;
360 ASC_DCNT bytes;
361 } ASC_SG_LIST;
363 typedef struct asc_sg_head {
364 ushort entry_cnt;
365 ushort queue_cnt;
366 ushort entry_to_copy;
367 ushort res;
368 ASC_SG_LIST sg_list[0];
369 } ASC_SG_HEAD;
371 typedef struct asc_scsi_q {
372 ASC_SCSIQ_1 q1;
373 ASC_SCSIQ_2 q2;
374 uchar *cdbptr;
375 ASC_SG_HEAD *sg_head;
376 ushort remain_sg_entry_cnt;
377 ushort next_sg_index;
378 } ASC_SCSI_Q;
380 typedef struct asc_scsi_req_q {
381 ASC_SCSIQ_1 r1;
382 ASC_SCSIQ_2 r2;
383 uchar *cdbptr;
384 ASC_SG_HEAD *sg_head;
385 uchar *sense_ptr;
386 ASC_SCSIQ_3 r3;
387 uchar cdb[ASC_MAX_CDB_LEN];
388 uchar sense[ASC_MIN_SENSE_LEN];
389 } ASC_SCSI_REQ_Q;
391 typedef struct asc_scsi_bios_req_q {
392 ASC_SCSIQ_1 r1;
393 ASC_SCSIQ_2 r2;
394 uchar *cdbptr;
395 ASC_SG_HEAD *sg_head;
396 uchar *sense_ptr;
397 ASC_SCSIQ_3 r3;
398 uchar cdb[ASC_MAX_CDB_LEN];
399 uchar sense[ASC_MIN_SENSE_LEN];
400 } ASC_SCSI_BIOS_REQ_Q;
402 typedef struct asc_risc_q {
403 uchar fwd;
404 uchar bwd;
405 ASC_SCSIQ_1 i1;
406 ASC_SCSIQ_2 i2;
407 ASC_SCSIQ_3 i3;
408 ASC_SCSIQ_4 i4;
409 } ASC_RISC_Q;
411 typedef struct asc_sg_list_q {
412 uchar seq_no;
413 uchar q_no;
414 uchar cntl;
415 uchar sg_head_qp;
416 uchar sg_list_cnt;
417 uchar sg_cur_list_cnt;
418 } ASC_SG_LIST_Q;
420 typedef struct asc_risc_sg_list_q {
421 uchar fwd;
422 uchar bwd;
423 ASC_SG_LIST_Q sg;
424 ASC_SG_LIST sg_list[7];
425 } ASC_RISC_SG_LIST_Q;
427 #define ASCQ_ERR_Q_STATUS 0x0D
428 #define ASCQ_ERR_CUR_QNG 0x17
429 #define ASCQ_ERR_SG_Q_LINKS 0x18
430 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
431 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
432 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
435 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
437 #define ASC_WARN_NO_ERROR 0x0000
438 #define ASC_WARN_IO_PORT_ROTATE 0x0001
439 #define ASC_WARN_EEPROM_CHKSUM 0x0002
440 #define ASC_WARN_IRQ_MODIFIED 0x0004
441 #define ASC_WARN_AUTO_CONFIG 0x0008
442 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
443 #define ASC_WARN_EEPROM_RECOVER 0x0020
444 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
447 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
449 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
450 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
451 #define ASC_IERR_SET_PC_ADDR 0x0004
452 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
453 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
454 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
455 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
456 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
457 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
458 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
459 #define ASC_IERR_NO_BUS_TYPE 0x0400
460 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
461 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
462 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
464 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
465 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
466 #define ASC_MIN_FREE_Q (0x02)
467 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
468 #define ASC_MAX_TOTAL_QNG 240
469 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
470 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
471 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
472 #define ASC_MAX_INRAM_TAG_QNG 16
473 #define ASC_IOADR_GAP 0x10
474 #define ASC_SYN_MAX_OFFSET 0x0F
475 #define ASC_DEF_SDTR_OFFSET 0x0F
476 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
477 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
479 /* The narrow chip only supports a limited selection of transfer rates.
480 * These are encoded in the range 0..7 or 0..15 depending whether the chip
481 * is Ultra-capable or not. These tables let us convert from one to the other.
483 static const unsigned char asc_syn_xfer_period[8] = {
484 25, 30, 35, 40, 50, 60, 70, 85
487 static const unsigned char asc_syn_ultra_xfer_period[16] = {
488 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
491 typedef struct ext_msg {
492 uchar msg_type;
493 uchar msg_len;
494 uchar msg_req;
495 union {
496 struct {
497 uchar sdtr_xfer_period;
498 uchar sdtr_req_ack_offset;
499 } sdtr;
500 struct {
501 uchar wdtr_width;
502 } wdtr;
503 struct {
504 uchar mdp_b3;
505 uchar mdp_b2;
506 uchar mdp_b1;
507 uchar mdp_b0;
508 } mdp;
509 } u_ext_msg;
510 uchar res;
511 } EXT_MSG;
513 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
514 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
515 #define wdtr_width u_ext_msg.wdtr.wdtr_width
516 #define mdp_b3 u_ext_msg.mdp_b3
517 #define mdp_b2 u_ext_msg.mdp_b2
518 #define mdp_b1 u_ext_msg.mdp_b1
519 #define mdp_b0 u_ext_msg.mdp_b0
521 typedef struct asc_dvc_cfg {
522 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
523 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
524 ASC_SCSI_BIT_ID_TYPE disc_enable;
525 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
526 uchar chip_scsi_id;
527 uchar isa_dma_speed;
528 uchar isa_dma_channel;
529 uchar chip_version;
530 ushort mcode_date;
531 ushort mcode_version;
532 uchar max_tag_qng[ASC_MAX_TID + 1];
533 uchar sdtr_period_offset[ASC_MAX_TID + 1];
534 uchar adapter_info[6];
535 } ASC_DVC_CFG;
537 #define ASC_DEF_DVC_CNTL 0xFFFF
538 #define ASC_DEF_CHIP_SCSI_ID 7
539 #define ASC_DEF_ISA_DMA_SPEED 4
540 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
541 #define ASC_INIT_STATE_END_GET_CFG 0x0002
542 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
543 #define ASC_INIT_STATE_END_SET_CFG 0x0008
544 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
545 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
546 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
547 #define ASC_INIT_STATE_END_INQUIRY 0x0080
548 #define ASC_INIT_RESET_SCSI_DONE 0x0100
549 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
550 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
551 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
552 #define ASC_MIN_TAGGED_CMD 7
553 #define ASC_MAX_SCSI_RESET_WAIT 30
554 #define ASC_OVERRUN_BSIZE 64
556 struct asc_dvc_var; /* Forward Declaration. */
558 typedef struct asc_dvc_var {
559 PortAddr iop_base;
560 ushort err_code;
561 ushort dvc_cntl;
562 ushort bug_fix_cntl;
563 ushort bus_type;
564 ASC_SCSI_BIT_ID_TYPE init_sdtr;
565 ASC_SCSI_BIT_ID_TYPE sdtr_done;
566 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
567 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
568 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
569 ASC_SCSI_BIT_ID_TYPE start_motor;
570 uchar *overrun_buf;
571 dma_addr_t overrun_dma;
572 uchar scsi_reset_wait;
573 uchar chip_no;
574 char is_in_int;
575 uchar max_total_qng;
576 uchar cur_total_qng;
577 uchar in_critical_cnt;
578 uchar last_q_shortage;
579 ushort init_state;
580 uchar cur_dvc_qng[ASC_MAX_TID + 1];
581 uchar max_dvc_qng[ASC_MAX_TID + 1];
582 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
583 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
584 const uchar *sdtr_period_tbl;
585 ASC_DVC_CFG *cfg;
586 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
587 char redo_scam;
588 ushort res2;
589 uchar dos_int13_table[ASC_MAX_TID + 1];
590 ASC_DCNT max_dma_count;
591 ASC_SCSI_BIT_ID_TYPE no_scam;
592 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
593 uchar min_sdtr_index;
594 uchar max_sdtr_index;
595 struct asc_board *drv_ptr;
596 int ptr_map_count;
597 void **ptr_map;
598 ASC_DCNT uc_break;
599 } ASC_DVC_VAR;
601 typedef struct asc_dvc_inq_info {
602 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
603 } ASC_DVC_INQ_INFO;
605 typedef struct asc_cap_info {
606 ASC_DCNT lba;
607 ASC_DCNT blk_size;
608 } ASC_CAP_INFO;
610 typedef struct asc_cap_info_array {
611 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
612 } ASC_CAP_INFO_ARRAY;
614 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
615 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
616 #define ASC_CNTL_INITIATOR (ushort)0x0001
617 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
618 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
619 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
620 #define ASC_CNTL_NO_SCAM (ushort)0x0010
621 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
622 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
623 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
624 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
625 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
626 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
627 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
628 #define ASC_CNTL_BURST_MODE (ushort)0x2000
629 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
630 #define ASC_EEP_DVC_CFG_BEG_VL 2
631 #define ASC_EEP_MAX_DVC_ADDR_VL 15
632 #define ASC_EEP_DVC_CFG_BEG 32
633 #define ASC_EEP_MAX_DVC_ADDR 45
634 #define ASC_EEP_MAX_RETRY 20
637 * These macros keep the chip SCSI id and ISA DMA speed
638 * bitfields in board order. C bitfields aren't portable
639 * between big and little-endian platforms so they are
640 * not used.
643 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
644 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
645 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
646 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
647 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
648 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
650 typedef struct asceep_config {
651 ushort cfg_lsw;
652 ushort cfg_msw;
653 uchar init_sdtr;
654 uchar disc_enable;
655 uchar use_cmd_qng;
656 uchar start_motor;
657 uchar max_total_qng;
658 uchar max_tag_qng;
659 uchar bios_scan;
660 uchar power_up_wait;
661 uchar no_scam;
662 uchar id_speed; /* low order 4 bits is chip scsi id */
663 /* high order 4 bits is isa dma speed */
664 uchar dos_int13_table[ASC_MAX_TID + 1];
665 uchar adapter_info[6];
666 ushort cntl;
667 ushort chksum;
668 } ASCEEP_CONFIG;
670 #define ASC_EEP_CMD_READ 0x80
671 #define ASC_EEP_CMD_WRITE 0x40
672 #define ASC_EEP_CMD_WRITE_ABLE 0x30
673 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
674 #define ASCV_MSGOUT_BEG 0x0000
675 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
676 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
677 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
678 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
679 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
680 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
681 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
682 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
683 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
684 #define ASCV_BREAK_ADDR (ushort)0x0028
685 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
686 #define ASCV_BREAK_CONTROL (ushort)0x002C
687 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
689 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
690 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
691 #define ASCV_MCODE_SIZE_W (ushort)0x0034
692 #define ASCV_STOP_CODE_B (ushort)0x0036
693 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
694 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
695 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
696 #define ASCV_HALTCODE_W (ushort)0x0040
697 #define ASCV_CHKSUM_W (ushort)0x0042
698 #define ASCV_MC_DATE_W (ushort)0x0044
699 #define ASCV_MC_VER_W (ushort)0x0046
700 #define ASCV_NEXTRDY_B (ushort)0x0048
701 #define ASCV_DONENEXT_B (ushort)0x0049
702 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
703 #define ASCV_SCSIBUSY_B (ushort)0x004B
704 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
705 #define ASCV_CURCDB_B (ushort)0x004D
706 #define ASCV_RCLUN_B (ushort)0x004E
707 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
708 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
709 #define ASCV_DISC_ENABLE_B (ushort)0x0052
710 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
711 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
712 #define ASCV_MCODE_CNTL_B (ushort)0x0056
713 #define ASCV_NULL_TARGET_B (ushort)0x0057
714 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
715 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
716 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
717 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
718 #define ASCV_HOST_FLAG_B (ushort)0x005D
719 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
720 #define ASCV_VER_SERIAL_B (ushort)0x0065
721 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
722 #define ASCV_WTM_FLAG_B (ushort)0x0068
723 #define ASCV_RISC_FLAG_B (ushort)0x006A
724 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
725 #define ASC_HOST_FLAG_IN_ISR 0x01
726 #define ASC_HOST_FLAG_ACK_INT 0x02
727 #define ASC_RISC_FLAG_GEN_INT 0x01
728 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
729 #define IOP_CTRL (0x0F)
730 #define IOP_STATUS (0x0E)
731 #define IOP_INT_ACK IOP_STATUS
732 #define IOP_REG_IFC (0x0D)
733 #define IOP_SYN_OFFSET (0x0B)
734 #define IOP_EXTRA_CONTROL (0x0D)
735 #define IOP_REG_PC (0x0C)
736 #define IOP_RAM_ADDR (0x0A)
737 #define IOP_RAM_DATA (0x08)
738 #define IOP_EEP_DATA (0x06)
739 #define IOP_EEP_CMD (0x07)
740 #define IOP_VERSION (0x03)
741 #define IOP_CONFIG_HIGH (0x04)
742 #define IOP_CONFIG_LOW (0x02)
743 #define IOP_SIG_BYTE (0x01)
744 #define IOP_SIG_WORD (0x00)
745 #define IOP_REG_DC1 (0x0E)
746 #define IOP_REG_DC0 (0x0C)
747 #define IOP_REG_SB (0x0B)
748 #define IOP_REG_DA1 (0x0A)
749 #define IOP_REG_DA0 (0x08)
750 #define IOP_REG_SC (0x09)
751 #define IOP_DMA_SPEED (0x07)
752 #define IOP_REG_FLAG (0x07)
753 #define IOP_FIFO_H (0x06)
754 #define IOP_FIFO_L (0x04)
755 #define IOP_REG_ID (0x05)
756 #define IOP_REG_QP (0x03)
757 #define IOP_REG_IH (0x02)
758 #define IOP_REG_IX (0x01)
759 #define IOP_REG_AX (0x00)
760 #define IFC_REG_LOCK (0x00)
761 #define IFC_REG_UNLOCK (0x09)
762 #define IFC_WR_EN_FILTER (0x10)
763 #define IFC_RD_NO_EEPROM (0x10)
764 #define IFC_SLEW_RATE (0x20)
765 #define IFC_ACT_NEG (0x40)
766 #define IFC_INP_FILTER (0x80)
767 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
768 #define SC_SEL (uchar)(0x80)
769 #define SC_BSY (uchar)(0x40)
770 #define SC_ACK (uchar)(0x20)
771 #define SC_REQ (uchar)(0x10)
772 #define SC_ATN (uchar)(0x08)
773 #define SC_IO (uchar)(0x04)
774 #define SC_CD (uchar)(0x02)
775 #define SC_MSG (uchar)(0x01)
776 #define SEC_SCSI_CTL (uchar)(0x80)
777 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
778 #define SEC_SLEW_RATE (uchar)(0x20)
779 #define SEC_ENABLE_FILTER (uchar)(0x10)
780 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
781 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
782 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
783 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
784 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
785 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
786 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
787 #define ASC_MAX_QNO 0xF8
788 #define ASC_DATA_SEC_BEG (ushort)0x0080
789 #define ASC_DATA_SEC_END (ushort)0x0080
790 #define ASC_CODE_SEC_BEG (ushort)0x0080
791 #define ASC_CODE_SEC_END (ushort)0x0080
792 #define ASC_QADR_BEG (0x4000)
793 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
794 #define ASC_QADR_END (ushort)0x7FFF
795 #define ASC_QLAST_ADR (ushort)0x7FC0
796 #define ASC_QBLK_SIZE 0x40
797 #define ASC_BIOS_DATA_QBEG 0xF8
798 #define ASC_MIN_ACTIVE_QNO 0x01
799 #define ASC_QLINK_END 0xFF
800 #define ASC_EEPROM_WORDS 0x10
801 #define ASC_MAX_MGS_LEN 0x10
802 #define ASC_BIOS_ADDR_DEF 0xDC00
803 #define ASC_BIOS_SIZE 0x3800
804 #define ASC_BIOS_RAM_OFF 0x3800
805 #define ASC_BIOS_RAM_SIZE 0x800
806 #define ASC_BIOS_MIN_ADDR 0xC000
807 #define ASC_BIOS_MAX_ADDR 0xEC00
808 #define ASC_BIOS_BANK_SIZE 0x0400
809 #define ASC_MCODE_START_ADDR 0x0080
810 #define ASC_CFG0_HOST_INT_ON 0x0020
811 #define ASC_CFG0_BIOS_ON 0x0040
812 #define ASC_CFG0_VERA_BURST_ON 0x0080
813 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
814 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
815 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
816 #define ASC_CFG_MSW_CLR_MASK 0x3080
817 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
818 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
819 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
820 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
821 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
822 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
823 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
824 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
825 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
826 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
827 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
828 #define CSW_HALTED (ASC_CS_TYPE)0x0010
829 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
830 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
831 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
832 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
833 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
834 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
835 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
836 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
837 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
838 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
839 #define CC_CHIP_RESET (uchar)0x80
840 #define CC_SCSI_RESET (uchar)0x40
841 #define CC_HALT (uchar)0x20
842 #define CC_SINGLE_STEP (uchar)0x10
843 #define CC_DMA_ABLE (uchar)0x08
844 #define CC_TEST (uchar)0x04
845 #define CC_BANK_ONE (uchar)0x02
846 #define CC_DIAG (uchar)0x01
847 #define ASC_1000_ID0W 0x04C1
848 #define ASC_1000_ID0W_FIX 0x00C1
849 #define ASC_1000_ID1B 0x25
850 #define ASC_EISA_REV_IOP_MASK (0x0C83)
851 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
852 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
853 #define INS_HALTINT (ushort)0x6281
854 #define INS_HALT (ushort)0x6280
855 #define INS_SINT (ushort)0x6200
856 #define INS_RFLAG_WTM (ushort)0x7380
857 #define ASC_MC_SAVE_CODE_WSIZE 0x500
858 #define ASC_MC_SAVE_DATA_WSIZE 0x40
860 typedef struct asc_mc_saved {
861 ushort data[ASC_MC_SAVE_DATA_WSIZE];
862 ushort code[ASC_MC_SAVE_CODE_WSIZE];
863 } ASC_MC_SAVED;
865 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
866 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
867 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
868 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
869 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
870 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
871 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
872 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
873 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
874 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
875 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
876 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
877 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
878 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
879 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
880 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
881 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
882 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
883 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
884 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
885 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
886 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
887 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
888 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
889 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
890 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
891 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
892 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
893 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
894 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
895 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
896 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
897 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
898 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
899 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
900 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
901 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
902 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
903 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
904 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
905 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
906 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
907 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
908 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
909 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
910 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
911 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
912 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
913 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
914 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
915 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
916 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
917 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
918 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
919 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
920 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
921 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
922 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
923 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
924 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
925 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
926 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
927 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
928 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
929 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
930 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
931 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
934 * Portable Data Types
936 * Any instance where a 32-bit long or pointer type is assumed
937 * for precision or HW defined structures, the following define
938 * types must be used. In Linux the char, short, and int types
939 * are all consistent at 8, 16, and 32 bits respectively. Pointers
940 * and long types are 64 bits on Alpha and UltraSPARC.
942 #define ADV_PADDR __u32 /* Physical address data type. */
943 #define ADV_VADDR __u32 /* Virtual address data type. */
944 #define ADV_DCNT __u32 /* Unsigned Data count type. */
945 #define ADV_SDCNT __s32 /* Signed Data count type. */
948 * These macros are used to convert a virtual address to a
949 * 32-bit value. This currently can be used on Linux Alpha
950 * which uses 64-bit virtual address but a 32-bit bus address.
951 * This is likely to break in the future, but doing this now
952 * will give us time to change the HW and FW to handle 64-bit
953 * addresses.
955 #define ADV_VADDR_TO_U32 virt_to_bus
956 #define ADV_U32_TO_VADDR bus_to_virt
958 #define AdvPortAddr void __iomem * /* Virtual memory address size */
961 * Define Adv Library required memory access macros.
963 #define ADV_MEM_READB(addr) readb(addr)
964 #define ADV_MEM_READW(addr) readw(addr)
965 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
966 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
967 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
969 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
972 * Define total number of simultaneous maximum element scatter-gather
973 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
974 * maximum number of outstanding commands per wide host adapter. Each
975 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
976 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
977 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
978 * structures or 255 scatter-gather elements.
980 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
983 * Define maximum number of scatter-gather elements per request.
985 #define ADV_MAX_SG_LIST 255
986 #define NO_OF_SG_PER_BLOCK 15
988 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
989 #define ADV_EEP_DVC_CFG_END (0x15)
990 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
991 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
993 #define ADV_EEP_DELAY_MS 100
995 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
996 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
998 * For the ASC3550 Bit 13 is Termination Polarity control bit.
999 * For later ICs Bit 13 controls whether the CIS (Card Information
1000 * Service Section) is loaded from EEPROM.
1002 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1003 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1005 * ASC38C1600 Bit 11
1007 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009 * Function 0 will specify INT B.
1011 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013 * Function 1 will specify INT A.
1015 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1017 typedef struct adveep_3550_config {
1018 /* Word Offset, Description */
1020 ushort cfg_lsw; /* 00 power up initialization */
1021 /* bit 13 set - Term Polarity Control */
1022 /* bit 14 set - BIOS Enable */
1023 /* bit 15 set - Big Endian Mode */
1024 ushort cfg_msw; /* 01 unused */
1025 ushort disc_enable; /* 02 disconnect enable */
1026 ushort wdtr_able; /* 03 Wide DTR able */
1027 ushort sdtr_able; /* 04 Synchronous DTR able */
1028 ushort start_motor; /* 05 send start up motor */
1029 ushort tagqng_able; /* 06 tag queuing able */
1030 ushort bios_scan; /* 07 BIOS device control */
1031 ushort scam_tolerant; /* 08 no scam */
1033 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1034 uchar bios_boot_delay; /* power up wait */
1036 uchar scsi_reset_delay; /* 10 reset delay */
1037 uchar bios_id_lun; /* first boot device scsi id & lun */
1038 /* high nibble is lun */
1039 /* low nibble is scsi id */
1041 uchar termination; /* 11 0 - automatic */
1042 /* 1 - low off / high off */
1043 /* 2 - low off / high on */
1044 /* 3 - low on / high on */
1045 /* There is no low on / high off */
1047 uchar reserved1; /* reserved byte (not used) */
1049 ushort bios_ctrl; /* 12 BIOS control bits */
1050 /* bit 0 BIOS don't act as initiator. */
1051 /* bit 1 BIOS > 1 GB support */
1052 /* bit 2 BIOS > 2 Disk Support */
1053 /* bit 3 BIOS don't support removables */
1054 /* bit 4 BIOS support bootable CD */
1055 /* bit 5 BIOS scan enabled */
1056 /* bit 6 BIOS support multiple LUNs */
1057 /* bit 7 BIOS display of message */
1058 /* bit 8 SCAM disabled */
1059 /* bit 9 Reset SCSI bus during init. */
1060 /* bit 10 */
1061 /* bit 11 No verbose initialization. */
1062 /* bit 12 SCSI parity enabled */
1063 /* bit 13 */
1064 /* bit 14 */
1065 /* bit 15 */
1066 ushort ultra_able; /* 13 ULTRA speed able */
1067 ushort reserved2; /* 14 reserved */
1068 uchar max_host_qng; /* 15 maximum host queuing */
1069 uchar max_dvc_qng; /* maximum per device queuing */
1070 ushort dvc_cntl; /* 16 control bit for driver */
1071 ushort bug_fix; /* 17 control bit for bug fix */
1072 ushort serial_number_word1; /* 18 Board serial number word 1 */
1073 ushort serial_number_word2; /* 19 Board serial number word 2 */
1074 ushort serial_number_word3; /* 20 Board serial number word 3 */
1075 ushort check_sum; /* 21 EEP check sum */
1076 uchar oem_name[16]; /* 22 OEM name */
1077 ushort dvc_err_code; /* 30 last device driver error code */
1078 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1079 ushort adv_err_addr; /* 32 last uc error address */
1080 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1081 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1082 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1083 ushort num_of_err; /* 36 number of error */
1084 } ADVEEP_3550_CONFIG;
1086 typedef struct adveep_38C0800_config {
1087 /* Word Offset, Description */
1089 ushort cfg_lsw; /* 00 power up initialization */
1090 /* bit 13 set - Load CIS */
1091 /* bit 14 set - BIOS Enable */
1092 /* bit 15 set - Big Endian Mode */
1093 ushort cfg_msw; /* 01 unused */
1094 ushort disc_enable; /* 02 disconnect enable */
1095 ushort wdtr_able; /* 03 Wide DTR able */
1096 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1097 ushort start_motor; /* 05 send start up motor */
1098 ushort tagqng_able; /* 06 tag queuing able */
1099 ushort bios_scan; /* 07 BIOS device control */
1100 ushort scam_tolerant; /* 08 no scam */
1102 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1103 uchar bios_boot_delay; /* power up wait */
1105 uchar scsi_reset_delay; /* 10 reset delay */
1106 uchar bios_id_lun; /* first boot device scsi id & lun */
1107 /* high nibble is lun */
1108 /* low nibble is scsi id */
1110 uchar termination_se; /* 11 0 - automatic */
1111 /* 1 - low off / high off */
1112 /* 2 - low off / high on */
1113 /* 3 - low on / high on */
1114 /* There is no low on / high off */
1116 uchar termination_lvd; /* 11 0 - automatic */
1117 /* 1 - low off / high off */
1118 /* 2 - low off / high on */
1119 /* 3 - low on / high on */
1120 /* There is no low on / high off */
1122 ushort bios_ctrl; /* 12 BIOS control bits */
1123 /* bit 0 BIOS don't act as initiator. */
1124 /* bit 1 BIOS > 1 GB support */
1125 /* bit 2 BIOS > 2 Disk Support */
1126 /* bit 3 BIOS don't support removables */
1127 /* bit 4 BIOS support bootable CD */
1128 /* bit 5 BIOS scan enabled */
1129 /* bit 6 BIOS support multiple LUNs */
1130 /* bit 7 BIOS display of message */
1131 /* bit 8 SCAM disabled */
1132 /* bit 9 Reset SCSI bus during init. */
1133 /* bit 10 */
1134 /* bit 11 No verbose initialization. */
1135 /* bit 12 SCSI parity enabled */
1136 /* bit 13 */
1137 /* bit 14 */
1138 /* bit 15 */
1139 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1140 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1141 uchar max_host_qng; /* 15 maximum host queueing */
1142 uchar max_dvc_qng; /* maximum per device queuing */
1143 ushort dvc_cntl; /* 16 control bit for driver */
1144 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1145 ushort serial_number_word1; /* 18 Board serial number word 1 */
1146 ushort serial_number_word2; /* 19 Board serial number word 2 */
1147 ushort serial_number_word3; /* 20 Board serial number word 3 */
1148 ushort check_sum; /* 21 EEP check sum */
1149 uchar oem_name[16]; /* 22 OEM name */
1150 ushort dvc_err_code; /* 30 last device driver error code */
1151 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1152 ushort adv_err_addr; /* 32 last uc error address */
1153 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1154 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1155 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1156 ushort reserved36; /* 36 reserved */
1157 ushort reserved37; /* 37 reserved */
1158 ushort reserved38; /* 38 reserved */
1159 ushort reserved39; /* 39 reserved */
1160 ushort reserved40; /* 40 reserved */
1161 ushort reserved41; /* 41 reserved */
1162 ushort reserved42; /* 42 reserved */
1163 ushort reserved43; /* 43 reserved */
1164 ushort reserved44; /* 44 reserved */
1165 ushort reserved45; /* 45 reserved */
1166 ushort reserved46; /* 46 reserved */
1167 ushort reserved47; /* 47 reserved */
1168 ushort reserved48; /* 48 reserved */
1169 ushort reserved49; /* 49 reserved */
1170 ushort reserved50; /* 50 reserved */
1171 ushort reserved51; /* 51 reserved */
1172 ushort reserved52; /* 52 reserved */
1173 ushort reserved53; /* 53 reserved */
1174 ushort reserved54; /* 54 reserved */
1175 ushort reserved55; /* 55 reserved */
1176 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1177 ushort cisprt_msw; /* 57 CIS PTR MSW */
1178 ushort subsysvid; /* 58 SubSystem Vendor ID */
1179 ushort subsysid; /* 59 SubSystem ID */
1180 ushort reserved60; /* 60 reserved */
1181 ushort reserved61; /* 61 reserved */
1182 ushort reserved62; /* 62 reserved */
1183 ushort reserved63; /* 63 reserved */
1184 } ADVEEP_38C0800_CONFIG;
1186 typedef struct adveep_38C1600_config {
1187 /* Word Offset, Description */
1189 ushort cfg_lsw; /* 00 power up initialization */
1190 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191 /* clear - Func. 0 INTA, Func. 1 INTB */
1192 /* bit 13 set - Load CIS */
1193 /* bit 14 set - BIOS Enable */
1194 /* bit 15 set - Big Endian Mode */
1195 ushort cfg_msw; /* 01 unused */
1196 ushort disc_enable; /* 02 disconnect enable */
1197 ushort wdtr_able; /* 03 Wide DTR able */
1198 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1199 ushort start_motor; /* 05 send start up motor */
1200 ushort tagqng_able; /* 06 tag queuing able */
1201 ushort bios_scan; /* 07 BIOS device control */
1202 ushort scam_tolerant; /* 08 no scam */
1204 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1205 uchar bios_boot_delay; /* power up wait */
1207 uchar scsi_reset_delay; /* 10 reset delay */
1208 uchar bios_id_lun; /* first boot device scsi id & lun */
1209 /* high nibble is lun */
1210 /* low nibble is scsi id */
1212 uchar termination_se; /* 11 0 - automatic */
1213 /* 1 - low off / high off */
1214 /* 2 - low off / high on */
1215 /* 3 - low on / high on */
1216 /* There is no low on / high off */
1218 uchar termination_lvd; /* 11 0 - automatic */
1219 /* 1 - low off / high off */
1220 /* 2 - low off / high on */
1221 /* 3 - low on / high on */
1222 /* There is no low on / high off */
1224 ushort bios_ctrl; /* 12 BIOS control bits */
1225 /* bit 0 BIOS don't act as initiator. */
1226 /* bit 1 BIOS > 1 GB support */
1227 /* bit 2 BIOS > 2 Disk Support */
1228 /* bit 3 BIOS don't support removables */
1229 /* bit 4 BIOS support bootable CD */
1230 /* bit 5 BIOS scan enabled */
1231 /* bit 6 BIOS support multiple LUNs */
1232 /* bit 7 BIOS display of message */
1233 /* bit 8 SCAM disabled */
1234 /* bit 9 Reset SCSI bus during init. */
1235 /* bit 10 Basic Integrity Checking disabled */
1236 /* bit 11 No verbose initialization. */
1237 /* bit 12 SCSI parity enabled */
1238 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1239 /* bit 14 */
1240 /* bit 15 */
1241 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1242 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1243 uchar max_host_qng; /* 15 maximum host queueing */
1244 uchar max_dvc_qng; /* maximum per device queuing */
1245 ushort dvc_cntl; /* 16 control bit for driver */
1246 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1247 ushort serial_number_word1; /* 18 Board serial number word 1 */
1248 ushort serial_number_word2; /* 19 Board serial number word 2 */
1249 ushort serial_number_word3; /* 20 Board serial number word 3 */
1250 ushort check_sum; /* 21 EEP check sum */
1251 uchar oem_name[16]; /* 22 OEM name */
1252 ushort dvc_err_code; /* 30 last device driver error code */
1253 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1254 ushort adv_err_addr; /* 32 last uc error address */
1255 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1256 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1257 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1258 ushort reserved36; /* 36 reserved */
1259 ushort reserved37; /* 37 reserved */
1260 ushort reserved38; /* 38 reserved */
1261 ushort reserved39; /* 39 reserved */
1262 ushort reserved40; /* 40 reserved */
1263 ushort reserved41; /* 41 reserved */
1264 ushort reserved42; /* 42 reserved */
1265 ushort reserved43; /* 43 reserved */
1266 ushort reserved44; /* 44 reserved */
1267 ushort reserved45; /* 45 reserved */
1268 ushort reserved46; /* 46 reserved */
1269 ushort reserved47; /* 47 reserved */
1270 ushort reserved48; /* 48 reserved */
1271 ushort reserved49; /* 49 reserved */
1272 ushort reserved50; /* 50 reserved */
1273 ushort reserved51; /* 51 reserved */
1274 ushort reserved52; /* 52 reserved */
1275 ushort reserved53; /* 53 reserved */
1276 ushort reserved54; /* 54 reserved */
1277 ushort reserved55; /* 55 reserved */
1278 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1279 ushort cisprt_msw; /* 57 CIS PTR MSW */
1280 ushort subsysvid; /* 58 SubSystem Vendor ID */
1281 ushort subsysid; /* 59 SubSystem ID */
1282 ushort reserved60; /* 60 reserved */
1283 ushort reserved61; /* 61 reserved */
1284 ushort reserved62; /* 62 reserved */
1285 ushort reserved63; /* 63 reserved */
1286 } ADVEEP_38C1600_CONFIG;
1289 * EEPROM Commands
1291 #define ASC_EEP_CMD_DONE 0x0200
1293 /* bios_ctrl */
1294 #define BIOS_CTRL_BIOS 0x0001
1295 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1296 #define BIOS_CTRL_GT_2_DISK 0x0004
1297 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1298 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1299 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1300 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1301 #define BIOS_CTRL_NO_SCAM 0x0100
1302 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1303 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1304 #define BIOS_CTRL_SCSI_PARITY 0x1000
1305 #define BIOS_CTRL_AIPP_DIS 0x2000
1307 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1309 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1312 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313 * a special 16K Adv Library and Microcode version. After the issue is
1314 * resolved, should restore 32K support.
1316 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1318 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1321 * Byte I/O register address from base of 'iop_base'.
1323 #define IOPB_INTR_STATUS_REG 0x00
1324 #define IOPB_CHIP_ID_1 0x01
1325 #define IOPB_INTR_ENABLES 0x02
1326 #define IOPB_CHIP_TYPE_REV 0x03
1327 #define IOPB_RES_ADDR_4 0x04
1328 #define IOPB_RES_ADDR_5 0x05
1329 #define IOPB_RAM_DATA 0x06
1330 #define IOPB_RES_ADDR_7 0x07
1331 #define IOPB_FLAG_REG 0x08
1332 #define IOPB_RES_ADDR_9 0x09
1333 #define IOPB_RISC_CSR 0x0A
1334 #define IOPB_RES_ADDR_B 0x0B
1335 #define IOPB_RES_ADDR_C 0x0C
1336 #define IOPB_RES_ADDR_D 0x0D
1337 #define IOPB_SOFT_OVER_WR 0x0E
1338 #define IOPB_RES_ADDR_F 0x0F
1339 #define IOPB_MEM_CFG 0x10
1340 #define IOPB_RES_ADDR_11 0x11
1341 #define IOPB_GPIO_DATA 0x12
1342 #define IOPB_RES_ADDR_13 0x13
1343 #define IOPB_FLASH_PAGE 0x14
1344 #define IOPB_RES_ADDR_15 0x15
1345 #define IOPB_GPIO_CNTL 0x16
1346 #define IOPB_RES_ADDR_17 0x17
1347 #define IOPB_FLASH_DATA 0x18
1348 #define IOPB_RES_ADDR_19 0x19
1349 #define IOPB_RES_ADDR_1A 0x1A
1350 #define IOPB_RES_ADDR_1B 0x1B
1351 #define IOPB_RES_ADDR_1C 0x1C
1352 #define IOPB_RES_ADDR_1D 0x1D
1353 #define IOPB_RES_ADDR_1E 0x1E
1354 #define IOPB_RES_ADDR_1F 0x1F
1355 #define IOPB_DMA_CFG0 0x20
1356 #define IOPB_DMA_CFG1 0x21
1357 #define IOPB_TICKLE 0x22
1358 #define IOPB_DMA_REG_WR 0x23
1359 #define IOPB_SDMA_STATUS 0x24
1360 #define IOPB_SCSI_BYTE_CNT 0x25
1361 #define IOPB_HOST_BYTE_CNT 0x26
1362 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1363 #define IOPB_BYTE_TO_XFER_0 0x28
1364 #define IOPB_BYTE_TO_XFER_1 0x29
1365 #define IOPB_BYTE_TO_XFER_2 0x2A
1366 #define IOPB_BYTE_TO_XFER_3 0x2B
1367 #define IOPB_ACC_GRP 0x2C
1368 #define IOPB_RES_ADDR_2D 0x2D
1369 #define IOPB_DEV_ID 0x2E
1370 #define IOPB_RES_ADDR_2F 0x2F
1371 #define IOPB_SCSI_DATA 0x30
1372 #define IOPB_RES_ADDR_31 0x31
1373 #define IOPB_RES_ADDR_32 0x32
1374 #define IOPB_SCSI_DATA_HSHK 0x33
1375 #define IOPB_SCSI_CTRL 0x34
1376 #define IOPB_RES_ADDR_35 0x35
1377 #define IOPB_RES_ADDR_36 0x36
1378 #define IOPB_RES_ADDR_37 0x37
1379 #define IOPB_RAM_BIST 0x38
1380 #define IOPB_PLL_TEST 0x39
1381 #define IOPB_PCI_INT_CFG 0x3A
1382 #define IOPB_RES_ADDR_3B 0x3B
1383 #define IOPB_RFIFO_CNT 0x3C
1384 #define IOPB_RES_ADDR_3D 0x3D
1385 #define IOPB_RES_ADDR_3E 0x3E
1386 #define IOPB_RES_ADDR_3F 0x3F
1389 * Word I/O register address from base of 'iop_base'.
1391 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1392 #define IOPW_CTRL_REG 0x02 /* CC */
1393 #define IOPW_RAM_ADDR 0x04 /* LA */
1394 #define IOPW_RAM_DATA 0x06 /* LD */
1395 #define IOPW_RES_ADDR_08 0x08
1396 #define IOPW_RISC_CSR 0x0A /* CSR */
1397 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1398 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1399 #define IOPW_RES_ADDR_10 0x10
1400 #define IOPW_SEL_MASK 0x12 /* SM */
1401 #define IOPW_RES_ADDR_14 0x14
1402 #define IOPW_FLASH_ADDR 0x16 /* FA */
1403 #define IOPW_RES_ADDR_18 0x18
1404 #define IOPW_EE_CMD 0x1A /* EC */
1405 #define IOPW_EE_DATA 0x1C /* ED */
1406 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1407 #define IOPW_RES_ADDR_20 0x20
1408 #define IOPW_Q_BASE 0x22 /* QB */
1409 #define IOPW_QP 0x24 /* QP */
1410 #define IOPW_IX 0x26 /* IX */
1411 #define IOPW_SP 0x28 /* SP */
1412 #define IOPW_PC 0x2A /* PC */
1413 #define IOPW_RES_ADDR_2C 0x2C
1414 #define IOPW_RES_ADDR_2E 0x2E
1415 #define IOPW_SCSI_DATA 0x30 /* SD */
1416 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1417 #define IOPW_SCSI_CTRL 0x34 /* SC */
1418 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1419 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1420 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1421 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1422 #define IOPW_RES_ADDR_3C 0x3C
1423 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1426 * Doubleword I/O register address from base of 'iop_base'.
1428 #define IOPDW_RES_ADDR_0 0x00
1429 #define IOPDW_RAM_DATA 0x04
1430 #define IOPDW_RES_ADDR_8 0x08
1431 #define IOPDW_RES_ADDR_C 0x0C
1432 #define IOPDW_RES_ADDR_10 0x10
1433 #define IOPDW_COMMA 0x14
1434 #define IOPDW_COMMB 0x18
1435 #define IOPDW_RES_ADDR_1C 0x1C
1436 #define IOPDW_SDMA_ADDR0 0x20
1437 #define IOPDW_SDMA_ADDR1 0x24
1438 #define IOPDW_SDMA_COUNT 0x28
1439 #define IOPDW_SDMA_ERROR 0x2C
1440 #define IOPDW_RDMA_ADDR0 0x30
1441 #define IOPDW_RDMA_ADDR1 0x34
1442 #define IOPDW_RDMA_COUNT 0x38
1443 #define IOPDW_RDMA_ERROR 0x3C
1445 #define ADV_CHIP_ID_BYTE 0x25
1446 #define ADV_CHIP_ID_WORD 0x04C1
1448 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1449 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1450 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1451 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1452 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1453 #define ADV_INTR_ENABLE_RST_INTR 0x20
1454 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1455 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1457 #define ADV_INTR_STATUS_INTRA 0x01
1458 #define ADV_INTR_STATUS_INTRB 0x02
1459 #define ADV_INTR_STATUS_INTRC 0x04
1461 #define ADV_RISC_CSR_STOP (0x0000)
1462 #define ADV_RISC_TEST_COND (0x2000)
1463 #define ADV_RISC_CSR_RUN (0x4000)
1464 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1466 #define ADV_CTRL_REG_HOST_INTR 0x0100
1467 #define ADV_CTRL_REG_SEL_INTR 0x0200
1468 #define ADV_CTRL_REG_DPR_INTR 0x0400
1469 #define ADV_CTRL_REG_RTA_INTR 0x0800
1470 #define ADV_CTRL_REG_RMA_INTR 0x1000
1471 #define ADV_CTRL_REG_RES_BIT14 0x2000
1472 #define ADV_CTRL_REG_DPE_INTR 0x4000
1473 #define ADV_CTRL_REG_POWER_DONE 0x8000
1474 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1476 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1477 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1478 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1479 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1480 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1482 #define ADV_TICKLE_NOP 0x00
1483 #define ADV_TICKLE_A 0x01
1484 #define ADV_TICKLE_B 0x02
1485 #define ADV_TICKLE_C 0x03
1487 #define AdvIsIntPending(port) \
1488 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1491 * SCSI_CFG0 Register bit definitions
1493 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1494 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1495 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1496 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1498 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1499 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1500 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1503 #define OUR_ID 0x000F /* SCSI ID */
1506 * SCSI_CFG1 Register bit definitions
1508 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1509 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1511 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1512 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1513 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1514 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1515 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1516 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1517 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1518 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1519 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1520 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1521 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1522 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1525 * Addendum for ASC-38C0800 Chip
1527 * The ASC-38C1600 Chip uses the same definitions except that the
1528 * bus mode override bits [12:10] have been moved to byte register
1529 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1535 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1536 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1537 #define HVD 0x1000 /* HVD Device Detect */
1538 #define LVD 0x0800 /* LVD Device Detect */
1539 #define SE 0x0400 /* SE Device Detect */
1540 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1541 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1542 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1543 #define TERM_SE 0x0030 /* SE Termination Bits */
1544 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1545 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1546 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1547 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1548 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1549 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1550 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1551 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1553 #define CABLE_ILLEGAL_A 0x7
1554 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1556 #define CABLE_ILLEGAL_B 0xB
1557 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1560 * MEM_CFG Register bit definitions
1562 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1563 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1564 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1565 #define RAM_SZ_2KB 0x00 /* 2 KB */
1566 #define RAM_SZ_4KB 0x04 /* 4 KB */
1567 #define RAM_SZ_8KB 0x08 /* 8 KB */
1568 #define RAM_SZ_16KB 0x0C /* 16 KB */
1569 #define RAM_SZ_32KB 0x10 /* 32 KB */
1570 #define RAM_SZ_64KB 0x14 /* 64 KB */
1573 * DMA_CFG0 Register bit definitions
1575 * This register is only accessible to the host.
1577 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1578 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1579 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1580 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1581 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1582 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1583 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1584 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1585 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1586 #define START_CTL 0x0C /* DMA start conditions */
1587 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1588 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1589 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1590 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1591 #define READ_CMD 0x03 /* Memory Read Method */
1592 #define READ_CMD_MR 0x00 /* Memory Read */
1593 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1594 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1597 * ASC-38C0800 RAM BIST Register bit definitions
1599 #define RAM_TEST_MODE 0x80
1600 #define PRE_TEST_MODE 0x40
1601 #define NORMAL_MODE 0x00
1602 #define RAM_TEST_DONE 0x10
1603 #define RAM_TEST_STATUS 0x0F
1604 #define RAM_TEST_HOST_ERROR 0x08
1605 #define RAM_TEST_INTRAM_ERROR 0x04
1606 #define RAM_TEST_RISC_ERROR 0x02
1607 #define RAM_TEST_SCSI_ERROR 0x01
1608 #define RAM_TEST_SUCCESS 0x00
1609 #define PRE_TEST_VALUE 0x05
1610 #define NORMAL_VALUE 0x00
1613 * ASC38C1600 Definitions
1615 * IOPB_PCI_INT_CFG Bit Field Definitions
1618 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1621 * Bit 1 can be set to change the interrupt for the Function to operate in
1622 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624 * mode, otherwise the operating mode is undefined.
1626 #define TOTEMPOLE 0x02
1629 * Bit 0 can be used to change the Int Pin for the Function. The value is
1630 * 0 by default for both Functions with Function 0 using INT A and Function
1631 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1632 * INT A is used.
1634 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635 * value specified in the PCI Configuration Space.
1637 #define INTAB 0x01
1640 * Adv Library Status Definitions
1642 #define ADV_TRUE 1
1643 #define ADV_FALSE 0
1644 #define ADV_SUCCESS 1
1645 #define ADV_BUSY 0
1646 #define ADV_ERROR (-1)
1649 * ADV_DVC_VAR 'warn_code' values
1651 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1652 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1653 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1654 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1656 #define ADV_MAX_TID 15 /* max. target identifier */
1657 #define ADV_MAX_LUN 7 /* max. logical unit number */
1660 * Fixed locations of microcode operating variables.
1662 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1663 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1664 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1665 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1666 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1667 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1668 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1669 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1670 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1671 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1672 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1673 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1674 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1675 #define ASC_MC_CHIP_TYPE 0x009A
1676 #define ASC_MC_INTRB_CODE 0x009B
1677 #define ASC_MC_WDTR_ABLE 0x009C
1678 #define ASC_MC_SDTR_ABLE 0x009E
1679 #define ASC_MC_TAGQNG_ABLE 0x00A0
1680 #define ASC_MC_DISC_ENABLE 0x00A2
1681 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1682 #define ASC_MC_IDLE_CMD 0x00A6
1683 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1684 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1685 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1686 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1687 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1688 #define ASC_MC_SDTR_DONE 0x00B6
1689 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1690 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1691 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1692 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1693 #define ASC_MC_WDTR_DONE 0x0124
1694 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1695 #define ASC_MC_ICQ 0x0160
1696 #define ASC_MC_IRQ 0x0164
1697 #define ASC_MC_PPR_ABLE 0x017A
1700 * BIOS LRAM variable absolute offsets.
1702 #define BIOS_CODESEG 0x54
1703 #define BIOS_CODELEN 0x56
1704 #define BIOS_SIGNATURE 0x58
1705 #define BIOS_VERSION 0x5A
1708 * Microcode Control Flags
1710 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711 * and handled by the microcode.
1713 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1714 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1717 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1719 #define HSHK_CFG_WIDE_XFR 0x8000
1720 #define HSHK_CFG_RATE 0x0F00
1721 #define HSHK_CFG_OFFSET 0x001F
1723 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1724 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1725 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1726 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1728 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1729 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1730 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1731 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1732 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1734 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1735 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1736 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1737 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1738 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1740 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1743 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1744 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1747 * All fields here are accessed by the board microcode and need to be
1748 * little-endian.
1750 typedef struct adv_carr_t {
1751 ADV_VADDR carr_va; /* Carrier Virtual Address */
1752 ADV_PADDR carr_pa; /* Carrier Physical Address */
1753 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1755 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1757 * next_vpa [3:1] Reserved Bits
1758 * next_vpa [0] Done Flag set in Response Queue.
1760 ADV_VADDR next_vpa;
1761 } ADV_CARR_T;
1764 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1766 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1768 #define ASC_RQ_DONE 0x00000001
1769 #define ASC_RQ_GOOD 0x00000002
1770 #define ASC_CQ_STOPPER 0x00000000
1772 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1774 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1775 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1777 #define ADV_CARRIER_BUFSIZE \
1778 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1781 * ASC_SCSI_REQ_Q 'a_flag' definitions
1783 * The Adv Library should limit use to the lower nibble (4 bits) of
1784 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1786 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1787 #define ADV_SCSIQ_DONE 0x02 /* request done */
1788 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1790 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1791 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1792 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1795 * Adapter temporary configuration structure
1797 * This structure can be discarded after initialization. Don't add
1798 * fields here needed after initialization.
1800 * Field naming convention:
1802 * *_enable indicates the field enables or disables a feature. The
1803 * value of the field is never reset.
1805 typedef struct adv_dvc_cfg {
1806 ushort disc_enable; /* enable disconnection */
1807 uchar chip_version; /* chip version */
1808 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809 ushort control_flag; /* Microcode Control Flag */
1810 ushort mcode_date; /* Microcode date */
1811 ushort mcode_version; /* Microcode version */
1812 ushort serial1; /* EEPROM serial number word 1 */
1813 ushort serial2; /* EEPROM serial number word 2 */
1814 ushort serial3; /* EEPROM serial number word 3 */
1815 } ADV_DVC_CFG;
1817 struct adv_dvc_var;
1818 struct adv_scsi_req_q;
1820 typedef struct asc_sg_block {
1821 uchar reserved1;
1822 uchar reserved2;
1823 uchar reserved3;
1824 uchar sg_cnt; /* Valid entries in block. */
1825 ADV_PADDR sg_ptr; /* Pointer to next sg block. */
1826 struct {
1827 ADV_PADDR sg_addr; /* SG element address. */
1828 ADV_DCNT sg_count; /* SG element count. */
1829 } sg_list[NO_OF_SG_PER_BLOCK];
1830 } ADV_SG_BLOCK;
1833 * ADV_SCSI_REQ_Q - microcode request structure
1835 * All fields in this structure up to byte 60 are used by the microcode.
1836 * The microcode makes assumptions about the size and ordering of fields
1837 * in this structure. Do not change the structure definition here without
1838 * coordinating the change with the microcode.
1840 * All fields accessed by microcode must be maintained in little_endian
1841 * order.
1843 typedef struct adv_scsi_req_q {
1844 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1845 uchar target_cmd;
1846 uchar target_id; /* Device target identifier. */
1847 uchar target_lun; /* Device target logical unit number. */
1848 ADV_PADDR data_addr; /* Data buffer physical address. */
1849 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
1850 ADV_PADDR sense_addr;
1851 ADV_PADDR carr_pa;
1852 uchar mflag;
1853 uchar sense_len;
1854 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1855 uchar scsi_cntl;
1856 uchar done_status; /* Completion status. */
1857 uchar scsi_status; /* SCSI status byte. */
1858 uchar host_status; /* Ucode host status. */
1859 uchar sg_working_ix;
1860 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1861 ADV_PADDR sg_real_addr; /* SG list physical address. */
1862 ADV_PADDR scsiq_rptr;
1863 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1864 ADV_VADDR scsiq_ptr;
1865 ADV_VADDR carr_va;
1867 * End of microcode structure - 60 bytes. The rest of the structure
1868 * is used by the Adv Library and ignored by the microcode.
1870 ADV_VADDR srb_ptr;
1871 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1872 char *vdata_addr; /* Data buffer virtual address. */
1873 uchar a_flag;
1874 uchar pad[2]; /* Pad out to a word boundary. */
1875 } ADV_SCSI_REQ_Q;
1878 * The following two structures are used to process Wide Board requests.
1880 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883 * Mid-Level SCSI request structure.
1885 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887 * up to 255 scatter-gather elements may be used per request or
1888 * ADV_SCSI_REQ_Q.
1890 * Both structures must be 32 byte aligned.
1892 typedef struct adv_sgblk {
1893 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1894 uchar align[32]; /* Sgblock structure padding. */
1895 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1896 } adv_sgblk_t;
1898 typedef struct adv_req {
1899 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1900 uchar align[32]; /* Request structure padding. */
1901 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1902 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1903 struct adv_req *next_reqp; /* Next Request Structure. */
1904 } adv_req_t;
1907 * Adapter operation variable structure.
1909 * One structure is required per host adapter.
1911 * Field naming convention:
1913 * *_able indicates both whether a feature should be enabled or disabled
1914 * and whether a device isi capable of the feature. At initialization
1915 * this field may be set, but later if a device is found to be incapable
1916 * of the feature, the field is cleared.
1918 typedef struct adv_dvc_var {
1919 AdvPortAddr iop_base; /* I/O port address */
1920 ushort err_code; /* fatal error code */
1921 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1922 ushort wdtr_able; /* try WDTR for a device */
1923 ushort sdtr_able; /* try SDTR for a device */
1924 ushort ultra_able; /* try SDTR Ultra speed for a device */
1925 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1926 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1927 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1928 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1929 ushort tagqng_able; /* try tagged queuing with a device */
1930 ushort ppr_able; /* PPR message capable per TID bitmask. */
1931 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1932 ushort start_motor; /* start motor command allowed */
1933 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1934 uchar chip_no; /* should be assigned by caller */
1935 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1936 ushort no_scam; /* scam_tolerant of EEPROM */
1937 struct asc_board *drv_ptr; /* driver pointer to private structure */
1938 uchar chip_scsi_id; /* chip SCSI target ID */
1939 uchar chip_type;
1940 uchar bist_err_code;
1941 ADV_CARR_T *carrier_buf;
1942 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1943 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1944 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1945 ushort carr_pending_cnt; /* Count of pending carriers. */
1946 struct adv_req *orig_reqp; /* adv_req_t memory block. */
1948 * Note: The following fields will not be used after initialization. The
1949 * driver may discard the buffer after initialization is done.
1951 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1952 } ADV_DVC_VAR;
1955 * Microcode idle loop commands
1957 #define IDLE_CMD_COMPLETED 0
1958 #define IDLE_CMD_STOP_CHIP 0x0001
1959 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1960 #define IDLE_CMD_SEND_INT 0x0004
1961 #define IDLE_CMD_ABORT 0x0008
1962 #define IDLE_CMD_DEVICE_RESET 0x0010
1963 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1965 #define IDLE_CMD_SCSIREQ 0x0080
1967 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1968 #define IDLE_CMD_STATUS_FAILURE 0x0002
1971 * AdvSendIdleCmd() flag definitions.
1973 #define ADV_NOWAIT 0x01
1976 * Wait loop time out values.
1978 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1979 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1980 #define SCSI_MAX_RETRY 10 /* retry count */
1982 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1983 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1984 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1985 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1987 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1989 /* Read byte from a register. */
1990 #define AdvReadByteRegister(iop_base, reg_off) \
1991 (ADV_MEM_READB((iop_base) + (reg_off)))
1993 /* Write byte to a register. */
1994 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1997 /* Read word (2 bytes) from a register. */
1998 #define AdvReadWordRegister(iop_base, reg_off) \
1999 (ADV_MEM_READW((iop_base) + (reg_off)))
2001 /* Write word (2 bytes) to a register. */
2002 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2003 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2005 /* Write dword (4 bytes) to a register. */
2006 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2009 /* Read byte from LRAM. */
2010 #define AdvReadByteLram(iop_base, addr, byte) \
2011 do { \
2012 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2014 } while (0)
2016 /* Write byte to LRAM. */
2017 #define AdvWriteByteLram(iop_base, addr, byte) \
2018 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2021 /* Read word (2 bytes) from LRAM. */
2022 #define AdvReadWordLram(iop_base, addr, word) \
2023 do { \
2024 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2026 } while (0)
2028 /* Write word (2 bytes) to LRAM. */
2029 #define AdvWriteWordLram(iop_base, addr, word) \
2030 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2033 /* Write little-endian double word (4 bytes) to LRAM */
2034 /* Because of unspecified C language ordering don't use auto-increment. */
2035 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2043 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044 #define AdvReadWordAutoIncLram(iop_base) \
2045 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2047 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048 #define AdvWriteWordAutoIncLram(iop_base, word) \
2049 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2052 * Define macro to check for Condor signature.
2054 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2057 #define AdvFindSignature(iop_base) \
2058 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059 ADV_CHIP_ID_BYTE) && \
2060 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2064 * Define macro to Return the version number of the chip at 'iop_base'.
2066 * The second parameter 'bus_type' is currently unused.
2068 #define AdvGetChipVersion(iop_base, bus_type) \
2069 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2072 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2075 * If the request has not yet been sent to the device it will simply be
2076 * aborted from RISC memory. If the request is disconnected it will be
2077 * aborted on reselection by sending an Abort Message to the target ID.
2079 * Return value:
2080 * ADV_TRUE(1) - Queue was successfully aborted.
2081 * ADV_FALSE(0) - Queue was not found on the active queue list.
2083 #define AdvAbortQueue(asc_dvc, scsiq) \
2084 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2085 (ADV_DCNT) (scsiq))
2088 * Send a Bus Device Reset Message to the specified target ID.
2090 * All outstanding commands will be purged if sending the
2091 * Bus Device Reset Message is successful.
2093 * Return Value:
2094 * ADV_TRUE(1) - All requests on the target are purged.
2095 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2096 * are not purged.
2098 #define AdvResetDevice(asc_dvc, target_id) \
2099 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100 (ADV_DCNT) (target_id))
2103 * SCSI Wide Type definition.
2105 #define ADV_SCSI_BIT_ID_TYPE ushort
2108 * AdvInitScsiTarget() 'cntl_flag' options.
2110 #define ADV_SCAN_LUN 0x01
2111 #define ADV_CAPINFO_NOLUN 0x02
2114 * Convert target id to target id bit mask.
2116 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2119 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2122 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2123 #define QD_NO_ERROR 0x01
2124 #define QD_ABORTED_BY_HOST 0x02
2125 #define QD_WITH_ERROR 0x04
2127 #define QHSTA_NO_ERROR 0x00
2128 #define QHSTA_M_SEL_TIMEOUT 0x11
2129 #define QHSTA_M_DATA_OVER_RUN 0x12
2130 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131 #define QHSTA_M_QUEUE_ABORTED 0x15
2132 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2133 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2134 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2135 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2136 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2137 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2138 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2139 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2141 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2142 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2143 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2144 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2145 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2146 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2147 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2148 #define QHSTA_M_WTM_TIMEOUT 0x41
2149 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2150 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2151 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2153 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2154 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2156 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2158 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2159 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2162 * Total contiguous memory needed for driver SG blocks.
2164 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165 * number of scatter-gather elements the driver supports in a
2166 * single request.
2169 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2170 (sizeof(ADV_SG_BLOCK) * \
2171 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2173 /* struct asc_board flags */
2174 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2176 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2178 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2180 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2182 #ifdef CONFIG_PROC_FS
2183 /* /proc/scsi/advansys/[0...] related definitions */
2184 #define ASC_PRTBUF_SIZE 2048
2185 #define ASC_PRTLINE_SIZE 160
2187 #define ASC_PRT_NEXT() \
2188 if (cp) { \
2189 totlen += len; \
2190 leftlen -= len; \
2191 if (leftlen == 0) { \
2192 return totlen; \
2194 cp += len; \
2196 #endif /* CONFIG_PROC_FS */
2198 /* Asc Library return codes */
2199 #define ASC_TRUE 1
2200 #define ASC_FALSE 0
2201 #define ASC_NOERROR 1
2202 #define ASC_BUSY 0
2203 #define ASC_ERROR (-1)
2205 /* struct scsi_cmnd function return codes */
2206 #define STATUS_BYTE(byte) (byte)
2207 #define MSG_BYTE(byte) ((byte) << 8)
2208 #define HOST_BYTE(byte) ((byte) << 16)
2209 #define DRIVER_BYTE(byte) ((byte) << 24)
2211 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212 #ifndef ADVANSYS_STATS
2213 #define ASC_STATS_ADD(shost, counter, count)
2214 #else /* ADVANSYS_STATS */
2215 #define ASC_STATS_ADD(shost, counter, count) \
2216 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217 #endif /* ADVANSYS_STATS */
2219 /* If the result wraps when calculating tenths, return 0. */
2220 #define ASC_TENTHS(num, den) \
2221 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2225 * Display a message to the console.
2227 #define ASC_PRINT(s) \
2229 printk("advansys: "); \
2230 printk(s); \
2233 #define ASC_PRINT1(s, a1) \
2235 printk("advansys: "); \
2236 printk((s), (a1)); \
2239 #define ASC_PRINT2(s, a1, a2) \
2241 printk("advansys: "); \
2242 printk((s), (a1), (a2)); \
2245 #define ASC_PRINT3(s, a1, a2, a3) \
2247 printk("advansys: "); \
2248 printk((s), (a1), (a2), (a3)); \
2251 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2253 printk("advansys: "); \
2254 printk((s), (a1), (a2), (a3), (a4)); \
2257 #ifndef ADVANSYS_DEBUG
2259 #define ASC_DBG(lvl, s...)
2260 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2270 #else /* ADVANSYS_DEBUG */
2273 * Debugging Message Levels:
2274 * 0: Errors Only
2275 * 1: High-Level Tracing
2276 * 2-N: Verbose Tracing
2279 #define ASC_DBG(lvl, format, arg...) { \
2280 if (asc_dbglvl >= (lvl)) \
2281 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2282 __func__ , ## arg); \
2285 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2287 if (asc_dbglvl >= (lvl)) { \
2288 asc_prt_scsi_host(s); \
2292 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2294 if (asc_dbglvl >= (lvl)) { \
2295 asc_prt_asc_scsi_q(scsiqp); \
2299 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2301 if (asc_dbglvl >= (lvl)) { \
2302 asc_prt_asc_qdone_info(qdone); \
2306 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2308 if (asc_dbglvl >= (lvl)) { \
2309 asc_prt_adv_scsi_req_q(scsiqp); \
2313 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2315 if (asc_dbglvl >= (lvl)) { \
2316 asc_prt_hex((name), (start), (length)); \
2320 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2323 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2326 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328 #endif /* ADVANSYS_DEBUG */
2330 #ifdef ADVANSYS_STATS
2332 /* Per board statistics structure */
2333 struct asc_stats {
2334 /* Driver Entrypoint Statistics */
2335 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
2336 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
2337 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
2338 ADV_DCNT interrupt; /* # advansys_interrupt() calls */
2339 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
2340 ADV_DCNT done; /* # calls to request's scsi_done function */
2341 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2342 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2343 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2344 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
2346 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
2347 ADV_DCNT exe_error; /* # ASC_ERROR returns. */
2348 ADV_DCNT exe_unknown; /* # unknown returns. */
2349 /* Data Transfer Statistics */
2350 ADV_DCNT xfer_cnt; /* # I/O requests received */
2351 ADV_DCNT xfer_elem; /* # scatter-gather elements */
2352 ADV_DCNT xfer_sect; /* # 512-byte blocks */
2354 #endif /* ADVANSYS_STATS */
2357 * Structure allocated for each board.
2359 * This structure is allocated by scsi_host_alloc() at the end
2360 * of the 'Scsi_Host' structure starting at the 'hostdata'
2361 * field. It is guaranteed to be allocated from DMA-able memory.
2363 struct asc_board {
2364 struct device *dev;
2365 uint flags; /* Board flags */
2366 unsigned int irq;
2367 union {
2368 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2369 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2370 } dvc_var;
2371 union {
2372 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2373 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2374 } dvc_cfg;
2375 ushort asc_n_io_port; /* Number I/O ports. */
2376 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2377 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2378 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2379 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2380 union {
2381 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2382 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2383 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2384 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2385 } eep_config;
2386 ulong last_reset; /* Saved last reset time */
2387 /* /proc/scsi/advansys/[0...] */
2388 char *prtbuf; /* /proc print buffer */
2389 #ifdef ADVANSYS_STATS
2390 struct asc_stats asc_stats; /* Board statistics */
2391 #endif /* ADVANSYS_STATS */
2393 * The following fields are used only for Narrow Boards.
2395 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2397 * The following fields are used only for Wide Boards.
2399 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2400 ushort ioport; /* I/O Port address. */
2401 adv_req_t *adv_reqp; /* Request structures. */
2402 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
2403 ushort bios_signature; /* BIOS Signature. */
2404 ushort bios_version; /* BIOS Version. */
2405 ushort bios_codeseg; /* BIOS Code Segment. */
2406 ushort bios_codelen; /* BIOS Code Segment Length. */
2409 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410 dvc_var.asc_dvc_var)
2411 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412 dvc_var.adv_dvc_var)
2413 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2415 #ifdef ADVANSYS_DEBUG
2416 static int asc_dbglvl = 3;
2419 * asc_prt_asc_dvc_var()
2421 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2423 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2425 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2428 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2429 (unsigned)h->init_sdtr);
2431 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2433 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2434 (unsigned)h->chip_no);
2436 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437 "%u,\n", (unsigned)h->queue_full_or_busy,
2438 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2440 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2442 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2443 (unsigned)h->in_critical_cnt);
2445 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2447 (unsigned)h->init_state, (unsigned)h->no_scam,
2448 (unsigned)h->pci_fix_asyn_xfer);
2450 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2454 * asc_prt_asc_dvc_cfg()
2456 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2458 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2460 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461 h->can_tagged_qng, h->cmd_qng_enabled);
2462 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463 h->disc_enable, h->sdtr_enable);
2465 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2467 h->isa_dma_channel, h->chip_version);
2469 printk(" mcode_date 0x%x, mcode_version %d\n",
2470 h->mcode_date, h->mcode_version);
2474 * asc_prt_adv_dvc_var()
2476 * Display an ADV_DVC_VAR structure.
2478 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2480 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2482 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2485 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2486 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2488 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2491 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2493 (ulong)h->carr_freelist);
2495 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2496 (ulong)h->icq_sp, (ulong)h->irq_sp);
2498 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2499 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2501 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2502 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2506 * asc_prt_adv_dvc_cfg()
2508 * Display an ADV_DVC_CFG structure.
2510 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2512 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2514 printk(" disc_enable 0x%x, termination 0x%x\n",
2515 h->disc_enable, h->termination);
2517 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2518 h->chip_version, h->mcode_date);
2520 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2521 h->mcode_version, h->control_flag);
2525 * asc_prt_scsi_host()
2527 static void asc_prt_scsi_host(struct Scsi_Host *s)
2529 struct asc_board *boardp = shost_priv(s);
2531 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2532 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533 s->host_busy, s->host_no, (unsigned)s->last_reset);
2535 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2538 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539 s->dma_channel, s->this_id, s->can_queue);
2541 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2544 if (ASC_NARROW_BOARD(boardp)) {
2545 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2546 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2547 } else {
2548 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2549 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2554 * asc_prt_hex()
2556 * Print hexadecimal output in 4 byte groupings 32 bytes
2557 * or 8 double-words per line.
2559 static void asc_prt_hex(char *f, uchar *s, int l)
2561 int i;
2562 int j;
2563 int k;
2564 int m;
2566 printk("%s: (%d bytes)\n", f, l);
2568 for (i = 0; i < l; i += 32) {
2570 /* Display a maximum of 8 double-words per line. */
2571 if ((k = (l - i) / 4) >= 8) {
2572 k = 8;
2573 m = 0;
2574 } else {
2575 m = (l - i) % 4;
2578 for (j = 0; j < k; j++) {
2579 printk(" %2.2X%2.2X%2.2X%2.2X",
2580 (unsigned)s[i + (j * 4)],
2581 (unsigned)s[i + (j * 4) + 1],
2582 (unsigned)s[i + (j * 4) + 2],
2583 (unsigned)s[i + (j * 4) + 3]);
2586 switch (m) {
2587 case 0:
2588 default:
2589 break;
2590 case 1:
2591 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2592 break;
2593 case 2:
2594 printk(" %2.2X%2.2X",
2595 (unsigned)s[i + (j * 4)],
2596 (unsigned)s[i + (j * 4) + 1]);
2597 break;
2598 case 3:
2599 printk(" %2.2X%2.2X%2.2X",
2600 (unsigned)s[i + (j * 4) + 1],
2601 (unsigned)s[i + (j * 4) + 2],
2602 (unsigned)s[i + (j * 4) + 3]);
2603 break;
2606 printk("\n");
2611 * asc_prt_asc_scsi_q()
2613 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2615 ASC_SG_HEAD *sgp;
2616 int i;
2618 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2620 printk
2621 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2623 q->q2.tag_code);
2625 printk
2626 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627 (ulong)le32_to_cpu(q->q1.data_addr),
2628 (ulong)le32_to_cpu(q->q1.data_cnt),
2629 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2631 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632 (ulong)q->cdbptr, q->q2.cdb_len,
2633 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2635 if (q->sg_head) {
2636 sgp = q->sg_head;
2637 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2638 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2639 sgp->queue_cnt);
2640 for (i = 0; i < sgp->entry_cnt; i++) {
2641 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2643 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2650 * asc_prt_asc_qdone_info()
2652 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2654 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2655 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2657 q->d2.tag_code);
2658 printk
2659 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2664 * asc_prt_adv_sgblock()
2666 * Display an ADV_SG_BLOCK structure.
2668 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2670 int i;
2672 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673 (ulong)b, sgblockno);
2674 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2675 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2677 if (b->sg_ptr != 0)
2678 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2679 for (i = 0; i < b->sg_cnt; i++) {
2680 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681 i, (ulong)b->sg_list[i].sg_addr,
2682 (ulong)b->sg_list[i].sg_count);
2687 * asc_prt_adv_scsi_req_q()
2689 * Display an ADV_SCSI_REQ_Q structure.
2691 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2693 int sg_blk_cnt;
2694 struct asc_sg_block *sg_ptr;
2696 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2698 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2701 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2704 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705 (ulong)le32_to_cpu(q->data_cnt),
2706 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2708 printk
2709 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2712 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2713 q->sg_working_ix, q->target_cmd);
2715 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716 (ulong)le32_to_cpu(q->scsiq_rptr),
2717 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2719 /* Display the request's ADV_SG_BLOCK structures. */
2720 if (q->sg_list_ptr != NULL) {
2721 sg_blk_cnt = 0;
2722 while (1) {
2724 * 'sg_ptr' is a physical address. Convert it to a virtual
2725 * address by indexing 'sg_blk_cnt' into the virtual address
2726 * array 'sg_list_ptr'.
2728 * XXX - Assumes all SG physical blocks are virtually contiguous.
2730 sg_ptr =
2731 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2732 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2733 if (sg_ptr->sg_ptr == 0) {
2734 break;
2736 sg_blk_cnt++;
2740 #endif /* ADVANSYS_DEBUG */
2743 * The advansys chip/microcode contains a 32-bit identifier for each command
2744 * known as the 'srb'. I don't know what it stands for. The driver used
2745 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2747 * pointers. It auto-expands when full, unless it can't allocate memory.
2748 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749 * the return of i+1 in this routine, and the corresponding subtraction in
2750 * the inverse routine.
2752 #define BAD_SRB 0
2753 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2755 int i;
2756 void **new_ptr;
2758 for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2759 if (!asc_dvc->ptr_map[i])
2760 goto out;
2763 if (asc_dvc->ptr_map_count == 0)
2764 asc_dvc->ptr_map_count = 1;
2765 else
2766 asc_dvc->ptr_map_count *= 2;
2768 new_ptr = krealloc(asc_dvc->ptr_map,
2769 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2770 if (!new_ptr)
2771 return BAD_SRB;
2772 asc_dvc->ptr_map = new_ptr;
2773 out:
2774 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2775 asc_dvc->ptr_map[i] = ptr;
2776 return i + 1;
2779 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2781 void *ptr;
2783 srb--;
2784 if (srb >= asc_dvc->ptr_map_count) {
2785 printk("advansys: bad SRB %u, max %u\n", srb,
2786 asc_dvc->ptr_map_count);
2787 return NULL;
2789 ptr = asc_dvc->ptr_map[srb];
2790 asc_dvc->ptr_map[srb] = NULL;
2791 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2792 return ptr;
2796 * advansys_info()
2798 * Return suitable for printing on the console with the argument
2799 * adapter's configuration information.
2801 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802 * otherwise the static 'info' array will be overrun.
2804 static const char *advansys_info(struct Scsi_Host *shost)
2806 static char info[ASC_INFO_SIZE];
2807 struct asc_board *boardp = shost_priv(shost);
2808 ASC_DVC_VAR *asc_dvc_varp;
2809 ADV_DVC_VAR *adv_dvc_varp;
2810 char *busname;
2811 char *widename = NULL;
2813 if (ASC_NARROW_BOARD(boardp)) {
2814 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2815 ASC_DBG(1, "begin\n");
2816 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2817 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2818 ASC_IS_ISAPNP) {
2819 busname = "ISA PnP";
2820 } else {
2821 busname = "ISA";
2823 sprintf(info,
2824 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825 ASC_VERSION, busname,
2826 (ulong)shost->io_port,
2827 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2828 boardp->irq, shost->dma_channel);
2829 } else {
2830 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2831 busname = "VL";
2832 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2833 busname = "EISA";
2834 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2835 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2836 == ASC_IS_PCI_ULTRA) {
2837 busname = "PCI Ultra";
2838 } else {
2839 busname = "PCI";
2841 } else {
2842 busname = "?";
2843 shost_printk(KERN_ERR, shost, "unknown bus "
2844 "type %d\n", asc_dvc_varp->bus_type);
2846 sprintf(info,
2847 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848 ASC_VERSION, busname, (ulong)shost->io_port,
2849 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2850 boardp->irq);
2852 } else {
2854 * Wide Adapter Information
2856 * Memory-mapped I/O is used instead of I/O space to access
2857 * the adapter, but display the I/O Port range. The Memory
2858 * I/O address is displayed through the driver /proc file.
2860 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2861 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2862 widename = "Ultra-Wide";
2863 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2864 widename = "Ultra2-Wide";
2865 } else {
2866 widename = "Ultra3-Wide";
2868 sprintf(info,
2869 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2871 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2873 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2874 ASC_DBG(1, "end\n");
2875 return info;
2878 #ifdef CONFIG_PROC_FS
2880 * asc_prt_line()
2882 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2884 * Return 0 if printing to the console, otherwise return the number of
2885 * bytes written to the buffer.
2887 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2890 static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2892 va_list args;
2893 int ret;
2894 char s[ASC_PRTLINE_SIZE];
2896 va_start(args, fmt);
2897 ret = vsprintf(s, fmt, args);
2898 BUG_ON(ret >= ASC_PRTLINE_SIZE);
2899 if (buf == NULL) {
2900 (void)printk(s);
2901 ret = 0;
2902 } else {
2903 ret = min(buflen, ret);
2904 memcpy(buf, s, ret);
2906 va_end(args);
2907 return ret;
2911 * asc_prt_board_devices()
2913 * Print driver information for devices attached to the board.
2915 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916 * cf. asc_prt_line().
2918 * Return the number of characters copied into 'cp'. No more than
2919 * 'cplen' characters will be copied to 'cp'.
2921 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2923 struct asc_board *boardp = shost_priv(shost);
2924 int leftlen;
2925 int totlen;
2926 int len;
2927 int chip_scsi_id;
2928 int i;
2930 leftlen = cplen;
2931 totlen = len = 0;
2933 len = asc_prt_line(cp, leftlen,
2934 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2935 shost->host_no);
2936 ASC_PRT_NEXT();
2938 if (ASC_NARROW_BOARD(boardp)) {
2939 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2940 } else {
2941 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2944 len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2945 ASC_PRT_NEXT();
2946 for (i = 0; i <= ADV_MAX_TID; i++) {
2947 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2948 len = asc_prt_line(cp, leftlen, " %X,", i);
2949 ASC_PRT_NEXT();
2952 len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2953 ASC_PRT_NEXT();
2955 return totlen;
2959 * Display Wide Board BIOS Information.
2961 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2963 struct asc_board *boardp = shost_priv(shost);
2964 int leftlen;
2965 int totlen;
2966 int len;
2967 ushort major, minor, letter;
2969 leftlen = cplen;
2970 totlen = len = 0;
2972 len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2973 ASC_PRT_NEXT();
2976 * If the BIOS saved a valid signature, then fill in
2977 * the BIOS code segment base address.
2979 if (boardp->bios_signature != 0x55AA) {
2980 len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2981 ASC_PRT_NEXT();
2982 len = asc_prt_line(cp, leftlen,
2983 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984 ASC_PRT_NEXT();
2985 len = asc_prt_line(cp, leftlen,
2986 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2987 ASC_PRT_NEXT();
2988 } else {
2989 major = (boardp->bios_version >> 12) & 0xF;
2990 minor = (boardp->bios_version >> 8) & 0xF;
2991 letter = (boardp->bios_version & 0xFF);
2993 len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2994 major, minor,
2995 letter >= 26 ? '?' : letter + 'A');
2996 ASC_PRT_NEXT();
2999 * Current available ROM BIOS release is 3.1I for UW
3000 * and 3.2I for U2W. This code doesn't differentiate
3001 * UW and U2W boards.
3003 if (major < 3 || (major <= 3 && minor < 1) ||
3004 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3005 len = asc_prt_line(cp, leftlen,
3006 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007 ASC_PRT_NEXT();
3008 len = asc_prt_line(cp, leftlen,
3009 "ftp://ftp.connectcom.net/pub\n");
3010 ASC_PRT_NEXT();
3014 return totlen;
3018 * Add serial number to information bar if signature AAh
3019 * is found in at bit 15-9 (7 bits) of word 1.
3021 * Serial Number consists fo 12 alpha-numeric digits.
3023 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3024 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3025 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3026 * 5 - Product revision (A-J) Word0: " "
3028 * Signature Word1: 15-9 (7 bits)
3029 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3032 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3034 * Note 1: Only production cards will have a serial number.
3036 * Note 2: Signature is most significant 7 bits (0xFE).
3038 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3040 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3042 ushort w, num;
3044 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3045 return ASC_FALSE;
3046 } else {
3048 * First word - 6 digits.
3050 w = serialnum[0];
3052 /* Product type - 1st digit. */
3053 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3054 /* Product type is P=Prototype */
3055 *cp += 0x8;
3057 cp++;
3059 /* Manufacturing location - 2nd digit. */
3060 *cp++ = 'A' + ((w & 0x1C00) >> 10);
3062 /* Product ID - 3rd, 4th digits. */
3063 num = w & 0x3FF;
3064 *cp++ = '0' + (num / 100);
3065 num %= 100;
3066 *cp++ = '0' + (num / 10);
3068 /* Product revision - 5th digit. */
3069 *cp++ = 'A' + (num % 10);
3072 * Second word
3074 w = serialnum[1];
3077 * Year - 6th digit.
3079 * If bit 15 of third word is set, then the
3080 * last digit of the year is greater than 7.
3082 if (serialnum[2] & 0x8000) {
3083 *cp++ = '8' + ((w & 0x1C0) >> 6);
3084 } else {
3085 *cp++ = '0' + ((w & 0x1C0) >> 6);
3088 /* Week of year - 7th, 8th digits. */
3089 num = w & 0x003F;
3090 *cp++ = '0' + num / 10;
3091 num %= 10;
3092 *cp++ = '0' + num;
3095 * Third word
3097 w = serialnum[2] & 0x7FFF;
3099 /* Serial number - 9th digit. */
3100 *cp++ = 'A' + (w / 1000);
3102 /* 10th, 11th, 12th digits. */
3103 num = w % 1000;
3104 *cp++ = '0' + num / 100;
3105 num %= 100;
3106 *cp++ = '0' + num / 10;
3107 num %= 10;
3108 *cp++ = '0' + num;
3110 *cp = '\0'; /* Null Terminate the string. */
3111 return ASC_TRUE;
3116 * asc_prt_asc_board_eeprom()
3118 * Print board EEPROM configuration.
3120 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121 * cf. asc_prt_line().
3123 * Return the number of characters copied into 'cp'. No more than
3124 * 'cplen' characters will be copied to 'cp'.
3126 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3128 struct asc_board *boardp = shost_priv(shost);
3129 ASC_DVC_VAR *asc_dvc_varp;
3130 int leftlen;
3131 int totlen;
3132 int len;
3133 ASCEEP_CONFIG *ep;
3134 int i;
3135 #ifdef CONFIG_ISA
3136 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137 #endif /* CONFIG_ISA */
3138 uchar serialstr[13];
3140 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3141 ep = &boardp->eep_config.asc_eep;
3143 leftlen = cplen;
3144 totlen = len = 0;
3146 len = asc_prt_line(cp, leftlen,
3147 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3148 shost->host_no);
3149 ASC_PRT_NEXT();
3151 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3152 == ASC_TRUE) {
3153 len =
3154 asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3155 serialstr);
3156 ASC_PRT_NEXT();
3157 } else {
3158 if (ep->adapter_info[5] == 0xBB) {
3159 len = asc_prt_line(cp, leftlen,
3160 " Default Settings Used for EEPROM-less Adapter.\n");
3161 ASC_PRT_NEXT();
3162 } else {
3163 len = asc_prt_line(cp, leftlen,
3164 " Serial Number Signature Not Present.\n");
3165 ASC_PRT_NEXT();
3169 len = asc_prt_line(cp, leftlen,
3170 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3172 ep->max_tag_qng);
3173 ASC_PRT_NEXT();
3175 len = asc_prt_line(cp, leftlen,
3176 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3177 ASC_PRT_NEXT();
3179 len = asc_prt_line(cp, leftlen, " Target ID: ");
3180 ASC_PRT_NEXT();
3181 for (i = 0; i <= ASC_MAX_TID; i++) {
3182 len = asc_prt_line(cp, leftlen, " %d", i);
3183 ASC_PRT_NEXT();
3185 len = asc_prt_line(cp, leftlen, "\n");
3186 ASC_PRT_NEXT();
3188 len = asc_prt_line(cp, leftlen, " Disconnects: ");
3189 ASC_PRT_NEXT();
3190 for (i = 0; i <= ASC_MAX_TID; i++) {
3191 len = asc_prt_line(cp, leftlen, " %c",
3192 (ep->
3193 disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3194 'N');
3195 ASC_PRT_NEXT();
3197 len = asc_prt_line(cp, leftlen, "\n");
3198 ASC_PRT_NEXT();
3200 len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3201 ASC_PRT_NEXT();
3202 for (i = 0; i <= ASC_MAX_TID; i++) {
3203 len = asc_prt_line(cp, leftlen, " %c",
3204 (ep->
3205 use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3206 'N');
3207 ASC_PRT_NEXT();
3209 len = asc_prt_line(cp, leftlen, "\n");
3210 ASC_PRT_NEXT();
3212 len = asc_prt_line(cp, leftlen, " Start Motor: ");
3213 ASC_PRT_NEXT();
3214 for (i = 0; i <= ASC_MAX_TID; i++) {
3215 len = asc_prt_line(cp, leftlen, " %c",
3216 (ep->
3217 start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3218 'N');
3219 ASC_PRT_NEXT();
3221 len = asc_prt_line(cp, leftlen, "\n");
3222 ASC_PRT_NEXT();
3224 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3225 ASC_PRT_NEXT();
3226 for (i = 0; i <= ASC_MAX_TID; i++) {
3227 len = asc_prt_line(cp, leftlen, " %c",
3228 (ep->
3229 init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3230 'N');
3231 ASC_PRT_NEXT();
3233 len = asc_prt_line(cp, leftlen, "\n");
3234 ASC_PRT_NEXT();
3236 #ifdef CONFIG_ISA
3237 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3238 len = asc_prt_line(cp, leftlen,
3239 " Host ISA DMA speed: %d MB/S\n",
3240 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3241 ASC_PRT_NEXT();
3243 #endif /* CONFIG_ISA */
3245 return totlen;
3249 * asc_prt_adv_board_eeprom()
3251 * Print board EEPROM configuration.
3253 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254 * cf. asc_prt_line().
3256 * Return the number of characters copied into 'cp'. No more than
3257 * 'cplen' characters will be copied to 'cp'.
3259 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3261 struct asc_board *boardp = shost_priv(shost);
3262 ADV_DVC_VAR *adv_dvc_varp;
3263 int leftlen;
3264 int totlen;
3265 int len;
3266 int i;
3267 char *termstr;
3268 uchar serialstr[13];
3269 ADVEEP_3550_CONFIG *ep_3550 = NULL;
3270 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3271 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3272 ushort word;
3273 ushort *wordp;
3274 ushort sdtr_speed = 0;
3276 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3277 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3278 ep_3550 = &boardp->eep_config.adv_3550_eep;
3279 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3280 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3281 } else {
3282 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3285 leftlen = cplen;
3286 totlen = len = 0;
3288 len = asc_prt_line(cp, leftlen,
3289 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3290 shost->host_no);
3291 ASC_PRT_NEXT();
3293 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3294 wordp = &ep_3550->serial_number_word1;
3295 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3296 wordp = &ep_38C0800->serial_number_word1;
3297 } else {
3298 wordp = &ep_38C1600->serial_number_word1;
3301 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3302 len =
3303 asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3304 serialstr);
3305 ASC_PRT_NEXT();
3306 } else {
3307 len = asc_prt_line(cp, leftlen,
3308 " Serial Number Signature Not Present.\n");
3309 ASC_PRT_NEXT();
3312 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3313 len = asc_prt_line(cp, leftlen,
3314 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315 ep_3550->adapter_scsi_id,
3316 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3317 ASC_PRT_NEXT();
3318 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3319 len = asc_prt_line(cp, leftlen,
3320 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321 ep_38C0800->adapter_scsi_id,
3322 ep_38C0800->max_host_qng,
3323 ep_38C0800->max_dvc_qng);
3324 ASC_PRT_NEXT();
3325 } else {
3326 len = asc_prt_line(cp, leftlen,
3327 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328 ep_38C1600->adapter_scsi_id,
3329 ep_38C1600->max_host_qng,
3330 ep_38C1600->max_dvc_qng);
3331 ASC_PRT_NEXT();
3333 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3334 word = ep_3550->termination;
3335 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3336 word = ep_38C0800->termination_lvd;
3337 } else {
3338 word = ep_38C1600->termination_lvd;
3340 switch (word) {
3341 case 1:
3342 termstr = "Low Off/High Off";
3343 break;
3344 case 2:
3345 termstr = "Low Off/High On";
3346 break;
3347 case 3:
3348 termstr = "Low On/High On";
3349 break;
3350 default:
3351 case 0:
3352 termstr = "Automatic";
3353 break;
3356 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3357 len = asc_prt_line(cp, leftlen,
3358 " termination: %u (%s), bios_ctrl: 0x%x\n",
3359 ep_3550->termination, termstr,
3360 ep_3550->bios_ctrl);
3361 ASC_PRT_NEXT();
3362 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3363 len = asc_prt_line(cp, leftlen,
3364 " termination: %u (%s), bios_ctrl: 0x%x\n",
3365 ep_38C0800->termination_lvd, termstr,
3366 ep_38C0800->bios_ctrl);
3367 ASC_PRT_NEXT();
3368 } else {
3369 len = asc_prt_line(cp, leftlen,
3370 " termination: %u (%s), bios_ctrl: 0x%x\n",
3371 ep_38C1600->termination_lvd, termstr,
3372 ep_38C1600->bios_ctrl);
3373 ASC_PRT_NEXT();
3376 len = asc_prt_line(cp, leftlen, " Target ID: ");
3377 ASC_PRT_NEXT();
3378 for (i = 0; i <= ADV_MAX_TID; i++) {
3379 len = asc_prt_line(cp, leftlen, " %X", i);
3380 ASC_PRT_NEXT();
3382 len = asc_prt_line(cp, leftlen, "\n");
3383 ASC_PRT_NEXT();
3385 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3386 word = ep_3550->disc_enable;
3387 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3388 word = ep_38C0800->disc_enable;
3389 } else {
3390 word = ep_38C1600->disc_enable;
3392 len = asc_prt_line(cp, leftlen, " Disconnects: ");
3393 ASC_PRT_NEXT();
3394 for (i = 0; i <= ADV_MAX_TID; i++) {
3395 len = asc_prt_line(cp, leftlen, " %c",
3396 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3397 ASC_PRT_NEXT();
3399 len = asc_prt_line(cp, leftlen, "\n");
3400 ASC_PRT_NEXT();
3402 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3403 word = ep_3550->tagqng_able;
3404 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3405 word = ep_38C0800->tagqng_able;
3406 } else {
3407 word = ep_38C1600->tagqng_able;
3409 len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3410 ASC_PRT_NEXT();
3411 for (i = 0; i <= ADV_MAX_TID; i++) {
3412 len = asc_prt_line(cp, leftlen, " %c",
3413 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3414 ASC_PRT_NEXT();
3416 len = asc_prt_line(cp, leftlen, "\n");
3417 ASC_PRT_NEXT();
3419 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3420 word = ep_3550->start_motor;
3421 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3422 word = ep_38C0800->start_motor;
3423 } else {
3424 word = ep_38C1600->start_motor;
3426 len = asc_prt_line(cp, leftlen, " Start Motor: ");
3427 ASC_PRT_NEXT();
3428 for (i = 0; i <= ADV_MAX_TID; i++) {
3429 len = asc_prt_line(cp, leftlen, " %c",
3430 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3431 ASC_PRT_NEXT();
3433 len = asc_prt_line(cp, leftlen, "\n");
3434 ASC_PRT_NEXT();
3436 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3437 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3438 ASC_PRT_NEXT();
3439 for (i = 0; i <= ADV_MAX_TID; i++) {
3440 len = asc_prt_line(cp, leftlen, " %c",
3441 (ep_3550->
3442 sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3443 'Y' : 'N');
3444 ASC_PRT_NEXT();
3446 len = asc_prt_line(cp, leftlen, "\n");
3447 ASC_PRT_NEXT();
3450 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3451 len = asc_prt_line(cp, leftlen, " Ultra Transfer: ");
3452 ASC_PRT_NEXT();
3453 for (i = 0; i <= ADV_MAX_TID; i++) {
3454 len = asc_prt_line(cp, leftlen, " %c",
3455 (ep_3550->
3456 ultra_able & ADV_TID_TO_TIDMASK(i))
3457 ? 'Y' : 'N');
3458 ASC_PRT_NEXT();
3460 len = asc_prt_line(cp, leftlen, "\n");
3461 ASC_PRT_NEXT();
3464 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3465 word = ep_3550->wdtr_able;
3466 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3467 word = ep_38C0800->wdtr_able;
3468 } else {
3469 word = ep_38C1600->wdtr_able;
3471 len = asc_prt_line(cp, leftlen, " Wide Transfer: ");
3472 ASC_PRT_NEXT();
3473 for (i = 0; i <= ADV_MAX_TID; i++) {
3474 len = asc_prt_line(cp, leftlen, " %c",
3475 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3476 ASC_PRT_NEXT();
3478 len = asc_prt_line(cp, leftlen, "\n");
3479 ASC_PRT_NEXT();
3481 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3482 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3483 len = asc_prt_line(cp, leftlen,
3484 " Synchronous Transfer Speed (Mhz):\n ");
3485 ASC_PRT_NEXT();
3486 for (i = 0; i <= ADV_MAX_TID; i++) {
3487 char *speed_str;
3489 if (i == 0) {
3490 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3491 } else if (i == 4) {
3492 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3493 } else if (i == 8) {
3494 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3495 } else if (i == 12) {
3496 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3498 switch (sdtr_speed & ADV_MAX_TID) {
3499 case 0:
3500 speed_str = "Off";
3501 break;
3502 case 1:
3503 speed_str = " 5";
3504 break;
3505 case 2:
3506 speed_str = " 10";
3507 break;
3508 case 3:
3509 speed_str = " 20";
3510 break;
3511 case 4:
3512 speed_str = " 40";
3513 break;
3514 case 5:
3515 speed_str = " 80";
3516 break;
3517 default:
3518 speed_str = "Unk";
3519 break;
3521 len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3522 ASC_PRT_NEXT();
3523 if (i == 7) {
3524 len = asc_prt_line(cp, leftlen, "\n ");
3525 ASC_PRT_NEXT();
3527 sdtr_speed >>= 4;
3529 len = asc_prt_line(cp, leftlen, "\n");
3530 ASC_PRT_NEXT();
3533 return totlen;
3537 * asc_prt_driver_conf()
3539 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540 * cf. asc_prt_line().
3542 * Return the number of characters copied into 'cp'. No more than
3543 * 'cplen' characters will be copied to 'cp'.
3545 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3547 struct asc_board *boardp = shost_priv(shost);
3548 int leftlen;
3549 int totlen;
3550 int len;
3551 int chip_scsi_id;
3553 leftlen = cplen;
3554 totlen = len = 0;
3556 len = asc_prt_line(cp, leftlen,
3557 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3558 shost->host_no);
3559 ASC_PRT_NEXT();
3561 len = asc_prt_line(cp, leftlen,
3562 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563 shost->host_busy, shost->last_reset, shost->max_id,
3564 shost->max_lun, shost->max_channel);
3565 ASC_PRT_NEXT();
3567 len = asc_prt_line(cp, leftlen,
3568 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569 shost->unique_id, shost->can_queue, shost->this_id,
3570 shost->sg_tablesize, shost->cmd_per_lun);
3571 ASC_PRT_NEXT();
3573 len = asc_prt_line(cp, leftlen,
3574 " unchecked_isa_dma %d, use_clustering %d\n",
3575 shost->unchecked_isa_dma, shost->use_clustering);
3576 ASC_PRT_NEXT();
3578 len = asc_prt_line(cp, leftlen,
3579 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580 boardp->flags, boardp->last_reset, jiffies,
3581 boardp->asc_n_io_port);
3582 ASC_PRT_NEXT();
3584 len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3585 ASC_PRT_NEXT();
3587 if (ASC_NARROW_BOARD(boardp)) {
3588 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3589 } else {
3590 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3593 return totlen;
3597 * asc_prt_asc_board_info()
3599 * Print dynamic board configuration information.
3601 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602 * cf. asc_prt_line().
3604 * Return the number of characters copied into 'cp'. No more than
3605 * 'cplen' characters will be copied to 'cp'.
3607 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3609 struct asc_board *boardp = shost_priv(shost);
3610 int chip_scsi_id;
3611 int leftlen;
3612 int totlen;
3613 int len;
3614 ASC_DVC_VAR *v;
3615 ASC_DVC_CFG *c;
3616 int i;
3617 int renegotiate = 0;
3619 v = &boardp->dvc_var.asc_dvc_var;
3620 c = &boardp->dvc_cfg.asc_dvc_cfg;
3621 chip_scsi_id = c->chip_scsi_id;
3623 leftlen = cplen;
3624 totlen = len = 0;
3626 len = asc_prt_line(cp, leftlen,
3627 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3628 shost->host_no);
3629 ASC_PRT_NEXT();
3631 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3632 "mcode_version 0x%x, err_code %u\n",
3633 c->chip_version, c->mcode_date, c->mcode_version,
3634 v->err_code);
3635 ASC_PRT_NEXT();
3637 /* Current number of commands waiting for the host. */
3638 len = asc_prt_line(cp, leftlen,
3639 " Total Command Pending: %d\n", v->cur_total_qng);
3640 ASC_PRT_NEXT();
3642 len = asc_prt_line(cp, leftlen, " Command Queuing:");
3643 ASC_PRT_NEXT();
3644 for (i = 0; i <= ASC_MAX_TID; i++) {
3645 if ((chip_scsi_id == i) ||
3646 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3647 continue;
3649 len = asc_prt_line(cp, leftlen, " %X:%c",
3651 (v->
3652 use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3653 'Y' : 'N');
3654 ASC_PRT_NEXT();
3656 len = asc_prt_line(cp, leftlen, "\n");
3657 ASC_PRT_NEXT();
3659 /* Current number of commands waiting for a device. */
3660 len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3661 ASC_PRT_NEXT();
3662 for (i = 0; i <= ASC_MAX_TID; i++) {
3663 if ((chip_scsi_id == i) ||
3664 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3665 continue;
3667 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3668 ASC_PRT_NEXT();
3670 len = asc_prt_line(cp, leftlen, "\n");
3671 ASC_PRT_NEXT();
3673 /* Current limit on number of commands that can be sent to a device. */
3674 len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3675 ASC_PRT_NEXT();
3676 for (i = 0; i <= ASC_MAX_TID; i++) {
3677 if ((chip_scsi_id == i) ||
3678 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3679 continue;
3681 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3682 ASC_PRT_NEXT();
3684 len = asc_prt_line(cp, leftlen, "\n");
3685 ASC_PRT_NEXT();
3687 /* Indicate whether the device has returned queue full status. */
3688 len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3689 ASC_PRT_NEXT();
3690 for (i = 0; i <= ASC_MAX_TID; i++) {
3691 if ((chip_scsi_id == i) ||
3692 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3693 continue;
3695 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3696 len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3697 i, boardp->queue_full_cnt[i]);
3698 } else {
3699 len = asc_prt_line(cp, leftlen, " %X:N", i);
3701 ASC_PRT_NEXT();
3703 len = asc_prt_line(cp, leftlen, "\n");
3704 ASC_PRT_NEXT();
3706 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3707 ASC_PRT_NEXT();
3708 for (i = 0; i <= ASC_MAX_TID; i++) {
3709 if ((chip_scsi_id == i) ||
3710 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3711 continue;
3713 len = asc_prt_line(cp, leftlen, " %X:%c",
3715 (v->
3716 sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3717 'N');
3718 ASC_PRT_NEXT();
3720 len = asc_prt_line(cp, leftlen, "\n");
3721 ASC_PRT_NEXT();
3723 for (i = 0; i <= ASC_MAX_TID; i++) {
3724 uchar syn_period_ix;
3726 if ((chip_scsi_id == i) ||
3727 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3728 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3729 continue;
3732 len = asc_prt_line(cp, leftlen, " %X:", i);
3733 ASC_PRT_NEXT();
3735 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3736 len = asc_prt_line(cp, leftlen, " Asynchronous");
3737 ASC_PRT_NEXT();
3738 } else {
3739 syn_period_ix =
3740 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3743 len = asc_prt_line(cp, leftlen,
3744 " Transfer Period Factor: %d (%d.%d Mhz),",
3745 v->sdtr_period_tbl[syn_period_ix],
3746 250 /
3747 v->sdtr_period_tbl[syn_period_ix],
3748 ASC_TENTHS(250,
3750 sdtr_period_tbl
3751 [syn_period_ix]));
3752 ASC_PRT_NEXT();
3754 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3755 boardp->
3756 sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3757 ASC_PRT_NEXT();
3760 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3761 len = asc_prt_line(cp, leftlen, "*\n");
3762 renegotiate = 1;
3763 } else {
3764 len = asc_prt_line(cp, leftlen, "\n");
3766 ASC_PRT_NEXT();
3769 if (renegotiate) {
3770 len = asc_prt_line(cp, leftlen,
3771 " * = Re-negotiation pending before next command.\n");
3772 ASC_PRT_NEXT();
3775 return totlen;
3779 * asc_prt_adv_board_info()
3781 * Print dynamic board configuration information.
3783 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784 * cf. asc_prt_line().
3786 * Return the number of characters copied into 'cp'. No more than
3787 * 'cplen' characters will be copied to 'cp'.
3789 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3791 struct asc_board *boardp = shost_priv(shost);
3792 int leftlen;
3793 int totlen;
3794 int len;
3795 int i;
3796 ADV_DVC_VAR *v;
3797 ADV_DVC_CFG *c;
3798 AdvPortAddr iop_base;
3799 ushort chip_scsi_id;
3800 ushort lramword;
3801 uchar lrambyte;
3802 ushort tagqng_able;
3803 ushort sdtr_able, wdtr_able;
3804 ushort wdtr_done, sdtr_done;
3805 ushort period = 0;
3806 int renegotiate = 0;
3808 v = &boardp->dvc_var.adv_dvc_var;
3809 c = &boardp->dvc_cfg.adv_dvc_cfg;
3810 iop_base = v->iop_base;
3811 chip_scsi_id = v->chip_scsi_id;
3813 leftlen = cplen;
3814 totlen = len = 0;
3816 len = asc_prt_line(cp, leftlen,
3817 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3818 shost->host_no);
3819 ASC_PRT_NEXT();
3821 len = asc_prt_line(cp, leftlen,
3822 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823 v->iop_base,
3824 AdvReadWordRegister(iop_base,
3825 IOPW_SCSI_CFG1) & CABLE_DETECT,
3826 v->err_code);
3827 ASC_PRT_NEXT();
3829 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3830 "mcode_version 0x%x\n", c->chip_version,
3831 c->mcode_date, c->mcode_version);
3832 ASC_PRT_NEXT();
3834 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3835 len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3836 ASC_PRT_NEXT();
3837 for (i = 0; i <= ADV_MAX_TID; i++) {
3838 if ((chip_scsi_id == i) ||
3839 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3840 continue;
3843 len = asc_prt_line(cp, leftlen, " %X:%c",
3845 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3846 'N');
3847 ASC_PRT_NEXT();
3849 len = asc_prt_line(cp, leftlen, "\n");
3850 ASC_PRT_NEXT();
3852 len = asc_prt_line(cp, leftlen, " Queue Limit:");
3853 ASC_PRT_NEXT();
3854 for (i = 0; i <= ADV_MAX_TID; i++) {
3855 if ((chip_scsi_id == i) ||
3856 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3857 continue;
3860 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3861 lrambyte);
3863 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3864 ASC_PRT_NEXT();
3866 len = asc_prt_line(cp, leftlen, "\n");
3867 ASC_PRT_NEXT();
3869 len = asc_prt_line(cp, leftlen, " Command Pending:");
3870 ASC_PRT_NEXT();
3871 for (i = 0; i <= ADV_MAX_TID; i++) {
3872 if ((chip_scsi_id == i) ||
3873 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3874 continue;
3877 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3878 lrambyte);
3880 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3881 ASC_PRT_NEXT();
3883 len = asc_prt_line(cp, leftlen, "\n");
3884 ASC_PRT_NEXT();
3886 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3887 len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3888 ASC_PRT_NEXT();
3889 for (i = 0; i <= ADV_MAX_TID; i++) {
3890 if ((chip_scsi_id == i) ||
3891 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3892 continue;
3895 len = asc_prt_line(cp, leftlen, " %X:%c",
3897 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3898 'N');
3899 ASC_PRT_NEXT();
3901 len = asc_prt_line(cp, leftlen, "\n");
3902 ASC_PRT_NEXT();
3904 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3905 len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3906 ASC_PRT_NEXT();
3907 for (i = 0; i <= ADV_MAX_TID; i++) {
3908 if ((chip_scsi_id == i) ||
3909 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3910 continue;
3913 AdvReadWordLram(iop_base,
3914 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3915 lramword);
3917 len = asc_prt_line(cp, leftlen, " %X:%d",
3918 i, (lramword & 0x8000) ? 16 : 8);
3919 ASC_PRT_NEXT();
3921 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3922 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3923 len = asc_prt_line(cp, leftlen, "*");
3924 ASC_PRT_NEXT();
3925 renegotiate = 1;
3928 len = asc_prt_line(cp, leftlen, "\n");
3929 ASC_PRT_NEXT();
3931 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3932 len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3933 ASC_PRT_NEXT();
3934 for (i = 0; i <= ADV_MAX_TID; i++) {
3935 if ((chip_scsi_id == i) ||
3936 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3937 continue;
3940 len = asc_prt_line(cp, leftlen, " %X:%c",
3942 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3943 'N');
3944 ASC_PRT_NEXT();
3946 len = asc_prt_line(cp, leftlen, "\n");
3947 ASC_PRT_NEXT();
3949 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3950 for (i = 0; i <= ADV_MAX_TID; i++) {
3952 AdvReadWordLram(iop_base,
3953 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3954 lramword);
3955 lramword &= ~0x8000;
3957 if ((chip_scsi_id == i) ||
3958 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3959 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3960 continue;
3963 len = asc_prt_line(cp, leftlen, " %X:", i);
3964 ASC_PRT_NEXT();
3966 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3967 len = asc_prt_line(cp, leftlen, " Asynchronous");
3968 ASC_PRT_NEXT();
3969 } else {
3970 len =
3971 asc_prt_line(cp, leftlen,
3972 " Transfer Period Factor: ");
3973 ASC_PRT_NEXT();
3975 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3976 len =
3977 asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3978 ASC_PRT_NEXT();
3979 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3980 len =
3981 asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3982 ASC_PRT_NEXT();
3983 } else { /* 20 Mhz or below. */
3985 period = (((lramword >> 8) * 25) + 50) / 4;
3987 if (period == 0) { /* Should never happen. */
3988 len =
3989 asc_prt_line(cp, leftlen,
3990 "%d (? Mhz), ");
3991 ASC_PRT_NEXT();
3992 } else {
3993 len = asc_prt_line(cp, leftlen,
3994 "%d (%d.%d Mhz),",
3995 period, 250 / period,
3996 ASC_TENTHS(250,
3997 period));
3998 ASC_PRT_NEXT();
4002 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4003 lramword & 0x1F);
4004 ASC_PRT_NEXT();
4007 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4008 len = asc_prt_line(cp, leftlen, "*\n");
4009 renegotiate = 1;
4010 } else {
4011 len = asc_prt_line(cp, leftlen, "\n");
4013 ASC_PRT_NEXT();
4016 if (renegotiate) {
4017 len = asc_prt_line(cp, leftlen,
4018 " * = Re-negotiation pending before next command.\n");
4019 ASC_PRT_NEXT();
4022 return totlen;
4026 * asc_proc_copy()
4028 * Copy proc information to a read buffer taking into account the current
4029 * read offset in the file and the remaining space in the read buffer.
4031 static int
4032 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4033 char *cp, int cplen)
4035 int cnt = 0;
4037 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038 (unsigned)offset, (unsigned)advoffset, cplen);
4039 if (offset <= advoffset) {
4040 /* Read offset below current offset, copy everything. */
4041 cnt = min(cplen, leftlen);
4042 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043 (ulong)curbuf, (ulong)cp, cnt);
4044 memcpy(curbuf, cp, cnt);
4045 } else if (offset < advoffset + cplen) {
4046 /* Read offset within current range, partial copy. */
4047 cnt = (advoffset + cplen) - offset;
4048 cp = (cp + cplen) - cnt;
4049 cnt = min(cnt, leftlen);
4050 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051 (ulong)curbuf, (ulong)cp, cnt);
4052 memcpy(curbuf, cp, cnt);
4054 return cnt;
4057 #ifdef ADVANSYS_STATS
4059 * asc_prt_board_stats()
4061 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062 * cf. asc_prt_line().
4064 * Return the number of characters copied into 'cp'. No more than
4065 * 'cplen' characters will be copied to 'cp'.
4067 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4069 struct asc_board *boardp = shost_priv(shost);
4070 struct asc_stats *s = &boardp->asc_stats;
4072 int leftlen = cplen;
4073 int len, totlen = 0;
4075 len = asc_prt_line(cp, leftlen,
4076 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4077 shost->host_no);
4078 ASC_PRT_NEXT();
4080 len = asc_prt_line(cp, leftlen,
4081 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082 s->queuecommand, s->reset, s->biosparam,
4083 s->interrupt);
4084 ASC_PRT_NEXT();
4086 len = asc_prt_line(cp, leftlen,
4087 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088 s->callback, s->done, s->build_error,
4089 s->adv_build_noreq, s->adv_build_nosg);
4090 ASC_PRT_NEXT();
4092 len = asc_prt_line(cp, leftlen,
4093 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094 s->exe_noerror, s->exe_busy, s->exe_error,
4095 s->exe_unknown);
4096 ASC_PRT_NEXT();
4099 * Display data transfer statistics.
4101 if (s->xfer_cnt > 0) {
4102 len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4103 s->xfer_cnt, s->xfer_elem);
4104 ASC_PRT_NEXT();
4106 len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4107 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4108 ASC_PRT_NEXT();
4110 /* Scatter gather transfer statistics */
4111 len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4112 s->xfer_elem / s->xfer_cnt,
4113 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4114 ASC_PRT_NEXT();
4116 len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4117 (s->xfer_sect / 2) / s->xfer_elem,
4118 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4119 ASC_PRT_NEXT();
4121 len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4122 (s->xfer_sect / 2) / s->xfer_cnt,
4123 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4124 ASC_PRT_NEXT();
4127 return totlen;
4129 #endif /* ADVANSYS_STATS */
4132 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4134 * *buffer: I/O buffer
4135 * **start: if inout == FALSE pointer into buffer where user read should start
4136 * offset: current offset into a /proc/scsi/advansys/[0...] file
4137 * length: length of buffer
4138 * hostno: Scsi_Host host_no
4139 * inout: TRUE - user is writing; FALSE - user is reading
4141 * Return the number of bytes read from or written to a
4142 * /proc/scsi/advansys/[0...] file.
4144 * Note: This function uses the per board buffer 'prtbuf' which is
4145 * allocated when the board is initialized in advansys_detect(). The
4146 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147 * used to write to the buffer. The way asc_proc_copy() is written
4148 * if 'prtbuf' is too small it will not be overwritten. Instead the
4149 * user just won't get all the available statistics.
4151 static int
4152 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4153 off_t offset, int length, int inout)
4155 struct asc_board *boardp = shost_priv(shost);
4156 char *cp;
4157 int cplen;
4158 int cnt;
4159 int totcnt;
4160 int leftlen;
4161 char *curbuf;
4162 off_t advoffset;
4164 ASC_DBG(1, "begin\n");
4167 * User write not supported.
4169 if (inout == TRUE)
4170 return -ENOSYS;
4173 * User read of /proc/scsi/advansys/[0...] file.
4176 /* Copy read data starting at the beginning of the buffer. */
4177 *start = buffer;
4178 curbuf = buffer;
4179 advoffset = 0;
4180 totcnt = 0;
4181 leftlen = length;
4184 * Get board configuration information.
4186 * advansys_info() returns the board string from its own static buffer.
4188 cp = (char *)advansys_info(shost);
4189 strcat(cp, "\n");
4190 cplen = strlen(cp);
4191 /* Copy board information. */
4192 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4193 totcnt += cnt;
4194 leftlen -= cnt;
4195 if (leftlen == 0) {
4196 ASC_DBG(1, "totcnt %d\n", totcnt);
4197 return totcnt;
4199 advoffset += cplen;
4200 curbuf += cnt;
4203 * Display Wide Board BIOS Information.
4205 if (!ASC_NARROW_BOARD(boardp)) {
4206 cp = boardp->prtbuf;
4207 cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4208 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4209 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4210 cplen);
4211 totcnt += cnt;
4212 leftlen -= cnt;
4213 if (leftlen == 0) {
4214 ASC_DBG(1, "totcnt %d\n", totcnt);
4215 return totcnt;
4217 advoffset += cplen;
4218 curbuf += cnt;
4222 * Display driver information for each device attached to the board.
4224 cp = boardp->prtbuf;
4225 cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4226 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4227 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4228 totcnt += cnt;
4229 leftlen -= cnt;
4230 if (leftlen == 0) {
4231 ASC_DBG(1, "totcnt %d\n", totcnt);
4232 return totcnt;
4234 advoffset += cplen;
4235 curbuf += cnt;
4238 * Display EEPROM configuration for the board.
4240 cp = boardp->prtbuf;
4241 if (ASC_NARROW_BOARD(boardp)) {
4242 cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4243 } else {
4244 cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4246 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4247 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4248 totcnt += cnt;
4249 leftlen -= cnt;
4250 if (leftlen == 0) {
4251 ASC_DBG(1, "totcnt %d\n", totcnt);
4252 return totcnt;
4254 advoffset += cplen;
4255 curbuf += cnt;
4258 * Display driver configuration and information for the board.
4260 cp = boardp->prtbuf;
4261 cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4262 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4263 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4264 totcnt += cnt;
4265 leftlen -= cnt;
4266 if (leftlen == 0) {
4267 ASC_DBG(1, "totcnt %d\n", totcnt);
4268 return totcnt;
4270 advoffset += cplen;
4271 curbuf += cnt;
4273 #ifdef ADVANSYS_STATS
4275 * Display driver statistics for the board.
4277 cp = boardp->prtbuf;
4278 cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4279 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4280 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4281 totcnt += cnt;
4282 leftlen -= cnt;
4283 if (leftlen == 0) {
4284 ASC_DBG(1, "totcnt %d\n", totcnt);
4285 return totcnt;
4287 advoffset += cplen;
4288 curbuf += cnt;
4289 #endif /* ADVANSYS_STATS */
4292 * Display Asc Library dynamic configuration information
4293 * for the board.
4295 cp = boardp->prtbuf;
4296 if (ASC_NARROW_BOARD(boardp)) {
4297 cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4298 } else {
4299 cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4301 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4302 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4303 totcnt += cnt;
4304 leftlen -= cnt;
4305 if (leftlen == 0) {
4306 ASC_DBG(1, "totcnt %d\n", totcnt);
4307 return totcnt;
4309 advoffset += cplen;
4310 curbuf += cnt;
4312 ASC_DBG(1, "totcnt %d\n", totcnt);
4314 return totcnt;
4316 #endif /* CONFIG_PROC_FS */
4318 static void asc_scsi_done(struct scsi_cmnd *scp)
4320 scsi_dma_unmap(scp);
4321 ASC_STATS(scp->device->host, done);
4322 scp->scsi_done(scp);
4325 static void AscSetBank(PortAddr iop_base, uchar bank)
4327 uchar val;
4329 val = AscGetChipControl(iop_base) &
4331 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4332 CC_CHIP_RESET));
4333 if (bank == 1) {
4334 val |= CC_BANK_ONE;
4335 } else if (bank == 2) {
4336 val |= CC_DIAG | CC_BANK_ONE;
4337 } else {
4338 val &= ~CC_BANK_ONE;
4340 AscSetChipControl(iop_base, val);
4343 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4345 AscSetBank(iop_base, 1);
4346 AscWriteChipIH(iop_base, ins_code);
4347 AscSetBank(iop_base, 0);
4350 static int AscStartChip(PortAddr iop_base)
4352 AscSetChipControl(iop_base, 0);
4353 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4354 return (0);
4356 return (1);
4359 static int AscStopChip(PortAddr iop_base)
4361 uchar cc_val;
4363 cc_val =
4364 AscGetChipControl(iop_base) &
4365 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4366 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4367 AscSetChipIH(iop_base, INS_HALT);
4368 AscSetChipIH(iop_base, INS_RFLAG_WTM);
4369 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4370 return (0);
4372 return (1);
4375 static int AscIsChipHalted(PortAddr iop_base)
4377 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4378 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4379 return (1);
4382 return (0);
4385 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4387 PortAddr iop_base;
4388 int i = 10;
4390 iop_base = asc_dvc->iop_base;
4391 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4392 && (i-- > 0)) {
4393 mdelay(100);
4395 AscStopChip(iop_base);
4396 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4397 udelay(60);
4398 AscSetChipIH(iop_base, INS_RFLAG_WTM);
4399 AscSetChipIH(iop_base, INS_HALT);
4400 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4401 AscSetChipControl(iop_base, CC_HALT);
4402 mdelay(200);
4403 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4404 AscSetChipStatus(iop_base, 0);
4405 return (AscIsChipHalted(iop_base));
4408 static int AscFindSignature(PortAddr iop_base)
4410 ushort sig_word;
4412 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413 iop_base, AscGetChipSignatureByte(iop_base));
4414 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4415 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416 iop_base, AscGetChipSignatureWord(iop_base));
4417 sig_word = AscGetChipSignatureWord(iop_base);
4418 if ((sig_word == (ushort)ASC_1000_ID0W) ||
4419 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4420 return (1);
4423 return (0);
4426 static void AscEnableInterrupt(PortAddr iop_base)
4428 ushort cfg;
4430 cfg = AscGetChipCfgLsw(iop_base);
4431 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4434 static void AscDisableInterrupt(PortAddr iop_base)
4436 ushort cfg;
4438 cfg = AscGetChipCfgLsw(iop_base);
4439 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4442 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4444 unsigned char byte_data;
4445 unsigned short word_data;
4447 if (isodd_word(addr)) {
4448 AscSetChipLramAddr(iop_base, addr - 1);
4449 word_data = AscGetChipLramData(iop_base);
4450 byte_data = (word_data >> 8) & 0xFF;
4451 } else {
4452 AscSetChipLramAddr(iop_base, addr);
4453 word_data = AscGetChipLramData(iop_base);
4454 byte_data = word_data & 0xFF;
4456 return byte_data;
4459 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4461 ushort word_data;
4463 AscSetChipLramAddr(iop_base, addr);
4464 word_data = AscGetChipLramData(iop_base);
4465 return (word_data);
4468 #if CC_VERY_LONG_SG_LIST
4469 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4471 ushort val_low, val_high;
4472 ASC_DCNT dword_data;
4474 AscSetChipLramAddr(iop_base, addr);
4475 val_low = AscGetChipLramData(iop_base);
4476 val_high = AscGetChipLramData(iop_base);
4477 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4478 return (dword_data);
4480 #endif /* CC_VERY_LONG_SG_LIST */
4482 static void
4483 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4485 int i;
4487 AscSetChipLramAddr(iop_base, s_addr);
4488 for (i = 0; i < words; i++) {
4489 AscSetChipLramData(iop_base, set_wval);
4493 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4495 AscSetChipLramAddr(iop_base, addr);
4496 AscSetChipLramData(iop_base, word_val);
4499 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4501 ushort word_data;
4503 if (isodd_word(addr)) {
4504 addr--;
4505 word_data = AscReadLramWord(iop_base, addr);
4506 word_data &= 0x00FF;
4507 word_data |= (((ushort)byte_val << 8) & 0xFF00);
4508 } else {
4509 word_data = AscReadLramWord(iop_base, addr);
4510 word_data &= 0xFF00;
4511 word_data |= ((ushort)byte_val & 0x00FF);
4513 AscWriteLramWord(iop_base, addr, word_data);
4517 * Copy 2 bytes to LRAM.
4519 * The source data is assumed to be in little-endian order in memory
4520 * and is maintained in little-endian order when written to LRAM.
4522 static void
4523 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4524 const uchar *s_buffer, int words)
4526 int i;
4528 AscSetChipLramAddr(iop_base, s_addr);
4529 for (i = 0; i < 2 * words; i += 2) {
4531 * On a little-endian system the second argument below
4532 * produces a little-endian ushort which is written to
4533 * LRAM in little-endian order. On a big-endian system
4534 * the second argument produces a big-endian ushort which
4535 * is "transparently" byte-swapped by outpw() and written
4536 * in little-endian order to LRAM.
4538 outpw(iop_base + IOP_RAM_DATA,
4539 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4544 * Copy 4 bytes to LRAM.
4546 * The source data is assumed to be in little-endian order in memory
4547 * and is maintained in little-endian order when writen to LRAM.
4549 static void
4550 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4551 ushort s_addr, uchar *s_buffer, int dwords)
4553 int i;
4555 AscSetChipLramAddr(iop_base, s_addr);
4556 for (i = 0; i < 4 * dwords; i += 4) {
4557 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
4558 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
4563 * Copy 2 bytes from LRAM.
4565 * The source data is assumed to be in little-endian order in LRAM
4566 * and is maintained in little-endian order when written to memory.
4568 static void
4569 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4570 ushort s_addr, uchar *d_buffer, int words)
4572 int i;
4573 ushort word;
4575 AscSetChipLramAddr(iop_base, s_addr);
4576 for (i = 0; i < 2 * words; i += 2) {
4577 word = inpw(iop_base + IOP_RAM_DATA);
4578 d_buffer[i] = word & 0xff;
4579 d_buffer[i + 1] = (word >> 8) & 0xff;
4583 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4585 ASC_DCNT sum;
4586 int i;
4588 sum = 0L;
4589 for (i = 0; i < words; i++, s_addr += 2) {
4590 sum += AscReadLramWord(iop_base, s_addr);
4592 return (sum);
4595 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4597 uchar i;
4598 ushort s_addr;
4599 PortAddr iop_base;
4600 ushort warn_code;
4602 iop_base = asc_dvc->iop_base;
4603 warn_code = 0;
4604 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4605 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4606 64) >> 1));
4607 i = ASC_MIN_ACTIVE_QNO;
4608 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4609 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4610 (uchar)(i + 1));
4611 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4612 (uchar)(asc_dvc->max_total_qng));
4613 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4614 (uchar)i);
4615 i++;
4616 s_addr += ASC_QBLK_SIZE;
4617 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4618 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4619 (uchar)(i + 1));
4620 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4621 (uchar)(i - 1));
4622 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4623 (uchar)i);
4625 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4626 (uchar)ASC_QLINK_END);
4627 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4628 (uchar)(asc_dvc->max_total_qng - 1));
4629 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4630 (uchar)asc_dvc->max_total_qng);
4631 i++;
4632 s_addr += ASC_QBLK_SIZE;
4633 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4634 i++, s_addr += ASC_QBLK_SIZE) {
4635 AscWriteLramByte(iop_base,
4636 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4637 AscWriteLramByte(iop_base,
4638 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4639 AscWriteLramByte(iop_base,
4640 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4642 return warn_code;
4645 static ASC_DCNT
4646 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4647 const uchar *mcode_buf, ushort mcode_size)
4649 ASC_DCNT chksum;
4650 ushort mcode_word_size;
4651 ushort mcode_chksum;
4653 /* Write the microcode buffer starting at LRAM address 0. */
4654 mcode_word_size = (ushort)(mcode_size >> 1);
4655 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4656 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4658 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4659 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4660 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661 (ushort)ASC_CODE_SEC_BEG,
4662 (ushort)((mcode_size -
4663 s_addr - (ushort)
4664 ASC_CODE_SEC_BEG) /
4665 2));
4666 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4667 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4668 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4669 return chksum;
4672 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4674 PortAddr iop_base;
4675 int i;
4676 ushort lram_addr;
4678 iop_base = asc_dvc->iop_base;
4679 AscPutRiscVarFreeQHead(iop_base, 1);
4680 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4681 AscPutVarFreeQHead(iop_base, 1);
4682 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4683 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4684 (uchar)((int)asc_dvc->max_total_qng + 1));
4685 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4686 (uchar)((int)asc_dvc->max_total_qng + 2));
4687 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4688 asc_dvc->max_total_qng);
4689 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4690 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4691 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4692 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4693 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4694 AscPutQDoneInProgress(iop_base, 0);
4695 lram_addr = ASC_QADR_BEG;
4696 for (i = 0; i < 32; i++, lram_addr += 2) {
4697 AscWriteLramWord(iop_base, lram_addr, 0);
4701 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4703 int i;
4704 ushort warn_code;
4705 PortAddr iop_base;
4706 ASC_PADDR phy_addr;
4707 ASC_DCNT phy_size;
4708 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4710 iop_base = asc_dvc->iop_base;
4711 warn_code = 0;
4712 for (i = 0; i <= ASC_MAX_TID; i++) {
4713 AscPutMCodeInitSDTRAtID(iop_base, i,
4714 asc_dvc->cfg->sdtr_period_offset[i]);
4717 AscInitQLinkVar(asc_dvc);
4718 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4719 asc_dvc->cfg->disc_enable);
4720 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4723 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4725 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4727 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4728 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4729 (uchar *)&phy_addr, 1);
4730 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4731 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4732 (uchar *)&phy_size, 1);
4734 asc_dvc->cfg->mcode_date =
4735 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4736 asc_dvc->cfg->mcode_version =
4737 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4739 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4740 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4741 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4742 return warn_code;
4744 if (AscStartChip(iop_base) != 1) {
4745 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4746 return warn_code;
4749 return warn_code;
4752 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4754 const struct firmware *fw;
4755 const char fwname[] = "advansys/mcode.bin";
4756 int err;
4757 unsigned long chksum;
4758 ushort warn_code;
4759 PortAddr iop_base;
4761 iop_base = asc_dvc->iop_base;
4762 warn_code = 0;
4763 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4764 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4765 AscResetChipAndScsiBus(asc_dvc);
4766 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4768 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4769 if (asc_dvc->err_code != 0)
4770 return UW_ERR;
4771 if (!AscFindSignature(asc_dvc->iop_base)) {
4772 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4773 return warn_code;
4775 AscDisableInterrupt(iop_base);
4776 warn_code |= AscInitLram(asc_dvc);
4777 if (asc_dvc->err_code != 0)
4778 return UW_ERR;
4780 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4781 if (err) {
4782 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4783 fwname, err);
4784 return err;
4786 if (fw->size < 4) {
4787 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4788 fw->size, fwname);
4789 release_firmware(fw);
4790 return -EINVAL;
4792 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4793 (fw->data[1] << 8) | fw->data[0];
4794 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4795 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4796 fw->size - 4) != chksum) {
4797 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4798 release_firmware(fw);
4799 return warn_code;
4801 release_firmware(fw);
4802 warn_code |= AscInitMicroCodeVar(asc_dvc);
4803 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4804 AscEnableInterrupt(iop_base);
4805 return warn_code;
4809 * Load the Microcode
4811 * Write the microcode image to RISC memory starting at address 0.
4813 * The microcode is stored compressed in the following format:
4815 * 254 word (508 byte) table indexed by byte code followed
4816 * by the following byte codes:
4818 * 1-Byte Code:
4819 * 00: Emit word 0 in table.
4820 * 01: Emit word 1 in table.
4822 * FD: Emit word 253 in table.
4824 * Multi-Byte Code:
4825 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4826 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4828 * Returns 0 or an error if the checksum doesn't match
4830 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4831 int size, int memsize, int chksum)
4833 int i, j, end, len = 0;
4834 ADV_DCNT sum;
4836 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4838 for (i = 253 * 2; i < size; i++) {
4839 if (buf[i] == 0xff) {
4840 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4841 for (j = 0; j < buf[i + 1]; j++) {
4842 AdvWriteWordAutoIncLram(iop_base, word);
4843 len += 2;
4845 i += 3;
4846 } else if (buf[i] == 0xfe) {
4847 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4848 AdvWriteWordAutoIncLram(iop_base, word);
4849 i += 2;
4850 len += 2;
4851 } else {
4852 unsigned int off = buf[i] * 2;
4853 unsigned short word = (buf[off + 1] << 8) | buf[off];
4854 AdvWriteWordAutoIncLram(iop_base, word);
4855 len += 2;
4859 end = len;
4861 while (len < memsize) {
4862 AdvWriteWordAutoIncLram(iop_base, 0);
4863 len += 2;
4866 /* Verify the microcode checksum. */
4867 sum = 0;
4868 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4870 for (len = 0; len < end; len += 2) {
4871 sum += AdvReadWordAutoIncLram(iop_base);
4874 if (sum != chksum)
4875 return ASC_IERR_MCODE_CHKSUM;
4877 return 0;
4880 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4882 ADV_CARR_T *carrp;
4883 ADV_SDCNT buf_size;
4884 ADV_PADDR carr_paddr;
4886 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4887 asc_dvc->carr_freelist = NULL;
4888 if (carrp == asc_dvc->carrier_buf) {
4889 buf_size = ADV_CARRIER_BUFSIZE;
4890 } else {
4891 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4894 do {
4895 /* Get physical address of the carrier 'carrp'. */
4896 carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4898 buf_size -= sizeof(ADV_CARR_T);
4900 carrp->carr_pa = carr_paddr;
4901 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4904 * Insert the carrier at the beginning of the freelist.
4906 carrp->next_vpa =
4907 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4908 asc_dvc->carr_freelist = carrp;
4910 carrp++;
4911 } while (buf_size > 0);
4915 * Send an idle command to the chip and wait for completion.
4917 * Command completion is polled for once per microsecond.
4919 * The function can be called from anywhere including an interrupt handler.
4920 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4921 * functions to prevent reentrancy.
4923 * Return Values:
4924 * ADV_TRUE - command completed successfully
4925 * ADV_FALSE - command failed
4926 * ADV_ERROR - command timed out
4928 static int
4929 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4930 ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4932 int result;
4933 ADV_DCNT i, j;
4934 AdvPortAddr iop_base;
4936 iop_base = asc_dvc->iop_base;
4939 * Clear the idle command status which is set by the microcode
4940 * to a non-zero value to indicate when the command is completed.
4941 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4943 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4946 * Write the idle command value after the idle command parameter
4947 * has been written to avoid a race condition. If the order is not
4948 * followed, the microcode may process the idle command before the
4949 * parameters have been written to LRAM.
4951 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4952 cpu_to_le32(idle_cmd_parameter));
4953 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4956 * Tickle the RISC to tell it to process the idle command.
4958 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4959 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4961 * Clear the tickle value. In the ASC-3550 the RISC flag
4962 * command 'clr_tickle_b' does not work unless the host
4963 * value is cleared.
4965 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4968 /* Wait for up to 100 millisecond for the idle command to timeout. */
4969 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4970 /* Poll once each microsecond for command completion. */
4971 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4972 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4973 result);
4974 if (result != 0)
4975 return result;
4976 udelay(1);
4980 BUG(); /* The idle command should never timeout. */
4981 return ADV_ERROR;
4985 * Reset SCSI Bus and purge all outstanding requests.
4987 * Return Value:
4988 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4989 * ADV_FALSE(0) - Microcode command failed.
4990 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4991 * may be hung which requires driver recovery.
4993 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4995 int status;
4998 * Send the SCSI Bus Reset idle start idle command which asserts
4999 * the SCSI Bus Reset signal.
5001 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5002 if (status != ADV_TRUE) {
5003 return status;
5007 * Delay for the specified SCSI Bus Reset hold time.
5009 * The hold time delay is done on the host because the RISC has no
5010 * microsecond accurate timer.
5012 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5015 * Send the SCSI Bus Reset end idle command which de-asserts
5016 * the SCSI Bus Reset signal and purges any pending requests.
5018 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5019 if (status != ADV_TRUE) {
5020 return status;
5023 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
5025 return status;
5029 * Initialize the ASC-3550.
5031 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5033 * For a non-fatal error return a warning code. If there are no warnings
5034 * then 0 is returned.
5036 * Needed after initialization for error recovery.
5038 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5040 const struct firmware *fw;
5041 const char fwname[] = "advansys/3550.bin";
5042 AdvPortAddr iop_base;
5043 ushort warn_code;
5044 int begin_addr;
5045 int end_addr;
5046 ushort code_sum;
5047 int word;
5048 int i;
5049 int err;
5050 unsigned long chksum;
5051 ushort scsi_cfg1;
5052 uchar tid;
5053 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5054 ushort wdtr_able = 0, sdtr_able, tagqng_able;
5055 uchar max_cmd[ADV_MAX_TID + 1];
5057 /* If there is already an error, don't continue. */
5058 if (asc_dvc->err_code != 0)
5059 return ADV_ERROR;
5062 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5064 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5065 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5066 return ADV_ERROR;
5069 warn_code = 0;
5070 iop_base = asc_dvc->iop_base;
5073 * Save the RISC memory BIOS region before writing the microcode.
5074 * The BIOS may already be loaded and using its RISC LRAM region
5075 * so its region must be saved and restored.
5077 * Note: This code makes the assumption, which is currently true,
5078 * that a chip reset does not clear RISC LRAM.
5080 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5081 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5082 bios_mem[i]);
5086 * Save current per TID negotiated values.
5088 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5089 ushort bios_version, major, minor;
5091 bios_version =
5092 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5093 major = (bios_version >> 12) & 0xF;
5094 minor = (bios_version >> 8) & 0xF;
5095 if (major < 3 || (major == 3 && minor == 1)) {
5096 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5097 AdvReadWordLram(iop_base, 0x120, wdtr_able);
5098 } else {
5099 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5102 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5103 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5104 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5105 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5106 max_cmd[tid]);
5109 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5110 if (err) {
5111 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5112 fwname, err);
5113 return err;
5115 if (fw->size < 4) {
5116 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5117 fw->size, fwname);
5118 release_firmware(fw);
5119 return -EINVAL;
5121 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5122 (fw->data[1] << 8) | fw->data[0];
5123 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5124 fw->size - 4, ADV_3550_MEMSIZE,
5125 chksum);
5126 release_firmware(fw);
5127 if (asc_dvc->err_code)
5128 return ADV_ERROR;
5131 * Restore the RISC memory BIOS region.
5133 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5134 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5135 bios_mem[i]);
5139 * Calculate and write the microcode code checksum to the microcode
5140 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5142 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5143 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5144 code_sum = 0;
5145 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5146 for (word = begin_addr; word < end_addr; word += 2) {
5147 code_sum += AdvReadWordAutoIncLram(iop_base);
5149 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5152 * Read and save microcode version and date.
5154 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5155 asc_dvc->cfg->mcode_date);
5156 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5157 asc_dvc->cfg->mcode_version);
5160 * Set the chip type to indicate the ASC3550.
5162 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5165 * If the PCI Configuration Command Register "Parity Error Response
5166 * Control" Bit was clear (0), then set the microcode variable
5167 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5168 * to ignore DMA parity errors.
5170 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5171 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5172 word |= CONTROL_FLAG_IGNORE_PERR;
5173 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5177 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5178 * threshold of 128 bytes. This register is only accessible to the host.
5180 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5181 START_CTL_EMFU | READ_CMD_MRM);
5184 * Microcode operating variables for WDTR, SDTR, and command tag
5185 * queuing will be set in slave_configure() based on what a
5186 * device reports it is capable of in Inquiry byte 7.
5188 * If SCSI Bus Resets have been disabled, then directly set
5189 * SDTR and WDTR from the EEPROM configuration. This will allow
5190 * the BIOS and warm boot to work without a SCSI bus hang on
5191 * the Inquiry caused by host and target mismatched DTR values.
5192 * Without the SCSI Bus Reset, before an Inquiry a device can't
5193 * be assumed to be in Asynchronous, Narrow mode.
5195 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5196 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5197 asc_dvc->wdtr_able);
5198 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5199 asc_dvc->sdtr_able);
5203 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5204 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5205 * bitmask. These values determine the maximum SDTR speed negotiated
5206 * with a device.
5208 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5209 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5210 * without determining here whether the device supports SDTR.
5212 * 4-bit speed SDTR speed name
5213 * =========== ===============
5214 * 0000b (0x0) SDTR disabled
5215 * 0001b (0x1) 5 Mhz
5216 * 0010b (0x2) 10 Mhz
5217 * 0011b (0x3) 20 Mhz (Ultra)
5218 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5219 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5220 * 0110b (0x6) Undefined
5222 * 1111b (0xF) Undefined
5224 word = 0;
5225 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5226 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5227 /* Set Ultra speed for TID 'tid'. */
5228 word |= (0x3 << (4 * (tid % 4)));
5229 } else {
5230 /* Set Fast speed for TID 'tid'. */
5231 word |= (0x2 << (4 * (tid % 4)));
5233 if (tid == 3) { /* Check if done with sdtr_speed1. */
5234 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5235 word = 0;
5236 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
5237 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5238 word = 0;
5239 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
5240 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5241 word = 0;
5242 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
5243 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5244 /* End of loop. */
5249 * Set microcode operating variable for the disconnect per TID bitmask.
5251 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252 asc_dvc->cfg->disc_enable);
5255 * Set SCSI_CFG0 Microcode Default Value.
5257 * The microcode will set the SCSI_CFG0 register using this value
5258 * after it is started below.
5260 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5261 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5262 asc_dvc->chip_scsi_id);
5265 * Determine SCSI_CFG1 Microcode Default Value.
5267 * The microcode will set the SCSI_CFG1 register using this value
5268 * after it is started below.
5271 /* Read current SCSI_CFG1 Register value. */
5272 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5275 * If all three connectors are in use, return an error.
5277 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5278 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5279 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5280 return ADV_ERROR;
5284 * If the internal narrow cable is reversed all of the SCSI_CTRL
5285 * register signals will be set. Check for and return an error if
5286 * this condition is found.
5288 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5289 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5290 return ADV_ERROR;
5294 * If this is a differential board and a single-ended device
5295 * is attached to one of the connectors, return an error.
5297 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5298 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5299 return ADV_ERROR;
5303 * If automatic termination control is enabled, then set the
5304 * termination value based on a table listed in a_condor.h.
5306 * If manual termination was specified with an EEPROM setting
5307 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5308 * is ready to be 'ored' into SCSI_CFG1.
5310 if (asc_dvc->cfg->termination == 0) {
5312 * The software always controls termination by setting TERM_CTL_SEL.
5313 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5315 asc_dvc->cfg->termination |= TERM_CTL_SEL;
5317 switch (scsi_cfg1 & CABLE_DETECT) {
5318 /* TERM_CTL_H: on, TERM_CTL_L: on */
5319 case 0x3:
5320 case 0x7:
5321 case 0xB:
5322 case 0xD:
5323 case 0xE:
5324 case 0xF:
5325 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5326 break;
5328 /* TERM_CTL_H: on, TERM_CTL_L: off */
5329 case 0x1:
5330 case 0x5:
5331 case 0x9:
5332 case 0xA:
5333 case 0xC:
5334 asc_dvc->cfg->termination |= TERM_CTL_H;
5335 break;
5337 /* TERM_CTL_H: off, TERM_CTL_L: off */
5338 case 0x2:
5339 case 0x6:
5340 break;
5345 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5347 scsi_cfg1 &= ~TERM_CTL;
5350 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5351 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5352 * referenced, because the hardware internally inverts
5353 * the Termination High and Low bits if TERM_POL is set.
5355 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5358 * Set SCSI_CFG1 Microcode Default Value
5360 * Set filter value and possibly modified termination control
5361 * bits in the Microcode SCSI_CFG1 Register Value.
5363 * The microcode will set the SCSI_CFG1 register using this value
5364 * after it is started below.
5366 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5367 FLTR_DISABLE | scsi_cfg1);
5370 * Set MEM_CFG Microcode Default Value
5372 * The microcode will set the MEM_CFG register using this value
5373 * after it is started below.
5375 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5376 * are defined.
5378 * ASC-3550 has 8KB internal memory.
5380 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5381 BIOS_EN | RAM_SZ_8KB);
5384 * Set SEL_MASK Microcode Default Value
5386 * The microcode will set the SEL_MASK register using this value
5387 * after it is started below.
5389 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5390 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5392 AdvBuildCarrierFreelist(asc_dvc);
5395 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5398 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5399 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5400 return ADV_ERROR;
5402 asc_dvc->carr_freelist = (ADV_CARR_T *)
5403 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5406 * The first command issued will be placed in the stopper carrier.
5408 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5411 * Set RISC ICQ physical address start value.
5413 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5416 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5418 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5419 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5420 return ADV_ERROR;
5422 asc_dvc->carr_freelist = (ADV_CARR_T *)
5423 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5426 * The first command completed by the RISC will be placed in
5427 * the stopper.
5429 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5430 * completed the RISC will set the ASC_RQ_STOPPER bit.
5432 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5435 * Set RISC IRQ physical address start value.
5437 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5438 asc_dvc->carr_pending_cnt = 0;
5440 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5441 (ADV_INTR_ENABLE_HOST_INTR |
5442 ADV_INTR_ENABLE_GLOBAL_INTR));
5444 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5445 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5447 /* finally, finally, gentlemen, start your engine */
5448 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5451 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5452 * Resets should be performed. The RISC has to be running
5453 * to issue a SCSI Bus Reset.
5455 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5457 * If the BIOS Signature is present in memory, restore the
5458 * BIOS Handshake Configuration Table and do not perform
5459 * a SCSI Bus Reset.
5461 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5462 0x55AA) {
5464 * Restore per TID negotiated values.
5466 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5467 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5468 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5469 tagqng_able);
5470 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5471 AdvWriteByteLram(iop_base,
5472 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5473 max_cmd[tid]);
5475 } else {
5476 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5477 warn_code = ASC_WARN_BUSRESET_ERROR;
5482 return warn_code;
5486 * Initialize the ASC-38C0800.
5488 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5490 * For a non-fatal error return a warning code. If there are no warnings
5491 * then 0 is returned.
5493 * Needed after initialization for error recovery.
5495 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5497 const struct firmware *fw;
5498 const char fwname[] = "advansys/38C0800.bin";
5499 AdvPortAddr iop_base;
5500 ushort warn_code;
5501 int begin_addr;
5502 int end_addr;
5503 ushort code_sum;
5504 int word;
5505 int i;
5506 int err;
5507 unsigned long chksum;
5508 ushort scsi_cfg1;
5509 uchar byte;
5510 uchar tid;
5511 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5512 ushort wdtr_able, sdtr_able, tagqng_able;
5513 uchar max_cmd[ADV_MAX_TID + 1];
5515 /* If there is already an error, don't continue. */
5516 if (asc_dvc->err_code != 0)
5517 return ADV_ERROR;
5520 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5522 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5523 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5524 return ADV_ERROR;
5527 warn_code = 0;
5528 iop_base = asc_dvc->iop_base;
5531 * Save the RISC memory BIOS region before writing the microcode.
5532 * The BIOS may already be loaded and using its RISC LRAM region
5533 * so its region must be saved and restored.
5535 * Note: This code makes the assumption, which is currently true,
5536 * that a chip reset does not clear RISC LRAM.
5538 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5539 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5540 bios_mem[i]);
5544 * Save current per TID negotiated values.
5546 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5547 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5548 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5549 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5550 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5551 max_cmd[tid]);
5555 * RAM BIST (RAM Built-In Self Test)
5557 * Address : I/O base + offset 0x38h register (byte).
5558 * Function: Bit 7-6(RW) : RAM mode
5559 * Normal Mode : 0x00
5560 * Pre-test Mode : 0x40
5561 * RAM Test Mode : 0x80
5562 * Bit 5 : unused
5563 * Bit 4(RO) : Done bit
5564 * Bit 3-0(RO) : Status
5565 * Host Error : 0x08
5566 * Int_RAM Error : 0x04
5567 * RISC Error : 0x02
5568 * SCSI Error : 0x01
5569 * No Error : 0x00
5571 * Note: RAM BIST code should be put right here, before loading the
5572 * microcode and after saving the RISC memory BIOS region.
5576 * LRAM Pre-test
5578 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5579 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5580 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5581 * to NORMAL_MODE, return an error too.
5583 for (i = 0; i < 2; i++) {
5584 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5585 mdelay(10); /* Wait for 10ms before reading back. */
5586 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5587 if ((byte & RAM_TEST_DONE) == 0
5588 || (byte & 0x0F) != PRE_TEST_VALUE) {
5589 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5590 return ADV_ERROR;
5593 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5594 mdelay(10); /* Wait for 10ms before reading back. */
5595 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5596 != NORMAL_VALUE) {
5597 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5598 return ADV_ERROR;
5603 * LRAM Test - It takes about 1.5 ms to run through the test.
5605 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5606 * If Done bit not set or Status not 0, save register byte, set the
5607 * err_code, and return an error.
5609 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5610 mdelay(10); /* Wait for 10ms before checking status. */
5612 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5613 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5614 /* Get here if Done bit not set or Status not 0. */
5615 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5616 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5617 return ADV_ERROR;
5620 /* We need to reset back to normal mode after LRAM test passes. */
5621 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5623 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5624 if (err) {
5625 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5626 fwname, err);
5627 return err;
5629 if (fw->size < 4) {
5630 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5631 fw->size, fwname);
5632 release_firmware(fw);
5633 return -EINVAL;
5635 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5636 (fw->data[1] << 8) | fw->data[0];
5637 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5638 fw->size - 4, ADV_38C0800_MEMSIZE,
5639 chksum);
5640 release_firmware(fw);
5641 if (asc_dvc->err_code)
5642 return ADV_ERROR;
5645 * Restore the RISC memory BIOS region.
5647 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5648 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5649 bios_mem[i]);
5653 * Calculate and write the microcode code checksum to the microcode
5654 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5656 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5657 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5658 code_sum = 0;
5659 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5660 for (word = begin_addr; word < end_addr; word += 2) {
5661 code_sum += AdvReadWordAutoIncLram(iop_base);
5663 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5666 * Read microcode version and date.
5668 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5669 asc_dvc->cfg->mcode_date);
5670 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5671 asc_dvc->cfg->mcode_version);
5674 * Set the chip type to indicate the ASC38C0800.
5676 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5679 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5680 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5681 * cable detection and then we are able to read C_DET[3:0].
5683 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5684 * Microcode Default Value' section below.
5686 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5687 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5688 scsi_cfg1 | DIS_TERM_DRV);
5691 * If the PCI Configuration Command Register "Parity Error Response
5692 * Control" Bit was clear (0), then set the microcode variable
5693 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5694 * to ignore DMA parity errors.
5696 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5697 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5698 word |= CONTROL_FLAG_IGNORE_PERR;
5699 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5703 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5704 * bits for the default FIFO threshold.
5706 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5708 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5710 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5711 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5712 READ_CMD_MRM);
5715 * Microcode operating variables for WDTR, SDTR, and command tag
5716 * queuing will be set in slave_configure() based on what a
5717 * device reports it is capable of in Inquiry byte 7.
5719 * If SCSI Bus Resets have been disabled, then directly set
5720 * SDTR and WDTR from the EEPROM configuration. This will allow
5721 * the BIOS and warm boot to work without a SCSI bus hang on
5722 * the Inquiry caused by host and target mismatched DTR values.
5723 * Without the SCSI Bus Reset, before an Inquiry a device can't
5724 * be assumed to be in Asynchronous, Narrow mode.
5726 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5727 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5728 asc_dvc->wdtr_able);
5729 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5730 asc_dvc->sdtr_able);
5734 * Set microcode operating variables for DISC and SDTR_SPEED1,
5735 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5736 * configuration values.
5738 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5739 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5740 * without determining here whether the device supports SDTR.
5742 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5743 asc_dvc->cfg->disc_enable);
5744 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5745 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5746 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5747 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5750 * Set SCSI_CFG0 Microcode Default Value.
5752 * The microcode will set the SCSI_CFG0 register using this value
5753 * after it is started below.
5755 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5756 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5757 asc_dvc->chip_scsi_id);
5760 * Determine SCSI_CFG1 Microcode Default Value.
5762 * The microcode will set the SCSI_CFG1 register using this value
5763 * after it is started below.
5766 /* Read current SCSI_CFG1 Register value. */
5767 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5770 * If the internal narrow cable is reversed all of the SCSI_CTRL
5771 * register signals will be set. Check for and return an error if
5772 * this condition is found.
5774 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5775 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5776 return ADV_ERROR;
5780 * All kind of combinations of devices attached to one of four
5781 * connectors are acceptable except HVD device attached. For example,
5782 * LVD device can be attached to SE connector while SE device attached
5783 * to LVD connector. If LVD device attached to SE connector, it only
5784 * runs up to Ultra speed.
5786 * If an HVD device is attached to one of LVD connectors, return an
5787 * error. However, there is no way to detect HVD device attached to
5788 * SE connectors.
5790 if (scsi_cfg1 & HVD) {
5791 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5792 return ADV_ERROR;
5796 * If either SE or LVD automatic termination control is enabled, then
5797 * set the termination value based on a table listed in a_condor.h.
5799 * If manual termination was specified with an EEPROM setting then
5800 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5801 * to be 'ored' into SCSI_CFG1.
5803 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5804 /* SE automatic termination control is enabled. */
5805 switch (scsi_cfg1 & C_DET_SE) {
5806 /* TERM_SE_HI: on, TERM_SE_LO: on */
5807 case 0x1:
5808 case 0x2:
5809 case 0x3:
5810 asc_dvc->cfg->termination |= TERM_SE;
5811 break;
5813 /* TERM_SE_HI: on, TERM_SE_LO: off */
5814 case 0x0:
5815 asc_dvc->cfg->termination |= TERM_SE_HI;
5816 break;
5820 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5821 /* LVD automatic termination control is enabled. */
5822 switch (scsi_cfg1 & C_DET_LVD) {
5823 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5824 case 0x4:
5825 case 0x8:
5826 case 0xC:
5827 asc_dvc->cfg->termination |= TERM_LVD;
5828 break;
5830 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5831 case 0x0:
5832 break;
5837 * Clear any set TERM_SE and TERM_LVD bits.
5839 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5842 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5844 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5847 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5848 * bits and set possibly modified termination control bits in the
5849 * Microcode SCSI_CFG1 Register Value.
5851 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5854 * Set SCSI_CFG1 Microcode Default Value
5856 * Set possibly modified termination control and reset DIS_TERM_DRV
5857 * bits in the Microcode SCSI_CFG1 Register Value.
5859 * The microcode will set the SCSI_CFG1 register using this value
5860 * after it is started below.
5862 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5865 * Set MEM_CFG Microcode Default Value
5867 * The microcode will set the MEM_CFG register using this value
5868 * after it is started below.
5870 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5871 * are defined.
5873 * ASC-38C0800 has 16KB internal memory.
5875 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5876 BIOS_EN | RAM_SZ_16KB);
5879 * Set SEL_MASK Microcode Default Value
5881 * The microcode will set the SEL_MASK register using this value
5882 * after it is started below.
5884 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5885 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5887 AdvBuildCarrierFreelist(asc_dvc);
5890 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5893 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5894 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5895 return ADV_ERROR;
5897 asc_dvc->carr_freelist = (ADV_CARR_T *)
5898 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5901 * The first command issued will be placed in the stopper carrier.
5903 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5906 * Set RISC ICQ physical address start value.
5907 * carr_pa is LE, must be native before write
5909 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5912 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5914 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5915 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5916 return ADV_ERROR;
5918 asc_dvc->carr_freelist = (ADV_CARR_T *)
5919 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5922 * The first command completed by the RISC will be placed in
5923 * the stopper.
5925 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5926 * completed the RISC will set the ASC_RQ_STOPPER bit.
5928 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5931 * Set RISC IRQ physical address start value.
5933 * carr_pa is LE, must be native before write *
5935 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5936 asc_dvc->carr_pending_cnt = 0;
5938 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5939 (ADV_INTR_ENABLE_HOST_INTR |
5940 ADV_INTR_ENABLE_GLOBAL_INTR));
5942 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5943 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5945 /* finally, finally, gentlemen, start your engine */
5946 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5949 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5950 * Resets should be performed. The RISC has to be running
5951 * to issue a SCSI Bus Reset.
5953 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5955 * If the BIOS Signature is present in memory, restore the
5956 * BIOS Handshake Configuration Table and do not perform
5957 * a SCSI Bus Reset.
5959 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5960 0x55AA) {
5962 * Restore per TID negotiated values.
5964 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5965 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5966 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5967 tagqng_able);
5968 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5969 AdvWriteByteLram(iop_base,
5970 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5971 max_cmd[tid]);
5973 } else {
5974 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5975 warn_code = ASC_WARN_BUSRESET_ERROR;
5980 return warn_code;
5984 * Initialize the ASC-38C1600.
5986 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5988 * For a non-fatal error return a warning code. If there are no warnings
5989 * then 0 is returned.
5991 * Needed after initialization for error recovery.
5993 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5995 const struct firmware *fw;
5996 const char fwname[] = "advansys/38C1600.bin";
5997 AdvPortAddr iop_base;
5998 ushort warn_code;
5999 int begin_addr;
6000 int end_addr;
6001 ushort code_sum;
6002 long word;
6003 int i;
6004 int err;
6005 unsigned long chksum;
6006 ushort scsi_cfg1;
6007 uchar byte;
6008 uchar tid;
6009 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
6010 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6011 uchar max_cmd[ASC_MAX_TID + 1];
6013 /* If there is already an error, don't continue. */
6014 if (asc_dvc->err_code != 0) {
6015 return ADV_ERROR;
6019 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6021 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6022 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6023 return ADV_ERROR;
6026 warn_code = 0;
6027 iop_base = asc_dvc->iop_base;
6030 * Save the RISC memory BIOS region before writing the microcode.
6031 * The BIOS may already be loaded and using its RISC LRAM region
6032 * so its region must be saved and restored.
6034 * Note: This code makes the assumption, which is currently true,
6035 * that a chip reset does not clear RISC LRAM.
6037 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6038 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6039 bios_mem[i]);
6043 * Save current per TID negotiated values.
6045 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6046 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6047 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6048 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6049 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6050 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6051 max_cmd[tid]);
6055 * RAM BIST (Built-In Self Test)
6057 * Address : I/O base + offset 0x38h register (byte).
6058 * Function: Bit 7-6(RW) : RAM mode
6059 * Normal Mode : 0x00
6060 * Pre-test Mode : 0x40
6061 * RAM Test Mode : 0x80
6062 * Bit 5 : unused
6063 * Bit 4(RO) : Done bit
6064 * Bit 3-0(RO) : Status
6065 * Host Error : 0x08
6066 * Int_RAM Error : 0x04
6067 * RISC Error : 0x02
6068 * SCSI Error : 0x01
6069 * No Error : 0x00
6071 * Note: RAM BIST code should be put right here, before loading the
6072 * microcode and after saving the RISC memory BIOS region.
6076 * LRAM Pre-test
6078 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6079 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6080 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6081 * to NORMAL_MODE, return an error too.
6083 for (i = 0; i < 2; i++) {
6084 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6085 mdelay(10); /* Wait for 10ms before reading back. */
6086 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6087 if ((byte & RAM_TEST_DONE) == 0
6088 || (byte & 0x0F) != PRE_TEST_VALUE) {
6089 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6090 return ADV_ERROR;
6093 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6094 mdelay(10); /* Wait for 10ms before reading back. */
6095 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6096 != NORMAL_VALUE) {
6097 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6098 return ADV_ERROR;
6103 * LRAM Test - It takes about 1.5 ms to run through the test.
6105 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6106 * If Done bit not set or Status not 0, save register byte, set the
6107 * err_code, and return an error.
6109 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6110 mdelay(10); /* Wait for 10ms before checking status. */
6112 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6113 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6114 /* Get here if Done bit not set or Status not 0. */
6115 asc_dvc->bist_err_code = byte; /* for BIOS display message */
6116 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6117 return ADV_ERROR;
6120 /* We need to reset back to normal mode after LRAM test passes. */
6121 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6123 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6124 if (err) {
6125 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6126 fwname, err);
6127 return err;
6129 if (fw->size < 4) {
6130 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6131 fw->size, fwname);
6132 release_firmware(fw);
6133 return -EINVAL;
6135 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6136 (fw->data[1] << 8) | fw->data[0];
6137 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6138 fw->size - 4, ADV_38C1600_MEMSIZE,
6139 chksum);
6140 release_firmware(fw);
6141 if (asc_dvc->err_code)
6142 return ADV_ERROR;
6145 * Restore the RISC memory BIOS region.
6147 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6148 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6149 bios_mem[i]);
6153 * Calculate and write the microcode code checksum to the microcode
6154 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6156 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6157 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6158 code_sum = 0;
6159 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6160 for (word = begin_addr; word < end_addr; word += 2) {
6161 code_sum += AdvReadWordAutoIncLram(iop_base);
6163 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6166 * Read microcode version and date.
6168 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6169 asc_dvc->cfg->mcode_date);
6170 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6171 asc_dvc->cfg->mcode_version);
6174 * Set the chip type to indicate the ASC38C1600.
6176 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6179 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6180 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6181 * cable detection and then we are able to read C_DET[3:0].
6183 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6184 * Microcode Default Value' section below.
6186 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6187 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6188 scsi_cfg1 | DIS_TERM_DRV);
6191 * If the PCI Configuration Command Register "Parity Error Response
6192 * Control" Bit was clear (0), then set the microcode variable
6193 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6194 * to ignore DMA parity errors.
6196 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6197 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6198 word |= CONTROL_FLAG_IGNORE_PERR;
6199 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6203 * If the BIOS control flag AIPP (Asynchronous Information
6204 * Phase Protection) disable bit is not set, then set the firmware
6205 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6206 * AIPP checking and encoding.
6208 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6209 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6210 word |= CONTROL_FLAG_ENABLE_AIPP;
6211 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6215 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6216 * and START_CTL_TH [3:2].
6218 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6219 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6222 * Microcode operating variables for WDTR, SDTR, and command tag
6223 * queuing will be set in slave_configure() based on what a
6224 * device reports it is capable of in Inquiry byte 7.
6226 * If SCSI Bus Resets have been disabled, then directly set
6227 * SDTR and WDTR from the EEPROM configuration. This will allow
6228 * the BIOS and warm boot to work without a SCSI bus hang on
6229 * the Inquiry caused by host and target mismatched DTR values.
6230 * Without the SCSI Bus Reset, before an Inquiry a device can't
6231 * be assumed to be in Asynchronous, Narrow mode.
6233 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6234 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6235 asc_dvc->wdtr_able);
6236 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6237 asc_dvc->sdtr_able);
6241 * Set microcode operating variables for DISC and SDTR_SPEED1,
6242 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6243 * configuration values.
6245 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6246 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6247 * without determining here whether the device supports SDTR.
6249 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6250 asc_dvc->cfg->disc_enable);
6251 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6252 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6253 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6254 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6257 * Set SCSI_CFG0 Microcode Default Value.
6259 * The microcode will set the SCSI_CFG0 register using this value
6260 * after it is started below.
6262 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6263 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6264 asc_dvc->chip_scsi_id);
6267 * Calculate SCSI_CFG1 Microcode Default Value.
6269 * The microcode will set the SCSI_CFG1 register using this value
6270 * after it is started below.
6272 * Each ASC-38C1600 function has only two cable detect bits.
6273 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6275 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6278 * If the cable is reversed all of the SCSI_CTRL register signals
6279 * will be set. Check for and return an error if this condition is
6280 * found.
6282 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6283 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6284 return ADV_ERROR;
6288 * Each ASC-38C1600 function has two connectors. Only an HVD device
6289 * can not be connected to either connector. An LVD device or SE device
6290 * may be connected to either connecor. If an SE device is connected,
6291 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6293 * If an HVD device is attached, return an error.
6295 if (scsi_cfg1 & HVD) {
6296 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6297 return ADV_ERROR;
6301 * Each function in the ASC-38C1600 uses only the SE cable detect and
6302 * termination because there are two connectors for each function. Each
6303 * function may use either LVD or SE mode. Corresponding the SE automatic
6304 * termination control EEPROM bits are used for each function. Each
6305 * function has its own EEPROM. If SE automatic control is enabled for
6306 * the function, then set the termination value based on a table listed
6307 * in a_condor.h.
6309 * If manual termination is specified in the EEPROM for the function,
6310 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6311 * ready to be 'ored' into SCSI_CFG1.
6313 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6314 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6315 /* SE automatic termination control is enabled. */
6316 switch (scsi_cfg1 & C_DET_SE) {
6317 /* TERM_SE_HI: on, TERM_SE_LO: on */
6318 case 0x1:
6319 case 0x2:
6320 case 0x3:
6321 asc_dvc->cfg->termination |= TERM_SE;
6322 break;
6324 case 0x0:
6325 if (PCI_FUNC(pdev->devfn) == 0) {
6326 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6327 } else {
6328 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6329 asc_dvc->cfg->termination |= TERM_SE_HI;
6331 break;
6336 * Clear any set TERM_SE bits.
6338 scsi_cfg1 &= ~TERM_SE;
6341 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6343 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6346 * Clear Big Endian and Terminator Polarity bits and set possibly
6347 * modified termination control bits in the Microcode SCSI_CFG1
6348 * Register Value.
6350 * Big Endian bit is not used even on big endian machines.
6352 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6355 * Set SCSI_CFG1 Microcode Default Value
6357 * Set possibly modified termination control bits in the Microcode
6358 * SCSI_CFG1 Register Value.
6360 * The microcode will set the SCSI_CFG1 register using this value
6361 * after it is started below.
6363 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6366 * Set MEM_CFG Microcode Default Value
6368 * The microcode will set the MEM_CFG register using this value
6369 * after it is started below.
6371 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6372 * are defined.
6374 * ASC-38C1600 has 32KB internal memory.
6376 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6377 * out a special 16K Adv Library and Microcode version. After the issue
6378 * resolved, we should turn back to the 32K support. Both a_condor.h and
6379 * mcode.sas files also need to be updated.
6381 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6382 * BIOS_EN | RAM_SZ_32KB);
6384 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6385 BIOS_EN | RAM_SZ_16KB);
6388 * Set SEL_MASK Microcode Default Value
6390 * The microcode will set the SEL_MASK register using this value
6391 * after it is started below.
6393 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6394 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6396 AdvBuildCarrierFreelist(asc_dvc);
6399 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6401 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6402 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6403 return ADV_ERROR;
6405 asc_dvc->carr_freelist = (ADV_CARR_T *)
6406 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6409 * The first command issued will be placed in the stopper carrier.
6411 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6414 * Set RISC ICQ physical address start value. Initialize the
6415 * COMMA register to the same value otherwise the RISC will
6416 * prematurely detect a command is available.
6418 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6419 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6420 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6423 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6425 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6426 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6427 return ADV_ERROR;
6429 asc_dvc->carr_freelist = (ADV_CARR_T *)
6430 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6433 * The first command completed by the RISC will be placed in
6434 * the stopper.
6436 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6437 * completed the RISC will set the ASC_RQ_STOPPER bit.
6439 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6442 * Set RISC IRQ physical address start value.
6444 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6445 asc_dvc->carr_pending_cnt = 0;
6447 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6448 (ADV_INTR_ENABLE_HOST_INTR |
6449 ADV_INTR_ENABLE_GLOBAL_INTR));
6450 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6451 AdvWriteWordRegister(iop_base, IOPW_PC, word);
6453 /* finally, finally, gentlemen, start your engine */
6454 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6457 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6458 * Resets should be performed. The RISC has to be running
6459 * to issue a SCSI Bus Reset.
6461 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6463 * If the BIOS Signature is present in memory, restore the
6464 * per TID microcode operating variables.
6466 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6467 0x55AA) {
6469 * Restore per TID negotiated values.
6471 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6472 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6473 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6474 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6475 tagqng_able);
6476 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6477 AdvWriteByteLram(iop_base,
6478 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6479 max_cmd[tid]);
6481 } else {
6482 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6483 warn_code = ASC_WARN_BUSRESET_ERROR;
6488 return warn_code;
6492 * Reset chip and SCSI Bus.
6494 * Return Value:
6495 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6496 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6498 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6500 int status;
6501 ushort wdtr_able, sdtr_able, tagqng_able;
6502 ushort ppr_able = 0;
6503 uchar tid, max_cmd[ADV_MAX_TID + 1];
6504 AdvPortAddr iop_base;
6505 ushort bios_sig;
6507 iop_base = asc_dvc->iop_base;
6510 * Save current per TID negotiated values.
6512 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6513 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6514 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6515 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6517 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6518 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6519 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6520 max_cmd[tid]);
6524 * Force the AdvInitAsc3550/38C0800Driver() function to
6525 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6526 * The initialization functions assumes a SCSI Bus Reset is not
6527 * needed if the BIOS signature word is present.
6529 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6530 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6533 * Stop chip and reset it.
6535 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6536 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6537 mdelay(100);
6538 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6539 ADV_CTRL_REG_CMD_WR_IO_REG);
6542 * Reset Adv Library error code, if any, and try
6543 * re-initializing the chip.
6545 asc_dvc->err_code = 0;
6546 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6547 status = AdvInitAsc38C1600Driver(asc_dvc);
6548 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6549 status = AdvInitAsc38C0800Driver(asc_dvc);
6550 } else {
6551 status = AdvInitAsc3550Driver(asc_dvc);
6554 /* Translate initialization return value to status value. */
6555 if (status == 0) {
6556 status = ADV_TRUE;
6557 } else {
6558 status = ADV_FALSE;
6562 * Restore the BIOS signature word.
6564 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6567 * Restore per TID negotiated values.
6569 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6570 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6571 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6572 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6574 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6575 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6576 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6577 max_cmd[tid]);
6580 return status;
6584 * adv_async_callback() - Adv Library asynchronous event callback function.
6586 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6588 switch (code) {
6589 case ADV_ASYNC_SCSI_BUS_RESET_DET:
6591 * The firmware detected a SCSI Bus reset.
6593 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6594 break;
6596 case ADV_ASYNC_RDMA_FAILURE:
6598 * Handle RDMA failure by resetting the SCSI Bus and
6599 * possibly the chip if it is unresponsive. Log the error
6600 * with a unique code.
6602 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6603 AdvResetChipAndSB(adv_dvc_varp);
6604 break;
6606 case ADV_HOST_SCSI_BUS_RESET:
6608 * Host generated SCSI bus reset occurred.
6610 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6611 break;
6613 default:
6614 ASC_DBG(0, "unknown code 0x%x\n", code);
6615 break;
6620 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6622 * Callback function for the Wide SCSI Adv Library.
6624 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6626 struct asc_board *boardp;
6627 adv_req_t *reqp;
6628 adv_sgblk_t *sgblkp;
6629 struct scsi_cmnd *scp;
6630 struct Scsi_Host *shost;
6631 ADV_DCNT resid_cnt;
6633 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6634 (ulong)adv_dvc_varp, (ulong)scsiqp);
6635 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6638 * Get the adv_req_t structure for the command that has been
6639 * completed. The adv_req_t structure actually contains the
6640 * completed ADV_SCSI_REQ_Q structure.
6642 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6643 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6644 if (reqp == NULL) {
6645 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6646 return;
6650 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6651 * command that has been completed.
6653 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6654 * if any, are dropped, because a board structure pointer can not be
6655 * determined.
6657 scp = reqp->cmndp;
6658 ASC_DBG(1, "scp 0x%p\n", scp);
6659 if (scp == NULL) {
6660 ASC_PRINT
6661 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6662 return;
6664 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6666 shost = scp->device->host;
6667 ASC_STATS(shost, callback);
6668 ASC_DBG(1, "shost 0x%p\n", shost);
6670 boardp = shost_priv(shost);
6671 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6674 * 'done_status' contains the command's ending status.
6676 switch (scsiqp->done_status) {
6677 case QD_NO_ERROR:
6678 ASC_DBG(2, "QD_NO_ERROR\n");
6679 scp->result = 0;
6682 * Check for an underrun condition.
6684 * If there was no error and an underrun condition, then
6685 * then return the number of underrun bytes.
6687 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6688 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6689 resid_cnt <= scsi_bufflen(scp)) {
6690 ASC_DBG(1, "underrun condition %lu bytes\n",
6691 (ulong)resid_cnt);
6692 scsi_set_resid(scp, resid_cnt);
6694 break;
6696 case QD_WITH_ERROR:
6697 ASC_DBG(2, "QD_WITH_ERROR\n");
6698 switch (scsiqp->host_status) {
6699 case QHSTA_NO_ERROR:
6700 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6701 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6702 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6703 SCSI_SENSE_BUFFERSIZE);
6705 * Note: The 'status_byte()' macro used by
6706 * target drivers defined in scsi.h shifts the
6707 * status byte returned by host drivers right
6708 * by 1 bit. This is why target drivers also
6709 * use right shifted status byte definitions.
6710 * For instance target drivers use
6711 * CHECK_CONDITION, defined to 0x1, instead of
6712 * the SCSI defined check condition value of
6713 * 0x2. Host drivers are supposed to return
6714 * the status byte as it is defined by SCSI.
6716 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6717 STATUS_BYTE(scsiqp->scsi_status);
6718 } else {
6719 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6721 break;
6723 default:
6724 /* Some other QHSTA error occurred. */
6725 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6726 scp->result = HOST_BYTE(DID_BAD_TARGET);
6727 break;
6729 break;
6731 case QD_ABORTED_BY_HOST:
6732 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6733 scp->result =
6734 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6735 break;
6737 default:
6738 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6739 scp->result =
6740 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6741 break;
6745 * If the 'init_tidmask' bit isn't already set for the target and the
6746 * current request finished normally, then set the bit for the target
6747 * to indicate that a device is present.
6749 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6750 scsiqp->done_status == QD_NO_ERROR &&
6751 scsiqp->host_status == QHSTA_NO_ERROR) {
6752 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6755 asc_scsi_done(scp);
6758 * Free all 'adv_sgblk_t' structures allocated for the request.
6760 while ((sgblkp = reqp->sgblkp) != NULL) {
6761 /* Remove 'sgblkp' from the request list. */
6762 reqp->sgblkp = sgblkp->next_sgblkp;
6764 /* Add 'sgblkp' to the board free list. */
6765 sgblkp->next_sgblkp = boardp->adv_sgblkp;
6766 boardp->adv_sgblkp = sgblkp;
6770 * Free the adv_req_t structure used with the command by adding
6771 * it back to the board free list.
6773 reqp->next_reqp = boardp->adv_reqp;
6774 boardp->adv_reqp = reqp;
6776 ASC_DBG(1, "done\n");
6780 * Adv Library Interrupt Service Routine
6782 * This function is called by a driver's interrupt service routine.
6783 * The function disables and re-enables interrupts.
6785 * When a microcode idle command is completed, the ADV_DVC_VAR
6786 * 'idle_cmd_done' field is set to ADV_TRUE.
6788 * Note: AdvISR() can be called when interrupts are disabled or even
6789 * when there is no hardware interrupt condition present. It will
6790 * always check for completed idle commands and microcode requests.
6791 * This is an important feature that shouldn't be changed because it
6792 * allows commands to be completed from polling mode loops.
6794 * Return:
6795 * ADV_TRUE(1) - interrupt was pending
6796 * ADV_FALSE(0) - no interrupt was pending
6798 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6800 AdvPortAddr iop_base;
6801 uchar int_stat;
6802 ushort target_bit;
6803 ADV_CARR_T *free_carrp;
6804 ADV_VADDR irq_next_vpa;
6805 ADV_SCSI_REQ_Q *scsiq;
6807 iop_base = asc_dvc->iop_base;
6809 /* Reading the register clears the interrupt. */
6810 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6812 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6813 ADV_INTR_STATUS_INTRC)) == 0) {
6814 return ADV_FALSE;
6818 * Notify the driver of an asynchronous microcode condition by
6819 * calling the adv_async_callback function. The function
6820 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6822 if (int_stat & ADV_INTR_STATUS_INTRB) {
6823 uchar intrb_code;
6825 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6827 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6828 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6829 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6830 asc_dvc->carr_pending_cnt != 0) {
6831 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6832 ADV_TICKLE_A);
6833 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6834 AdvWriteByteRegister(iop_base,
6835 IOPB_TICKLE,
6836 ADV_TICKLE_NOP);
6841 adv_async_callback(asc_dvc, intrb_code);
6845 * Check if the IRQ stopper carrier contains a completed request.
6847 while (((irq_next_vpa =
6848 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6850 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6851 * The RISC will have set 'areq_vpa' to a virtual address.
6853 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6854 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6855 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6856 * in AdvExeScsiQueue().
6858 scsiq = (ADV_SCSI_REQ_Q *)
6859 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6862 * Request finished with good status and the queue was not
6863 * DMAed to host memory by the firmware. Set all status fields
6864 * to indicate good status.
6866 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6867 scsiq->done_status = QD_NO_ERROR;
6868 scsiq->host_status = scsiq->scsi_status = 0;
6869 scsiq->data_cnt = 0L;
6873 * Advance the stopper pointer to the next carrier
6874 * ignoring the lower four bits. Free the previous
6875 * stopper carrier.
6877 free_carrp = asc_dvc->irq_sp;
6878 asc_dvc->irq_sp = (ADV_CARR_T *)
6879 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6881 free_carrp->next_vpa =
6882 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6883 asc_dvc->carr_freelist = free_carrp;
6884 asc_dvc->carr_pending_cnt--;
6886 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6889 * Clear request microcode control flag.
6891 scsiq->cntl = 0;
6894 * Notify the driver of the completed request by passing
6895 * the ADV_SCSI_REQ_Q pointer to its callback function.
6897 scsiq->a_flag |= ADV_SCSIQ_DONE;
6898 adv_isr_callback(asc_dvc, scsiq);
6900 * Note: After the driver callback function is called, 'scsiq'
6901 * can no longer be referenced.
6903 * Fall through and continue processing other completed
6904 * requests...
6907 return ADV_TRUE;
6910 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6912 if (asc_dvc->err_code == 0) {
6913 asc_dvc->err_code = err_code;
6914 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6915 err_code);
6917 return err_code;
6920 static void AscAckInterrupt(PortAddr iop_base)
6922 uchar host_flag;
6923 uchar risc_flag;
6924 ushort loop;
6926 loop = 0;
6927 do {
6928 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6929 if (loop++ > 0x7FFF) {
6930 break;
6932 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6933 host_flag =
6934 AscReadLramByte(iop_base,
6935 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6936 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6937 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6938 AscSetChipStatus(iop_base, CIW_INT_ACK);
6939 loop = 0;
6940 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6941 AscSetChipStatus(iop_base, CIW_INT_ACK);
6942 if (loop++ > 3) {
6943 break;
6946 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6949 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6951 const uchar *period_table;
6952 int max_index;
6953 int min_index;
6954 int i;
6956 period_table = asc_dvc->sdtr_period_tbl;
6957 max_index = (int)asc_dvc->max_sdtr_index;
6958 min_index = (int)asc_dvc->min_sdtr_index;
6959 if ((syn_time <= period_table[max_index])) {
6960 for (i = min_index; i < (max_index - 1); i++) {
6961 if (syn_time <= period_table[i]) {
6962 return (uchar)i;
6965 return (uchar)max_index;
6966 } else {
6967 return (uchar)(max_index + 1);
6971 static uchar
6972 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6974 EXT_MSG sdtr_buf;
6975 uchar sdtr_period_index;
6976 PortAddr iop_base;
6978 iop_base = asc_dvc->iop_base;
6979 sdtr_buf.msg_type = EXTENDED_MESSAGE;
6980 sdtr_buf.msg_len = MS_SDTR_LEN;
6981 sdtr_buf.msg_req = EXTENDED_SDTR;
6982 sdtr_buf.xfer_period = sdtr_period;
6983 sdtr_offset &= ASC_SYN_MAX_OFFSET;
6984 sdtr_buf.req_ack_offset = sdtr_offset;
6985 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6986 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6987 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6988 (uchar *)&sdtr_buf,
6989 sizeof(EXT_MSG) >> 1);
6990 return ((sdtr_period_index << 4) | sdtr_offset);
6991 } else {
6992 sdtr_buf.req_ack_offset = 0;
6993 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6994 (uchar *)&sdtr_buf,
6995 sizeof(EXT_MSG) >> 1);
6996 return 0;
7000 static uchar
7001 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7003 uchar byte;
7004 uchar sdtr_period_ix;
7006 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7007 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7008 return 0xFF;
7009 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7010 return byte;
7013 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7015 ASC_SCSI_BIT_ID_TYPE org_id;
7016 int i;
7017 int sta = TRUE;
7019 AscSetBank(iop_base, 1);
7020 org_id = AscReadChipDvcID(iop_base);
7021 for (i = 0; i <= ASC_MAX_TID; i++) {
7022 if (org_id == (0x01 << i))
7023 break;
7025 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7026 AscWriteChipDvcID(iop_base, id);
7027 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7028 AscSetBank(iop_base, 0);
7029 AscSetChipSyn(iop_base, sdtr_data);
7030 if (AscGetChipSyn(iop_base) != sdtr_data) {
7031 sta = FALSE;
7033 } else {
7034 sta = FALSE;
7036 AscSetBank(iop_base, 1);
7037 AscWriteChipDvcID(iop_base, org_id);
7038 AscSetBank(iop_base, 0);
7039 return (sta);
7042 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7044 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7045 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7048 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7050 EXT_MSG ext_msg;
7051 EXT_MSG out_msg;
7052 ushort halt_q_addr;
7053 int sdtr_accept;
7054 ushort int_halt_code;
7055 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7056 ASC_SCSI_BIT_ID_TYPE target_id;
7057 PortAddr iop_base;
7058 uchar tag_code;
7059 uchar q_status;
7060 uchar halt_qp;
7061 uchar sdtr_data;
7062 uchar target_ix;
7063 uchar q_cntl, tid_no;
7064 uchar cur_dvc_qng;
7065 uchar asyn_sdtr;
7066 uchar scsi_status;
7067 struct asc_board *boardp;
7069 BUG_ON(!asc_dvc->drv_ptr);
7070 boardp = asc_dvc->drv_ptr;
7072 iop_base = asc_dvc->iop_base;
7073 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7075 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7076 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7077 target_ix = AscReadLramByte(iop_base,
7078 (ushort)(halt_q_addr +
7079 (ushort)ASC_SCSIQ_B_TARGET_IX));
7080 q_cntl = AscReadLramByte(iop_base,
7081 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7082 tid_no = ASC_TIX_TO_TID(target_ix);
7083 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7084 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7085 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7086 } else {
7087 asyn_sdtr = 0;
7089 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7090 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7091 AscSetChipSDTR(iop_base, 0, tid_no);
7092 boardp->sdtr_data[tid_no] = 0;
7094 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7095 return (0);
7096 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7097 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7098 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7099 boardp->sdtr_data[tid_no] = asyn_sdtr;
7101 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7102 return (0);
7103 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7104 AscMemWordCopyPtrFromLram(iop_base,
7105 ASCV_MSGIN_BEG,
7106 (uchar *)&ext_msg,
7107 sizeof(EXT_MSG) >> 1);
7109 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7110 ext_msg.msg_req == EXTENDED_SDTR &&
7111 ext_msg.msg_len == MS_SDTR_LEN) {
7112 sdtr_accept = TRUE;
7113 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7115 sdtr_accept = FALSE;
7116 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7118 if ((ext_msg.xfer_period <
7119 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7120 || (ext_msg.xfer_period >
7121 asc_dvc->sdtr_period_tbl[asc_dvc->
7122 max_sdtr_index])) {
7123 sdtr_accept = FALSE;
7124 ext_msg.xfer_period =
7125 asc_dvc->sdtr_period_tbl[asc_dvc->
7126 min_sdtr_index];
7128 if (sdtr_accept) {
7129 sdtr_data =
7130 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7131 ext_msg.req_ack_offset);
7132 if ((sdtr_data == 0xFF)) {
7134 q_cntl |= QC_MSG_OUT;
7135 asc_dvc->init_sdtr &= ~target_id;
7136 asc_dvc->sdtr_done &= ~target_id;
7137 AscSetChipSDTR(iop_base, asyn_sdtr,
7138 tid_no);
7139 boardp->sdtr_data[tid_no] = asyn_sdtr;
7142 if (ext_msg.req_ack_offset == 0) {
7144 q_cntl &= ~QC_MSG_OUT;
7145 asc_dvc->init_sdtr &= ~target_id;
7146 asc_dvc->sdtr_done &= ~target_id;
7147 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7148 } else {
7149 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7150 q_cntl &= ~QC_MSG_OUT;
7151 asc_dvc->sdtr_done |= target_id;
7152 asc_dvc->init_sdtr |= target_id;
7153 asc_dvc->pci_fix_asyn_xfer &=
7154 ~target_id;
7155 sdtr_data =
7156 AscCalSDTRData(asc_dvc,
7157 ext_msg.xfer_period,
7158 ext_msg.
7159 req_ack_offset);
7160 AscSetChipSDTR(iop_base, sdtr_data,
7161 tid_no);
7162 boardp->sdtr_data[tid_no] = sdtr_data;
7163 } else {
7164 q_cntl |= QC_MSG_OUT;
7165 AscMsgOutSDTR(asc_dvc,
7166 ext_msg.xfer_period,
7167 ext_msg.req_ack_offset);
7168 asc_dvc->pci_fix_asyn_xfer &=
7169 ~target_id;
7170 sdtr_data =
7171 AscCalSDTRData(asc_dvc,
7172 ext_msg.xfer_period,
7173 ext_msg.
7174 req_ack_offset);
7175 AscSetChipSDTR(iop_base, sdtr_data,
7176 tid_no);
7177 boardp->sdtr_data[tid_no] = sdtr_data;
7178 asc_dvc->sdtr_done |= target_id;
7179 asc_dvc->init_sdtr |= target_id;
7183 AscWriteLramByte(iop_base,
7184 (ushort)(halt_q_addr +
7185 (ushort)ASC_SCSIQ_B_CNTL),
7186 q_cntl);
7187 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7188 return (0);
7189 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7190 ext_msg.msg_req == EXTENDED_WDTR &&
7191 ext_msg.msg_len == MS_WDTR_LEN) {
7193 ext_msg.wdtr_width = 0;
7194 AscMemWordCopyPtrToLram(iop_base,
7195 ASCV_MSGOUT_BEG,
7196 (uchar *)&ext_msg,
7197 sizeof(EXT_MSG) >> 1);
7198 q_cntl |= QC_MSG_OUT;
7199 AscWriteLramByte(iop_base,
7200 (ushort)(halt_q_addr +
7201 (ushort)ASC_SCSIQ_B_CNTL),
7202 q_cntl);
7203 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7204 return (0);
7205 } else {
7207 ext_msg.msg_type = MESSAGE_REJECT;
7208 AscMemWordCopyPtrToLram(iop_base,
7209 ASCV_MSGOUT_BEG,
7210 (uchar *)&ext_msg,
7211 sizeof(EXT_MSG) >> 1);
7212 q_cntl |= QC_MSG_OUT;
7213 AscWriteLramByte(iop_base,
7214 (ushort)(halt_q_addr +
7215 (ushort)ASC_SCSIQ_B_CNTL),
7216 q_cntl);
7217 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7218 return (0);
7220 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7222 q_cntl |= QC_REQ_SENSE;
7224 if ((asc_dvc->init_sdtr & target_id) != 0) {
7226 asc_dvc->sdtr_done &= ~target_id;
7228 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7229 q_cntl |= QC_MSG_OUT;
7230 AscMsgOutSDTR(asc_dvc,
7231 asc_dvc->
7232 sdtr_period_tbl[(sdtr_data >> 4) &
7233 (uchar)(asc_dvc->
7234 max_sdtr_index -
7235 1)],
7236 (uchar)(sdtr_data & (uchar)
7237 ASC_SYN_MAX_OFFSET));
7240 AscWriteLramByte(iop_base,
7241 (ushort)(halt_q_addr +
7242 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7244 tag_code = AscReadLramByte(iop_base,
7245 (ushort)(halt_q_addr + (ushort)
7246 ASC_SCSIQ_B_TAG_CODE));
7247 tag_code &= 0xDC;
7248 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7249 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7252 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7253 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7256 AscWriteLramByte(iop_base,
7257 (ushort)(halt_q_addr +
7258 (ushort)ASC_SCSIQ_B_TAG_CODE),
7259 tag_code);
7261 q_status = AscReadLramByte(iop_base,
7262 (ushort)(halt_q_addr + (ushort)
7263 ASC_SCSIQ_B_STATUS));
7264 q_status |= (QS_READY | QS_BUSY);
7265 AscWriteLramByte(iop_base,
7266 (ushort)(halt_q_addr +
7267 (ushort)ASC_SCSIQ_B_STATUS),
7268 q_status);
7270 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7271 scsi_busy &= ~target_id;
7272 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7274 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7275 return (0);
7276 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7278 AscMemWordCopyPtrFromLram(iop_base,
7279 ASCV_MSGOUT_BEG,
7280 (uchar *)&out_msg,
7281 sizeof(EXT_MSG) >> 1);
7283 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7284 (out_msg.msg_len == MS_SDTR_LEN) &&
7285 (out_msg.msg_req == EXTENDED_SDTR)) {
7287 asc_dvc->init_sdtr &= ~target_id;
7288 asc_dvc->sdtr_done &= ~target_id;
7289 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7290 boardp->sdtr_data[tid_no] = asyn_sdtr;
7292 q_cntl &= ~QC_MSG_OUT;
7293 AscWriteLramByte(iop_base,
7294 (ushort)(halt_q_addr +
7295 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7296 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7297 return (0);
7298 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7300 scsi_status = AscReadLramByte(iop_base,
7301 (ushort)((ushort)halt_q_addr +
7302 (ushort)
7303 ASC_SCSIQ_SCSI_STATUS));
7304 cur_dvc_qng =
7305 AscReadLramByte(iop_base,
7306 (ushort)((ushort)ASC_QADR_BEG +
7307 (ushort)target_ix));
7308 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7310 scsi_busy = AscReadLramByte(iop_base,
7311 (ushort)ASCV_SCSIBUSY_B);
7312 scsi_busy |= target_id;
7313 AscWriteLramByte(iop_base,
7314 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7315 asc_dvc->queue_full_or_busy |= target_id;
7317 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7318 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7319 cur_dvc_qng -= 1;
7320 asc_dvc->max_dvc_qng[tid_no] =
7321 cur_dvc_qng;
7323 AscWriteLramByte(iop_base,
7324 (ushort)((ushort)
7325 ASCV_MAX_DVC_QNG_BEG
7326 + (ushort)
7327 tid_no),
7328 cur_dvc_qng);
7331 * Set the device queue depth to the
7332 * number of active requests when the
7333 * QUEUE FULL condition was encountered.
7335 boardp->queue_full |= target_id;
7336 boardp->queue_full_cnt[tid_no] =
7337 cur_dvc_qng;
7341 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7342 return (0);
7344 #if CC_VERY_LONG_SG_LIST
7345 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7346 uchar q_no;
7347 ushort q_addr;
7348 uchar sg_wk_q_no;
7349 uchar first_sg_wk_q_no;
7350 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
7351 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
7352 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
7353 ushort sg_list_dwords;
7354 ushort sg_entry_cnt;
7355 uchar next_qp;
7356 int i;
7358 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7359 if (q_no == ASC_QLINK_END)
7360 return 0;
7362 q_addr = ASC_QNO_TO_QADDR(q_no);
7365 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7366 * structure pointer using a macro provided by the driver.
7367 * The ASC_SCSI_REQ pointer provides a pointer to the
7368 * host ASC_SG_HEAD structure.
7370 /* Read request's SRB pointer. */
7371 scsiq = (ASC_SCSI_Q *)
7372 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7373 (ushort)
7374 (q_addr +
7375 ASC_SCSIQ_D_SRBPTR))));
7378 * Get request's first and working SG queue.
7380 sg_wk_q_no = AscReadLramByte(iop_base,
7381 (ushort)(q_addr +
7382 ASC_SCSIQ_B_SG_WK_QP));
7384 first_sg_wk_q_no = AscReadLramByte(iop_base,
7385 (ushort)(q_addr +
7386 ASC_SCSIQ_B_FIRST_SG_WK_QP));
7389 * Reset request's working SG queue back to the
7390 * first SG queue.
7392 AscWriteLramByte(iop_base,
7393 (ushort)(q_addr +
7394 (ushort)ASC_SCSIQ_B_SG_WK_QP),
7395 first_sg_wk_q_no);
7397 sg_head = scsiq->sg_head;
7400 * Set sg_entry_cnt to the number of SG elements
7401 * that will be completed on this interrupt.
7403 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7404 * SG elements. The data_cnt and data_addr fields which
7405 * add 1 to the SG element capacity are not used when
7406 * restarting SG handling after a halt.
7408 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7409 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7412 * Keep track of remaining number of SG elements that
7413 * will need to be handled on the next interrupt.
7415 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7416 } else {
7417 sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7418 scsiq->remain_sg_entry_cnt = 0;
7422 * Copy SG elements into the list of allocated SG queues.
7424 * Last index completed is saved in scsiq->next_sg_index.
7426 next_qp = first_sg_wk_q_no;
7427 q_addr = ASC_QNO_TO_QADDR(next_qp);
7428 scsi_sg_q.sg_head_qp = q_no;
7429 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7430 for (i = 0; i < sg_head->queue_cnt; i++) {
7431 scsi_sg_q.seq_no = i + 1;
7432 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7433 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7434 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7436 * After very first SG queue RISC FW uses next
7437 * SG queue first element then checks sg_list_cnt
7438 * against zero and then decrements, so set
7439 * sg_list_cnt 1 less than number of SG elements
7440 * in each SG queue.
7442 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7443 scsi_sg_q.sg_cur_list_cnt =
7444 ASC_SG_LIST_PER_Q - 1;
7445 } else {
7447 * This is the last SG queue in the list of
7448 * allocated SG queues. If there are more
7449 * SG elements than will fit in the allocated
7450 * queues, then set the QCSG_SG_XFER_MORE flag.
7452 if (scsiq->remain_sg_entry_cnt != 0) {
7453 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7454 } else {
7455 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7457 /* equals sg_entry_cnt * 2 */
7458 sg_list_dwords = sg_entry_cnt << 1;
7459 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7460 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7461 sg_entry_cnt = 0;
7464 scsi_sg_q.q_no = next_qp;
7465 AscMemWordCopyPtrToLram(iop_base,
7466 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7467 (uchar *)&scsi_sg_q,
7468 sizeof(ASC_SG_LIST_Q) >> 1);
7470 AscMemDWordCopyPtrToLram(iop_base,
7471 q_addr + ASC_SGQ_LIST_BEG,
7472 (uchar *)&sg_head->
7473 sg_list[scsiq->next_sg_index],
7474 sg_list_dwords);
7476 scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7479 * If the just completed SG queue contained the
7480 * last SG element, then no more SG queues need
7481 * to be written.
7483 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7484 break;
7487 next_qp = AscReadLramByte(iop_base,
7488 (ushort)(q_addr +
7489 ASC_SCSIQ_B_FWD));
7490 q_addr = ASC_QNO_TO_QADDR(next_qp);
7494 * Clear the halt condition so the RISC will be restarted
7495 * after the return.
7497 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7498 return (0);
7500 #endif /* CC_VERY_LONG_SG_LIST */
7501 return (0);
7505 * void
7506 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7508 * Calling/Exit State:
7509 * none
7511 * Description:
7512 * Input an ASC_QDONE_INFO structure from the chip
7514 static void
7515 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7517 int i;
7518 ushort word;
7520 AscSetChipLramAddr(iop_base, s_addr);
7521 for (i = 0; i < 2 * words; i += 2) {
7522 if (i == 10) {
7523 continue;
7525 word = inpw(iop_base + IOP_RAM_DATA);
7526 inbuf[i] = word & 0xff;
7527 inbuf[i + 1] = (word >> 8) & 0xff;
7529 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7532 static uchar
7533 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7534 ushort q_addr,
7535 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7537 ushort _val;
7538 uchar sg_queue_cnt;
7540 DvcGetQinfo(iop_base,
7541 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7542 (uchar *)scsiq,
7543 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7545 _val = AscReadLramWord(iop_base,
7546 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7547 scsiq->q_status = (uchar)_val;
7548 scsiq->q_no = (uchar)(_val >> 8);
7549 _val = AscReadLramWord(iop_base,
7550 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7551 scsiq->cntl = (uchar)_val;
7552 sg_queue_cnt = (uchar)(_val >> 8);
7553 _val = AscReadLramWord(iop_base,
7554 (ushort)(q_addr +
7555 (ushort)ASC_SCSIQ_B_SENSE_LEN));
7556 scsiq->sense_len = (uchar)_val;
7557 scsiq->extra_bytes = (uchar)(_val >> 8);
7560 * Read high word of remain bytes from alternate location.
7562 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7563 (ushort)(q_addr +
7564 (ushort)
7565 ASC_SCSIQ_W_ALT_DC1)))
7566 << 16);
7568 * Read low word of remain bytes from original location.
7570 scsiq->remain_bytes += AscReadLramWord(iop_base,
7571 (ushort)(q_addr + (ushort)
7572 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7574 scsiq->remain_bytes &= max_dma_count;
7575 return sg_queue_cnt;
7579 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7581 * Interrupt callback function for the Narrow SCSI Asc Library.
7583 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7585 struct asc_board *boardp;
7586 struct scsi_cmnd *scp;
7587 struct Scsi_Host *shost;
7589 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7590 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7592 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7593 if (!scp)
7594 return;
7596 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7598 shost = scp->device->host;
7599 ASC_STATS(shost, callback);
7600 ASC_DBG(1, "shost 0x%p\n", shost);
7602 boardp = shost_priv(shost);
7603 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7605 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7606 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7608 * 'qdonep' contains the command's ending status.
7610 switch (qdonep->d3.done_stat) {
7611 case QD_NO_ERROR:
7612 ASC_DBG(2, "QD_NO_ERROR\n");
7613 scp->result = 0;
7616 * Check for an underrun condition.
7618 * If there was no error and an underrun condition, then
7619 * return the number of underrun bytes.
7621 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7622 qdonep->remain_bytes <= scsi_bufflen(scp)) {
7623 ASC_DBG(1, "underrun condition %u bytes\n",
7624 (unsigned)qdonep->remain_bytes);
7625 scsi_set_resid(scp, qdonep->remain_bytes);
7627 break;
7629 case QD_WITH_ERROR:
7630 ASC_DBG(2, "QD_WITH_ERROR\n");
7631 switch (qdonep->d3.host_stat) {
7632 case QHSTA_NO_ERROR:
7633 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7634 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7635 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7636 SCSI_SENSE_BUFFERSIZE);
7638 * Note: The 'status_byte()' macro used by
7639 * target drivers defined in scsi.h shifts the
7640 * status byte returned by host drivers right
7641 * by 1 bit. This is why target drivers also
7642 * use right shifted status byte definitions.
7643 * For instance target drivers use
7644 * CHECK_CONDITION, defined to 0x1, instead of
7645 * the SCSI defined check condition value of
7646 * 0x2. Host drivers are supposed to return
7647 * the status byte as it is defined by SCSI.
7649 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7650 STATUS_BYTE(qdonep->d3.scsi_stat);
7651 } else {
7652 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7654 break;
7656 default:
7657 /* QHSTA error occurred */
7658 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7659 scp->result = HOST_BYTE(DID_BAD_TARGET);
7660 break;
7662 break;
7664 case QD_ABORTED_BY_HOST:
7665 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7666 scp->result =
7667 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7668 scsi_msg) |
7669 STATUS_BYTE(qdonep->d3.scsi_stat);
7670 break;
7672 default:
7673 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7674 scp->result =
7675 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7676 scsi_msg) |
7677 STATUS_BYTE(qdonep->d3.scsi_stat);
7678 break;
7682 * If the 'init_tidmask' bit isn't already set for the target and the
7683 * current request finished normally, then set the bit for the target
7684 * to indicate that a device is present.
7686 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7687 qdonep->d3.done_stat == QD_NO_ERROR &&
7688 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7689 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7692 asc_scsi_done(scp);
7695 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7697 uchar next_qp;
7698 uchar n_q_used;
7699 uchar sg_list_qp;
7700 uchar sg_queue_cnt;
7701 uchar q_cnt;
7702 uchar done_q_tail;
7703 uchar tid_no;
7704 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7705 ASC_SCSI_BIT_ID_TYPE target_id;
7706 PortAddr iop_base;
7707 ushort q_addr;
7708 ushort sg_q_addr;
7709 uchar cur_target_qng;
7710 ASC_QDONE_INFO scsiq_buf;
7711 ASC_QDONE_INFO *scsiq;
7712 int false_overrun;
7714 iop_base = asc_dvc->iop_base;
7715 n_q_used = 1;
7716 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7717 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7718 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7719 next_qp = AscReadLramByte(iop_base,
7720 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7721 if (next_qp != ASC_QLINK_END) {
7722 AscPutVarDoneQTail(iop_base, next_qp);
7723 q_addr = ASC_QNO_TO_QADDR(next_qp);
7724 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7725 asc_dvc->max_dma_count);
7726 AscWriteLramByte(iop_base,
7727 (ushort)(q_addr +
7728 (ushort)ASC_SCSIQ_B_STATUS),
7729 (uchar)(scsiq->
7730 q_status & (uchar)~(QS_READY |
7731 QS_ABORTED)));
7732 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7733 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7734 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7735 sg_q_addr = q_addr;
7736 sg_list_qp = next_qp;
7737 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7738 sg_list_qp = AscReadLramByte(iop_base,
7739 (ushort)(sg_q_addr
7740 + (ushort)
7741 ASC_SCSIQ_B_FWD));
7742 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7743 if (sg_list_qp == ASC_QLINK_END) {
7744 AscSetLibErrorCode(asc_dvc,
7745 ASCQ_ERR_SG_Q_LINKS);
7746 scsiq->d3.done_stat = QD_WITH_ERROR;
7747 scsiq->d3.host_stat =
7748 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7749 goto FATAL_ERR_QDONE;
7751 AscWriteLramByte(iop_base,
7752 (ushort)(sg_q_addr + (ushort)
7753 ASC_SCSIQ_B_STATUS),
7754 QS_FREE);
7756 n_q_used = sg_queue_cnt + 1;
7757 AscPutVarDoneQTail(iop_base, sg_list_qp);
7759 if (asc_dvc->queue_full_or_busy & target_id) {
7760 cur_target_qng = AscReadLramByte(iop_base,
7761 (ushort)((ushort)
7762 ASC_QADR_BEG
7763 + (ushort)
7764 scsiq->d2.
7765 target_ix));
7766 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7767 scsi_busy = AscReadLramByte(iop_base, (ushort)
7768 ASCV_SCSIBUSY_B);
7769 scsi_busy &= ~target_id;
7770 AscWriteLramByte(iop_base,
7771 (ushort)ASCV_SCSIBUSY_B,
7772 scsi_busy);
7773 asc_dvc->queue_full_or_busy &= ~target_id;
7776 if (asc_dvc->cur_total_qng >= n_q_used) {
7777 asc_dvc->cur_total_qng -= n_q_used;
7778 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7779 asc_dvc->cur_dvc_qng[tid_no]--;
7781 } else {
7782 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7783 scsiq->d3.done_stat = QD_WITH_ERROR;
7784 goto FATAL_ERR_QDONE;
7786 if ((scsiq->d2.srb_ptr == 0UL) ||
7787 ((scsiq->q_status & QS_ABORTED) != 0)) {
7788 return (0x11);
7789 } else if (scsiq->q_status == QS_DONE) {
7790 false_overrun = FALSE;
7791 if (scsiq->extra_bytes != 0) {
7792 scsiq->remain_bytes +=
7793 (ADV_DCNT)scsiq->extra_bytes;
7795 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7796 if (scsiq->d3.host_stat ==
7797 QHSTA_M_DATA_OVER_RUN) {
7798 if ((scsiq->
7799 cntl & (QC_DATA_IN | QC_DATA_OUT))
7800 == 0) {
7801 scsiq->d3.done_stat =
7802 QD_NO_ERROR;
7803 scsiq->d3.host_stat =
7804 QHSTA_NO_ERROR;
7805 } else if (false_overrun) {
7806 scsiq->d3.done_stat =
7807 QD_NO_ERROR;
7808 scsiq->d3.host_stat =
7809 QHSTA_NO_ERROR;
7811 } else if (scsiq->d3.host_stat ==
7812 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7813 AscStopChip(iop_base);
7814 AscSetChipControl(iop_base,
7815 (uchar)(CC_SCSI_RESET
7816 | CC_HALT));
7817 udelay(60);
7818 AscSetChipControl(iop_base, CC_HALT);
7819 AscSetChipStatus(iop_base,
7820 CIW_CLR_SCSI_RESET_INT);
7821 AscSetChipStatus(iop_base, 0);
7822 AscSetChipControl(iop_base, 0);
7825 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7826 asc_isr_callback(asc_dvc, scsiq);
7827 } else {
7828 if ((AscReadLramByte(iop_base,
7829 (ushort)(q_addr + (ushort)
7830 ASC_SCSIQ_CDB_BEG))
7831 == START_STOP)) {
7832 asc_dvc->unit_not_ready &= ~target_id;
7833 if (scsiq->d3.done_stat != QD_NO_ERROR) {
7834 asc_dvc->start_motor &=
7835 ~target_id;
7839 return (1);
7840 } else {
7841 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7842 FATAL_ERR_QDONE:
7843 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7844 asc_isr_callback(asc_dvc, scsiq);
7846 return (0x80);
7849 return (0);
7852 static int AscISR(ASC_DVC_VAR *asc_dvc)
7854 ASC_CS_TYPE chipstat;
7855 PortAddr iop_base;
7856 ushort saved_ram_addr;
7857 uchar ctrl_reg;
7858 uchar saved_ctrl_reg;
7859 int int_pending;
7860 int status;
7861 uchar host_flag;
7863 iop_base = asc_dvc->iop_base;
7864 int_pending = FALSE;
7866 if (AscIsIntPending(iop_base) == 0)
7867 return int_pending;
7869 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7870 return ERR;
7872 if (asc_dvc->in_critical_cnt != 0) {
7873 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7874 return ERR;
7876 if (asc_dvc->is_in_int) {
7877 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7878 return ERR;
7880 asc_dvc->is_in_int = TRUE;
7881 ctrl_reg = AscGetChipControl(iop_base);
7882 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7883 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7884 chipstat = AscGetChipStatus(iop_base);
7885 if (chipstat & CSW_SCSI_RESET_LATCH) {
7886 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7887 int i = 10;
7888 int_pending = TRUE;
7889 asc_dvc->sdtr_done = 0;
7890 saved_ctrl_reg &= (uchar)(~CC_HALT);
7891 while ((AscGetChipStatus(iop_base) &
7892 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7893 mdelay(100);
7895 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7896 AscSetChipControl(iop_base, CC_HALT);
7897 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7898 AscSetChipStatus(iop_base, 0);
7899 chipstat = AscGetChipStatus(iop_base);
7902 saved_ram_addr = AscGetChipLramAddr(iop_base);
7903 host_flag = AscReadLramByte(iop_base,
7904 ASCV_HOST_FLAG_B) &
7905 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7906 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7907 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7908 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7909 AscAckInterrupt(iop_base);
7910 int_pending = TRUE;
7911 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7912 if (AscIsrChipHalted(asc_dvc) == ERR) {
7913 goto ISR_REPORT_QDONE_FATAL_ERROR;
7914 } else {
7915 saved_ctrl_reg &= (uchar)(~CC_HALT);
7917 } else {
7918 ISR_REPORT_QDONE_FATAL_ERROR:
7919 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7920 while (((status =
7921 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7923 } else {
7924 do {
7925 if ((status =
7926 AscIsrQDone(asc_dvc)) == 1) {
7927 break;
7929 } while (status == 0x11);
7931 if ((status & 0x80) != 0)
7932 int_pending = ERR;
7935 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7936 AscSetChipLramAddr(iop_base, saved_ram_addr);
7937 AscSetChipControl(iop_base, saved_ctrl_reg);
7938 asc_dvc->is_in_int = FALSE;
7939 return int_pending;
7943 * advansys_reset()
7945 * Reset the bus associated with the command 'scp'.
7947 * This function runs its own thread. Interrupts must be blocked but
7948 * sleeping is allowed and no locking other than for host structures is
7949 * required. Returns SUCCESS or FAILED.
7951 static int advansys_reset(struct scsi_cmnd *scp)
7953 struct Scsi_Host *shost = scp->device->host;
7954 struct asc_board *boardp = shost_priv(shost);
7955 unsigned long flags;
7956 int status;
7957 int ret = SUCCESS;
7959 ASC_DBG(1, "0x%p\n", scp);
7961 ASC_STATS(shost, reset);
7963 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7965 if (ASC_NARROW_BOARD(boardp)) {
7966 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7968 /* Reset the chip and SCSI bus. */
7969 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7970 status = AscInitAsc1000Driver(asc_dvc);
7972 /* Refer to ASC_IERR_* defintions for meaning of 'err_code'. */
7973 if (asc_dvc->err_code) {
7974 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7975 "0x%x\n", asc_dvc->err_code);
7976 ret = FAILED;
7977 } else if (status) {
7978 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7979 "0x%x\n", status);
7980 } else {
7981 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7982 "successful\n");
7985 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7986 spin_lock_irqsave(shost->host_lock, flags);
7987 } else {
7989 * If the suggest reset bus flags are set, then reset the bus.
7990 * Otherwise only reset the device.
7992 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7995 * Reset the target's SCSI bus.
7997 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7998 switch (AdvResetChipAndSB(adv_dvc)) {
7999 case ASC_TRUE:
8000 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8001 "successful\n");
8002 break;
8003 case ASC_FALSE:
8004 default:
8005 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8006 ret = FAILED;
8007 break;
8009 spin_lock_irqsave(shost->host_lock, flags);
8010 AdvISR(adv_dvc);
8013 /* Save the time of the most recently completed reset. */
8014 boardp->last_reset = jiffies;
8015 spin_unlock_irqrestore(shost->host_lock, flags);
8017 ASC_DBG(1, "ret %d\n", ret);
8019 return ret;
8023 * advansys_biosparam()
8025 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8026 * support is enabled for a drive.
8028 * ip (information pointer) is an int array with the following definition:
8029 * ip[0]: heads
8030 * ip[1]: sectors
8031 * ip[2]: cylinders
8033 static int
8034 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8035 sector_t capacity, int ip[])
8037 struct asc_board *boardp = shost_priv(sdev->host);
8039 ASC_DBG(1, "begin\n");
8040 ASC_STATS(sdev->host, biosparam);
8041 if (ASC_NARROW_BOARD(boardp)) {
8042 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8043 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8044 ip[0] = 255;
8045 ip[1] = 63;
8046 } else {
8047 ip[0] = 64;
8048 ip[1] = 32;
8050 } else {
8051 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8052 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8053 ip[0] = 255;
8054 ip[1] = 63;
8055 } else {
8056 ip[0] = 64;
8057 ip[1] = 32;
8060 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8061 ASC_DBG(1, "end\n");
8062 return 0;
8066 * First-level interrupt handler.
8068 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8070 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8072 struct Scsi_Host *shost = dev_id;
8073 struct asc_board *boardp = shost_priv(shost);
8074 irqreturn_t result = IRQ_NONE;
8076 ASC_DBG(2, "boardp 0x%p\n", boardp);
8077 spin_lock(shost->host_lock);
8078 if (ASC_NARROW_BOARD(boardp)) {
8079 if (AscIsIntPending(shost->io_port)) {
8080 result = IRQ_HANDLED;
8081 ASC_STATS(shost, interrupt);
8082 ASC_DBG(1, "before AscISR()\n");
8083 AscISR(&boardp->dvc_var.asc_dvc_var);
8085 } else {
8086 ASC_DBG(1, "before AdvISR()\n");
8087 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8088 result = IRQ_HANDLED;
8089 ASC_STATS(shost, interrupt);
8092 spin_unlock(shost->host_lock);
8094 ASC_DBG(1, "end\n");
8095 return result;
8098 static int AscHostReqRiscHalt(PortAddr iop_base)
8100 int count = 0;
8101 int sta = 0;
8102 uchar saved_stop_code;
8104 if (AscIsChipHalted(iop_base))
8105 return (1);
8106 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8107 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8108 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8109 do {
8110 if (AscIsChipHalted(iop_base)) {
8111 sta = 1;
8112 break;
8114 mdelay(100);
8115 } while (count++ < 20);
8116 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8117 return (sta);
8120 static int
8121 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8123 int sta = FALSE;
8125 if (AscHostReqRiscHalt(iop_base)) {
8126 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8127 AscStartChip(iop_base);
8129 return sta;
8132 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8134 char type = sdev->type;
8135 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8137 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8138 return;
8139 if (asc_dvc->init_sdtr & tid_bits)
8140 return;
8142 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8143 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8145 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8146 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8147 (type == TYPE_ROM) || (type == TYPE_TAPE))
8148 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8150 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8151 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8152 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8155 static void
8156 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8158 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8159 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8161 if (sdev->lun == 0) {
8162 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8163 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8164 asc_dvc->init_sdtr |= tid_bit;
8165 } else {
8166 asc_dvc->init_sdtr &= ~tid_bit;
8169 if (orig_init_sdtr != asc_dvc->init_sdtr)
8170 AscAsyncFix(asc_dvc, sdev);
8173 if (sdev->tagged_supported) {
8174 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8175 if (sdev->lun == 0) {
8176 asc_dvc->cfg->can_tagged_qng |= tid_bit;
8177 asc_dvc->use_tagged_qng |= tid_bit;
8179 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8180 asc_dvc->max_dvc_qng[sdev->id]);
8182 } else {
8183 if (sdev->lun == 0) {
8184 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8185 asc_dvc->use_tagged_qng &= ~tid_bit;
8187 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8190 if ((sdev->lun == 0) &&
8191 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8192 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8193 asc_dvc->cfg->disc_enable);
8194 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8195 asc_dvc->use_tagged_qng);
8196 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8197 asc_dvc->cfg->can_tagged_qng);
8199 asc_dvc->max_dvc_qng[sdev->id] =
8200 asc_dvc->cfg->max_tag_qng[sdev->id];
8201 AscWriteLramByte(asc_dvc->iop_base,
8202 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8203 asc_dvc->max_dvc_qng[sdev->id]);
8208 * Wide Transfers
8210 * If the EEPROM enabled WDTR for the device and the device supports wide
8211 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8212 * write the new value to the microcode.
8214 static void
8215 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8217 unsigned short cfg_word;
8218 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8219 if ((cfg_word & tidmask) != 0)
8220 return;
8222 cfg_word |= tidmask;
8223 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8226 * Clear the microcode SDTR and WDTR negotiation done indicators for
8227 * the target to cause it to negotiate with the new setting set above.
8228 * WDTR when accepted causes the target to enter asynchronous mode, so
8229 * SDTR must be negotiated.
8231 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8232 cfg_word &= ~tidmask;
8233 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8234 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8235 cfg_word &= ~tidmask;
8236 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8240 * Synchronous Transfers
8242 * If the EEPROM enabled SDTR for the device and the device
8243 * supports synchronous transfers, then turn on the device's
8244 * 'sdtr_able' bit. Write the new value to the microcode.
8246 static void
8247 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8249 unsigned short cfg_word;
8250 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8251 if ((cfg_word & tidmask) != 0)
8252 return;
8254 cfg_word |= tidmask;
8255 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8258 * Clear the microcode "SDTR negotiation" done indicator for the
8259 * target to cause it to negotiate with the new setting set above.
8261 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8262 cfg_word &= ~tidmask;
8263 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8267 * PPR (Parallel Protocol Request) Capable
8269 * If the device supports DT mode, then it must be PPR capable.
8270 * The PPR message will be used in place of the SDTR and WDTR
8271 * messages to negotiate synchronous speed and offset, transfer
8272 * width, and protocol options.
8274 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8275 AdvPortAddr iop_base, unsigned short tidmask)
8277 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8278 adv_dvc->ppr_able |= tidmask;
8279 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8282 static void
8283 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8285 AdvPortAddr iop_base = adv_dvc->iop_base;
8286 unsigned short tidmask = 1 << sdev->id;
8288 if (sdev->lun == 0) {
8290 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8291 * is enabled in the EEPROM and the device supports the
8292 * feature, then enable it in the microcode.
8295 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8296 advansys_wide_enable_wdtr(iop_base, tidmask);
8297 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8298 advansys_wide_enable_sdtr(iop_base, tidmask);
8299 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8300 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8303 * Tag Queuing is disabled for the BIOS which runs in polled
8304 * mode and would see no benefit from Tag Queuing. Also by
8305 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8306 * bugs will at least work with the BIOS.
8308 if ((adv_dvc->tagqng_able & tidmask) &&
8309 sdev->tagged_supported) {
8310 unsigned short cfg_word;
8311 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8312 cfg_word |= tidmask;
8313 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8314 cfg_word);
8315 AdvWriteByteLram(iop_base,
8316 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8317 adv_dvc->max_dvc_qng);
8321 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8322 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8323 adv_dvc->max_dvc_qng);
8324 } else {
8325 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8330 * Set the number of commands to queue per device for the
8331 * specified host adapter.
8333 static int advansys_slave_configure(struct scsi_device *sdev)
8335 struct asc_board *boardp = shost_priv(sdev->host);
8337 if (ASC_NARROW_BOARD(boardp))
8338 advansys_narrow_slave_configure(sdev,
8339 &boardp->dvc_var.asc_dvc_var);
8340 else
8341 advansys_wide_slave_configure(sdev,
8342 &boardp->dvc_var.adv_dvc_var);
8344 return 0;
8347 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8349 struct asc_board *board = shost_priv(scp->device->host);
8350 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8351 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8352 dma_cache_sync(board->dev, scp->sense_buffer,
8353 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8354 return cpu_to_le32(scp->SCp.dma_handle);
8357 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8358 struct asc_scsi_q *asc_scsi_q)
8360 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8361 int use_sg;
8363 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8366 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8368 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8369 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8370 scp->result = HOST_BYTE(DID_SOFT_ERROR);
8371 return ASC_ERROR;
8375 * Build the ASC_SCSI_Q request.
8377 asc_scsi_q->cdbptr = &scp->cmnd[0];
8378 asc_scsi_q->q2.cdb_len = scp->cmd_len;
8379 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8380 asc_scsi_q->q1.target_lun = scp->device->lun;
8381 asc_scsi_q->q2.target_ix =
8382 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8383 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8384 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8387 * If there are any outstanding requests for the current target,
8388 * then every 255th request send an ORDERED request. This heuristic
8389 * tries to retain the benefit of request sorting while preventing
8390 * request starvation. 255 is the max number of tags or pending commands
8391 * a device may have outstanding.
8393 * The request count is incremented below for every successfully
8394 * started request.
8397 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8398 (boardp->reqcnt[scp->device->id] % 255) == 0) {
8399 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8400 } else {
8401 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8404 /* Build ASC_SCSI_Q */
8405 use_sg = scsi_dma_map(scp);
8406 if (use_sg != 0) {
8407 int sgcnt;
8408 struct scatterlist *slp;
8409 struct asc_sg_head *asc_sg_head;
8411 if (use_sg > scp->device->host->sg_tablesize) {
8412 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8413 "sg_tablesize %d\n", use_sg,
8414 scp->device->host->sg_tablesize);
8415 scsi_dma_unmap(scp);
8416 scp->result = HOST_BYTE(DID_ERROR);
8417 return ASC_ERROR;
8420 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8421 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8422 if (!asc_sg_head) {
8423 scsi_dma_unmap(scp);
8424 scp->result = HOST_BYTE(DID_SOFT_ERROR);
8425 return ASC_ERROR;
8428 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8429 asc_scsi_q->sg_head = asc_sg_head;
8430 asc_scsi_q->q1.data_cnt = 0;
8431 asc_scsi_q->q1.data_addr = 0;
8432 /* This is a byte value, otherwise it would need to be swapped. */
8433 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8434 ASC_STATS_ADD(scp->device->host, xfer_elem,
8435 asc_sg_head->entry_cnt);
8438 * Convert scatter-gather list into ASC_SG_HEAD list.
8440 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8441 asc_sg_head->sg_list[sgcnt].addr =
8442 cpu_to_le32(sg_dma_address(slp));
8443 asc_sg_head->sg_list[sgcnt].bytes =
8444 cpu_to_le32(sg_dma_len(slp));
8445 ASC_STATS_ADD(scp->device->host, xfer_sect,
8446 DIV_ROUND_UP(sg_dma_len(slp), 512));
8450 ASC_STATS(scp->device->host, xfer_cnt);
8452 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8453 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8455 return ASC_NOERROR;
8459 * Build scatter-gather list for Adv Library (Wide Board).
8461 * Additional ADV_SG_BLOCK structures will need to be allocated
8462 * if the total number of scatter-gather elements exceeds
8463 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8464 * assumed to be physically contiguous.
8466 * Return:
8467 * ADV_SUCCESS(1) - SG List successfully created
8468 * ADV_ERROR(-1) - SG List creation failed
8470 static int
8471 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8472 int use_sg)
8474 adv_sgblk_t *sgblkp;
8475 ADV_SCSI_REQ_Q *scsiqp;
8476 struct scatterlist *slp;
8477 int sg_elem_cnt;
8478 ADV_SG_BLOCK *sg_block, *prev_sg_block;
8479 ADV_PADDR sg_block_paddr;
8480 int i;
8482 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8483 slp = scsi_sglist(scp);
8484 sg_elem_cnt = use_sg;
8485 prev_sg_block = NULL;
8486 reqp->sgblkp = NULL;
8488 for (;;) {
8490 * Allocate a 'adv_sgblk_t' structure from the board free
8491 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8492 * (15) scatter-gather elements.
8494 if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8495 ASC_DBG(1, "no free adv_sgblk_t\n");
8496 ASC_STATS(scp->device->host, adv_build_nosg);
8499 * Allocation failed. Free 'adv_sgblk_t' structures
8500 * already allocated for the request.
8502 while ((sgblkp = reqp->sgblkp) != NULL) {
8503 /* Remove 'sgblkp' from the request list. */
8504 reqp->sgblkp = sgblkp->next_sgblkp;
8506 /* Add 'sgblkp' to the board free list. */
8507 sgblkp->next_sgblkp = boardp->adv_sgblkp;
8508 boardp->adv_sgblkp = sgblkp;
8510 return ASC_BUSY;
8513 /* Complete 'adv_sgblk_t' board allocation. */
8514 boardp->adv_sgblkp = sgblkp->next_sgblkp;
8515 sgblkp->next_sgblkp = NULL;
8518 * Get 8 byte aligned virtual and physical addresses
8519 * for the allocated ADV_SG_BLOCK structure.
8521 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8522 sg_block_paddr = virt_to_bus(sg_block);
8525 * Check if this is the first 'adv_sgblk_t' for the
8526 * request.
8528 if (reqp->sgblkp == NULL) {
8529 /* Request's first scatter-gather block. */
8530 reqp->sgblkp = sgblkp;
8533 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8534 * address pointers.
8536 scsiqp->sg_list_ptr = sg_block;
8537 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8538 } else {
8539 /* Request's second or later scatter-gather block. */
8540 sgblkp->next_sgblkp = reqp->sgblkp;
8541 reqp->sgblkp = sgblkp;
8544 * Point the previous ADV_SG_BLOCK structure to
8545 * the newly allocated ADV_SG_BLOCK structure.
8547 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8550 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8551 sg_block->sg_list[i].sg_addr =
8552 cpu_to_le32(sg_dma_address(slp));
8553 sg_block->sg_list[i].sg_count =
8554 cpu_to_le32(sg_dma_len(slp));
8555 ASC_STATS_ADD(scp->device->host, xfer_sect,
8556 DIV_ROUND_UP(sg_dma_len(slp), 512));
8558 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8559 sg_block->sg_cnt = i + 1;
8560 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
8561 return ADV_SUCCESS;
8563 slp++;
8565 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8566 prev_sg_block = sg_block;
8571 * Build a request structure for the Adv Library (Wide Board).
8573 * If an adv_req_t can not be allocated to issue the request,
8574 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8576 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8577 * microcode for DMA addresses or math operations are byte swapped
8578 * to little-endian order.
8580 static int
8581 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8582 ADV_SCSI_REQ_Q **adv_scsiqpp)
8584 adv_req_t *reqp;
8585 ADV_SCSI_REQ_Q *scsiqp;
8586 int i;
8587 int ret;
8588 int use_sg;
8591 * Allocate an adv_req_t structure from the board to execute
8592 * the command.
8594 if (boardp->adv_reqp == NULL) {
8595 ASC_DBG(1, "no free adv_req_t\n");
8596 ASC_STATS(scp->device->host, adv_build_noreq);
8597 return ASC_BUSY;
8598 } else {
8599 reqp = boardp->adv_reqp;
8600 boardp->adv_reqp = reqp->next_reqp;
8601 reqp->next_reqp = NULL;
8605 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8607 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8610 * Initialize the structure.
8612 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8615 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8617 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8620 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8622 reqp->cmndp = scp;
8625 * Build the ADV_SCSI_REQ_Q request.
8628 /* Set CDB length and copy it to the request structure. */
8629 scsiqp->cdb_len = scp->cmd_len;
8630 /* Copy first 12 CDB bytes to cdb[]. */
8631 for (i = 0; i < scp->cmd_len && i < 12; i++) {
8632 scsiqp->cdb[i] = scp->cmnd[i];
8634 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8635 for (; i < scp->cmd_len; i++) {
8636 scsiqp->cdb16[i - 12] = scp->cmnd[i];
8639 scsiqp->target_id = scp->device->id;
8640 scsiqp->target_lun = scp->device->lun;
8642 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8643 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8645 /* Build ADV_SCSI_REQ_Q */
8647 use_sg = scsi_dma_map(scp);
8648 if (use_sg == 0) {
8649 /* Zero-length transfer */
8650 reqp->sgblkp = NULL;
8651 scsiqp->data_cnt = 0;
8652 scsiqp->vdata_addr = NULL;
8654 scsiqp->data_addr = 0;
8655 scsiqp->sg_list_ptr = NULL;
8656 scsiqp->sg_real_addr = 0;
8657 } else {
8658 if (use_sg > ADV_MAX_SG_LIST) {
8659 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8660 "ADV_MAX_SG_LIST %d\n", use_sg,
8661 scp->device->host->sg_tablesize);
8662 scsi_dma_unmap(scp);
8663 scp->result = HOST_BYTE(DID_ERROR);
8666 * Free the 'adv_req_t' structure by adding it back
8667 * to the board free list.
8669 reqp->next_reqp = boardp->adv_reqp;
8670 boardp->adv_reqp = reqp;
8672 return ASC_ERROR;
8675 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8677 ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8678 if (ret != ADV_SUCCESS) {
8680 * Free the adv_req_t structure by adding it back to
8681 * the board free list.
8683 reqp->next_reqp = boardp->adv_reqp;
8684 boardp->adv_reqp = reqp;
8686 return ret;
8689 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8692 ASC_STATS(scp->device->host, xfer_cnt);
8694 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8695 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8697 *adv_scsiqpp = scsiqp;
8699 return ASC_NOERROR;
8702 static int AscSgListToQueue(int sg_list)
8704 int n_sg_list_qs;
8706 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8707 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8708 n_sg_list_qs++;
8709 return n_sg_list_qs + 1;
8712 static uint
8713 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8715 uint cur_used_qs;
8716 uint cur_free_qs;
8717 ASC_SCSI_BIT_ID_TYPE target_id;
8718 uchar tid_no;
8720 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8721 tid_no = ASC_TIX_TO_TID(target_ix);
8722 if ((asc_dvc->unit_not_ready & target_id) ||
8723 (asc_dvc->queue_full_or_busy & target_id)) {
8724 return 0;
8726 if (n_qs == 1) {
8727 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8728 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8729 } else {
8730 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8731 (uint) ASC_MIN_FREE_Q;
8733 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8734 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8735 if (asc_dvc->cur_dvc_qng[tid_no] >=
8736 asc_dvc->max_dvc_qng[tid_no]) {
8737 return 0;
8739 return cur_free_qs;
8741 if (n_qs > 1) {
8742 if ((n_qs > asc_dvc->last_q_shortage)
8743 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8744 asc_dvc->last_q_shortage = n_qs;
8747 return 0;
8750 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8752 ushort q_addr;
8753 uchar next_qp;
8754 uchar q_status;
8756 q_addr = ASC_QNO_TO_QADDR(free_q_head);
8757 q_status = (uchar)AscReadLramByte(iop_base,
8758 (ushort)(q_addr +
8759 ASC_SCSIQ_B_STATUS));
8760 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8761 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8762 return next_qp;
8763 return ASC_QLINK_END;
8766 static uchar
8767 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8769 uchar i;
8771 for (i = 0; i < n_free_q; i++) {
8772 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8773 if (free_q_head == ASC_QLINK_END)
8774 break;
8776 return free_q_head;
8780 * void
8781 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8783 * Calling/Exit State:
8784 * none
8786 * Description:
8787 * Output an ASC_SCSI_Q structure to the chip
8789 static void
8790 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8792 int i;
8794 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8795 AscSetChipLramAddr(iop_base, s_addr);
8796 for (i = 0; i < 2 * words; i += 2) {
8797 if (i == 4 || i == 20) {
8798 continue;
8800 outpw(iop_base + IOP_RAM_DATA,
8801 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8805 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8807 ushort q_addr;
8808 uchar tid_no;
8809 uchar sdtr_data;
8810 uchar syn_period_ix;
8811 uchar syn_offset;
8812 PortAddr iop_base;
8814 iop_base = asc_dvc->iop_base;
8815 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8816 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8817 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8818 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8819 syn_period_ix =
8820 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8821 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8822 AscMsgOutSDTR(asc_dvc,
8823 asc_dvc->sdtr_period_tbl[syn_period_ix],
8824 syn_offset);
8825 scsiq->q1.cntl |= QC_MSG_OUT;
8827 q_addr = ASC_QNO_TO_QADDR(q_no);
8828 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8829 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8831 scsiq->q1.status = QS_FREE;
8832 AscMemWordCopyPtrToLram(iop_base,
8833 q_addr + ASC_SCSIQ_CDB_BEG,
8834 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8836 DvcPutScsiQ(iop_base,
8837 q_addr + ASC_SCSIQ_CPY_BEG,
8838 (uchar *)&scsiq->q1.cntl,
8839 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8840 AscWriteLramWord(iop_base,
8841 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8842 (ushort)(((ushort)scsiq->q1.
8843 q_no << 8) | (ushort)QS_READY));
8844 return 1;
8847 static int
8848 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8850 int sta;
8851 int i;
8852 ASC_SG_HEAD *sg_head;
8853 ASC_SG_LIST_Q scsi_sg_q;
8854 ASC_DCNT saved_data_addr;
8855 ASC_DCNT saved_data_cnt;
8856 PortAddr iop_base;
8857 ushort sg_list_dwords;
8858 ushort sg_index;
8859 ushort sg_entry_cnt;
8860 ushort q_addr;
8861 uchar next_qp;
8863 iop_base = asc_dvc->iop_base;
8864 sg_head = scsiq->sg_head;
8865 saved_data_addr = scsiq->q1.data_addr;
8866 saved_data_cnt = scsiq->q1.data_cnt;
8867 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8868 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8869 #if CC_VERY_LONG_SG_LIST
8871 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8872 * then not all SG elements will fit in the allocated queues.
8873 * The rest of the SG elements will be copied when the RISC
8874 * completes the SG elements that fit and halts.
8876 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8878 * Set sg_entry_cnt to be the number of SG elements that
8879 * will fit in the allocated SG queues. It is minus 1, because
8880 * the first SG element is handled above. ASC_MAX_SG_LIST is
8881 * already inflated by 1 to account for this. For example it
8882 * may be 50 which is 1 + 7 queues * 7 SG elements.
8884 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8887 * Keep track of remaining number of SG elements that will
8888 * need to be handled from a_isr.c.
8890 scsiq->remain_sg_entry_cnt =
8891 sg_head->entry_cnt - ASC_MAX_SG_LIST;
8892 } else {
8893 #endif /* CC_VERY_LONG_SG_LIST */
8895 * Set sg_entry_cnt to be the number of SG elements that
8896 * will fit in the allocated SG queues. It is minus 1, because
8897 * the first SG element is handled above.
8899 sg_entry_cnt = sg_head->entry_cnt - 1;
8900 #if CC_VERY_LONG_SG_LIST
8902 #endif /* CC_VERY_LONG_SG_LIST */
8903 if (sg_entry_cnt != 0) {
8904 scsiq->q1.cntl |= QC_SG_HEAD;
8905 q_addr = ASC_QNO_TO_QADDR(q_no);
8906 sg_index = 1;
8907 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8908 scsi_sg_q.sg_head_qp = q_no;
8909 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8910 for (i = 0; i < sg_head->queue_cnt; i++) {
8911 scsi_sg_q.seq_no = i + 1;
8912 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8913 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8914 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8915 if (i == 0) {
8916 scsi_sg_q.sg_list_cnt =
8917 ASC_SG_LIST_PER_Q;
8918 scsi_sg_q.sg_cur_list_cnt =
8919 ASC_SG_LIST_PER_Q;
8920 } else {
8921 scsi_sg_q.sg_list_cnt =
8922 ASC_SG_LIST_PER_Q - 1;
8923 scsi_sg_q.sg_cur_list_cnt =
8924 ASC_SG_LIST_PER_Q - 1;
8926 } else {
8927 #if CC_VERY_LONG_SG_LIST
8929 * This is the last SG queue in the list of
8930 * allocated SG queues. If there are more
8931 * SG elements than will fit in the allocated
8932 * queues, then set the QCSG_SG_XFER_MORE flag.
8934 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8935 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8936 } else {
8937 #endif /* CC_VERY_LONG_SG_LIST */
8938 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8939 #if CC_VERY_LONG_SG_LIST
8941 #endif /* CC_VERY_LONG_SG_LIST */
8942 sg_list_dwords = sg_entry_cnt << 1;
8943 if (i == 0) {
8944 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8945 scsi_sg_q.sg_cur_list_cnt =
8946 sg_entry_cnt;
8947 } else {
8948 scsi_sg_q.sg_list_cnt =
8949 sg_entry_cnt - 1;
8950 scsi_sg_q.sg_cur_list_cnt =
8951 sg_entry_cnt - 1;
8953 sg_entry_cnt = 0;
8955 next_qp = AscReadLramByte(iop_base,
8956 (ushort)(q_addr +
8957 ASC_SCSIQ_B_FWD));
8958 scsi_sg_q.q_no = next_qp;
8959 q_addr = ASC_QNO_TO_QADDR(next_qp);
8960 AscMemWordCopyPtrToLram(iop_base,
8961 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8962 (uchar *)&scsi_sg_q,
8963 sizeof(ASC_SG_LIST_Q) >> 1);
8964 AscMemDWordCopyPtrToLram(iop_base,
8965 q_addr + ASC_SGQ_LIST_BEG,
8966 (uchar *)&sg_head->
8967 sg_list[sg_index],
8968 sg_list_dwords);
8969 sg_index += ASC_SG_LIST_PER_Q;
8970 scsiq->next_sg_index = sg_index;
8972 } else {
8973 scsiq->q1.cntl &= ~QC_SG_HEAD;
8975 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8976 scsiq->q1.data_addr = saved_data_addr;
8977 scsiq->q1.data_cnt = saved_data_cnt;
8978 return (sta);
8981 static int
8982 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8984 PortAddr iop_base;
8985 uchar free_q_head;
8986 uchar next_qp;
8987 uchar tid_no;
8988 uchar target_ix;
8989 int sta;
8991 iop_base = asc_dvc->iop_base;
8992 target_ix = scsiq->q2.target_ix;
8993 tid_no = ASC_TIX_TO_TID(target_ix);
8994 sta = 0;
8995 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8996 if (n_q_required > 1) {
8997 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8998 (uchar)n_q_required);
8999 if (next_qp != ASC_QLINK_END) {
9000 asc_dvc->last_q_shortage = 0;
9001 scsiq->sg_head->queue_cnt = n_q_required - 1;
9002 scsiq->q1.q_no = free_q_head;
9003 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9004 free_q_head);
9006 } else if (n_q_required == 1) {
9007 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9008 if (next_qp != ASC_QLINK_END) {
9009 scsiq->q1.q_no = free_q_head;
9010 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9013 if (sta == 1) {
9014 AscPutVarFreeQHead(iop_base, next_qp);
9015 asc_dvc->cur_total_qng += n_q_required;
9016 asc_dvc->cur_dvc_qng[tid_no]++;
9018 return sta;
9021 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9022 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9023 INQUIRY,
9024 REQUEST_SENSE,
9025 READ_CAPACITY,
9026 READ_TOC,
9027 MODE_SELECT,
9028 MODE_SENSE,
9029 MODE_SELECT_10,
9030 MODE_SENSE_10,
9031 0xFF,
9032 0xFF,
9033 0xFF,
9034 0xFF,
9035 0xFF,
9036 0xFF,
9037 0xFF,
9038 0xFF
9041 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9043 PortAddr iop_base;
9044 int sta;
9045 int n_q_required;
9046 int disable_syn_offset_one_fix;
9047 int i;
9048 ASC_PADDR addr;
9049 ushort sg_entry_cnt = 0;
9050 ushort sg_entry_cnt_minus_one = 0;
9051 uchar target_ix;
9052 uchar tid_no;
9053 uchar sdtr_data;
9054 uchar extra_bytes;
9055 uchar scsi_cmd;
9056 uchar disable_cmd;
9057 ASC_SG_HEAD *sg_head;
9058 ASC_DCNT data_cnt;
9060 iop_base = asc_dvc->iop_base;
9061 sg_head = scsiq->sg_head;
9062 if (asc_dvc->err_code != 0)
9063 return (ERR);
9064 scsiq->q1.q_no = 0;
9065 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9066 scsiq->q1.extra_bytes = 0;
9068 sta = 0;
9069 target_ix = scsiq->q2.target_ix;
9070 tid_no = ASC_TIX_TO_TID(target_ix);
9071 n_q_required = 1;
9072 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9073 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9074 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9075 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9076 AscMsgOutSDTR(asc_dvc,
9077 asc_dvc->
9078 sdtr_period_tbl[(sdtr_data >> 4) &
9079 (uchar)(asc_dvc->
9080 max_sdtr_index -
9081 1)],
9082 (uchar)(sdtr_data & (uchar)
9083 ASC_SYN_MAX_OFFSET));
9084 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9087 if (asc_dvc->in_critical_cnt != 0) {
9088 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9089 return (ERR);
9091 asc_dvc->in_critical_cnt++;
9092 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9093 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9094 asc_dvc->in_critical_cnt--;
9095 return (ERR);
9097 #if !CC_VERY_LONG_SG_LIST
9098 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9099 asc_dvc->in_critical_cnt--;
9100 return (ERR);
9102 #endif /* !CC_VERY_LONG_SG_LIST */
9103 if (sg_entry_cnt == 1) {
9104 scsiq->q1.data_addr =
9105 (ADV_PADDR)sg_head->sg_list[0].addr;
9106 scsiq->q1.data_cnt =
9107 (ADV_DCNT)sg_head->sg_list[0].bytes;
9108 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9110 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9112 scsi_cmd = scsiq->cdbptr[0];
9113 disable_syn_offset_one_fix = FALSE;
9114 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9115 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9116 if (scsiq->q1.cntl & QC_SG_HEAD) {
9117 data_cnt = 0;
9118 for (i = 0; i < sg_entry_cnt; i++) {
9119 data_cnt +=
9120 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9121 bytes);
9123 } else {
9124 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9126 if (data_cnt != 0UL) {
9127 if (data_cnt < 512UL) {
9128 disable_syn_offset_one_fix = TRUE;
9129 } else {
9130 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9131 i++) {
9132 disable_cmd =
9133 _syn_offset_one_disable_cmd[i];
9134 if (disable_cmd == 0xFF) {
9135 break;
9137 if (scsi_cmd == disable_cmd) {
9138 disable_syn_offset_one_fix =
9139 TRUE;
9140 break;
9146 if (disable_syn_offset_one_fix) {
9147 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9148 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9149 ASC_TAG_FLAG_DISABLE_DISCONNECT);
9150 } else {
9151 scsiq->q2.tag_code &= 0x27;
9153 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9154 if (asc_dvc->bug_fix_cntl) {
9155 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9156 if ((scsi_cmd == READ_6) ||
9157 (scsi_cmd == READ_10)) {
9158 addr =
9159 (ADV_PADDR)le32_to_cpu(sg_head->
9160 sg_list
9161 [sg_entry_cnt_minus_one].
9162 addr) +
9163 (ADV_DCNT)le32_to_cpu(sg_head->
9164 sg_list
9165 [sg_entry_cnt_minus_one].
9166 bytes);
9167 extra_bytes =
9168 (uchar)((ushort)addr & 0x0003);
9169 if ((extra_bytes != 0)
9171 ((scsiq->q2.
9172 tag_code &
9173 ASC_TAG_FLAG_EXTRA_BYTES)
9174 == 0)) {
9175 scsiq->q2.tag_code |=
9176 ASC_TAG_FLAG_EXTRA_BYTES;
9177 scsiq->q1.extra_bytes =
9178 extra_bytes;
9179 data_cnt =
9180 le32_to_cpu(sg_head->
9181 sg_list
9182 [sg_entry_cnt_minus_one].
9183 bytes);
9184 data_cnt -=
9185 (ASC_DCNT) extra_bytes;
9186 sg_head->
9187 sg_list
9188 [sg_entry_cnt_minus_one].
9189 bytes =
9190 cpu_to_le32(data_cnt);
9195 sg_head->entry_to_copy = sg_head->entry_cnt;
9196 #if CC_VERY_LONG_SG_LIST
9198 * Set the sg_entry_cnt to the maximum possible. The rest of
9199 * the SG elements will be copied when the RISC completes the
9200 * SG elements that fit and halts.
9202 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9203 sg_entry_cnt = ASC_MAX_SG_LIST;
9205 #endif /* CC_VERY_LONG_SG_LIST */
9206 n_q_required = AscSgListToQueue(sg_entry_cnt);
9207 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9208 (uint) n_q_required)
9209 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9210 if ((sta =
9211 AscSendScsiQueue(asc_dvc, scsiq,
9212 n_q_required)) == 1) {
9213 asc_dvc->in_critical_cnt--;
9214 return (sta);
9217 } else {
9218 if (asc_dvc->bug_fix_cntl) {
9219 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9220 if ((scsi_cmd == READ_6) ||
9221 (scsi_cmd == READ_10)) {
9222 addr =
9223 le32_to_cpu(scsiq->q1.data_addr) +
9224 le32_to_cpu(scsiq->q1.data_cnt);
9225 extra_bytes =
9226 (uchar)((ushort)addr & 0x0003);
9227 if ((extra_bytes != 0)
9229 ((scsiq->q2.
9230 tag_code &
9231 ASC_TAG_FLAG_EXTRA_BYTES)
9232 == 0)) {
9233 data_cnt =
9234 le32_to_cpu(scsiq->q1.
9235 data_cnt);
9236 if (((ushort)data_cnt & 0x01FF)
9237 == 0) {
9238 scsiq->q2.tag_code |=
9239 ASC_TAG_FLAG_EXTRA_BYTES;
9240 data_cnt -= (ASC_DCNT)
9241 extra_bytes;
9242 scsiq->q1.data_cnt =
9243 cpu_to_le32
9244 (data_cnt);
9245 scsiq->q1.extra_bytes =
9246 extra_bytes;
9252 n_q_required = 1;
9253 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9254 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9255 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9256 n_q_required)) == 1) {
9257 asc_dvc->in_critical_cnt--;
9258 return (sta);
9262 asc_dvc->in_critical_cnt--;
9263 return (sta);
9267 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9269 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9270 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9271 * RISC to notify it a new command is ready to be executed.
9273 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9274 * set to SCSI_MAX_RETRY.
9276 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9277 * for DMA addresses or math operations are byte swapped to little-endian
9278 * order.
9280 * Return:
9281 * ADV_SUCCESS(1) - The request was successfully queued.
9282 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9283 * request completes.
9284 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9285 * host IC error.
9287 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9289 AdvPortAddr iop_base;
9290 ADV_PADDR req_paddr;
9291 ADV_CARR_T *new_carrp;
9294 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9296 if (scsiq->target_id > ADV_MAX_TID) {
9297 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9298 scsiq->done_status = QD_WITH_ERROR;
9299 return ADV_ERROR;
9302 iop_base = asc_dvc->iop_base;
9305 * Allocate a carrier ensuring at least one carrier always
9306 * remains on the freelist and initialize fields.
9308 if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9309 return ADV_BUSY;
9311 asc_dvc->carr_freelist = (ADV_CARR_T *)
9312 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9313 asc_dvc->carr_pending_cnt++;
9316 * Set the carrier to be a stopper by setting 'next_vpa'
9317 * to the stopper value. The current stopper will be changed
9318 * below to point to the new stopper.
9320 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9323 * Clear the ADV_SCSI_REQ_Q done flag.
9325 scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9327 req_paddr = virt_to_bus(scsiq);
9328 BUG_ON(req_paddr & 31);
9329 /* Wait for assertion before making little-endian */
9330 req_paddr = cpu_to_le32(req_paddr);
9332 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9333 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9334 scsiq->scsiq_rptr = req_paddr;
9336 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9338 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9339 * order during initialization.
9341 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9344 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9345 * the microcode. The newly allocated stopper will become the new
9346 * stopper.
9348 asc_dvc->icq_sp->areq_vpa = req_paddr;
9351 * Set the 'next_vpa' pointer for the old stopper to be the
9352 * physical address of the new stopper. The RISC can only
9353 * follow physical addresses.
9355 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9358 * Set the host adapter stopper pointer to point to the new carrier.
9360 asc_dvc->icq_sp = new_carrp;
9362 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9363 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9365 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9367 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9368 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9370 * Clear the tickle value. In the ASC-3550 the RISC flag
9371 * command 'clr_tickle_a' does not work unless the host
9372 * value is cleared.
9374 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9375 ADV_TICKLE_NOP);
9377 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9379 * Notify the RISC a carrier is ready by writing the physical
9380 * address of the new carrier stopper to the COMMA register.
9382 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9383 le32_to_cpu(new_carrp->carr_pa));
9386 return ADV_SUCCESS;
9390 * Execute a single 'Scsi_Cmnd'.
9392 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9394 int ret, err_code;
9395 struct asc_board *boardp = shost_priv(scp->device->host);
9397 ASC_DBG(1, "scp 0x%p\n", scp);
9399 if (ASC_NARROW_BOARD(boardp)) {
9400 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9401 struct asc_scsi_q asc_scsi_q;
9403 /* asc_build_req() can not return ASC_BUSY. */
9404 ret = asc_build_req(boardp, scp, &asc_scsi_q);
9405 if (ret == ASC_ERROR) {
9406 ASC_STATS(scp->device->host, build_error);
9407 return ASC_ERROR;
9410 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9411 kfree(asc_scsi_q.sg_head);
9412 err_code = asc_dvc->err_code;
9413 } else {
9414 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9415 ADV_SCSI_REQ_Q *adv_scsiqp;
9417 switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9418 case ASC_NOERROR:
9419 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9420 break;
9421 case ASC_BUSY:
9422 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9424 * The asc_stats fields 'adv_build_noreq' and
9425 * 'adv_build_nosg' count wide board busy conditions.
9426 * They are updated in adv_build_req and
9427 * adv_get_sglist, respectively.
9429 return ASC_BUSY;
9430 case ASC_ERROR:
9431 default:
9432 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9433 ASC_STATS(scp->device->host, build_error);
9434 return ASC_ERROR;
9437 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9438 err_code = adv_dvc->err_code;
9441 switch (ret) {
9442 case ASC_NOERROR:
9443 ASC_STATS(scp->device->host, exe_noerror);
9445 * Increment monotonically increasing per device
9446 * successful request counter. Wrapping doesn't matter.
9448 boardp->reqcnt[scp->device->id]++;
9449 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9450 break;
9451 case ASC_BUSY:
9452 ASC_STATS(scp->device->host, exe_busy);
9453 break;
9454 case ASC_ERROR:
9455 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9456 "err_code 0x%x\n", err_code);
9457 ASC_STATS(scp->device->host, exe_error);
9458 scp->result = HOST_BYTE(DID_ERROR);
9459 break;
9460 default:
9461 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9462 "err_code 0x%x\n", err_code);
9463 ASC_STATS(scp->device->host, exe_unknown);
9464 scp->result = HOST_BYTE(DID_ERROR);
9465 break;
9468 ASC_DBG(1, "end\n");
9469 return ret;
9473 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9475 * This function always returns 0. Command return status is saved
9476 * in the 'scp' result field.
9478 static int
9479 advansys_queuecommand(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9481 struct Scsi_Host *shost = scp->device->host;
9482 int asc_res, result = 0;
9484 ASC_STATS(shost, queuecommand);
9485 scp->scsi_done = done;
9487 asc_res = asc_execute_scsi_cmnd(scp);
9489 switch (asc_res) {
9490 case ASC_NOERROR:
9491 break;
9492 case ASC_BUSY:
9493 result = SCSI_MLQUEUE_HOST_BUSY;
9494 break;
9495 case ASC_ERROR:
9496 default:
9497 asc_scsi_done(scp);
9498 break;
9501 return result;
9504 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9506 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9507 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9508 return inpw(eisa_cfg_iop);
9512 * Return the BIOS address of the adapter at the specified
9513 * I/O port and with the specified bus type.
9515 static unsigned short __devinit
9516 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9518 unsigned short cfg_lsw;
9519 unsigned short bios_addr;
9522 * The PCI BIOS is re-located by the motherboard BIOS. Because
9523 * of this the driver can not determine where a PCI BIOS is
9524 * loaded and executes.
9526 if (bus_type & ASC_IS_PCI)
9527 return 0;
9529 if ((bus_type & ASC_IS_EISA) != 0) {
9530 cfg_lsw = AscGetEisaChipCfg(iop_base);
9531 cfg_lsw &= 0x000F;
9532 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9533 return bios_addr;
9536 cfg_lsw = AscGetChipCfgLsw(iop_base);
9539 * ISA PnP uses the top bit as the 32K BIOS flag
9541 if (bus_type == ASC_IS_ISAPNP)
9542 cfg_lsw &= 0x7FFF;
9543 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9544 return bios_addr;
9547 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9549 ushort cfg_lsw;
9551 if (AscGetChipScsiID(iop_base) == new_host_id) {
9552 return (new_host_id);
9554 cfg_lsw = AscGetChipCfgLsw(iop_base);
9555 cfg_lsw &= 0xF8FF;
9556 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9557 AscSetChipCfgLsw(iop_base, cfg_lsw);
9558 return (AscGetChipScsiID(iop_base));
9561 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9563 unsigned char sc;
9565 AscSetBank(iop_base, 1);
9566 sc = inp(iop_base + IOP_REG_SC);
9567 AscSetBank(iop_base, 0);
9568 return sc;
9571 static unsigned char __devinit
9572 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9574 if (bus_type & ASC_IS_EISA) {
9575 PortAddr eisa_iop;
9576 unsigned char revision;
9577 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9578 (PortAddr) ASC_EISA_REV_IOP_MASK;
9579 revision = inp(eisa_iop);
9580 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9582 return AscGetChipVerNo(iop_base);
9585 #ifdef CONFIG_ISA
9586 static void __devinit AscEnableIsaDma(uchar dma_channel)
9588 if (dma_channel < 4) {
9589 outp(0x000B, (ushort)(0xC0 | dma_channel));
9590 outp(0x000A, dma_channel);
9591 } else if (dma_channel < 8) {
9592 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9593 outp(0x00D4, (ushort)(dma_channel - 4));
9596 #endif /* CONFIG_ISA */
9598 static int AscStopQueueExe(PortAddr iop_base)
9600 int count = 0;
9602 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9603 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9604 ASC_STOP_REQ_RISC_STOP);
9605 do {
9606 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9607 ASC_STOP_ACK_RISC_STOP) {
9608 return (1);
9610 mdelay(100);
9611 } while (count++ < 20);
9613 return (0);
9616 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9618 if (bus_type & ASC_IS_ISA)
9619 return ASC_MAX_ISA_DMA_COUNT;
9620 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9621 return ASC_MAX_VL_DMA_COUNT;
9622 return ASC_MAX_PCI_DMA_COUNT;
9625 #ifdef CONFIG_ISA
9626 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9628 ushort channel;
9630 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9631 if (channel == 0x03)
9632 return (0);
9633 else if (channel == 0x00)
9634 return (7);
9635 return (channel + 4);
9638 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9640 ushort cfg_lsw;
9641 uchar value;
9643 if ((dma_channel >= 5) && (dma_channel <= 7)) {
9644 if (dma_channel == 7)
9645 value = 0x00;
9646 else
9647 value = dma_channel - 4;
9648 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9649 cfg_lsw |= value;
9650 AscSetChipCfgLsw(iop_base, cfg_lsw);
9651 return (AscGetIsaDmaChannel(iop_base));
9653 return 0;
9656 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9658 uchar speed_value;
9660 AscSetBank(iop_base, 1);
9661 speed_value = AscReadChipDmaSpeed(iop_base);
9662 speed_value &= 0x07;
9663 AscSetBank(iop_base, 0);
9664 return speed_value;
9667 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9669 speed_value &= 0x07;
9670 AscSetBank(iop_base, 1);
9671 AscWriteChipDmaSpeed(iop_base, speed_value);
9672 AscSetBank(iop_base, 0);
9673 return AscGetIsaDmaSpeed(iop_base);
9675 #endif /* CONFIG_ISA */
9677 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9679 int i;
9680 PortAddr iop_base;
9681 ushort warn_code;
9682 uchar chip_version;
9684 iop_base = asc_dvc->iop_base;
9685 warn_code = 0;
9686 asc_dvc->err_code = 0;
9687 if ((asc_dvc->bus_type &
9688 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9689 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9691 AscSetChipControl(iop_base, CC_HALT);
9692 AscSetChipStatus(iop_base, 0);
9693 asc_dvc->bug_fix_cntl = 0;
9694 asc_dvc->pci_fix_asyn_xfer = 0;
9695 asc_dvc->pci_fix_asyn_xfer_always = 0;
9696 /* asc_dvc->init_state initalized in AscInitGetConfig(). */
9697 asc_dvc->sdtr_done = 0;
9698 asc_dvc->cur_total_qng = 0;
9699 asc_dvc->is_in_int = 0;
9700 asc_dvc->in_critical_cnt = 0;
9701 asc_dvc->last_q_shortage = 0;
9702 asc_dvc->use_tagged_qng = 0;
9703 asc_dvc->no_scam = 0;
9704 asc_dvc->unit_not_ready = 0;
9705 asc_dvc->queue_full_or_busy = 0;
9706 asc_dvc->redo_scam = 0;
9707 asc_dvc->res2 = 0;
9708 asc_dvc->min_sdtr_index = 0;
9709 asc_dvc->cfg->can_tagged_qng = 0;
9710 asc_dvc->cfg->cmd_qng_enabled = 0;
9711 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9712 asc_dvc->init_sdtr = 0;
9713 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9714 asc_dvc->scsi_reset_wait = 3;
9715 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9716 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9717 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9718 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9719 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9720 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9721 asc_dvc->cfg->chip_version = chip_version;
9722 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9723 asc_dvc->max_sdtr_index = 7;
9724 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9725 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9726 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9727 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9728 asc_dvc->max_sdtr_index = 15;
9729 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9730 AscSetExtraControl(iop_base,
9731 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9732 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9733 AscSetExtraControl(iop_base,
9734 (SEC_ACTIVE_NEGATE |
9735 SEC_ENABLE_FILTER));
9738 if (asc_dvc->bus_type == ASC_IS_PCI) {
9739 AscSetExtraControl(iop_base,
9740 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9743 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9744 #ifdef CONFIG_ISA
9745 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9746 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9747 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9748 asc_dvc->bus_type = ASC_IS_ISAPNP;
9750 asc_dvc->cfg->isa_dma_channel =
9751 (uchar)AscGetIsaDmaChannel(iop_base);
9753 #endif /* CONFIG_ISA */
9754 for (i = 0; i <= ASC_MAX_TID; i++) {
9755 asc_dvc->cur_dvc_qng[i] = 0;
9756 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9757 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9758 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9759 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9761 return warn_code;
9764 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9766 int retry;
9768 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9769 unsigned char read_back;
9770 AscSetChipEEPCmd(iop_base, cmd_reg);
9771 mdelay(1);
9772 read_back = AscGetChipEEPCmd(iop_base);
9773 if (read_back == cmd_reg)
9774 return 1;
9776 return 0;
9779 static void __devinit AscWaitEEPRead(void)
9781 mdelay(1);
9784 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9786 ushort read_wval;
9787 uchar cmd_reg;
9789 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9790 AscWaitEEPRead();
9791 cmd_reg = addr | ASC_EEP_CMD_READ;
9792 AscWriteEEPCmdReg(iop_base, cmd_reg);
9793 AscWaitEEPRead();
9794 read_wval = AscGetChipEEPData(iop_base);
9795 AscWaitEEPRead();
9796 return read_wval;
9799 static ushort __devinit
9800 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9802 ushort wval;
9803 ushort sum;
9804 ushort *wbuf;
9805 int cfg_beg;
9806 int cfg_end;
9807 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9808 int s_addr;
9810 wbuf = (ushort *)cfg_buf;
9811 sum = 0;
9812 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9813 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9814 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9815 sum += *wbuf;
9817 if (bus_type & ASC_IS_VL) {
9818 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9819 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9820 } else {
9821 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9822 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9824 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9825 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9826 if (s_addr <= uchar_end_in_config) {
9828 * Swap all char fields - must unswap bytes already swapped
9829 * by AscReadEEPWord().
9831 *wbuf = le16_to_cpu(wval);
9832 } else {
9833 /* Don't swap word field at the end - cntl field. */
9834 *wbuf = wval;
9836 sum += wval; /* Checksum treats all EEPROM data as words. */
9839 * Read the checksum word which will be compared against 'sum'
9840 * by the caller. Word field already swapped.
9842 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9843 return sum;
9846 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9848 PortAddr iop_base;
9849 ushort q_addr;
9850 ushort saved_word;
9851 int sta;
9853 iop_base = asc_dvc->iop_base;
9854 sta = 0;
9855 q_addr = ASC_QNO_TO_QADDR(241);
9856 saved_word = AscReadLramWord(iop_base, q_addr);
9857 AscSetChipLramAddr(iop_base, q_addr);
9858 AscSetChipLramData(iop_base, 0x55AA);
9859 mdelay(10);
9860 AscSetChipLramAddr(iop_base, q_addr);
9861 if (AscGetChipLramData(iop_base) == 0x55AA) {
9862 sta = 1;
9863 AscWriteLramWord(iop_base, q_addr, saved_word);
9865 return (sta);
9868 static void __devinit AscWaitEEPWrite(void)
9870 mdelay(20);
9873 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9875 ushort read_back;
9876 int retry;
9878 retry = 0;
9879 while (TRUE) {
9880 AscSetChipEEPData(iop_base, data_reg);
9881 mdelay(1);
9882 read_back = AscGetChipEEPData(iop_base);
9883 if (read_back == data_reg) {
9884 return (1);
9886 if (retry++ > ASC_EEP_MAX_RETRY) {
9887 return (0);
9892 static ushort __devinit
9893 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9895 ushort read_wval;
9897 read_wval = AscReadEEPWord(iop_base, addr);
9898 if (read_wval != word_val) {
9899 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9900 AscWaitEEPRead();
9901 AscWriteEEPDataReg(iop_base, word_val);
9902 AscWaitEEPRead();
9903 AscWriteEEPCmdReg(iop_base,
9904 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9905 AscWaitEEPWrite();
9906 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9907 AscWaitEEPRead();
9908 return (AscReadEEPWord(iop_base, addr));
9910 return (read_wval);
9913 static int __devinit
9914 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9916 int n_error;
9917 ushort *wbuf;
9918 ushort word;
9919 ushort sum;
9920 int s_addr;
9921 int cfg_beg;
9922 int cfg_end;
9923 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9925 wbuf = (ushort *)cfg_buf;
9926 n_error = 0;
9927 sum = 0;
9928 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9929 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9930 sum += *wbuf;
9931 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9932 n_error++;
9935 if (bus_type & ASC_IS_VL) {
9936 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9937 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9938 } else {
9939 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9940 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9942 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9943 if (s_addr <= uchar_end_in_config) {
9945 * This is a char field. Swap char fields before they are
9946 * swapped again by AscWriteEEPWord().
9948 word = cpu_to_le16(*wbuf);
9949 if (word !=
9950 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9951 n_error++;
9953 } else {
9954 /* Don't swap word field at the end - cntl field. */
9955 if (*wbuf !=
9956 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9957 n_error++;
9960 sum += *wbuf; /* Checksum calculated from word values. */
9962 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9963 *wbuf = sum;
9964 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9965 n_error++;
9968 /* Read EEPROM back again. */
9969 wbuf = (ushort *)cfg_buf;
9971 * Read two config words; Byte-swapping done by AscReadEEPWord().
9973 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9974 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9975 n_error++;
9978 if (bus_type & ASC_IS_VL) {
9979 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9980 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9981 } else {
9982 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9983 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9985 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9986 if (s_addr <= uchar_end_in_config) {
9988 * Swap all char fields. Must unswap bytes already swapped
9989 * by AscReadEEPWord().
9991 word =
9992 le16_to_cpu(AscReadEEPWord
9993 (iop_base, (uchar)s_addr));
9994 } else {
9995 /* Don't swap word field at the end - cntl field. */
9996 word = AscReadEEPWord(iop_base, (uchar)s_addr);
9998 if (*wbuf != word) {
9999 n_error++;
10002 /* Read checksum; Byte swapping not needed. */
10003 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10004 n_error++;
10006 return n_error;
10009 static int __devinit
10010 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10012 int retry;
10013 int n_error;
10015 retry = 0;
10016 while (TRUE) {
10017 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10018 bus_type)) == 0) {
10019 break;
10021 if (++retry > ASC_EEP_MAX_RETRY) {
10022 break;
10025 return n_error;
10028 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10030 ASCEEP_CONFIG eep_config_buf;
10031 ASCEEP_CONFIG *eep_config;
10032 PortAddr iop_base;
10033 ushort chksum;
10034 ushort warn_code;
10035 ushort cfg_msw, cfg_lsw;
10036 int i;
10037 int write_eep = 0;
10039 iop_base = asc_dvc->iop_base;
10040 warn_code = 0;
10041 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10042 AscStopQueueExe(iop_base);
10043 if ((AscStopChip(iop_base) == FALSE) ||
10044 (AscGetChipScsiCtrl(iop_base) != 0)) {
10045 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10046 AscResetChipAndScsiBus(asc_dvc);
10047 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10049 if (AscIsChipHalted(iop_base) == FALSE) {
10050 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10051 return (warn_code);
10053 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10054 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10055 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10056 return (warn_code);
10058 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10059 cfg_msw = AscGetChipCfgMsw(iop_base);
10060 cfg_lsw = AscGetChipCfgLsw(iop_base);
10061 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10062 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10063 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10064 AscSetChipCfgMsw(iop_base, cfg_msw);
10066 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10067 ASC_DBG(1, "chksum 0x%x\n", chksum);
10068 if (chksum == 0) {
10069 chksum = 0xaa55;
10071 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10072 warn_code |= ASC_WARN_AUTO_CONFIG;
10073 if (asc_dvc->cfg->chip_version == 3) {
10074 if (eep_config->cfg_lsw != cfg_lsw) {
10075 warn_code |= ASC_WARN_EEPROM_RECOVER;
10076 eep_config->cfg_lsw =
10077 AscGetChipCfgLsw(iop_base);
10079 if (eep_config->cfg_msw != cfg_msw) {
10080 warn_code |= ASC_WARN_EEPROM_RECOVER;
10081 eep_config->cfg_msw =
10082 AscGetChipCfgMsw(iop_base);
10086 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10087 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10088 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10089 if (chksum != eep_config->chksum) {
10090 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10091 ASC_CHIP_VER_PCI_ULTRA_3050) {
10092 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10093 eep_config->init_sdtr = 0xFF;
10094 eep_config->disc_enable = 0xFF;
10095 eep_config->start_motor = 0xFF;
10096 eep_config->use_cmd_qng = 0;
10097 eep_config->max_total_qng = 0xF0;
10098 eep_config->max_tag_qng = 0x20;
10099 eep_config->cntl = 0xBFFF;
10100 ASC_EEP_SET_CHIP_ID(eep_config, 7);
10101 eep_config->no_scam = 0;
10102 eep_config->adapter_info[0] = 0;
10103 eep_config->adapter_info[1] = 0;
10104 eep_config->adapter_info[2] = 0;
10105 eep_config->adapter_info[3] = 0;
10106 eep_config->adapter_info[4] = 0;
10107 /* Indicate EEPROM-less board. */
10108 eep_config->adapter_info[5] = 0xBB;
10109 } else {
10110 ASC_PRINT
10111 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10112 write_eep = 1;
10113 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10116 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10117 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10118 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10119 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10120 asc_dvc->start_motor = eep_config->start_motor;
10121 asc_dvc->dvc_cntl = eep_config->cntl;
10122 asc_dvc->no_scam = eep_config->no_scam;
10123 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10124 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10125 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10126 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10127 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10128 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10129 if (!AscTestExternalLram(asc_dvc)) {
10130 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10131 ASC_IS_PCI_ULTRA)) {
10132 eep_config->max_total_qng =
10133 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10134 eep_config->max_tag_qng =
10135 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10136 } else {
10137 eep_config->cfg_msw |= 0x0800;
10138 cfg_msw |= 0x0800;
10139 AscSetChipCfgMsw(iop_base, cfg_msw);
10140 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10141 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10143 } else {
10145 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10146 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10148 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10149 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10151 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10152 eep_config->max_tag_qng = eep_config->max_total_qng;
10154 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10155 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10157 asc_dvc->max_total_qng = eep_config->max_total_qng;
10158 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10159 eep_config->use_cmd_qng) {
10160 eep_config->disc_enable = eep_config->use_cmd_qng;
10161 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10163 ASC_EEP_SET_CHIP_ID(eep_config,
10164 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10165 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10166 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10167 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10168 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10171 for (i = 0; i <= ASC_MAX_TID; i++) {
10172 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10173 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10174 asc_dvc->cfg->sdtr_period_offset[i] =
10175 (uchar)(ASC_DEF_SDTR_OFFSET |
10176 (asc_dvc->min_sdtr_index << 4));
10178 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10179 if (write_eep) {
10180 if ((i = AscSetEEPConfig(iop_base, eep_config,
10181 asc_dvc->bus_type)) != 0) {
10182 ASC_PRINT1
10183 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10185 } else {
10186 ASC_PRINT
10187 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10190 return (warn_code);
10193 static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10195 struct asc_board *board = shost_priv(shost);
10196 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10197 unsigned short warn_code = 0;
10199 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10200 if (asc_dvc->err_code != 0)
10201 return asc_dvc->err_code;
10203 if (AscFindSignature(asc_dvc->iop_base)) {
10204 warn_code |= AscInitAscDvcVar(asc_dvc);
10205 warn_code |= AscInitFromEEP(asc_dvc);
10206 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10207 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10208 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10209 } else {
10210 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10213 switch (warn_code) {
10214 case 0: /* No error */
10215 break;
10216 case ASC_WARN_IO_PORT_ROTATE:
10217 shost_printk(KERN_WARNING, shost, "I/O port address "
10218 "modified\n");
10219 break;
10220 case ASC_WARN_AUTO_CONFIG:
10221 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10222 "enabled\n");
10223 break;
10224 case ASC_WARN_EEPROM_CHKSUM:
10225 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10226 break;
10227 case ASC_WARN_IRQ_MODIFIED:
10228 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10229 break;
10230 case ASC_WARN_CMD_QNG_CONFLICT:
10231 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10232 "disconnects\n");
10233 break;
10234 default:
10235 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10236 warn_code);
10237 break;
10240 if (asc_dvc->err_code != 0)
10241 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10242 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10244 return asc_dvc->err_code;
10247 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10249 struct asc_board *board = shost_priv(shost);
10250 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10251 PortAddr iop_base = asc_dvc->iop_base;
10252 unsigned short cfg_msw;
10253 unsigned short warn_code = 0;
10255 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10256 if (asc_dvc->err_code != 0)
10257 return asc_dvc->err_code;
10258 if (!AscFindSignature(asc_dvc->iop_base)) {
10259 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10260 return asc_dvc->err_code;
10263 cfg_msw = AscGetChipCfgMsw(iop_base);
10264 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10265 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10266 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10267 AscSetChipCfgMsw(iop_base, cfg_msw);
10269 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10270 asc_dvc->cfg->cmd_qng_enabled) {
10271 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10272 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10274 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10275 warn_code |= ASC_WARN_AUTO_CONFIG;
10277 #ifdef CONFIG_PCI
10278 if (asc_dvc->bus_type & ASC_IS_PCI) {
10279 cfg_msw &= 0xFFC0;
10280 AscSetChipCfgMsw(iop_base, cfg_msw);
10281 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10282 } else {
10283 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10284 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10285 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10286 asc_dvc->bug_fix_cntl |=
10287 ASC_BUG_FIX_ASYN_USE_SYN;
10290 } else
10291 #endif /* CONFIG_PCI */
10292 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10293 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10294 == ASC_CHIP_VER_ASYN_BUG) {
10295 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10298 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10299 asc_dvc->cfg->chip_scsi_id) {
10300 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10302 #ifdef CONFIG_ISA
10303 if (asc_dvc->bus_type & ASC_IS_ISA) {
10304 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10305 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10307 #endif /* CONFIG_ISA */
10309 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10311 switch (warn_code) {
10312 case 0: /* No error. */
10313 break;
10314 case ASC_WARN_IO_PORT_ROTATE:
10315 shost_printk(KERN_WARNING, shost, "I/O port address "
10316 "modified\n");
10317 break;
10318 case ASC_WARN_AUTO_CONFIG:
10319 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10320 "enabled\n");
10321 break;
10322 case ASC_WARN_EEPROM_CHKSUM:
10323 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10324 break;
10325 case ASC_WARN_IRQ_MODIFIED:
10326 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10327 break;
10328 case ASC_WARN_CMD_QNG_CONFLICT:
10329 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10330 "disconnects\n");
10331 break;
10332 default:
10333 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10334 warn_code);
10335 break;
10338 if (asc_dvc->err_code != 0)
10339 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10340 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10342 return asc_dvc->err_code;
10346 * EEPROM Configuration.
10348 * All drivers should use this structure to set the default EEPROM
10349 * configuration. The BIOS now uses this structure when it is built.
10350 * Additional structure information can be found in a_condor.h where
10351 * the structure is defined.
10353 * The *_Field_IsChar structs are needed to correct for endianness.
10354 * These values are read from the board 16 bits at a time directly
10355 * into the structs. Because some fields are char, the values will be
10356 * in the wrong order. The *_Field_IsChar tells when to flip the
10357 * bytes. Data read and written to PCI memory is automatically swapped
10358 * on big-endian platforms so char fields read as words are actually being
10359 * unswapped on big-endian platforms.
10361 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10362 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
10363 0x0000, /* cfg_msw */
10364 0xFFFF, /* disc_enable */
10365 0xFFFF, /* wdtr_able */
10366 0xFFFF, /* sdtr_able */
10367 0xFFFF, /* start_motor */
10368 0xFFFF, /* tagqng_able */
10369 0xFFFF, /* bios_scan */
10370 0, /* scam_tolerant */
10371 7, /* adapter_scsi_id */
10372 0, /* bios_boot_delay */
10373 3, /* scsi_reset_delay */
10374 0, /* bios_id_lun */
10375 0, /* termination */
10376 0, /* reserved1 */
10377 0xFFE7, /* bios_ctrl */
10378 0xFFFF, /* ultra_able */
10379 0, /* reserved2 */
10380 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
10381 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10382 0, /* dvc_cntl */
10383 0, /* bug_fix */
10384 0, /* serial_number_word1 */
10385 0, /* serial_number_word2 */
10386 0, /* serial_number_word3 */
10387 0, /* check_sum */
10388 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10389 , /* oem_name[16] */
10390 0, /* dvc_err_code */
10391 0, /* adv_err_code */
10392 0, /* adv_err_addr */
10393 0, /* saved_dvc_err_code */
10394 0, /* saved_adv_err_code */
10395 0, /* saved_adv_err_addr */
10396 0 /* num_of_err */
10399 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10400 0, /* cfg_lsw */
10401 0, /* cfg_msw */
10402 0, /* -disc_enable */
10403 0, /* wdtr_able */
10404 0, /* sdtr_able */
10405 0, /* start_motor */
10406 0, /* tagqng_able */
10407 0, /* bios_scan */
10408 0, /* scam_tolerant */
10409 1, /* adapter_scsi_id */
10410 1, /* bios_boot_delay */
10411 1, /* scsi_reset_delay */
10412 1, /* bios_id_lun */
10413 1, /* termination */
10414 1, /* reserved1 */
10415 0, /* bios_ctrl */
10416 0, /* ultra_able */
10417 0, /* reserved2 */
10418 1, /* max_host_qng */
10419 1, /* max_dvc_qng */
10420 0, /* dvc_cntl */
10421 0, /* bug_fix */
10422 0, /* serial_number_word1 */
10423 0, /* serial_number_word2 */
10424 0, /* serial_number_word3 */
10425 0, /* check_sum */
10426 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10427 , /* oem_name[16] */
10428 0, /* dvc_err_code */
10429 0, /* adv_err_code */
10430 0, /* adv_err_addr */
10431 0, /* saved_dvc_err_code */
10432 0, /* saved_adv_err_code */
10433 0, /* saved_adv_err_addr */
10434 0 /* num_of_err */
10437 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10438 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10439 0x0000, /* 01 cfg_msw */
10440 0xFFFF, /* 02 disc_enable */
10441 0xFFFF, /* 03 wdtr_able */
10442 0x4444, /* 04 sdtr_speed1 */
10443 0xFFFF, /* 05 start_motor */
10444 0xFFFF, /* 06 tagqng_able */
10445 0xFFFF, /* 07 bios_scan */
10446 0, /* 08 scam_tolerant */
10447 7, /* 09 adapter_scsi_id */
10448 0, /* bios_boot_delay */
10449 3, /* 10 scsi_reset_delay */
10450 0, /* bios_id_lun */
10451 0, /* 11 termination_se */
10452 0, /* termination_lvd */
10453 0xFFE7, /* 12 bios_ctrl */
10454 0x4444, /* 13 sdtr_speed2 */
10455 0x4444, /* 14 sdtr_speed3 */
10456 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10457 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10458 0, /* 16 dvc_cntl */
10459 0x4444, /* 17 sdtr_speed4 */
10460 0, /* 18 serial_number_word1 */
10461 0, /* 19 serial_number_word2 */
10462 0, /* 20 serial_number_word3 */
10463 0, /* 21 check_sum */
10464 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10465 , /* 22-29 oem_name[16] */
10466 0, /* 30 dvc_err_code */
10467 0, /* 31 adv_err_code */
10468 0, /* 32 adv_err_addr */
10469 0, /* 33 saved_dvc_err_code */
10470 0, /* 34 saved_adv_err_code */
10471 0, /* 35 saved_adv_err_addr */
10472 0, /* 36 reserved */
10473 0, /* 37 reserved */
10474 0, /* 38 reserved */
10475 0, /* 39 reserved */
10476 0, /* 40 reserved */
10477 0, /* 41 reserved */
10478 0, /* 42 reserved */
10479 0, /* 43 reserved */
10480 0, /* 44 reserved */
10481 0, /* 45 reserved */
10482 0, /* 46 reserved */
10483 0, /* 47 reserved */
10484 0, /* 48 reserved */
10485 0, /* 49 reserved */
10486 0, /* 50 reserved */
10487 0, /* 51 reserved */
10488 0, /* 52 reserved */
10489 0, /* 53 reserved */
10490 0, /* 54 reserved */
10491 0, /* 55 reserved */
10492 0, /* 56 cisptr_lsw */
10493 0, /* 57 cisprt_msw */
10494 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10495 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
10496 0, /* 60 reserved */
10497 0, /* 61 reserved */
10498 0, /* 62 reserved */
10499 0 /* 63 reserved */
10502 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10503 0, /* 00 cfg_lsw */
10504 0, /* 01 cfg_msw */
10505 0, /* 02 disc_enable */
10506 0, /* 03 wdtr_able */
10507 0, /* 04 sdtr_speed1 */
10508 0, /* 05 start_motor */
10509 0, /* 06 tagqng_able */
10510 0, /* 07 bios_scan */
10511 0, /* 08 scam_tolerant */
10512 1, /* 09 adapter_scsi_id */
10513 1, /* bios_boot_delay */
10514 1, /* 10 scsi_reset_delay */
10515 1, /* bios_id_lun */
10516 1, /* 11 termination_se */
10517 1, /* termination_lvd */
10518 0, /* 12 bios_ctrl */
10519 0, /* 13 sdtr_speed2 */
10520 0, /* 14 sdtr_speed3 */
10521 1, /* 15 max_host_qng */
10522 1, /* max_dvc_qng */
10523 0, /* 16 dvc_cntl */
10524 0, /* 17 sdtr_speed4 */
10525 0, /* 18 serial_number_word1 */
10526 0, /* 19 serial_number_word2 */
10527 0, /* 20 serial_number_word3 */
10528 0, /* 21 check_sum */
10529 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10530 , /* 22-29 oem_name[16] */
10531 0, /* 30 dvc_err_code */
10532 0, /* 31 adv_err_code */
10533 0, /* 32 adv_err_addr */
10534 0, /* 33 saved_dvc_err_code */
10535 0, /* 34 saved_adv_err_code */
10536 0, /* 35 saved_adv_err_addr */
10537 0, /* 36 reserved */
10538 0, /* 37 reserved */
10539 0, /* 38 reserved */
10540 0, /* 39 reserved */
10541 0, /* 40 reserved */
10542 0, /* 41 reserved */
10543 0, /* 42 reserved */
10544 0, /* 43 reserved */
10545 0, /* 44 reserved */
10546 0, /* 45 reserved */
10547 0, /* 46 reserved */
10548 0, /* 47 reserved */
10549 0, /* 48 reserved */
10550 0, /* 49 reserved */
10551 0, /* 50 reserved */
10552 0, /* 51 reserved */
10553 0, /* 52 reserved */
10554 0, /* 53 reserved */
10555 0, /* 54 reserved */
10556 0, /* 55 reserved */
10557 0, /* 56 cisptr_lsw */
10558 0, /* 57 cisprt_msw */
10559 0, /* 58 subsysvid */
10560 0, /* 59 subsysid */
10561 0, /* 60 reserved */
10562 0, /* 61 reserved */
10563 0, /* 62 reserved */
10564 0 /* 63 reserved */
10567 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10568 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10569 0x0000, /* 01 cfg_msw */
10570 0xFFFF, /* 02 disc_enable */
10571 0xFFFF, /* 03 wdtr_able */
10572 0x5555, /* 04 sdtr_speed1 */
10573 0xFFFF, /* 05 start_motor */
10574 0xFFFF, /* 06 tagqng_able */
10575 0xFFFF, /* 07 bios_scan */
10576 0, /* 08 scam_tolerant */
10577 7, /* 09 adapter_scsi_id */
10578 0, /* bios_boot_delay */
10579 3, /* 10 scsi_reset_delay */
10580 0, /* bios_id_lun */
10581 0, /* 11 termination_se */
10582 0, /* termination_lvd */
10583 0xFFE7, /* 12 bios_ctrl */
10584 0x5555, /* 13 sdtr_speed2 */
10585 0x5555, /* 14 sdtr_speed3 */
10586 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10587 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10588 0, /* 16 dvc_cntl */
10589 0x5555, /* 17 sdtr_speed4 */
10590 0, /* 18 serial_number_word1 */
10591 0, /* 19 serial_number_word2 */
10592 0, /* 20 serial_number_word3 */
10593 0, /* 21 check_sum */
10594 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10595 , /* 22-29 oem_name[16] */
10596 0, /* 30 dvc_err_code */
10597 0, /* 31 adv_err_code */
10598 0, /* 32 adv_err_addr */
10599 0, /* 33 saved_dvc_err_code */
10600 0, /* 34 saved_adv_err_code */
10601 0, /* 35 saved_adv_err_addr */
10602 0, /* 36 reserved */
10603 0, /* 37 reserved */
10604 0, /* 38 reserved */
10605 0, /* 39 reserved */
10606 0, /* 40 reserved */
10607 0, /* 41 reserved */
10608 0, /* 42 reserved */
10609 0, /* 43 reserved */
10610 0, /* 44 reserved */
10611 0, /* 45 reserved */
10612 0, /* 46 reserved */
10613 0, /* 47 reserved */
10614 0, /* 48 reserved */
10615 0, /* 49 reserved */
10616 0, /* 50 reserved */
10617 0, /* 51 reserved */
10618 0, /* 52 reserved */
10619 0, /* 53 reserved */
10620 0, /* 54 reserved */
10621 0, /* 55 reserved */
10622 0, /* 56 cisptr_lsw */
10623 0, /* 57 cisprt_msw */
10624 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10625 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
10626 0, /* 60 reserved */
10627 0, /* 61 reserved */
10628 0, /* 62 reserved */
10629 0 /* 63 reserved */
10632 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10633 0, /* 00 cfg_lsw */
10634 0, /* 01 cfg_msw */
10635 0, /* 02 disc_enable */
10636 0, /* 03 wdtr_able */
10637 0, /* 04 sdtr_speed1 */
10638 0, /* 05 start_motor */
10639 0, /* 06 tagqng_able */
10640 0, /* 07 bios_scan */
10641 0, /* 08 scam_tolerant */
10642 1, /* 09 adapter_scsi_id */
10643 1, /* bios_boot_delay */
10644 1, /* 10 scsi_reset_delay */
10645 1, /* bios_id_lun */
10646 1, /* 11 termination_se */
10647 1, /* termination_lvd */
10648 0, /* 12 bios_ctrl */
10649 0, /* 13 sdtr_speed2 */
10650 0, /* 14 sdtr_speed3 */
10651 1, /* 15 max_host_qng */
10652 1, /* max_dvc_qng */
10653 0, /* 16 dvc_cntl */
10654 0, /* 17 sdtr_speed4 */
10655 0, /* 18 serial_number_word1 */
10656 0, /* 19 serial_number_word2 */
10657 0, /* 20 serial_number_word3 */
10658 0, /* 21 check_sum */
10659 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10660 , /* 22-29 oem_name[16] */
10661 0, /* 30 dvc_err_code */
10662 0, /* 31 adv_err_code */
10663 0, /* 32 adv_err_addr */
10664 0, /* 33 saved_dvc_err_code */
10665 0, /* 34 saved_adv_err_code */
10666 0, /* 35 saved_adv_err_addr */
10667 0, /* 36 reserved */
10668 0, /* 37 reserved */
10669 0, /* 38 reserved */
10670 0, /* 39 reserved */
10671 0, /* 40 reserved */
10672 0, /* 41 reserved */
10673 0, /* 42 reserved */
10674 0, /* 43 reserved */
10675 0, /* 44 reserved */
10676 0, /* 45 reserved */
10677 0, /* 46 reserved */
10678 0, /* 47 reserved */
10679 0, /* 48 reserved */
10680 0, /* 49 reserved */
10681 0, /* 50 reserved */
10682 0, /* 51 reserved */
10683 0, /* 52 reserved */
10684 0, /* 53 reserved */
10685 0, /* 54 reserved */
10686 0, /* 55 reserved */
10687 0, /* 56 cisptr_lsw */
10688 0, /* 57 cisprt_msw */
10689 0, /* 58 subsysvid */
10690 0, /* 59 subsysid */
10691 0, /* 60 reserved */
10692 0, /* 61 reserved */
10693 0, /* 62 reserved */
10694 0 /* 63 reserved */
10697 #ifdef CONFIG_PCI
10699 * Wait for EEPROM command to complete
10701 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10703 int eep_delay_ms;
10705 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10706 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10707 ASC_EEP_CMD_DONE) {
10708 break;
10710 mdelay(1);
10712 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10714 BUG();
10718 * Read the EEPROM from specified location
10720 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10722 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10723 ASC_EEP_CMD_READ | eep_word_addr);
10724 AdvWaitEEPCmd(iop_base);
10725 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10729 * Write the EEPROM from 'cfg_buf'.
10731 static void __devinit
10732 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10734 ushort *wbuf;
10735 ushort addr, chksum;
10736 ushort *charfields;
10738 wbuf = (ushort *)cfg_buf;
10739 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10740 chksum = 0;
10742 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10743 AdvWaitEEPCmd(iop_base);
10746 * Write EEPROM from word 0 to word 20.
10748 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10749 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10750 ushort word;
10752 if (*charfields++) {
10753 word = cpu_to_le16(*wbuf);
10754 } else {
10755 word = *wbuf;
10757 chksum += *wbuf; /* Checksum is calculated from word values. */
10758 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10759 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10760 ASC_EEP_CMD_WRITE | addr);
10761 AdvWaitEEPCmd(iop_base);
10762 mdelay(ADV_EEP_DELAY_MS);
10766 * Write EEPROM checksum at word 21.
10768 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10769 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10770 AdvWaitEEPCmd(iop_base);
10771 wbuf++;
10772 charfields++;
10775 * Write EEPROM OEM name at words 22 to 29.
10777 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10778 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10779 ushort word;
10781 if (*charfields++) {
10782 word = cpu_to_le16(*wbuf);
10783 } else {
10784 word = *wbuf;
10786 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10787 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10788 ASC_EEP_CMD_WRITE | addr);
10789 AdvWaitEEPCmd(iop_base);
10791 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10792 AdvWaitEEPCmd(iop_base);
10796 * Write the EEPROM from 'cfg_buf'.
10798 static void __devinit
10799 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10801 ushort *wbuf;
10802 ushort *charfields;
10803 ushort addr, chksum;
10805 wbuf = (ushort *)cfg_buf;
10806 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10807 chksum = 0;
10809 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10810 AdvWaitEEPCmd(iop_base);
10813 * Write EEPROM from word 0 to word 20.
10815 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10816 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10817 ushort word;
10819 if (*charfields++) {
10820 word = cpu_to_le16(*wbuf);
10821 } else {
10822 word = *wbuf;
10824 chksum += *wbuf; /* Checksum is calculated from word values. */
10825 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10826 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10827 ASC_EEP_CMD_WRITE | addr);
10828 AdvWaitEEPCmd(iop_base);
10829 mdelay(ADV_EEP_DELAY_MS);
10833 * Write EEPROM checksum at word 21.
10835 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10836 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10837 AdvWaitEEPCmd(iop_base);
10838 wbuf++;
10839 charfields++;
10842 * Write EEPROM OEM name at words 22 to 29.
10844 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10845 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10846 ushort word;
10848 if (*charfields++) {
10849 word = cpu_to_le16(*wbuf);
10850 } else {
10851 word = *wbuf;
10853 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10854 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10855 ASC_EEP_CMD_WRITE | addr);
10856 AdvWaitEEPCmd(iop_base);
10858 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10859 AdvWaitEEPCmd(iop_base);
10863 * Write the EEPROM from 'cfg_buf'.
10865 static void __devinit
10866 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10868 ushort *wbuf;
10869 ushort *charfields;
10870 ushort addr, chksum;
10872 wbuf = (ushort *)cfg_buf;
10873 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10874 chksum = 0;
10876 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10877 AdvWaitEEPCmd(iop_base);
10880 * Write EEPROM from word 0 to word 20.
10882 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10883 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10884 ushort word;
10886 if (*charfields++) {
10887 word = cpu_to_le16(*wbuf);
10888 } else {
10889 word = *wbuf;
10891 chksum += *wbuf; /* Checksum is calculated from word values. */
10892 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10893 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10894 ASC_EEP_CMD_WRITE | addr);
10895 AdvWaitEEPCmd(iop_base);
10896 mdelay(ADV_EEP_DELAY_MS);
10900 * Write EEPROM checksum at word 21.
10902 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10903 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10904 AdvWaitEEPCmd(iop_base);
10905 wbuf++;
10906 charfields++;
10909 * Write EEPROM OEM name at words 22 to 29.
10911 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10912 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10913 ushort word;
10915 if (*charfields++) {
10916 word = cpu_to_le16(*wbuf);
10917 } else {
10918 word = *wbuf;
10920 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10921 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10922 ASC_EEP_CMD_WRITE | addr);
10923 AdvWaitEEPCmd(iop_base);
10925 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10926 AdvWaitEEPCmd(iop_base);
10930 * Read EEPROM configuration into the specified buffer.
10932 * Return a checksum based on the EEPROM configuration read.
10934 static ushort __devinit
10935 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10937 ushort wval, chksum;
10938 ushort *wbuf;
10939 int eep_addr;
10940 ushort *charfields;
10942 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10943 wbuf = (ushort *)cfg_buf;
10944 chksum = 0;
10946 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10947 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10948 wval = AdvReadEEPWord(iop_base, eep_addr);
10949 chksum += wval; /* Checksum is calculated from word values. */
10950 if (*charfields++) {
10951 *wbuf = le16_to_cpu(wval);
10952 } else {
10953 *wbuf = wval;
10956 /* Read checksum word. */
10957 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10958 wbuf++;
10959 charfields++;
10961 /* Read rest of EEPROM not covered by the checksum. */
10962 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10963 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10964 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10965 if (*charfields++) {
10966 *wbuf = le16_to_cpu(*wbuf);
10969 return chksum;
10973 * Read EEPROM configuration into the specified buffer.
10975 * Return a checksum based on the EEPROM configuration read.
10977 static ushort __devinit
10978 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10980 ushort wval, chksum;
10981 ushort *wbuf;
10982 int eep_addr;
10983 ushort *charfields;
10985 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10986 wbuf = (ushort *)cfg_buf;
10987 chksum = 0;
10989 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10990 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10991 wval = AdvReadEEPWord(iop_base, eep_addr);
10992 chksum += wval; /* Checksum is calculated from word values. */
10993 if (*charfields++) {
10994 *wbuf = le16_to_cpu(wval);
10995 } else {
10996 *wbuf = wval;
10999 /* Read checksum word. */
11000 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11001 wbuf++;
11002 charfields++;
11004 /* Read rest of EEPROM not covered by the checksum. */
11005 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11006 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11007 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11008 if (*charfields++) {
11009 *wbuf = le16_to_cpu(*wbuf);
11012 return chksum;
11016 * Read EEPROM configuration into the specified buffer.
11018 * Return a checksum based on the EEPROM configuration read.
11020 static ushort __devinit
11021 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11023 ushort wval, chksum;
11024 ushort *wbuf;
11025 int eep_addr;
11026 ushort *charfields;
11028 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11029 wbuf = (ushort *)cfg_buf;
11030 chksum = 0;
11032 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11033 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11034 wval = AdvReadEEPWord(iop_base, eep_addr);
11035 chksum += wval; /* Checksum is calculated from word values. */
11036 if (*charfields++) {
11037 *wbuf = le16_to_cpu(wval);
11038 } else {
11039 *wbuf = wval;
11042 /* Read checksum word. */
11043 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11044 wbuf++;
11045 charfields++;
11047 /* Read rest of EEPROM not covered by the checksum. */
11048 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11049 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11050 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11051 if (*charfields++) {
11052 *wbuf = le16_to_cpu(*wbuf);
11055 return chksum;
11059 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11060 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11061 * all of this is done.
11063 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11065 * For a non-fatal error return a warning code. If there are no warnings
11066 * then 0 is returned.
11068 * Note: Chip is stopped on entry.
11070 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11072 AdvPortAddr iop_base;
11073 ushort warn_code;
11074 ADVEEP_3550_CONFIG eep_config;
11076 iop_base = asc_dvc->iop_base;
11078 warn_code = 0;
11081 * Read the board's EEPROM configuration.
11083 * Set default values if a bad checksum is found.
11085 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11086 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11089 * Set EEPROM default values.
11091 memcpy(&eep_config, &Default_3550_EEPROM_Config,
11092 sizeof(ADVEEP_3550_CONFIG));
11095 * Assume the 6 byte board serial number that was read from
11096 * EEPROM is correct even if the EEPROM checksum failed.
11098 eep_config.serial_number_word3 =
11099 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11101 eep_config.serial_number_word2 =
11102 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11104 eep_config.serial_number_word1 =
11105 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11107 AdvSet3550EEPConfig(iop_base, &eep_config);
11110 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11111 * EEPROM configuration that was read.
11113 * This is the mapping of EEPROM fields to Adv Library fields.
11115 asc_dvc->wdtr_able = eep_config.wdtr_able;
11116 asc_dvc->sdtr_able = eep_config.sdtr_able;
11117 asc_dvc->ultra_able = eep_config.ultra_able;
11118 asc_dvc->tagqng_able = eep_config.tagqng_able;
11119 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11120 asc_dvc->max_host_qng = eep_config.max_host_qng;
11121 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11122 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11123 asc_dvc->start_motor = eep_config.start_motor;
11124 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11125 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11126 asc_dvc->no_scam = eep_config.scam_tolerant;
11127 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11128 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11129 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11132 * Set the host maximum queuing (max. 253, min. 16) and the per device
11133 * maximum queuing (max. 63, min. 4).
11135 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11136 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11137 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11138 /* If the value is zero, assume it is uninitialized. */
11139 if (eep_config.max_host_qng == 0) {
11140 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11141 } else {
11142 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11146 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11147 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11148 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11149 /* If the value is zero, assume it is uninitialized. */
11150 if (eep_config.max_dvc_qng == 0) {
11151 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11152 } else {
11153 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11158 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11159 * set 'max_dvc_qng' to 'max_host_qng'.
11161 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11162 eep_config.max_dvc_qng = eep_config.max_host_qng;
11166 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11167 * values based on possibly adjusted EEPROM values.
11169 asc_dvc->max_host_qng = eep_config.max_host_qng;
11170 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11173 * If the EEPROM 'termination' field is set to automatic (0), then set
11174 * the ADV_DVC_CFG 'termination' field to automatic also.
11176 * If the termination is specified with a non-zero 'termination'
11177 * value check that a legal value is set and set the ADV_DVC_CFG
11178 * 'termination' field appropriately.
11180 if (eep_config.termination == 0) {
11181 asc_dvc->cfg->termination = 0; /* auto termination */
11182 } else {
11183 /* Enable manual control with low off / high off. */
11184 if (eep_config.termination == 1) {
11185 asc_dvc->cfg->termination = TERM_CTL_SEL;
11187 /* Enable manual control with low off / high on. */
11188 } else if (eep_config.termination == 2) {
11189 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11191 /* Enable manual control with low on / high on. */
11192 } else if (eep_config.termination == 3) {
11193 asc_dvc->cfg->termination =
11194 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11195 } else {
11197 * The EEPROM 'termination' field contains a bad value. Use
11198 * automatic termination instead.
11200 asc_dvc->cfg->termination = 0;
11201 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11205 return warn_code;
11209 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11210 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11211 * all of this is done.
11213 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11215 * For a non-fatal error return a warning code. If there are no warnings
11216 * then 0 is returned.
11218 * Note: Chip is stopped on entry.
11220 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11222 AdvPortAddr iop_base;
11223 ushort warn_code;
11224 ADVEEP_38C0800_CONFIG eep_config;
11225 uchar tid, termination;
11226 ushort sdtr_speed = 0;
11228 iop_base = asc_dvc->iop_base;
11230 warn_code = 0;
11233 * Read the board's EEPROM configuration.
11235 * Set default values if a bad checksum is found.
11237 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11238 eep_config.check_sum) {
11239 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11242 * Set EEPROM default values.
11244 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11245 sizeof(ADVEEP_38C0800_CONFIG));
11248 * Assume the 6 byte board serial number that was read from
11249 * EEPROM is correct even if the EEPROM checksum failed.
11251 eep_config.serial_number_word3 =
11252 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11254 eep_config.serial_number_word2 =
11255 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11257 eep_config.serial_number_word1 =
11258 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11260 AdvSet38C0800EEPConfig(iop_base, &eep_config);
11263 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11264 * EEPROM configuration that was read.
11266 * This is the mapping of EEPROM fields to Adv Library fields.
11268 asc_dvc->wdtr_able = eep_config.wdtr_able;
11269 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11270 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11271 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11272 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11273 asc_dvc->tagqng_able = eep_config.tagqng_able;
11274 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11275 asc_dvc->max_host_qng = eep_config.max_host_qng;
11276 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11277 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11278 asc_dvc->start_motor = eep_config.start_motor;
11279 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11280 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11281 asc_dvc->no_scam = eep_config.scam_tolerant;
11282 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11283 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11284 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11287 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11288 * are set, then set an 'sdtr_able' bit for it.
11290 asc_dvc->sdtr_able = 0;
11291 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11292 if (tid == 0) {
11293 sdtr_speed = asc_dvc->sdtr_speed1;
11294 } else if (tid == 4) {
11295 sdtr_speed = asc_dvc->sdtr_speed2;
11296 } else if (tid == 8) {
11297 sdtr_speed = asc_dvc->sdtr_speed3;
11298 } else if (tid == 12) {
11299 sdtr_speed = asc_dvc->sdtr_speed4;
11301 if (sdtr_speed & ADV_MAX_TID) {
11302 asc_dvc->sdtr_able |= (1 << tid);
11304 sdtr_speed >>= 4;
11308 * Set the host maximum queuing (max. 253, min. 16) and the per device
11309 * maximum queuing (max. 63, min. 4).
11311 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11312 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11313 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11314 /* If the value is zero, assume it is uninitialized. */
11315 if (eep_config.max_host_qng == 0) {
11316 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11317 } else {
11318 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11322 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11323 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11324 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11325 /* If the value is zero, assume it is uninitialized. */
11326 if (eep_config.max_dvc_qng == 0) {
11327 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11328 } else {
11329 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11334 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11335 * set 'max_dvc_qng' to 'max_host_qng'.
11337 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11338 eep_config.max_dvc_qng = eep_config.max_host_qng;
11342 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11343 * values based on possibly adjusted EEPROM values.
11345 asc_dvc->max_host_qng = eep_config.max_host_qng;
11346 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11349 * If the EEPROM 'termination' field is set to automatic (0), then set
11350 * the ADV_DVC_CFG 'termination' field to automatic also.
11352 * If the termination is specified with a non-zero 'termination'
11353 * value check that a legal value is set and set the ADV_DVC_CFG
11354 * 'termination' field appropriately.
11356 if (eep_config.termination_se == 0) {
11357 termination = 0; /* auto termination for SE */
11358 } else {
11359 /* Enable manual control with low off / high off. */
11360 if (eep_config.termination_se == 1) {
11361 termination = 0;
11363 /* Enable manual control with low off / high on. */
11364 } else if (eep_config.termination_se == 2) {
11365 termination = TERM_SE_HI;
11367 /* Enable manual control with low on / high on. */
11368 } else if (eep_config.termination_se == 3) {
11369 termination = TERM_SE;
11370 } else {
11372 * The EEPROM 'termination_se' field contains a bad value.
11373 * Use automatic termination instead.
11375 termination = 0;
11376 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11380 if (eep_config.termination_lvd == 0) {
11381 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11382 } else {
11383 /* Enable manual control with low off / high off. */
11384 if (eep_config.termination_lvd == 1) {
11385 asc_dvc->cfg->termination = termination;
11387 /* Enable manual control with low off / high on. */
11388 } else if (eep_config.termination_lvd == 2) {
11389 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11391 /* Enable manual control with low on / high on. */
11392 } else if (eep_config.termination_lvd == 3) {
11393 asc_dvc->cfg->termination = termination | TERM_LVD;
11394 } else {
11396 * The EEPROM 'termination_lvd' field contains a bad value.
11397 * Use automatic termination instead.
11399 asc_dvc->cfg->termination = termination;
11400 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11404 return warn_code;
11408 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11409 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11410 * all of this is done.
11412 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11414 * For a non-fatal error return a warning code. If there are no warnings
11415 * then 0 is returned.
11417 * Note: Chip is stopped on entry.
11419 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11421 AdvPortAddr iop_base;
11422 ushort warn_code;
11423 ADVEEP_38C1600_CONFIG eep_config;
11424 uchar tid, termination;
11425 ushort sdtr_speed = 0;
11427 iop_base = asc_dvc->iop_base;
11429 warn_code = 0;
11432 * Read the board's EEPROM configuration.
11434 * Set default values if a bad checksum is found.
11436 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11437 eep_config.check_sum) {
11438 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11439 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11442 * Set EEPROM default values.
11444 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11445 sizeof(ADVEEP_38C1600_CONFIG));
11447 if (PCI_FUNC(pdev->devfn) != 0) {
11448 u8 ints;
11450 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11451 * and old Mac system booting problem. The Expansion
11452 * ROM must be disabled in Function 1 for these systems
11454 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11456 * Clear the INTAB (bit 11) if the GPIO 0 input
11457 * indicates the Function 1 interrupt line is wired
11458 * to INTB.
11460 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11461 * 1 - Function 1 interrupt line wired to INT A.
11462 * 0 - Function 1 interrupt line wired to INT B.
11464 * Note: Function 0 is always wired to INTA.
11465 * Put all 5 GPIO bits in input mode and then read
11466 * their input values.
11468 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11469 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11470 if ((ints & 0x01) == 0)
11471 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11475 * Assume the 6 byte board serial number that was read from
11476 * EEPROM is correct even if the EEPROM checksum failed.
11478 eep_config.serial_number_word3 =
11479 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11480 eep_config.serial_number_word2 =
11481 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11482 eep_config.serial_number_word1 =
11483 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11485 AdvSet38C1600EEPConfig(iop_base, &eep_config);
11489 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11490 * EEPROM configuration that was read.
11492 * This is the mapping of EEPROM fields to Adv Library fields.
11494 asc_dvc->wdtr_able = eep_config.wdtr_able;
11495 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11496 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11497 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11498 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11499 asc_dvc->ppr_able = 0;
11500 asc_dvc->tagqng_able = eep_config.tagqng_able;
11501 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11502 asc_dvc->max_host_qng = eep_config.max_host_qng;
11503 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11504 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11505 asc_dvc->start_motor = eep_config.start_motor;
11506 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11507 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11508 asc_dvc->no_scam = eep_config.scam_tolerant;
11511 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11512 * are set, then set an 'sdtr_able' bit for it.
11514 asc_dvc->sdtr_able = 0;
11515 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11516 if (tid == 0) {
11517 sdtr_speed = asc_dvc->sdtr_speed1;
11518 } else if (tid == 4) {
11519 sdtr_speed = asc_dvc->sdtr_speed2;
11520 } else if (tid == 8) {
11521 sdtr_speed = asc_dvc->sdtr_speed3;
11522 } else if (tid == 12) {
11523 sdtr_speed = asc_dvc->sdtr_speed4;
11525 if (sdtr_speed & ASC_MAX_TID) {
11526 asc_dvc->sdtr_able |= (1 << tid);
11528 sdtr_speed >>= 4;
11532 * Set the host maximum queuing (max. 253, min. 16) and the per device
11533 * maximum queuing (max. 63, min. 4).
11535 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11536 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11537 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11538 /* If the value is zero, assume it is uninitialized. */
11539 if (eep_config.max_host_qng == 0) {
11540 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11541 } else {
11542 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11546 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11547 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11548 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11549 /* If the value is zero, assume it is uninitialized. */
11550 if (eep_config.max_dvc_qng == 0) {
11551 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11552 } else {
11553 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11558 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11559 * set 'max_dvc_qng' to 'max_host_qng'.
11561 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11562 eep_config.max_dvc_qng = eep_config.max_host_qng;
11566 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11567 * values based on possibly adjusted EEPROM values.
11569 asc_dvc->max_host_qng = eep_config.max_host_qng;
11570 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11573 * If the EEPROM 'termination' field is set to automatic (0), then set
11574 * the ASC_DVC_CFG 'termination' field to automatic also.
11576 * If the termination is specified with a non-zero 'termination'
11577 * value check that a legal value is set and set the ASC_DVC_CFG
11578 * 'termination' field appropriately.
11580 if (eep_config.termination_se == 0) {
11581 termination = 0; /* auto termination for SE */
11582 } else {
11583 /* Enable manual control with low off / high off. */
11584 if (eep_config.termination_se == 1) {
11585 termination = 0;
11587 /* Enable manual control with low off / high on. */
11588 } else if (eep_config.termination_se == 2) {
11589 termination = TERM_SE_HI;
11591 /* Enable manual control with low on / high on. */
11592 } else if (eep_config.termination_se == 3) {
11593 termination = TERM_SE;
11594 } else {
11596 * The EEPROM 'termination_se' field contains a bad value.
11597 * Use automatic termination instead.
11599 termination = 0;
11600 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11604 if (eep_config.termination_lvd == 0) {
11605 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11606 } else {
11607 /* Enable manual control with low off / high off. */
11608 if (eep_config.termination_lvd == 1) {
11609 asc_dvc->cfg->termination = termination;
11611 /* Enable manual control with low off / high on. */
11612 } else if (eep_config.termination_lvd == 2) {
11613 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11615 /* Enable manual control with low on / high on. */
11616 } else if (eep_config.termination_lvd == 3) {
11617 asc_dvc->cfg->termination = termination | TERM_LVD;
11618 } else {
11620 * The EEPROM 'termination_lvd' field contains a bad value.
11621 * Use automatic termination instead.
11623 asc_dvc->cfg->termination = termination;
11624 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11628 return warn_code;
11632 * Initialize the ADV_DVC_VAR structure.
11634 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11636 * For a non-fatal error return a warning code. If there are no warnings
11637 * then 0 is returned.
11639 static int __devinit
11640 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11642 struct asc_board *board = shost_priv(shost);
11643 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11644 unsigned short warn_code = 0;
11645 AdvPortAddr iop_base = asc_dvc->iop_base;
11646 u16 cmd;
11647 int status;
11649 asc_dvc->err_code = 0;
11652 * Save the state of the PCI Configuration Command Register
11653 * "Parity Error Response Control" Bit. If the bit is clear (0),
11654 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11655 * DMA parity errors.
11657 asc_dvc->cfg->control_flag = 0;
11658 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11659 if ((cmd & PCI_COMMAND_PARITY) == 0)
11660 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11662 asc_dvc->cfg->chip_version =
11663 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11665 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11666 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11667 (ushort)ADV_CHIP_ID_BYTE);
11669 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11670 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11671 (ushort)ADV_CHIP_ID_WORD);
11674 * Reset the chip to start and allow register writes.
11676 if (AdvFindSignature(iop_base) == 0) {
11677 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11678 return ADV_ERROR;
11679 } else {
11681 * The caller must set 'chip_type' to a valid setting.
11683 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11684 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11685 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11686 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11687 return ADV_ERROR;
11691 * Reset Chip.
11693 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11694 ADV_CTRL_REG_CMD_RESET);
11695 mdelay(100);
11696 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11697 ADV_CTRL_REG_CMD_WR_IO_REG);
11699 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11700 status = AdvInitFrom38C1600EEP(asc_dvc);
11701 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11702 status = AdvInitFrom38C0800EEP(asc_dvc);
11703 } else {
11704 status = AdvInitFrom3550EEP(asc_dvc);
11706 warn_code |= status;
11709 if (warn_code != 0)
11710 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11712 if (asc_dvc->err_code)
11713 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11714 asc_dvc->err_code);
11716 return asc_dvc->err_code;
11718 #endif
11720 static struct scsi_host_template advansys_template = {
11721 .proc_name = DRV_NAME,
11722 #ifdef CONFIG_PROC_FS
11723 .proc_info = advansys_proc_info,
11724 #endif
11725 .name = DRV_NAME,
11726 .info = advansys_info,
11727 .queuecommand = advansys_queuecommand,
11728 .eh_bus_reset_handler = advansys_reset,
11729 .bios_param = advansys_biosparam,
11730 .slave_configure = advansys_slave_configure,
11732 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11733 * must be set. The flag will be cleared in advansys_board_found
11734 * for non-ISA adapters.
11736 .unchecked_isa_dma = 1,
11738 * All adapters controlled by this driver are capable of large
11739 * scatter-gather lists. According to the mid-level SCSI documentation
11740 * this obviates any performance gain provided by setting
11741 * 'use_clustering'. But empirically while CPU utilization is increased
11742 * by enabling clustering, I/O throughput increases as well.
11744 .use_clustering = ENABLE_CLUSTERING,
11747 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11749 struct asc_board *board = shost_priv(shost);
11750 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11751 int req_cnt = 0;
11752 adv_req_t *reqp = NULL;
11753 int sg_cnt = 0;
11754 adv_sgblk_t *sgp;
11755 int warn_code, err_code;
11758 * Allocate buffer carrier structures. The total size
11759 * is about 4 KB, so allocate all at once.
11761 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11762 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11764 if (!adv_dvc->carrier_buf)
11765 goto kmalloc_failed;
11768 * Allocate up to 'max_host_qng' request structures for the Wide
11769 * board. The total size is about 16 KB, so allocate all at once.
11770 * If the allocation fails decrement and try again.
11772 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11773 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11775 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11776 (ulong)sizeof(adv_req_t) * req_cnt);
11778 if (reqp)
11779 break;
11782 if (!reqp)
11783 goto kmalloc_failed;
11785 adv_dvc->orig_reqp = reqp;
11788 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11789 * the Wide board. Each structure is about 136 bytes.
11791 board->adv_sgblkp = NULL;
11792 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11793 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11795 if (!sgp)
11796 break;
11798 sgp->next_sgblkp = board->adv_sgblkp;
11799 board->adv_sgblkp = sgp;
11803 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11804 sizeof(adv_sgblk_t) * sg_cnt);
11806 if (!board->adv_sgblkp)
11807 goto kmalloc_failed;
11810 * Point 'adv_reqp' to the request structures and
11811 * link them together.
11813 req_cnt--;
11814 reqp[req_cnt].next_reqp = NULL;
11815 for (; req_cnt > 0; req_cnt--) {
11816 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11818 board->adv_reqp = &reqp[0];
11820 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11821 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11822 warn_code = AdvInitAsc3550Driver(adv_dvc);
11823 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11824 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11825 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11826 } else {
11827 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11828 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11830 err_code = adv_dvc->err_code;
11832 if (warn_code || err_code) {
11833 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11834 "0x%x\n", warn_code, err_code);
11837 goto exit;
11839 kmalloc_failed:
11840 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11841 err_code = ADV_ERROR;
11842 exit:
11843 return err_code;
11846 static void advansys_wide_free_mem(struct asc_board *board)
11848 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11849 kfree(adv_dvc->carrier_buf);
11850 adv_dvc->carrier_buf = NULL;
11851 kfree(adv_dvc->orig_reqp);
11852 adv_dvc->orig_reqp = board->adv_reqp = NULL;
11853 while (board->adv_sgblkp) {
11854 adv_sgblk_t *sgp = board->adv_sgblkp;
11855 board->adv_sgblkp = sgp->next_sgblkp;
11856 kfree(sgp);
11860 static int __devinit advansys_board_found(struct Scsi_Host *shost,
11861 unsigned int iop, int bus_type)
11863 struct pci_dev *pdev;
11864 struct asc_board *boardp = shost_priv(shost);
11865 ASC_DVC_VAR *asc_dvc_varp = NULL;
11866 ADV_DVC_VAR *adv_dvc_varp = NULL;
11867 int share_irq, warn_code, ret;
11869 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11871 if (ASC_NARROW_BOARD(boardp)) {
11872 ASC_DBG(1, "narrow board\n");
11873 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11874 asc_dvc_varp->bus_type = bus_type;
11875 asc_dvc_varp->drv_ptr = boardp;
11876 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11877 asc_dvc_varp->iop_base = iop;
11878 } else {
11879 #ifdef CONFIG_PCI
11880 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11881 adv_dvc_varp->drv_ptr = boardp;
11882 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11883 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11884 ASC_DBG(1, "wide board ASC-3550\n");
11885 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11886 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11887 ASC_DBG(1, "wide board ASC-38C0800\n");
11888 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11889 } else {
11890 ASC_DBG(1, "wide board ASC-38C1600\n");
11891 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11894 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11895 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11896 if (!boardp->ioremap_addr) {
11897 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11898 "returned NULL\n",
11899 (long)pci_resource_start(pdev, 1),
11900 boardp->asc_n_io_port);
11901 ret = -ENODEV;
11902 goto err_shost;
11904 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11905 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11908 * Even though it isn't used to access wide boards, other
11909 * than for the debug line below, save I/O Port address so
11910 * that it can be reported.
11912 boardp->ioport = iop;
11914 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11915 (ushort)inp(iop + 1), (ushort)inpw(iop));
11916 #endif /* CONFIG_PCI */
11919 #ifdef CONFIG_PROC_FS
11921 * Allocate buffer for printing information from
11922 * /proc/scsi/advansys/[0...].
11924 boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11925 if (!boardp->prtbuf) {
11926 shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11927 ASC_PRTBUF_SIZE);
11928 ret = -ENOMEM;
11929 goto err_unmap;
11931 #endif /* CONFIG_PROC_FS */
11933 if (ASC_NARROW_BOARD(boardp)) {
11935 * Set the board bus type and PCI IRQ before
11936 * calling AscInitGetConfig().
11938 switch (asc_dvc_varp->bus_type) {
11939 #ifdef CONFIG_ISA
11940 case ASC_IS_ISA:
11941 shost->unchecked_isa_dma = TRUE;
11942 share_irq = 0;
11943 break;
11944 case ASC_IS_VL:
11945 shost->unchecked_isa_dma = FALSE;
11946 share_irq = 0;
11947 break;
11948 case ASC_IS_EISA:
11949 shost->unchecked_isa_dma = FALSE;
11950 share_irq = IRQF_SHARED;
11951 break;
11952 #endif /* CONFIG_ISA */
11953 #ifdef CONFIG_PCI
11954 case ASC_IS_PCI:
11955 shost->unchecked_isa_dma = FALSE;
11956 share_irq = IRQF_SHARED;
11957 break;
11958 #endif /* CONFIG_PCI */
11959 default:
11960 shost_printk(KERN_ERR, shost, "unknown adapter type: "
11961 "%d\n", asc_dvc_varp->bus_type);
11962 shost->unchecked_isa_dma = TRUE;
11963 share_irq = 0;
11964 break;
11968 * NOTE: AscInitGetConfig() may change the board's
11969 * bus_type value. The bus_type value should no
11970 * longer be used. If the bus_type field must be
11971 * referenced only use the bit-wise AND operator "&".
11973 ASC_DBG(2, "AscInitGetConfig()\n");
11974 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11975 } else {
11976 #ifdef CONFIG_PCI
11978 * For Wide boards set PCI information before calling
11979 * AdvInitGetConfig().
11981 shost->unchecked_isa_dma = FALSE;
11982 share_irq = IRQF_SHARED;
11983 ASC_DBG(2, "AdvInitGetConfig()\n");
11985 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11986 #endif /* CONFIG_PCI */
11989 if (ret)
11990 goto err_free_proc;
11993 * Save the EEPROM configuration so that it can be displayed
11994 * from /proc/scsi/advansys/[0...].
11996 if (ASC_NARROW_BOARD(boardp)) {
11998 ASCEEP_CONFIG *ep;
12001 * Set the adapter's target id bit in the 'init_tidmask' field.
12003 boardp->init_tidmask |=
12004 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12007 * Save EEPROM settings for the board.
12009 ep = &boardp->eep_config.asc_eep;
12011 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12012 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12013 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12014 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12015 ep->start_motor = asc_dvc_varp->start_motor;
12016 ep->cntl = asc_dvc_varp->dvc_cntl;
12017 ep->no_scam = asc_dvc_varp->no_scam;
12018 ep->max_total_qng = asc_dvc_varp->max_total_qng;
12019 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12020 /* 'max_tag_qng' is set to the same value for every device. */
12021 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12022 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12023 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12024 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12025 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12026 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12027 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12030 * Modify board configuration.
12032 ASC_DBG(2, "AscInitSetConfig()\n");
12033 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12034 if (ret)
12035 goto err_free_proc;
12036 } else {
12037 ADVEEP_3550_CONFIG *ep_3550;
12038 ADVEEP_38C0800_CONFIG *ep_38C0800;
12039 ADVEEP_38C1600_CONFIG *ep_38C1600;
12042 * Save Wide EEP Configuration Information.
12044 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12045 ep_3550 = &boardp->eep_config.adv_3550_eep;
12047 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12048 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12049 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12050 ep_3550->termination = adv_dvc_varp->cfg->termination;
12051 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12052 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12053 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12054 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12055 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12056 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12057 ep_3550->start_motor = adv_dvc_varp->start_motor;
12058 ep_3550->scsi_reset_delay =
12059 adv_dvc_varp->scsi_reset_wait;
12060 ep_3550->serial_number_word1 =
12061 adv_dvc_varp->cfg->serial1;
12062 ep_3550->serial_number_word2 =
12063 adv_dvc_varp->cfg->serial2;
12064 ep_3550->serial_number_word3 =
12065 adv_dvc_varp->cfg->serial3;
12066 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12067 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12069 ep_38C0800->adapter_scsi_id =
12070 adv_dvc_varp->chip_scsi_id;
12071 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12072 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12073 ep_38C0800->termination_lvd =
12074 adv_dvc_varp->cfg->termination;
12075 ep_38C0800->disc_enable =
12076 adv_dvc_varp->cfg->disc_enable;
12077 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12078 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12079 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12080 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12081 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12082 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12083 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12084 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12085 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12086 ep_38C0800->scsi_reset_delay =
12087 adv_dvc_varp->scsi_reset_wait;
12088 ep_38C0800->serial_number_word1 =
12089 adv_dvc_varp->cfg->serial1;
12090 ep_38C0800->serial_number_word2 =
12091 adv_dvc_varp->cfg->serial2;
12092 ep_38C0800->serial_number_word3 =
12093 adv_dvc_varp->cfg->serial3;
12094 } else {
12095 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12097 ep_38C1600->adapter_scsi_id =
12098 adv_dvc_varp->chip_scsi_id;
12099 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12100 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12101 ep_38C1600->termination_lvd =
12102 adv_dvc_varp->cfg->termination;
12103 ep_38C1600->disc_enable =
12104 adv_dvc_varp->cfg->disc_enable;
12105 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12106 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12107 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12108 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12109 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12110 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12111 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12112 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12113 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12114 ep_38C1600->scsi_reset_delay =
12115 adv_dvc_varp->scsi_reset_wait;
12116 ep_38C1600->serial_number_word1 =
12117 adv_dvc_varp->cfg->serial1;
12118 ep_38C1600->serial_number_word2 =
12119 adv_dvc_varp->cfg->serial2;
12120 ep_38C1600->serial_number_word3 =
12121 adv_dvc_varp->cfg->serial3;
12125 * Set the adapter's target id bit in the 'init_tidmask' field.
12127 boardp->init_tidmask |=
12128 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12132 * Channels are numbered beginning with 0. For AdvanSys one host
12133 * structure supports one channel. Multi-channel boards have a
12134 * separate host structure for each channel.
12136 shost->max_channel = 0;
12137 if (ASC_NARROW_BOARD(boardp)) {
12138 shost->max_id = ASC_MAX_TID + 1;
12139 shost->max_lun = ASC_MAX_LUN + 1;
12140 shost->max_cmd_len = ASC_MAX_CDB_LEN;
12142 shost->io_port = asc_dvc_varp->iop_base;
12143 boardp->asc_n_io_port = ASC_IOADR_GAP;
12144 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12146 /* Set maximum number of queues the adapter can handle. */
12147 shost->can_queue = asc_dvc_varp->max_total_qng;
12148 } else {
12149 shost->max_id = ADV_MAX_TID + 1;
12150 shost->max_lun = ADV_MAX_LUN + 1;
12151 shost->max_cmd_len = ADV_MAX_CDB_LEN;
12154 * Save the I/O Port address and length even though
12155 * I/O ports are not used to access Wide boards.
12156 * Instead the Wide boards are accessed with
12157 * PCI Memory Mapped I/O.
12159 shost->io_port = iop;
12161 shost->this_id = adv_dvc_varp->chip_scsi_id;
12163 /* Set maximum number of queues the adapter can handle. */
12164 shost->can_queue = adv_dvc_varp->max_host_qng;
12168 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12169 * and should be set to zero.
12171 * But because of a bug introduced in v1.3.89 if the driver is
12172 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12173 * SCSI function 'allocate_device' will panic. To allow the driver
12174 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12176 * Note: This is wrong. cmd_per_lun should be set to the depth
12177 * you want on untagged devices always.
12178 #ifdef MODULE
12180 shost->cmd_per_lun = 1;
12181 /* #else
12182 shost->cmd_per_lun = 0;
12183 #endif */
12186 * Set the maximum number of scatter-gather elements the
12187 * adapter can handle.
12189 if (ASC_NARROW_BOARD(boardp)) {
12191 * Allow two commands with 'sg_tablesize' scatter-gather
12192 * elements to be executed simultaneously. This value is
12193 * the theoretical hardware limit. It may be decreased
12194 * below.
12196 shost->sg_tablesize =
12197 (((asc_dvc_varp->max_total_qng - 2) / 2) *
12198 ASC_SG_LIST_PER_Q) + 1;
12199 } else {
12200 shost->sg_tablesize = ADV_MAX_SG_LIST;
12204 * The value of 'sg_tablesize' can not exceed the SCSI
12205 * mid-level driver definition of SG_ALL. SG_ALL also
12206 * must not be exceeded, because it is used to define the
12207 * size of the scatter-gather table in 'struct asc_sg_head'.
12209 if (shost->sg_tablesize > SG_ALL) {
12210 shost->sg_tablesize = SG_ALL;
12213 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12215 /* BIOS start address. */
12216 if (ASC_NARROW_BOARD(boardp)) {
12217 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12218 asc_dvc_varp->bus_type);
12219 } else {
12221 * Fill-in BIOS board variables. The Wide BIOS saves
12222 * information in LRAM that is used by the driver.
12224 AdvReadWordLram(adv_dvc_varp->iop_base,
12225 BIOS_SIGNATURE, boardp->bios_signature);
12226 AdvReadWordLram(adv_dvc_varp->iop_base,
12227 BIOS_VERSION, boardp->bios_version);
12228 AdvReadWordLram(adv_dvc_varp->iop_base,
12229 BIOS_CODESEG, boardp->bios_codeseg);
12230 AdvReadWordLram(adv_dvc_varp->iop_base,
12231 BIOS_CODELEN, boardp->bios_codelen);
12233 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12234 boardp->bios_signature, boardp->bios_version);
12236 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12237 boardp->bios_codeseg, boardp->bios_codelen);
12240 * If the BIOS saved a valid signature, then fill in
12241 * the BIOS code segment base address.
12243 if (boardp->bios_signature == 0x55AA) {
12245 * Convert x86 realmode code segment to a linear
12246 * address by shifting left 4.
12248 shost->base = ((ulong)boardp->bios_codeseg << 4);
12249 } else {
12250 shost->base = 0;
12255 * Register Board Resources - I/O Port, DMA, IRQ
12258 /* Register DMA Channel for Narrow boards. */
12259 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
12260 #ifdef CONFIG_ISA
12261 if (ASC_NARROW_BOARD(boardp)) {
12262 /* Register DMA channel for ISA bus. */
12263 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12264 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12265 ret = request_dma(shost->dma_channel, DRV_NAME);
12266 if (ret) {
12267 shost_printk(KERN_ERR, shost, "request_dma() "
12268 "%d failed %d\n",
12269 shost->dma_channel, ret);
12270 goto err_free_proc;
12272 AscEnableIsaDma(shost->dma_channel);
12275 #endif /* CONFIG_ISA */
12277 /* Register IRQ Number. */
12278 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12280 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12281 DRV_NAME, shost);
12283 if (ret) {
12284 if (ret == -EBUSY) {
12285 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12286 "already in use\n", boardp->irq);
12287 } else if (ret == -EINVAL) {
12288 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12289 "not valid\n", boardp->irq);
12290 } else {
12291 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12292 "failed with %d\n", boardp->irq, ret);
12294 goto err_free_dma;
12298 * Initialize board RISC chip and enable interrupts.
12300 if (ASC_NARROW_BOARD(boardp)) {
12301 ASC_DBG(2, "AscInitAsc1000Driver()\n");
12303 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12304 if (!asc_dvc_varp->overrun_buf) {
12305 ret = -ENOMEM;
12306 goto err_free_wide_mem;
12308 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12310 if (warn_code || asc_dvc_varp->err_code) {
12311 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12312 "warn 0x%x, error 0x%x\n",
12313 asc_dvc_varp->init_state, warn_code,
12314 asc_dvc_varp->err_code);
12315 if (asc_dvc_varp->err_code) {
12316 ret = -ENODEV;
12317 kfree(asc_dvc_varp->overrun_buf);
12320 } else {
12321 if (advansys_wide_init_chip(shost))
12322 ret = -ENODEV;
12325 if (ret)
12326 goto err_free_wide_mem;
12328 ASC_DBG_PRT_SCSI_HOST(2, shost);
12330 ret = scsi_add_host(shost, boardp->dev);
12331 if (ret)
12332 goto err_free_wide_mem;
12334 scsi_scan_host(shost);
12335 return 0;
12337 err_free_wide_mem:
12338 advansys_wide_free_mem(boardp);
12339 free_irq(boardp->irq, shost);
12340 err_free_dma:
12341 #ifdef CONFIG_ISA
12342 if (shost->dma_channel != NO_ISA_DMA)
12343 free_dma(shost->dma_channel);
12344 #endif
12345 err_free_proc:
12346 kfree(boardp->prtbuf);
12347 err_unmap:
12348 if (boardp->ioremap_addr)
12349 iounmap(boardp->ioremap_addr);
12350 err_shost:
12351 return ret;
12355 * advansys_release()
12357 * Release resources allocated for a single AdvanSys adapter.
12359 static int advansys_release(struct Scsi_Host *shost)
12361 struct asc_board *board = shost_priv(shost);
12362 ASC_DBG(1, "begin\n");
12363 scsi_remove_host(shost);
12364 free_irq(board->irq, shost);
12365 #ifdef CONFIG_ISA
12366 if (shost->dma_channel != NO_ISA_DMA) {
12367 ASC_DBG(1, "free_dma()\n");
12368 free_dma(shost->dma_channel);
12370 #endif
12371 if (ASC_NARROW_BOARD(board)) {
12372 dma_unmap_single(board->dev,
12373 board->dvc_var.asc_dvc_var.overrun_dma,
12374 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12375 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12376 } else {
12377 iounmap(board->ioremap_addr);
12378 advansys_wide_free_mem(board);
12380 kfree(board->prtbuf);
12381 scsi_host_put(shost);
12382 ASC_DBG(1, "end\n");
12383 return 0;
12386 #define ASC_IOADR_TABLE_MAX_IX 11
12388 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12389 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12390 0x0210, 0x0230, 0x0250, 0x0330
12394 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12395 * 00: 10
12396 * 01: 11
12397 * 10: 12
12398 * 11: 15
12400 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12402 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12403 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12404 if (chip_irq == 13)
12405 chip_irq = 15;
12406 return chip_irq;
12409 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12411 int err = -ENODEV;
12412 PortAddr iop_base = _asc_def_iop_base[id];
12413 struct Scsi_Host *shost;
12414 struct asc_board *board;
12416 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12417 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12418 return -ENODEV;
12420 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12421 if (!AscFindSignature(iop_base))
12422 goto release_region;
12423 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12424 goto release_region;
12426 err = -ENOMEM;
12427 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12428 if (!shost)
12429 goto release_region;
12431 board = shost_priv(shost);
12432 board->irq = advansys_isa_irq_no(iop_base);
12433 board->dev = dev;
12435 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12436 if (err)
12437 goto free_host;
12439 dev_set_drvdata(dev, shost);
12440 return 0;
12442 free_host:
12443 scsi_host_put(shost);
12444 release_region:
12445 release_region(iop_base, ASC_IOADR_GAP);
12446 return err;
12449 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12451 int ioport = _asc_def_iop_base[id];
12452 advansys_release(dev_get_drvdata(dev));
12453 release_region(ioport, ASC_IOADR_GAP);
12454 return 0;
12457 static struct isa_driver advansys_isa_driver = {
12458 .probe = advansys_isa_probe,
12459 .remove = __devexit_p(advansys_isa_remove),
12460 .driver = {
12461 .owner = THIS_MODULE,
12462 .name = DRV_NAME,
12467 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12468 * 000: invalid
12469 * 001: 10
12470 * 010: 11
12471 * 011: 12
12472 * 100: invalid
12473 * 101: 14
12474 * 110: 15
12475 * 111: invalid
12477 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12479 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12480 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12481 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12482 return 0;
12483 return chip_irq;
12486 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12488 int err = -ENODEV;
12489 PortAddr iop_base = _asc_def_iop_base[id];
12490 struct Scsi_Host *shost;
12491 struct asc_board *board;
12493 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12494 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12495 return -ENODEV;
12497 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12498 if (!AscFindSignature(iop_base))
12499 goto release_region;
12501 * I don't think this condition can actually happen, but the old
12502 * driver did it, and the chances of finding a VLB setup in 2007
12503 * to do testing with is slight to none.
12505 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12506 goto release_region;
12508 err = -ENOMEM;
12509 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12510 if (!shost)
12511 goto release_region;
12513 board = shost_priv(shost);
12514 board->irq = advansys_vlb_irq_no(iop_base);
12515 board->dev = dev;
12517 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12518 if (err)
12519 goto free_host;
12521 dev_set_drvdata(dev, shost);
12522 return 0;
12524 free_host:
12525 scsi_host_put(shost);
12526 release_region:
12527 release_region(iop_base, ASC_IOADR_GAP);
12528 return -ENODEV;
12531 static struct isa_driver advansys_vlb_driver = {
12532 .probe = advansys_vlb_probe,
12533 .remove = __devexit_p(advansys_isa_remove),
12534 .driver = {
12535 .owner = THIS_MODULE,
12536 .name = "advansys_vlb",
12540 static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12541 { "ABP7401" },
12542 { "ABP7501" },
12543 { "" }
12546 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12549 * EISA is a little more tricky than PCI; each EISA device may have two
12550 * channels, and this driver is written to make each channel its own Scsi_Host
12552 struct eisa_scsi_data {
12553 struct Scsi_Host *host[2];
12557 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12558 * 000: 10
12559 * 001: 11
12560 * 010: 12
12561 * 011: invalid
12562 * 100: 14
12563 * 101: 15
12564 * 110: invalid
12565 * 111: invalid
12567 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12569 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12570 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12571 if ((chip_irq == 13) || (chip_irq > 15))
12572 return 0;
12573 return chip_irq;
12576 static int __devinit advansys_eisa_probe(struct device *dev)
12578 int i, ioport, irq = 0;
12579 int err;
12580 struct eisa_device *edev = to_eisa_device(dev);
12581 struct eisa_scsi_data *data;
12583 err = -ENOMEM;
12584 data = kzalloc(sizeof(*data), GFP_KERNEL);
12585 if (!data)
12586 goto fail;
12587 ioport = edev->base_addr + 0xc30;
12589 err = -ENODEV;
12590 for (i = 0; i < 2; i++, ioport += 0x20) {
12591 struct asc_board *board;
12592 struct Scsi_Host *shost;
12593 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12594 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12595 ioport + ASC_IOADR_GAP - 1);
12596 continue;
12598 if (!AscFindSignature(ioport)) {
12599 release_region(ioport, ASC_IOADR_GAP);
12600 continue;
12604 * I don't know why we need to do this for EISA chips, but
12605 * not for any others. It looks to be equivalent to
12606 * AscGetChipCfgMsw, but I may have overlooked something,
12607 * so I'm not converting it until I get an EISA board to
12608 * test with.
12610 inw(ioport + 4);
12612 if (!irq)
12613 irq = advansys_eisa_irq_no(edev);
12615 err = -ENOMEM;
12616 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12617 if (!shost)
12618 goto release_region;
12620 board = shost_priv(shost);
12621 board->irq = irq;
12622 board->dev = dev;
12624 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12625 if (!err) {
12626 data->host[i] = shost;
12627 continue;
12630 scsi_host_put(shost);
12631 release_region:
12632 release_region(ioport, ASC_IOADR_GAP);
12633 break;
12636 if (err)
12637 goto free_data;
12638 dev_set_drvdata(dev, data);
12639 return 0;
12641 free_data:
12642 kfree(data->host[0]);
12643 kfree(data->host[1]);
12644 kfree(data);
12645 fail:
12646 return err;
12649 static __devexit int advansys_eisa_remove(struct device *dev)
12651 int i;
12652 struct eisa_scsi_data *data = dev_get_drvdata(dev);
12654 for (i = 0; i < 2; i++) {
12655 int ioport;
12656 struct Scsi_Host *shost = data->host[i];
12657 if (!shost)
12658 continue;
12659 ioport = shost->io_port;
12660 advansys_release(shost);
12661 release_region(ioport, ASC_IOADR_GAP);
12664 kfree(data);
12665 return 0;
12668 static struct eisa_driver advansys_eisa_driver = {
12669 .id_table = advansys_eisa_table,
12670 .driver = {
12671 .name = DRV_NAME,
12672 .probe = advansys_eisa_probe,
12673 .remove = __devexit_p(advansys_eisa_remove),
12677 /* PCI Devices supported by this driver */
12678 static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12679 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12680 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12681 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12682 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12683 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12684 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12685 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12686 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12687 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12688 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12689 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12690 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12694 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12696 static void __devinit advansys_set_latency(struct pci_dev *pdev)
12698 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12699 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12700 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12701 } else {
12702 u8 latency;
12703 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12704 if (latency < 0x20)
12705 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12709 static int __devinit
12710 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12712 int err, ioport;
12713 struct Scsi_Host *shost;
12714 struct asc_board *board;
12716 err = pci_enable_device(pdev);
12717 if (err)
12718 goto fail;
12719 err = pci_request_regions(pdev, DRV_NAME);
12720 if (err)
12721 goto disable_device;
12722 pci_set_master(pdev);
12723 advansys_set_latency(pdev);
12725 err = -ENODEV;
12726 if (pci_resource_len(pdev, 0) == 0)
12727 goto release_region;
12729 ioport = pci_resource_start(pdev, 0);
12731 err = -ENOMEM;
12732 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12733 if (!shost)
12734 goto release_region;
12736 board = shost_priv(shost);
12737 board->irq = pdev->irq;
12738 board->dev = &pdev->dev;
12740 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12741 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12742 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12743 board->flags |= ASC_IS_WIDE_BOARD;
12746 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12747 if (err)
12748 goto free_host;
12750 pci_set_drvdata(pdev, shost);
12751 return 0;
12753 free_host:
12754 scsi_host_put(shost);
12755 release_region:
12756 pci_release_regions(pdev);
12757 disable_device:
12758 pci_disable_device(pdev);
12759 fail:
12760 return err;
12763 static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12765 advansys_release(pci_get_drvdata(pdev));
12766 pci_release_regions(pdev);
12767 pci_disable_device(pdev);
12770 static struct pci_driver advansys_pci_driver = {
12771 .name = DRV_NAME,
12772 .id_table = advansys_pci_tbl,
12773 .probe = advansys_pci_probe,
12774 .remove = __devexit_p(advansys_pci_remove),
12777 static int __init advansys_init(void)
12779 int error;
12781 error = isa_register_driver(&advansys_isa_driver,
12782 ASC_IOADR_TABLE_MAX_IX);
12783 if (error)
12784 goto fail;
12786 error = isa_register_driver(&advansys_vlb_driver,
12787 ASC_IOADR_TABLE_MAX_IX);
12788 if (error)
12789 goto unregister_isa;
12791 error = eisa_driver_register(&advansys_eisa_driver);
12792 if (error)
12793 goto unregister_vlb;
12795 error = pci_register_driver(&advansys_pci_driver);
12796 if (error)
12797 goto unregister_eisa;
12799 return 0;
12801 unregister_eisa:
12802 eisa_driver_unregister(&advansys_eisa_driver);
12803 unregister_vlb:
12804 isa_unregister_driver(&advansys_vlb_driver);
12805 unregister_isa:
12806 isa_unregister_driver(&advansys_isa_driver);
12807 fail:
12808 return error;
12811 static void __exit advansys_exit(void)
12813 pci_unregister_driver(&advansys_pci_driver);
12814 eisa_driver_unregister(&advansys_eisa_driver);
12815 isa_unregister_driver(&advansys_vlb_driver);
12816 isa_unregister_driver(&advansys_isa_driver);
12819 module_init(advansys_init);
12820 module_exit(advansys_exit);
12822 MODULE_LICENSE("GPL");
12823 MODULE_FIRMWARE("advansys/mcode.bin");
12824 MODULE_FIRMWARE("advansys/3550.bin");
12825 MODULE_FIRMWARE("advansys/38C0800.bin");
12826 MODULE_FIRMWARE("advansys/38C1600.bin");