OMAP3: SR: Replace printk's with pr_* calls
[linux-ginger.git] / drivers / staging / et131x / et1310_eeprom.c
blobc853a2c243a87ea5b3723f73d3558fe633a0d702
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 *------------------------------------------------------------------------------
11 * et1310_eeprom.c - Code used to access the device's EEPROM
13 *------------------------------------------------------------------------------
15 * SOFTWARE LICENSE
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright © 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
31 * distribution.
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
41 * Disclaimer
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/slab.h>
70 #include <linux/ctype.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/interrupt.h>
74 #include <linux/in.h>
75 #include <linux/delay.h>
76 #include <linux/bitops.h>
77 #include <linux/io.h>
78 #include <asm/system.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/if_arp.h>
84 #include <linux/ioport.h>
86 #include "et1310_phy.h"
87 #include "et1310_pm.h"
88 #include "et1310_jagcore.h"
89 #include "et1310_eeprom.h"
91 #include "et131x_adapter.h"
92 #include "et131x_initpci.h"
93 #include "et131x_isr.h"
95 #include "et1310_tx.h"
99 * EEPROM Defines
102 /* LBCIF Register Groups (addressed via 32-bit offsets) */
103 #define LBCIF_DWORD0_GROUP_OFFSET 0xAC
104 #define LBCIF_DWORD1_GROUP_OFFSET 0xB0
106 /* LBCIF Registers (addressed via 8-bit offsets) */
107 #define LBCIF_ADDRESS_REGISTER_OFFSET 0xAC
108 #define LBCIF_DATA_REGISTER_OFFSET 0xB0
109 #define LBCIF_CONTROL_REGISTER_OFFSET 0xB1
110 #define LBCIF_STATUS_REGISTER_OFFSET 0xB2
112 /* LBCIF Control Register Bits */
113 #define LBCIF_CONTROL_SEQUENTIAL_READ 0x01
114 #define LBCIF_CONTROL_PAGE_WRITE 0x02
115 #define LBCIF_CONTROL_UNUSED1 0x04
116 #define LBCIF_CONTROL_EEPROM_RELOAD 0x08
117 #define LBCIF_CONTROL_UNUSED2 0x10
118 #define LBCIF_CONTROL_TWO_BYTE_ADDR 0x20
119 #define LBCIF_CONTROL_I2C_WRITE 0x40
120 #define LBCIF_CONTROL_LBCIF_ENABLE 0x80
122 /* LBCIF Status Register Bits */
123 #define LBCIF_STATUS_PHY_QUEUE_AVAIL 0x01
124 #define LBCIF_STATUS_I2C_IDLE 0x02
125 #define LBCIF_STATUS_ACK_ERROR 0x04
126 #define LBCIF_STATUS_GENERAL_ERROR 0x08
127 #define LBCIF_STATUS_UNUSED 0x30
128 #define LBCIF_STATUS_CHECKSUM_ERROR 0x40
129 #define LBCIF_STATUS_EEPROM_PRESENT 0x80
131 /* Miscellaneous Constraints */
132 #define MAX_NUM_REGISTER_POLLS 1000
133 #define MAX_NUM_WRITE_RETRIES 2
136 * Define macros that allow individual register values to be extracted from a
137 * DWORD1 register grouping
139 #define EXTRACT_DATA_REGISTER(x) (u8)(x & 0xFF)
140 #define EXTRACT_STATUS_REGISTER(x) (u8)((x >> 16) & 0xFF)
141 #define EXTRACT_CONTROL_REG(x) (u8)((x >> 8) & 0xFF)
144 * EepromWriteByte - Write a byte to the ET1310's EEPROM
145 * @etdev: pointer to our private adapter structure
146 * @addr: the address to write
147 * @data: the value to write
149 * Returns SUCCESS or FAILURE
151 int EepromWriteByte(struct et131x_adapter *etdev, u32 addr, u8 data)
153 struct pci_dev *pdev = etdev->pdev;
154 int index;
155 int retries;
156 int err = 0;
157 int i2c_wack = 0;
158 int writeok = 0;
159 u8 control;
160 u8 status = 0;
161 u32 dword1 = 0;
162 u32 val = 0;
165 * The following excerpt is from "Serial EEPROM HW Design
166 * Specification" Version 0.92 (9/20/2004):
168 * Single Byte Writes
170 * For an EEPROM, an I2C single byte write is defined as a START
171 * condition followed by the device address, EEPROM address, one byte
172 * of data and a STOP condition. The STOP condition will trigger the
173 * EEPROM's internally timed write cycle to the nonvolatile memory.
174 * All inputs are disabled during this write cycle and the EEPROM will
175 * not respond to any access until the internal write is complete.
176 * The steps to execute a single byte write are as follows:
178 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
179 * bits 7,1:0 both equal to 1, at least once after reset.
180 * Subsequent operations need only to check that bits 1:0 are
181 * equal to 1 prior to starting a single byte write.
183 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
184 * and bits 1:0 both =0. Bit 5 should be set according to the
185 * type of EEPROM being accessed (1=two byte addressing, 0=one
186 * byte addressing).
188 * 3. Write the address to the LBCIF Address Register.
190 * 4. Write the data to the LBCIF Data Register (the I2C write will
191 * begin).
193 * 5. Monitor bit 1:0 of the LBCIF Status Register. When bits 1:0 are
194 * both equal to 1, the I2C write has completed and the internal
195 * write cycle of the EEPROM is about to start. (bits 1:0 = 01 is
196 * a legal state while waiting from both equal to 1, but bits
197 * 1:0 = 10 is invalid and implies that something is broken).
199 * 6. Check bit 3 of the LBCIF Status Register. If equal to 1, an
200 * error has occurred.
202 * 7. Check bit 2 of the LBCIF Status Register. If equal to 1 an ACK
203 * error has occurred on the address phase of the write. This
204 * could be due to an actual hardware failure or the EEPROM may
205 * still be in its internal write cycle from a previous write.
206 * This write operation was ignored and must be repeated later.
208 * 8. Set bit 6 of the LBCIF Control Register = 0. If another write is
209 * required, go to step 1.
212 /* Step 1: */
213 for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
214 /* Read registers grouped in DWORD1 */
215 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
216 &dword1)) {
217 err = 1;
218 break;
221 status = EXTRACT_STATUS_REGISTER(dword1);
223 if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
224 status & LBCIF_STATUS_I2C_IDLE)
225 /* bits 1:0 are equal to 1 */
226 break;
229 if (err || (index >= MAX_NUM_REGISTER_POLLS))
230 return FAILURE;
232 /* Step 2: */
233 control = 0;
234 control |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
236 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
237 control)) {
238 return FAILURE;
241 i2c_wack = 1;
243 /* Prepare EEPROM address for Step 3 */
245 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
246 /* Step 3:*/
247 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
248 addr)) {
249 break;
252 /* Step 4: */
253 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER_OFFSET,
254 data)) {
255 break;
258 /* Step 5: */
259 for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
260 /* Read registers grouped in DWORD1 */
261 if (pci_read_config_dword(pdev,
262 LBCIF_DWORD1_GROUP_OFFSET,
263 &dword1)) {
264 err = 1;
265 break;
268 status = EXTRACT_STATUS_REGISTER(dword1);
270 if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
271 status & LBCIF_STATUS_I2C_IDLE) {
272 /* I2C write complete */
273 break;
277 if (err || (index >= MAX_NUM_REGISTER_POLLS))
278 break;
281 * Step 6: Don't break here if we are revision 1, this is
282 * so we do a blind write for load bug.
284 if (status & LBCIF_STATUS_GENERAL_ERROR
285 && etdev->pdev->revision == 0) {
286 break;
289 /* Step 7 */
290 if (status & LBCIF_STATUS_ACK_ERROR) {
292 * This could be due to an actual hardware failure
293 * or the EEPROM may still be in its internal write
294 * cycle from a previous write. This write operation
295 * was ignored and must be repeated later.
297 udelay(10);
298 continue;
301 writeok = 1;
302 break;
305 /* Step 8: */
306 udelay(10);
307 index = 0;
308 while (i2c_wack) {
309 control &= ~LBCIF_CONTROL_I2C_WRITE;
311 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
312 control)) {
313 writeok = 0;
316 /* Do read until internal ACK_ERROR goes away meaning write
317 * completed
319 do {
320 pci_write_config_dword(pdev,
321 LBCIF_ADDRESS_REGISTER_OFFSET,
322 addr);
323 do {
324 pci_read_config_dword(pdev,
325 LBCIF_DATA_REGISTER_OFFSET, &val);
326 } while ((val & 0x00010000) == 0);
327 } while (val & 0x00040000);
329 control = EXTRACT_CONTROL_REG(val);
331 if (control != 0xC0 || index == 10000)
332 break;
334 index++;
337 return writeok ? SUCCESS : FAILURE;
341 * EepromReadByte - Read a byte from the ET1310's EEPROM
342 * @etdev: pointer to our private adapter structure
343 * @addr: the address from which to read
344 * @pdata: a pointer to a byte in which to store the value of the read
345 * @eeprom_id: the ID of the EEPROM
346 * @addrmode: how the EEPROM is to be accessed
348 * Returns SUCCESS or FAILURE
350 int EepromReadByte(struct et131x_adapter *etdev, u32 addr, u8 *pdata)
352 struct pci_dev *pdev = etdev->pdev;
353 int index;
354 int err = 0;
355 u8 control;
356 u8 status = 0;
357 u32 dword1 = 0;
360 * The following excerpt is from "Serial EEPROM HW Design
361 * Specification" Version 0.92 (9/20/2004):
363 * Single Byte Reads
365 * A single byte read is similar to the single byte write, with the
366 * exception of the data flow:
368 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
369 * bits 7,1:0 both equal to 1, at least once after reset.
370 * Subsequent operations need only to check that bits 1:0 are equal
371 * to 1 prior to starting a single byte read.
373 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
374 * and bits 1:0 both =0. Bit 5 should be set according to the type
375 * of EEPROM being accessed (1=two byte addressing, 0=one byte
376 * addressing).
378 * 3. Write the address to the LBCIF Address Register (I2C read will
379 * begin).
381 * 4. Monitor bit 0 of the LBCIF Status Register. When =1, I2C read
382 * is complete. (if bit 1 =1 and bit 0 stays =0, a hardware failure
383 * has occurred).
385 * 5. Check bit 2 of the LBCIF Status Register. If =1, then an error
386 * has occurred. The data that has been returned from the PHY may
387 * be invalid.
389 * 6. Regardless of error status, read data byte from LBCIF Data
390 * Register. If another byte is required, go to step 1.
393 /* Step 1: */
394 for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
395 /* Read registers grouped in DWORD1 */
396 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
397 &dword1)) {
398 err = 1;
399 break;
402 status = EXTRACT_STATUS_REGISTER(dword1);
404 if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
405 status & LBCIF_STATUS_I2C_IDLE) {
406 /* bits 1:0 are equal to 1 */
407 break;
411 if (err || (index >= MAX_NUM_REGISTER_POLLS))
412 return FAILURE;
414 /* Step 2: */
415 control = 0;
416 control |= LBCIF_CONTROL_LBCIF_ENABLE;
418 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
419 control)) {
420 return FAILURE;
423 /* Step 3: */
425 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
426 addr)) {
427 return FAILURE;
430 /* Step 4: */
431 for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
432 /* Read registers grouped in DWORD1 */
433 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
434 &dword1)) {
435 err = 1;
436 break;
439 status = EXTRACT_STATUS_REGISTER(dword1);
441 if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL
442 && status & LBCIF_STATUS_I2C_IDLE) {
443 /* I2C read complete */
444 break;
448 if (err || (index >= MAX_NUM_REGISTER_POLLS))
449 return FAILURE;
451 /* Step 6: */
452 *pdata = EXTRACT_DATA_REGISTER(dword1);
454 return (status & LBCIF_STATUS_ACK_ERROR) ? FAILURE : SUCCESS;