OMAP3: SR: Replace printk's with pr_* calls
[linux-ginger.git] / fs / btrfs / extent_io.c
blob96577e8bf9fdb62819ab2dbd5f9da91200624596
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
31 #define BUFFER_LRU_MAX 64
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 struct rb_node rb_node;
39 struct extent_page_data {
40 struct bio *bio;
41 struct extent_io_tree *tree;
42 get_extent_t *get_extent;
44 /* tells writepage not to lock the state bits for this range
45 * it still does the unlocking
47 unsigned int extent_locked:1;
49 /* tells the submit_bio code to use a WRITE_SYNC */
50 unsigned int sync_io:1;
53 int __init extent_io_init(void)
55 extent_state_cache = kmem_cache_create("extent_state",
56 sizeof(struct extent_state), 0,
57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 if (!extent_state_cache)
59 return -ENOMEM;
61 extent_buffer_cache = kmem_cache_create("extent_buffers",
62 sizeof(struct extent_buffer), 0,
63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 if (!extent_buffer_cache)
65 goto free_state_cache;
66 return 0;
68 free_state_cache:
69 kmem_cache_destroy(extent_state_cache);
70 return -ENOMEM;
73 void extent_io_exit(void)
75 struct extent_state *state;
76 struct extent_buffer *eb;
78 while (!list_empty(&states)) {
79 state = list_entry(states.next, struct extent_state, leak_list);
80 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 "state %lu in tree %p refs %d\n",
82 (unsigned long long)state->start,
83 (unsigned long long)state->end,
84 state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 "refs %d\n", (unsigned long long)eb->start,
94 eb->len, atomic_read(&eb->refs));
95 list_del(&eb->leak_list);
96 kmem_cache_free(extent_buffer_cache, eb);
98 if (extent_state_cache)
99 kmem_cache_destroy(extent_state_cache);
100 if (extent_buffer_cache)
101 kmem_cache_destroy(extent_buffer_cache);
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 struct address_space *mapping, gfp_t mask)
107 tree->state.rb_node = NULL;
108 tree->buffer.rb_node = NULL;
109 tree->ops = NULL;
110 tree->dirty_bytes = 0;
111 spin_lock_init(&tree->lock);
112 spin_lock_init(&tree->buffer_lock);
113 tree->mapping = mapping;
116 static struct extent_state *alloc_extent_state(gfp_t mask)
118 struct extent_state *state;
119 #if LEAK_DEBUG
120 unsigned long flags;
121 #endif
123 state = kmem_cache_alloc(extent_state_cache, mask);
124 if (!state)
125 return state;
126 state->state = 0;
127 state->private = 0;
128 state->tree = NULL;
129 #if LEAK_DEBUG
130 spin_lock_irqsave(&leak_lock, flags);
131 list_add(&state->leak_list, &states);
132 spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 atomic_set(&state->refs, 1);
135 init_waitqueue_head(&state->wq);
136 return state;
139 static void free_extent_state(struct extent_state *state)
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 struct rb_node *node)
160 struct rb_node **p = &root->rb_node;
161 struct rb_node *parent = NULL;
162 struct tree_entry *entry;
164 while (*p) {
165 parent = *p;
166 entry = rb_entry(parent, struct tree_entry, rb_node);
168 if (offset < entry->start)
169 p = &(*p)->rb_left;
170 else if (offset > entry->end)
171 p = &(*p)->rb_right;
172 else
173 return parent;
176 entry = rb_entry(node, struct tree_entry, rb_node);
177 rb_link_node(node, parent, p);
178 rb_insert_color(node, root);
179 return NULL;
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 struct rb_node **prev_ret,
184 struct rb_node **next_ret)
186 struct rb_root *root = &tree->state;
187 struct rb_node *n = root->rb_node;
188 struct rb_node *prev = NULL;
189 struct rb_node *orig_prev = NULL;
190 struct tree_entry *entry;
191 struct tree_entry *prev_entry = NULL;
193 while (n) {
194 entry = rb_entry(n, struct tree_entry, rb_node);
195 prev = n;
196 prev_entry = entry;
198 if (offset < entry->start)
199 n = n->rb_left;
200 else if (offset > entry->end)
201 n = n->rb_right;
202 else
203 return n;
206 if (prev_ret) {
207 orig_prev = prev;
208 while (prev && offset > prev_entry->end) {
209 prev = rb_next(prev);
210 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
212 *prev_ret = prev;
213 prev = orig_prev;
216 if (next_ret) {
217 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 while (prev && offset < prev_entry->start) {
219 prev = rb_prev(prev);
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
222 *next_ret = prev;
224 return NULL;
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 u64 offset)
230 struct rb_node *prev = NULL;
231 struct rb_node *ret;
233 ret = __etree_search(tree, offset, &prev, NULL);
234 if (!ret)
235 return prev;
236 return ret;
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 u64 offset, struct rb_node *node)
242 struct rb_root *root = &tree->buffer;
243 struct rb_node **p = &root->rb_node;
244 struct rb_node *parent = NULL;
245 struct extent_buffer *eb;
247 while (*p) {
248 parent = *p;
249 eb = rb_entry(parent, struct extent_buffer, rb_node);
251 if (offset < eb->start)
252 p = &(*p)->rb_left;
253 else if (offset > eb->start)
254 p = &(*p)->rb_right;
255 else
256 return eb;
259 rb_link_node(node, parent, p);
260 rb_insert_color(node, root);
261 return NULL;
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 u64 offset)
267 struct rb_root *root = &tree->buffer;
268 struct rb_node *n = root->rb_node;
269 struct extent_buffer *eb;
271 while (n) {
272 eb = rb_entry(n, struct extent_buffer, rb_node);
273 if (offset < eb->start)
274 n = n->rb_left;
275 else if (offset > eb->start)
276 n = n->rb_right;
277 else
278 return eb;
280 return NULL;
283 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
284 struct extent_state *other)
286 if (tree->ops && tree->ops->merge_extent_hook)
287 tree->ops->merge_extent_hook(tree->mapping->host, new,
288 other);
292 * utility function to look for merge candidates inside a given range.
293 * Any extents with matching state are merged together into a single
294 * extent in the tree. Extents with EXTENT_IO in their state field
295 * are not merged because the end_io handlers need to be able to do
296 * operations on them without sleeping (or doing allocations/splits).
298 * This should be called with the tree lock held.
300 static int merge_state(struct extent_io_tree *tree,
301 struct extent_state *state)
303 struct extent_state *other;
304 struct rb_node *other_node;
306 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
307 return 0;
309 other_node = rb_prev(&state->rb_node);
310 if (other_node) {
311 other = rb_entry(other_node, struct extent_state, rb_node);
312 if (other->end == state->start - 1 &&
313 other->state == state->state) {
314 merge_cb(tree, state, other);
315 state->start = other->start;
316 other->tree = NULL;
317 rb_erase(&other->rb_node, &tree->state);
318 free_extent_state(other);
321 other_node = rb_next(&state->rb_node);
322 if (other_node) {
323 other = rb_entry(other_node, struct extent_state, rb_node);
324 if (other->start == state->end + 1 &&
325 other->state == state->state) {
326 merge_cb(tree, state, other);
327 other->start = state->start;
328 state->tree = NULL;
329 rb_erase(&state->rb_node, &tree->state);
330 free_extent_state(state);
331 state = NULL;
335 return 0;
338 static int set_state_cb(struct extent_io_tree *tree,
339 struct extent_state *state,
340 unsigned long bits)
342 if (tree->ops && tree->ops->set_bit_hook) {
343 return tree->ops->set_bit_hook(tree->mapping->host,
344 state->start, state->end,
345 state->state, bits);
348 return 0;
351 static void clear_state_cb(struct extent_io_tree *tree,
352 struct extent_state *state,
353 unsigned long bits)
355 if (tree->ops && tree->ops->clear_bit_hook)
356 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
360 * insert an extent_state struct into the tree. 'bits' are set on the
361 * struct before it is inserted.
363 * This may return -EEXIST if the extent is already there, in which case the
364 * state struct is freed.
366 * The tree lock is not taken internally. This is a utility function and
367 * probably isn't what you want to call (see set/clear_extent_bit).
369 static int insert_state(struct extent_io_tree *tree,
370 struct extent_state *state, u64 start, u64 end,
371 int bits)
373 struct rb_node *node;
374 int ret;
376 if (end < start) {
377 printk(KERN_ERR "btrfs end < start %llu %llu\n",
378 (unsigned long long)end,
379 (unsigned long long)start);
380 WARN_ON(1);
382 state->start = start;
383 state->end = end;
384 ret = set_state_cb(tree, state, bits);
385 if (ret)
386 return ret;
388 if (bits & EXTENT_DIRTY)
389 tree->dirty_bytes += end - start + 1;
390 state->state |= bits;
391 node = tree_insert(&tree->state, end, &state->rb_node);
392 if (node) {
393 struct extent_state *found;
394 found = rb_entry(node, struct extent_state, rb_node);
395 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
396 "%llu %llu\n", (unsigned long long)found->start,
397 (unsigned long long)found->end,
398 (unsigned long long)start, (unsigned long long)end);
399 free_extent_state(state);
400 return -EEXIST;
402 state->tree = tree;
403 merge_state(tree, state);
404 return 0;
407 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
408 u64 split)
410 if (tree->ops && tree->ops->split_extent_hook)
411 return tree->ops->split_extent_hook(tree->mapping->host,
412 orig, split);
413 return 0;
417 * split a given extent state struct in two, inserting the preallocated
418 * struct 'prealloc' as the newly created second half. 'split' indicates an
419 * offset inside 'orig' where it should be split.
421 * Before calling,
422 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
423 * are two extent state structs in the tree:
424 * prealloc: [orig->start, split - 1]
425 * orig: [ split, orig->end ]
427 * The tree locks are not taken by this function. They need to be held
428 * by the caller.
430 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
431 struct extent_state *prealloc, u64 split)
433 struct rb_node *node;
435 split_cb(tree, orig, split);
437 prealloc->start = orig->start;
438 prealloc->end = split - 1;
439 prealloc->state = orig->state;
440 orig->start = split;
442 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
443 if (node) {
444 free_extent_state(prealloc);
445 return -EEXIST;
447 prealloc->tree = tree;
448 return 0;
452 * utility function to clear some bits in an extent state struct.
453 * it will optionally wake up any one waiting on this state (wake == 1), or
454 * forcibly remove the state from the tree (delete == 1).
456 * If no bits are set on the state struct after clearing things, the
457 * struct is freed and removed from the tree
459 static int clear_state_bit(struct extent_io_tree *tree,
460 struct extent_state *state, int bits, int wake,
461 int delete)
463 int bits_to_clear = bits & ~EXTENT_DO_ACCOUNTING;
464 int ret = state->state & bits_to_clear;
466 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
467 u64 range = state->end - state->start + 1;
468 WARN_ON(range > tree->dirty_bytes);
469 tree->dirty_bytes -= range;
471 clear_state_cb(tree, state, bits);
472 state->state &= ~bits_to_clear;
473 if (wake)
474 wake_up(&state->wq);
475 if (delete || state->state == 0) {
476 if (state->tree) {
477 clear_state_cb(tree, state, state->state);
478 rb_erase(&state->rb_node, &tree->state);
479 state->tree = NULL;
480 free_extent_state(state);
481 } else {
482 WARN_ON(1);
484 } else {
485 merge_state(tree, state);
487 return ret;
491 * clear some bits on a range in the tree. This may require splitting
492 * or inserting elements in the tree, so the gfp mask is used to
493 * indicate which allocations or sleeping are allowed.
495 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
496 * the given range from the tree regardless of state (ie for truncate).
498 * the range [start, end] is inclusive.
500 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
501 * bits were already set, or zero if none of the bits were already set.
503 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
504 int bits, int wake, int delete,
505 struct extent_state **cached_state,
506 gfp_t mask)
508 struct extent_state *state;
509 struct extent_state *cached;
510 struct extent_state *prealloc = NULL;
511 struct rb_node *next_node;
512 struct rb_node *node;
513 u64 last_end;
514 int err;
515 int set = 0;
517 again:
518 if (!prealloc && (mask & __GFP_WAIT)) {
519 prealloc = alloc_extent_state(mask);
520 if (!prealloc)
521 return -ENOMEM;
524 spin_lock(&tree->lock);
525 if (cached_state) {
526 cached = *cached_state;
527 *cached_state = NULL;
528 cached_state = NULL;
529 if (cached && cached->tree && cached->start == start) {
530 atomic_dec(&cached->refs);
531 state = cached;
532 goto hit_next;
534 free_extent_state(cached);
537 * this search will find the extents that end after
538 * our range starts
540 node = tree_search(tree, start);
541 if (!node)
542 goto out;
543 state = rb_entry(node, struct extent_state, rb_node);
544 hit_next:
545 if (state->start > end)
546 goto out;
547 WARN_ON(state->end < start);
548 last_end = state->end;
551 * | ---- desired range ---- |
552 * | state | or
553 * | ------------- state -------------- |
555 * We need to split the extent we found, and may flip
556 * bits on second half.
558 * If the extent we found extends past our range, we
559 * just split and search again. It'll get split again
560 * the next time though.
562 * If the extent we found is inside our range, we clear
563 * the desired bit on it.
566 if (state->start < start) {
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569 err = split_state(tree, state, prealloc, start);
570 BUG_ON(err == -EEXIST);
571 prealloc = NULL;
572 if (err)
573 goto out;
574 if (state->end <= end) {
575 set |= clear_state_bit(tree, state, bits, wake,
576 delete);
577 if (last_end == (u64)-1)
578 goto out;
579 start = last_end + 1;
581 goto search_again;
584 * | ---- desired range ---- |
585 * | state |
586 * We need to split the extent, and clear the bit
587 * on the first half
589 if (state->start <= end && state->end > end) {
590 if (!prealloc)
591 prealloc = alloc_extent_state(GFP_ATOMIC);
592 err = split_state(tree, state, prealloc, end + 1);
593 BUG_ON(err == -EEXIST);
594 if (wake)
595 wake_up(&state->wq);
597 set |= clear_state_bit(tree, prealloc, bits, wake, delete);
599 prealloc = NULL;
600 goto out;
603 if (state->end < end && prealloc && !need_resched())
604 next_node = rb_next(&state->rb_node);
605 else
606 next_node = NULL;
608 set |= clear_state_bit(tree, state, bits, wake, delete);
609 if (last_end == (u64)-1)
610 goto out;
611 start = last_end + 1;
612 if (start <= end && next_node) {
613 state = rb_entry(next_node, struct extent_state,
614 rb_node);
615 if (state->start == start)
616 goto hit_next;
618 goto search_again;
620 out:
621 spin_unlock(&tree->lock);
622 if (prealloc)
623 free_extent_state(prealloc);
625 return set;
627 search_again:
628 if (start > end)
629 goto out;
630 spin_unlock(&tree->lock);
631 if (mask & __GFP_WAIT)
632 cond_resched();
633 goto again;
636 static int wait_on_state(struct extent_io_tree *tree,
637 struct extent_state *state)
638 __releases(tree->lock)
639 __acquires(tree->lock)
641 DEFINE_WAIT(wait);
642 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
643 spin_unlock(&tree->lock);
644 schedule();
645 spin_lock(&tree->lock);
646 finish_wait(&state->wq, &wait);
647 return 0;
651 * waits for one or more bits to clear on a range in the state tree.
652 * The range [start, end] is inclusive.
653 * The tree lock is taken by this function
655 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
657 struct extent_state *state;
658 struct rb_node *node;
660 spin_lock(&tree->lock);
661 again:
662 while (1) {
664 * this search will find all the extents that end after
665 * our range starts
667 node = tree_search(tree, start);
668 if (!node)
669 break;
671 state = rb_entry(node, struct extent_state, rb_node);
673 if (state->start > end)
674 goto out;
676 if (state->state & bits) {
677 start = state->start;
678 atomic_inc(&state->refs);
679 wait_on_state(tree, state);
680 free_extent_state(state);
681 goto again;
683 start = state->end + 1;
685 if (start > end)
686 break;
688 if (need_resched()) {
689 spin_unlock(&tree->lock);
690 cond_resched();
691 spin_lock(&tree->lock);
694 out:
695 spin_unlock(&tree->lock);
696 return 0;
699 static int set_state_bits(struct extent_io_tree *tree,
700 struct extent_state *state,
701 int bits)
703 int ret;
705 ret = set_state_cb(tree, state, bits);
706 if (ret)
707 return ret;
709 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
710 u64 range = state->end - state->start + 1;
711 tree->dirty_bytes += range;
713 state->state |= bits;
715 return 0;
718 static void cache_state(struct extent_state *state,
719 struct extent_state **cached_ptr)
721 if (cached_ptr && !(*cached_ptr)) {
722 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
723 *cached_ptr = state;
724 atomic_inc(&state->refs);
730 * set some bits on a range in the tree. This may require allocations or
731 * sleeping, so the gfp mask is used to indicate what is allowed.
733 * If any of the exclusive bits are set, this will fail with -EEXIST if some
734 * part of the range already has the desired bits set. The start of the
735 * existing range is returned in failed_start in this case.
737 * [start, end] is inclusive This takes the tree lock.
740 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
741 int bits, int exclusive_bits, u64 *failed_start,
742 struct extent_state **cached_state,
743 gfp_t mask)
745 struct extent_state *state;
746 struct extent_state *prealloc = NULL;
747 struct rb_node *node;
748 int err = 0;
749 u64 last_start;
750 u64 last_end;
752 again:
753 if (!prealloc && (mask & __GFP_WAIT)) {
754 prealloc = alloc_extent_state(mask);
755 if (!prealloc)
756 return -ENOMEM;
759 spin_lock(&tree->lock);
760 if (cached_state && *cached_state) {
761 state = *cached_state;
762 if (state->start == start && state->tree) {
763 node = &state->rb_node;
764 goto hit_next;
768 * this search will find all the extents that end after
769 * our range starts.
771 node = tree_search(tree, start);
772 if (!node) {
773 err = insert_state(tree, prealloc, start, end, bits);
774 prealloc = NULL;
775 BUG_ON(err == -EEXIST);
776 goto out;
778 state = rb_entry(node, struct extent_state, rb_node);
779 hit_next:
780 last_start = state->start;
781 last_end = state->end;
784 * | ---- desired range ---- |
785 * | state |
787 * Just lock what we found and keep going
789 if (state->start == start && state->end <= end) {
790 struct rb_node *next_node;
791 if (state->state & exclusive_bits) {
792 *failed_start = state->start;
793 err = -EEXIST;
794 goto out;
797 err = set_state_bits(tree, state, bits);
798 if (err)
799 goto out;
801 cache_state(state, cached_state);
802 merge_state(tree, state);
803 if (last_end == (u64)-1)
804 goto out;
806 start = last_end + 1;
807 if (start < end && prealloc && !need_resched()) {
808 next_node = rb_next(node);
809 if (next_node) {
810 state = rb_entry(next_node, struct extent_state,
811 rb_node);
812 if (state->start == start)
813 goto hit_next;
816 goto search_again;
820 * | ---- desired range ---- |
821 * | state |
822 * or
823 * | ------------- state -------------- |
825 * We need to split the extent we found, and may flip bits on
826 * second half.
828 * If the extent we found extends past our
829 * range, we just split and search again. It'll get split
830 * again the next time though.
832 * If the extent we found is inside our range, we set the
833 * desired bit on it.
835 if (state->start < start) {
836 if (state->state & exclusive_bits) {
837 *failed_start = start;
838 err = -EEXIST;
839 goto out;
841 err = split_state(tree, state, prealloc, start);
842 BUG_ON(err == -EEXIST);
843 prealloc = NULL;
844 if (err)
845 goto out;
846 if (state->end <= end) {
847 err = set_state_bits(tree, state, bits);
848 if (err)
849 goto out;
850 cache_state(state, cached_state);
851 merge_state(tree, state);
852 if (last_end == (u64)-1)
853 goto out;
854 start = last_end + 1;
856 goto search_again;
859 * | ---- desired range ---- |
860 * | state | or | state |
862 * There's a hole, we need to insert something in it and
863 * ignore the extent we found.
865 if (state->start > start) {
866 u64 this_end;
867 if (end < last_start)
868 this_end = end;
869 else
870 this_end = last_start - 1;
871 err = insert_state(tree, prealloc, start, this_end,
872 bits);
873 BUG_ON(err == -EEXIST);
874 if (err) {
875 prealloc = NULL;
876 goto out;
878 cache_state(prealloc, cached_state);
879 prealloc = NULL;
880 start = this_end + 1;
881 goto search_again;
884 * | ---- desired range ---- |
885 * | state |
886 * We need to split the extent, and set the bit
887 * on the first half
889 if (state->start <= end && state->end > end) {
890 if (state->state & exclusive_bits) {
891 *failed_start = start;
892 err = -EEXIST;
893 goto out;
895 err = split_state(tree, state, prealloc, end + 1);
896 BUG_ON(err == -EEXIST);
898 err = set_state_bits(tree, prealloc, bits);
899 if (err) {
900 prealloc = NULL;
901 goto out;
903 cache_state(prealloc, cached_state);
904 merge_state(tree, prealloc);
905 prealloc = NULL;
906 goto out;
909 goto search_again;
911 out:
912 spin_unlock(&tree->lock);
913 if (prealloc)
914 free_extent_state(prealloc);
916 return err;
918 search_again:
919 if (start > end)
920 goto out;
921 spin_unlock(&tree->lock);
922 if (mask & __GFP_WAIT)
923 cond_resched();
924 goto again;
927 /* wrappers around set/clear extent bit */
928 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
929 gfp_t mask)
931 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
932 NULL, mask);
935 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
936 int bits, gfp_t mask)
938 return set_extent_bit(tree, start, end, bits, 0, NULL,
939 NULL, mask);
942 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
943 int bits, gfp_t mask)
945 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
948 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
949 gfp_t mask)
951 return set_extent_bit(tree, start, end,
952 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
953 0, NULL, NULL, mask);
956 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
957 gfp_t mask)
959 return clear_extent_bit(tree, start, end,
960 EXTENT_DIRTY | EXTENT_DELALLOC |
961 EXTENT_DO_ACCOUNTING, 0, 0,
962 NULL, mask);
965 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
966 gfp_t mask)
968 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
969 NULL, mask);
972 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
973 gfp_t mask)
975 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
976 NULL, mask);
979 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
980 gfp_t mask)
982 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
983 NULL, mask);
986 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
987 u64 end, gfp_t mask)
989 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
990 NULL, mask);
993 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
995 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
999 * either insert or lock state struct between start and end use mask to tell
1000 * us if waiting is desired.
1002 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1003 int bits, struct extent_state **cached_state, gfp_t mask)
1005 int err;
1006 u64 failed_start;
1007 while (1) {
1008 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1009 EXTENT_LOCKED, &failed_start,
1010 cached_state, mask);
1011 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1012 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1013 start = failed_start;
1014 } else {
1015 break;
1017 WARN_ON(start > end);
1019 return err;
1022 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1024 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1027 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1028 gfp_t mask)
1030 int err;
1031 u64 failed_start;
1033 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1034 &failed_start, NULL, mask);
1035 if (err == -EEXIST) {
1036 if (failed_start > start)
1037 clear_extent_bit(tree, start, failed_start - 1,
1038 EXTENT_LOCKED, 1, 0, NULL, mask);
1039 return 0;
1041 return 1;
1044 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1045 struct extent_state **cached, gfp_t mask)
1047 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1048 mask);
1051 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1052 gfp_t mask)
1054 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1055 mask);
1059 * helper function to set pages and extents in the tree dirty
1061 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1063 unsigned long index = start >> PAGE_CACHE_SHIFT;
1064 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1065 struct page *page;
1067 while (index <= end_index) {
1068 page = find_get_page(tree->mapping, index);
1069 BUG_ON(!page);
1070 __set_page_dirty_nobuffers(page);
1071 page_cache_release(page);
1072 index++;
1074 return 0;
1078 * helper function to set both pages and extents in the tree writeback
1080 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1082 unsigned long index = start >> PAGE_CACHE_SHIFT;
1083 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1084 struct page *page;
1086 while (index <= end_index) {
1087 page = find_get_page(tree->mapping, index);
1088 BUG_ON(!page);
1089 set_page_writeback(page);
1090 page_cache_release(page);
1091 index++;
1093 return 0;
1097 * find the first offset in the io tree with 'bits' set. zero is
1098 * returned if we find something, and *start_ret and *end_ret are
1099 * set to reflect the state struct that was found.
1101 * If nothing was found, 1 is returned, < 0 on error
1103 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1104 u64 *start_ret, u64 *end_ret, int bits)
1106 struct rb_node *node;
1107 struct extent_state *state;
1108 int ret = 1;
1110 spin_lock(&tree->lock);
1112 * this search will find all the extents that end after
1113 * our range starts.
1115 node = tree_search(tree, start);
1116 if (!node)
1117 goto out;
1119 while (1) {
1120 state = rb_entry(node, struct extent_state, rb_node);
1121 if (state->end >= start && (state->state & bits)) {
1122 *start_ret = state->start;
1123 *end_ret = state->end;
1124 ret = 0;
1125 break;
1127 node = rb_next(node);
1128 if (!node)
1129 break;
1131 out:
1132 spin_unlock(&tree->lock);
1133 return ret;
1136 /* find the first state struct with 'bits' set after 'start', and
1137 * return it. tree->lock must be held. NULL will returned if
1138 * nothing was found after 'start'
1140 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1141 u64 start, int bits)
1143 struct rb_node *node;
1144 struct extent_state *state;
1147 * this search will find all the extents that end after
1148 * our range starts.
1150 node = tree_search(tree, start);
1151 if (!node)
1152 goto out;
1154 while (1) {
1155 state = rb_entry(node, struct extent_state, rb_node);
1156 if (state->end >= start && (state->state & bits))
1157 return state;
1159 node = rb_next(node);
1160 if (!node)
1161 break;
1163 out:
1164 return NULL;
1168 * find a contiguous range of bytes in the file marked as delalloc, not
1169 * more than 'max_bytes'. start and end are used to return the range,
1171 * 1 is returned if we find something, 0 if nothing was in the tree
1173 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1174 u64 *start, u64 *end, u64 max_bytes)
1176 struct rb_node *node;
1177 struct extent_state *state;
1178 u64 cur_start = *start;
1179 u64 found = 0;
1180 u64 total_bytes = 0;
1182 spin_lock(&tree->lock);
1185 * this search will find all the extents that end after
1186 * our range starts.
1188 node = tree_search(tree, cur_start);
1189 if (!node) {
1190 if (!found)
1191 *end = (u64)-1;
1192 goto out;
1195 while (1) {
1196 state = rb_entry(node, struct extent_state, rb_node);
1197 if (found && (state->start != cur_start ||
1198 (state->state & EXTENT_BOUNDARY))) {
1199 goto out;
1201 if (!(state->state & EXTENT_DELALLOC)) {
1202 if (!found)
1203 *end = state->end;
1204 goto out;
1206 if (!found)
1207 *start = state->start;
1208 found++;
1209 *end = state->end;
1210 cur_start = state->end + 1;
1211 node = rb_next(node);
1212 if (!node)
1213 break;
1214 total_bytes += state->end - state->start + 1;
1215 if (total_bytes >= max_bytes)
1216 break;
1218 out:
1219 spin_unlock(&tree->lock);
1220 return found;
1223 static noinline int __unlock_for_delalloc(struct inode *inode,
1224 struct page *locked_page,
1225 u64 start, u64 end)
1227 int ret;
1228 struct page *pages[16];
1229 unsigned long index = start >> PAGE_CACHE_SHIFT;
1230 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1231 unsigned long nr_pages = end_index - index + 1;
1232 int i;
1234 if (index == locked_page->index && end_index == index)
1235 return 0;
1237 while (nr_pages > 0) {
1238 ret = find_get_pages_contig(inode->i_mapping, index,
1239 min_t(unsigned long, nr_pages,
1240 ARRAY_SIZE(pages)), pages);
1241 for (i = 0; i < ret; i++) {
1242 if (pages[i] != locked_page)
1243 unlock_page(pages[i]);
1244 page_cache_release(pages[i]);
1246 nr_pages -= ret;
1247 index += ret;
1248 cond_resched();
1250 return 0;
1253 static noinline int lock_delalloc_pages(struct inode *inode,
1254 struct page *locked_page,
1255 u64 delalloc_start,
1256 u64 delalloc_end)
1258 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1259 unsigned long start_index = index;
1260 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1261 unsigned long pages_locked = 0;
1262 struct page *pages[16];
1263 unsigned long nrpages;
1264 int ret;
1265 int i;
1267 /* the caller is responsible for locking the start index */
1268 if (index == locked_page->index && index == end_index)
1269 return 0;
1271 /* skip the page at the start index */
1272 nrpages = end_index - index + 1;
1273 while (nrpages > 0) {
1274 ret = find_get_pages_contig(inode->i_mapping, index,
1275 min_t(unsigned long,
1276 nrpages, ARRAY_SIZE(pages)), pages);
1277 if (ret == 0) {
1278 ret = -EAGAIN;
1279 goto done;
1281 /* now we have an array of pages, lock them all */
1282 for (i = 0; i < ret; i++) {
1284 * the caller is taking responsibility for
1285 * locked_page
1287 if (pages[i] != locked_page) {
1288 lock_page(pages[i]);
1289 if (!PageDirty(pages[i]) ||
1290 pages[i]->mapping != inode->i_mapping) {
1291 ret = -EAGAIN;
1292 unlock_page(pages[i]);
1293 page_cache_release(pages[i]);
1294 goto done;
1297 page_cache_release(pages[i]);
1298 pages_locked++;
1300 nrpages -= ret;
1301 index += ret;
1302 cond_resched();
1304 ret = 0;
1305 done:
1306 if (ret && pages_locked) {
1307 __unlock_for_delalloc(inode, locked_page,
1308 delalloc_start,
1309 ((u64)(start_index + pages_locked - 1)) <<
1310 PAGE_CACHE_SHIFT);
1312 return ret;
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'. start and end are used to return the range,
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1321 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1322 struct extent_io_tree *tree,
1323 struct page *locked_page,
1324 u64 *start, u64 *end,
1325 u64 max_bytes)
1327 u64 delalloc_start;
1328 u64 delalloc_end;
1329 u64 found;
1330 struct extent_state *cached_state = NULL;
1331 int ret;
1332 int loops = 0;
1334 again:
1335 /* step one, find a bunch of delalloc bytes starting at start */
1336 delalloc_start = *start;
1337 delalloc_end = 0;
1338 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1339 max_bytes);
1340 if (!found || delalloc_end <= *start) {
1341 *start = delalloc_start;
1342 *end = delalloc_end;
1343 return found;
1347 * start comes from the offset of locked_page. We have to lock
1348 * pages in order, so we can't process delalloc bytes before
1349 * locked_page
1351 if (delalloc_start < *start)
1352 delalloc_start = *start;
1355 * make sure to limit the number of pages we try to lock down
1356 * if we're looping.
1358 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1359 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1361 /* step two, lock all the pages after the page that has start */
1362 ret = lock_delalloc_pages(inode, locked_page,
1363 delalloc_start, delalloc_end);
1364 if (ret == -EAGAIN) {
1365 /* some of the pages are gone, lets avoid looping by
1366 * shortening the size of the delalloc range we're searching
1368 free_extent_state(cached_state);
1369 if (!loops) {
1370 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1371 max_bytes = PAGE_CACHE_SIZE - offset;
1372 loops = 1;
1373 goto again;
1374 } else {
1375 found = 0;
1376 goto out_failed;
1379 BUG_ON(ret);
1381 /* step three, lock the state bits for the whole range */
1382 lock_extent_bits(tree, delalloc_start, delalloc_end,
1383 0, &cached_state, GFP_NOFS);
1385 /* then test to make sure it is all still delalloc */
1386 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1387 EXTENT_DELALLOC, 1, cached_state);
1388 if (!ret) {
1389 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1390 &cached_state, GFP_NOFS);
1391 __unlock_for_delalloc(inode, locked_page,
1392 delalloc_start, delalloc_end);
1393 cond_resched();
1394 goto again;
1396 free_extent_state(cached_state);
1397 *start = delalloc_start;
1398 *end = delalloc_end;
1399 out_failed:
1400 return found;
1403 int extent_clear_unlock_delalloc(struct inode *inode,
1404 struct extent_io_tree *tree,
1405 u64 start, u64 end, struct page *locked_page,
1406 unsigned long op)
1408 int ret;
1409 struct page *pages[16];
1410 unsigned long index = start >> PAGE_CACHE_SHIFT;
1411 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1412 unsigned long nr_pages = end_index - index + 1;
1413 int i;
1414 int clear_bits = 0;
1416 if (op & EXTENT_CLEAR_UNLOCK)
1417 clear_bits |= EXTENT_LOCKED;
1418 if (op & EXTENT_CLEAR_DIRTY)
1419 clear_bits |= EXTENT_DIRTY;
1421 if (op & EXTENT_CLEAR_DELALLOC)
1422 clear_bits |= EXTENT_DELALLOC;
1424 if (op & EXTENT_CLEAR_ACCOUNTING)
1425 clear_bits |= EXTENT_DO_ACCOUNTING;
1427 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1428 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1429 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1430 EXTENT_SET_PRIVATE2)))
1431 return 0;
1433 while (nr_pages > 0) {
1434 ret = find_get_pages_contig(inode->i_mapping, index,
1435 min_t(unsigned long,
1436 nr_pages, ARRAY_SIZE(pages)), pages);
1437 for (i = 0; i < ret; i++) {
1439 if (op & EXTENT_SET_PRIVATE2)
1440 SetPagePrivate2(pages[i]);
1442 if (pages[i] == locked_page) {
1443 page_cache_release(pages[i]);
1444 continue;
1446 if (op & EXTENT_CLEAR_DIRTY)
1447 clear_page_dirty_for_io(pages[i]);
1448 if (op & EXTENT_SET_WRITEBACK)
1449 set_page_writeback(pages[i]);
1450 if (op & EXTENT_END_WRITEBACK)
1451 end_page_writeback(pages[i]);
1452 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1453 unlock_page(pages[i]);
1454 page_cache_release(pages[i]);
1456 nr_pages -= ret;
1457 index += ret;
1458 cond_resched();
1460 return 0;
1464 * count the number of bytes in the tree that have a given bit(s)
1465 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1466 * cached. The total number found is returned.
1468 u64 count_range_bits(struct extent_io_tree *tree,
1469 u64 *start, u64 search_end, u64 max_bytes,
1470 unsigned long bits)
1472 struct rb_node *node;
1473 struct extent_state *state;
1474 u64 cur_start = *start;
1475 u64 total_bytes = 0;
1476 int found = 0;
1478 if (search_end <= cur_start) {
1479 WARN_ON(1);
1480 return 0;
1483 spin_lock(&tree->lock);
1484 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1485 total_bytes = tree->dirty_bytes;
1486 goto out;
1489 * this search will find all the extents that end after
1490 * our range starts.
1492 node = tree_search(tree, cur_start);
1493 if (!node)
1494 goto out;
1496 while (1) {
1497 state = rb_entry(node, struct extent_state, rb_node);
1498 if (state->start > search_end)
1499 break;
1500 if (state->end >= cur_start && (state->state & bits)) {
1501 total_bytes += min(search_end, state->end) + 1 -
1502 max(cur_start, state->start);
1503 if (total_bytes >= max_bytes)
1504 break;
1505 if (!found) {
1506 *start = state->start;
1507 found = 1;
1510 node = rb_next(node);
1511 if (!node)
1512 break;
1514 out:
1515 spin_unlock(&tree->lock);
1516 return total_bytes;
1520 * set the private field for a given byte offset in the tree. If there isn't
1521 * an extent_state there already, this does nothing.
1523 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1525 struct rb_node *node;
1526 struct extent_state *state;
1527 int ret = 0;
1529 spin_lock(&tree->lock);
1531 * this search will find all the extents that end after
1532 * our range starts.
1534 node = tree_search(tree, start);
1535 if (!node) {
1536 ret = -ENOENT;
1537 goto out;
1539 state = rb_entry(node, struct extent_state, rb_node);
1540 if (state->start != start) {
1541 ret = -ENOENT;
1542 goto out;
1544 state->private = private;
1545 out:
1546 spin_unlock(&tree->lock);
1547 return ret;
1550 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1552 struct rb_node *node;
1553 struct extent_state *state;
1554 int ret = 0;
1556 spin_lock(&tree->lock);
1558 * this search will find all the extents that end after
1559 * our range starts.
1561 node = tree_search(tree, start);
1562 if (!node) {
1563 ret = -ENOENT;
1564 goto out;
1566 state = rb_entry(node, struct extent_state, rb_node);
1567 if (state->start != start) {
1568 ret = -ENOENT;
1569 goto out;
1571 *private = state->private;
1572 out:
1573 spin_unlock(&tree->lock);
1574 return ret;
1578 * searches a range in the state tree for a given mask.
1579 * If 'filled' == 1, this returns 1 only if every extent in the tree
1580 * has the bits set. Otherwise, 1 is returned if any bit in the
1581 * range is found set.
1583 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1584 int bits, int filled, struct extent_state *cached)
1586 struct extent_state *state = NULL;
1587 struct rb_node *node;
1588 int bitset = 0;
1590 spin_lock(&tree->lock);
1591 if (cached && cached->tree && cached->start == start)
1592 node = &cached->rb_node;
1593 else
1594 node = tree_search(tree, start);
1595 while (node && start <= end) {
1596 state = rb_entry(node, struct extent_state, rb_node);
1598 if (filled && state->start > start) {
1599 bitset = 0;
1600 break;
1603 if (state->start > end)
1604 break;
1606 if (state->state & bits) {
1607 bitset = 1;
1608 if (!filled)
1609 break;
1610 } else if (filled) {
1611 bitset = 0;
1612 break;
1615 if (state->end == (u64)-1)
1616 break;
1618 start = state->end + 1;
1619 if (start > end)
1620 break;
1621 node = rb_next(node);
1622 if (!node) {
1623 if (filled)
1624 bitset = 0;
1625 break;
1628 spin_unlock(&tree->lock);
1629 return bitset;
1633 * helper function to set a given page up to date if all the
1634 * extents in the tree for that page are up to date
1636 static int check_page_uptodate(struct extent_io_tree *tree,
1637 struct page *page)
1639 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1640 u64 end = start + PAGE_CACHE_SIZE - 1;
1641 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1642 SetPageUptodate(page);
1643 return 0;
1647 * helper function to unlock a page if all the extents in the tree
1648 * for that page are unlocked
1650 static int check_page_locked(struct extent_io_tree *tree,
1651 struct page *page)
1653 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1654 u64 end = start + PAGE_CACHE_SIZE - 1;
1655 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1656 unlock_page(page);
1657 return 0;
1661 * helper function to end page writeback if all the extents
1662 * in the tree for that page are done with writeback
1664 static int check_page_writeback(struct extent_io_tree *tree,
1665 struct page *page)
1667 end_page_writeback(page);
1668 return 0;
1671 /* lots and lots of room for performance fixes in the end_bio funcs */
1674 * after a writepage IO is done, we need to:
1675 * clear the uptodate bits on error
1676 * clear the writeback bits in the extent tree for this IO
1677 * end_page_writeback if the page has no more pending IO
1679 * Scheduling is not allowed, so the extent state tree is expected
1680 * to have one and only one object corresponding to this IO.
1682 static void end_bio_extent_writepage(struct bio *bio, int err)
1684 int uptodate = err == 0;
1685 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1686 struct extent_io_tree *tree;
1687 u64 start;
1688 u64 end;
1689 int whole_page;
1690 int ret;
1692 do {
1693 struct page *page = bvec->bv_page;
1694 tree = &BTRFS_I(page->mapping->host)->io_tree;
1696 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1697 bvec->bv_offset;
1698 end = start + bvec->bv_len - 1;
1700 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1701 whole_page = 1;
1702 else
1703 whole_page = 0;
1705 if (--bvec >= bio->bi_io_vec)
1706 prefetchw(&bvec->bv_page->flags);
1707 if (tree->ops && tree->ops->writepage_end_io_hook) {
1708 ret = tree->ops->writepage_end_io_hook(page, start,
1709 end, NULL, uptodate);
1710 if (ret)
1711 uptodate = 0;
1714 if (!uptodate && tree->ops &&
1715 tree->ops->writepage_io_failed_hook) {
1716 ret = tree->ops->writepage_io_failed_hook(bio, page,
1717 start, end, NULL);
1718 if (ret == 0) {
1719 uptodate = (err == 0);
1720 continue;
1724 if (!uptodate) {
1725 clear_extent_uptodate(tree, start, end, GFP_NOFS);
1726 ClearPageUptodate(page);
1727 SetPageError(page);
1730 if (whole_page)
1731 end_page_writeback(page);
1732 else
1733 check_page_writeback(tree, page);
1734 } while (bvec >= bio->bi_io_vec);
1736 bio_put(bio);
1740 * after a readpage IO is done, we need to:
1741 * clear the uptodate bits on error
1742 * set the uptodate bits if things worked
1743 * set the page up to date if all extents in the tree are uptodate
1744 * clear the lock bit in the extent tree
1745 * unlock the page if there are no other extents locked for it
1747 * Scheduling is not allowed, so the extent state tree is expected
1748 * to have one and only one object corresponding to this IO.
1750 static void end_bio_extent_readpage(struct bio *bio, int err)
1752 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1753 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1754 struct extent_io_tree *tree;
1755 u64 start;
1756 u64 end;
1757 int whole_page;
1758 int ret;
1760 if (err)
1761 uptodate = 0;
1763 do {
1764 struct page *page = bvec->bv_page;
1765 tree = &BTRFS_I(page->mapping->host)->io_tree;
1767 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1768 bvec->bv_offset;
1769 end = start + bvec->bv_len - 1;
1771 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1772 whole_page = 1;
1773 else
1774 whole_page = 0;
1776 if (--bvec >= bio->bi_io_vec)
1777 prefetchw(&bvec->bv_page->flags);
1779 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1780 ret = tree->ops->readpage_end_io_hook(page, start, end,
1781 NULL);
1782 if (ret)
1783 uptodate = 0;
1785 if (!uptodate && tree->ops &&
1786 tree->ops->readpage_io_failed_hook) {
1787 ret = tree->ops->readpage_io_failed_hook(bio, page,
1788 start, end, NULL);
1789 if (ret == 0) {
1790 uptodate =
1791 test_bit(BIO_UPTODATE, &bio->bi_flags);
1792 if (err)
1793 uptodate = 0;
1794 continue;
1798 if (uptodate) {
1799 set_extent_uptodate(tree, start, end,
1800 GFP_ATOMIC);
1802 unlock_extent(tree, start, end, GFP_ATOMIC);
1804 if (whole_page) {
1805 if (uptodate) {
1806 SetPageUptodate(page);
1807 } else {
1808 ClearPageUptodate(page);
1809 SetPageError(page);
1811 unlock_page(page);
1812 } else {
1813 if (uptodate) {
1814 check_page_uptodate(tree, page);
1815 } else {
1816 ClearPageUptodate(page);
1817 SetPageError(page);
1819 check_page_locked(tree, page);
1821 } while (bvec >= bio->bi_io_vec);
1823 bio_put(bio);
1827 * IO done from prepare_write is pretty simple, we just unlock
1828 * the structs in the extent tree when done, and set the uptodate bits
1829 * as appropriate.
1831 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1833 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1834 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1835 struct extent_io_tree *tree;
1836 u64 start;
1837 u64 end;
1839 do {
1840 struct page *page = bvec->bv_page;
1841 tree = &BTRFS_I(page->mapping->host)->io_tree;
1843 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1844 bvec->bv_offset;
1845 end = start + bvec->bv_len - 1;
1847 if (--bvec >= bio->bi_io_vec)
1848 prefetchw(&bvec->bv_page->flags);
1850 if (uptodate) {
1851 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1852 } else {
1853 ClearPageUptodate(page);
1854 SetPageError(page);
1857 unlock_extent(tree, start, end, GFP_ATOMIC);
1859 } while (bvec >= bio->bi_io_vec);
1861 bio_put(bio);
1864 static struct bio *
1865 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1866 gfp_t gfp_flags)
1868 struct bio *bio;
1870 bio = bio_alloc(gfp_flags, nr_vecs);
1872 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1873 while (!bio && (nr_vecs /= 2))
1874 bio = bio_alloc(gfp_flags, nr_vecs);
1877 if (bio) {
1878 bio->bi_size = 0;
1879 bio->bi_bdev = bdev;
1880 bio->bi_sector = first_sector;
1882 return bio;
1885 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1886 unsigned long bio_flags)
1888 int ret = 0;
1889 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1890 struct page *page = bvec->bv_page;
1891 struct extent_io_tree *tree = bio->bi_private;
1892 u64 start;
1893 u64 end;
1895 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1896 end = start + bvec->bv_len - 1;
1898 bio->bi_private = NULL;
1900 bio_get(bio);
1902 if (tree->ops && tree->ops->submit_bio_hook)
1903 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1904 mirror_num, bio_flags);
1905 else
1906 submit_bio(rw, bio);
1907 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1908 ret = -EOPNOTSUPP;
1909 bio_put(bio);
1910 return ret;
1913 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1914 struct page *page, sector_t sector,
1915 size_t size, unsigned long offset,
1916 struct block_device *bdev,
1917 struct bio **bio_ret,
1918 unsigned long max_pages,
1919 bio_end_io_t end_io_func,
1920 int mirror_num,
1921 unsigned long prev_bio_flags,
1922 unsigned long bio_flags)
1924 int ret = 0;
1925 struct bio *bio;
1926 int nr;
1927 int contig = 0;
1928 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1929 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1930 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1932 if (bio_ret && *bio_ret) {
1933 bio = *bio_ret;
1934 if (old_compressed)
1935 contig = bio->bi_sector == sector;
1936 else
1937 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1938 sector;
1940 if (prev_bio_flags != bio_flags || !contig ||
1941 (tree->ops && tree->ops->merge_bio_hook &&
1942 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1943 bio_flags)) ||
1944 bio_add_page(bio, page, page_size, offset) < page_size) {
1945 ret = submit_one_bio(rw, bio, mirror_num,
1946 prev_bio_flags);
1947 bio = NULL;
1948 } else {
1949 return 0;
1952 if (this_compressed)
1953 nr = BIO_MAX_PAGES;
1954 else
1955 nr = bio_get_nr_vecs(bdev);
1957 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1959 bio_add_page(bio, page, page_size, offset);
1960 bio->bi_end_io = end_io_func;
1961 bio->bi_private = tree;
1963 if (bio_ret)
1964 *bio_ret = bio;
1965 else
1966 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1968 return ret;
1971 void set_page_extent_mapped(struct page *page)
1973 if (!PagePrivate(page)) {
1974 SetPagePrivate(page);
1975 page_cache_get(page);
1976 set_page_private(page, EXTENT_PAGE_PRIVATE);
1980 static void set_page_extent_head(struct page *page, unsigned long len)
1982 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1986 * basic readpage implementation. Locked extent state structs are inserted
1987 * into the tree that are removed when the IO is done (by the end_io
1988 * handlers)
1990 static int __extent_read_full_page(struct extent_io_tree *tree,
1991 struct page *page,
1992 get_extent_t *get_extent,
1993 struct bio **bio, int mirror_num,
1994 unsigned long *bio_flags)
1996 struct inode *inode = page->mapping->host;
1997 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1998 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1999 u64 end;
2000 u64 cur = start;
2001 u64 extent_offset;
2002 u64 last_byte = i_size_read(inode);
2003 u64 block_start;
2004 u64 cur_end;
2005 sector_t sector;
2006 struct extent_map *em;
2007 struct block_device *bdev;
2008 int ret;
2009 int nr = 0;
2010 size_t page_offset = 0;
2011 size_t iosize;
2012 size_t disk_io_size;
2013 size_t blocksize = inode->i_sb->s_blocksize;
2014 unsigned long this_bio_flag = 0;
2016 set_page_extent_mapped(page);
2018 end = page_end;
2019 lock_extent(tree, start, end, GFP_NOFS);
2021 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2022 char *userpage;
2023 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2025 if (zero_offset) {
2026 iosize = PAGE_CACHE_SIZE - zero_offset;
2027 userpage = kmap_atomic(page, KM_USER0);
2028 memset(userpage + zero_offset, 0, iosize);
2029 flush_dcache_page(page);
2030 kunmap_atomic(userpage, KM_USER0);
2033 while (cur <= end) {
2034 if (cur >= last_byte) {
2035 char *userpage;
2036 iosize = PAGE_CACHE_SIZE - page_offset;
2037 userpage = kmap_atomic(page, KM_USER0);
2038 memset(userpage + page_offset, 0, iosize);
2039 flush_dcache_page(page);
2040 kunmap_atomic(userpage, KM_USER0);
2041 set_extent_uptodate(tree, cur, cur + iosize - 1,
2042 GFP_NOFS);
2043 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2044 break;
2046 em = get_extent(inode, page, page_offset, cur,
2047 end - cur + 1, 0);
2048 if (IS_ERR(em) || !em) {
2049 SetPageError(page);
2050 unlock_extent(tree, cur, end, GFP_NOFS);
2051 break;
2053 extent_offset = cur - em->start;
2054 BUG_ON(extent_map_end(em) <= cur);
2055 BUG_ON(end < cur);
2057 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2058 this_bio_flag = EXTENT_BIO_COMPRESSED;
2060 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2061 cur_end = min(extent_map_end(em) - 1, end);
2062 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2063 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2064 disk_io_size = em->block_len;
2065 sector = em->block_start >> 9;
2066 } else {
2067 sector = (em->block_start + extent_offset) >> 9;
2068 disk_io_size = iosize;
2070 bdev = em->bdev;
2071 block_start = em->block_start;
2072 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2073 block_start = EXTENT_MAP_HOLE;
2074 free_extent_map(em);
2075 em = NULL;
2077 /* we've found a hole, just zero and go on */
2078 if (block_start == EXTENT_MAP_HOLE) {
2079 char *userpage;
2080 userpage = kmap_atomic(page, KM_USER0);
2081 memset(userpage + page_offset, 0, iosize);
2082 flush_dcache_page(page);
2083 kunmap_atomic(userpage, KM_USER0);
2085 set_extent_uptodate(tree, cur, cur + iosize - 1,
2086 GFP_NOFS);
2087 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2088 cur = cur + iosize;
2089 page_offset += iosize;
2090 continue;
2092 /* the get_extent function already copied into the page */
2093 if (test_range_bit(tree, cur, cur_end,
2094 EXTENT_UPTODATE, 1, NULL)) {
2095 check_page_uptodate(tree, page);
2096 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2097 cur = cur + iosize;
2098 page_offset += iosize;
2099 continue;
2101 /* we have an inline extent but it didn't get marked up
2102 * to date. Error out
2104 if (block_start == EXTENT_MAP_INLINE) {
2105 SetPageError(page);
2106 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2107 cur = cur + iosize;
2108 page_offset += iosize;
2109 continue;
2112 ret = 0;
2113 if (tree->ops && tree->ops->readpage_io_hook) {
2114 ret = tree->ops->readpage_io_hook(page, cur,
2115 cur + iosize - 1);
2117 if (!ret) {
2118 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2119 pnr -= page->index;
2120 ret = submit_extent_page(READ, tree, page,
2121 sector, disk_io_size, page_offset,
2122 bdev, bio, pnr,
2123 end_bio_extent_readpage, mirror_num,
2124 *bio_flags,
2125 this_bio_flag);
2126 nr++;
2127 *bio_flags = this_bio_flag;
2129 if (ret)
2130 SetPageError(page);
2131 cur = cur + iosize;
2132 page_offset += iosize;
2134 if (!nr) {
2135 if (!PageError(page))
2136 SetPageUptodate(page);
2137 unlock_page(page);
2139 return 0;
2142 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2143 get_extent_t *get_extent)
2145 struct bio *bio = NULL;
2146 unsigned long bio_flags = 0;
2147 int ret;
2149 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2150 &bio_flags);
2151 if (bio)
2152 submit_one_bio(READ, bio, 0, bio_flags);
2153 return ret;
2156 static noinline void update_nr_written(struct page *page,
2157 struct writeback_control *wbc,
2158 unsigned long nr_written)
2160 wbc->nr_to_write -= nr_written;
2161 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2162 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2163 page->mapping->writeback_index = page->index + nr_written;
2167 * the writepage semantics are similar to regular writepage. extent
2168 * records are inserted to lock ranges in the tree, and as dirty areas
2169 * are found, they are marked writeback. Then the lock bits are removed
2170 * and the end_io handler clears the writeback ranges
2172 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2173 void *data)
2175 struct inode *inode = page->mapping->host;
2176 struct extent_page_data *epd = data;
2177 struct extent_io_tree *tree = epd->tree;
2178 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2179 u64 delalloc_start;
2180 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2181 u64 end;
2182 u64 cur = start;
2183 u64 extent_offset;
2184 u64 last_byte = i_size_read(inode);
2185 u64 block_start;
2186 u64 iosize;
2187 u64 unlock_start;
2188 sector_t sector;
2189 struct extent_state *cached_state = NULL;
2190 struct extent_map *em;
2191 struct block_device *bdev;
2192 int ret;
2193 int nr = 0;
2194 size_t pg_offset = 0;
2195 size_t blocksize;
2196 loff_t i_size = i_size_read(inode);
2197 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2198 u64 nr_delalloc;
2199 u64 delalloc_end;
2200 int page_started;
2201 int compressed;
2202 int write_flags;
2203 unsigned long nr_written = 0;
2205 if (wbc->sync_mode == WB_SYNC_ALL)
2206 write_flags = WRITE_SYNC_PLUG;
2207 else
2208 write_flags = WRITE;
2210 WARN_ON(!PageLocked(page));
2211 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2212 if (page->index > end_index ||
2213 (page->index == end_index && !pg_offset)) {
2214 page->mapping->a_ops->invalidatepage(page, 0);
2215 unlock_page(page);
2216 return 0;
2219 if (page->index == end_index) {
2220 char *userpage;
2222 userpage = kmap_atomic(page, KM_USER0);
2223 memset(userpage + pg_offset, 0,
2224 PAGE_CACHE_SIZE - pg_offset);
2225 kunmap_atomic(userpage, KM_USER0);
2226 flush_dcache_page(page);
2228 pg_offset = 0;
2230 set_page_extent_mapped(page);
2232 delalloc_start = start;
2233 delalloc_end = 0;
2234 page_started = 0;
2235 if (!epd->extent_locked) {
2236 u64 delalloc_to_write = 0;
2238 * make sure the wbc mapping index is at least updated
2239 * to this page.
2241 update_nr_written(page, wbc, 0);
2243 while (delalloc_end < page_end) {
2244 nr_delalloc = find_lock_delalloc_range(inode, tree,
2245 page,
2246 &delalloc_start,
2247 &delalloc_end,
2248 128 * 1024 * 1024);
2249 if (nr_delalloc == 0) {
2250 delalloc_start = delalloc_end + 1;
2251 continue;
2253 tree->ops->fill_delalloc(inode, page, delalloc_start,
2254 delalloc_end, &page_started,
2255 &nr_written);
2257 * delalloc_end is already one less than the total
2258 * length, so we don't subtract one from
2259 * PAGE_CACHE_SIZE
2261 delalloc_to_write += (delalloc_end - delalloc_start +
2262 PAGE_CACHE_SIZE) >>
2263 PAGE_CACHE_SHIFT;
2264 delalloc_start = delalloc_end + 1;
2266 if (wbc->nr_to_write < delalloc_to_write) {
2267 int thresh = 8192;
2269 if (delalloc_to_write < thresh * 2)
2270 thresh = delalloc_to_write;
2271 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2272 thresh);
2275 /* did the fill delalloc function already unlock and start
2276 * the IO?
2278 if (page_started) {
2279 ret = 0;
2281 * we've unlocked the page, so we can't update
2282 * the mapping's writeback index, just update
2283 * nr_to_write.
2285 wbc->nr_to_write -= nr_written;
2286 goto done_unlocked;
2289 if (tree->ops && tree->ops->writepage_start_hook) {
2290 ret = tree->ops->writepage_start_hook(page, start,
2291 page_end);
2292 if (ret == -EAGAIN) {
2293 redirty_page_for_writepage(wbc, page);
2294 update_nr_written(page, wbc, nr_written);
2295 unlock_page(page);
2296 ret = 0;
2297 goto done_unlocked;
2302 * we don't want to touch the inode after unlocking the page,
2303 * so we update the mapping writeback index now
2305 update_nr_written(page, wbc, nr_written + 1);
2307 end = page_end;
2308 if (last_byte <= start) {
2309 if (tree->ops && tree->ops->writepage_end_io_hook)
2310 tree->ops->writepage_end_io_hook(page, start,
2311 page_end, NULL, 1);
2312 unlock_start = page_end + 1;
2313 goto done;
2316 blocksize = inode->i_sb->s_blocksize;
2318 while (cur <= end) {
2319 if (cur >= last_byte) {
2320 if (tree->ops && tree->ops->writepage_end_io_hook)
2321 tree->ops->writepage_end_io_hook(page, cur,
2322 page_end, NULL, 1);
2323 unlock_start = page_end + 1;
2324 break;
2326 em = epd->get_extent(inode, page, pg_offset, cur,
2327 end - cur + 1, 1);
2328 if (IS_ERR(em) || !em) {
2329 SetPageError(page);
2330 break;
2333 extent_offset = cur - em->start;
2334 BUG_ON(extent_map_end(em) <= cur);
2335 BUG_ON(end < cur);
2336 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2337 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2338 sector = (em->block_start + extent_offset) >> 9;
2339 bdev = em->bdev;
2340 block_start = em->block_start;
2341 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2342 free_extent_map(em);
2343 em = NULL;
2346 * compressed and inline extents are written through other
2347 * paths in the FS
2349 if (compressed || block_start == EXTENT_MAP_HOLE ||
2350 block_start == EXTENT_MAP_INLINE) {
2352 * end_io notification does not happen here for
2353 * compressed extents
2355 if (!compressed && tree->ops &&
2356 tree->ops->writepage_end_io_hook)
2357 tree->ops->writepage_end_io_hook(page, cur,
2358 cur + iosize - 1,
2359 NULL, 1);
2360 else if (compressed) {
2361 /* we don't want to end_page_writeback on
2362 * a compressed extent. this happens
2363 * elsewhere
2365 nr++;
2368 cur += iosize;
2369 pg_offset += iosize;
2370 unlock_start = cur;
2371 continue;
2373 /* leave this out until we have a page_mkwrite call */
2374 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2375 EXTENT_DIRTY, 0, NULL)) {
2376 cur = cur + iosize;
2377 pg_offset += iosize;
2378 continue;
2381 if (tree->ops && tree->ops->writepage_io_hook) {
2382 ret = tree->ops->writepage_io_hook(page, cur,
2383 cur + iosize - 1);
2384 } else {
2385 ret = 0;
2387 if (ret) {
2388 SetPageError(page);
2389 } else {
2390 unsigned long max_nr = end_index + 1;
2392 set_range_writeback(tree, cur, cur + iosize - 1);
2393 if (!PageWriteback(page)) {
2394 printk(KERN_ERR "btrfs warning page %lu not "
2395 "writeback, cur %llu end %llu\n",
2396 page->index, (unsigned long long)cur,
2397 (unsigned long long)end);
2400 ret = submit_extent_page(write_flags, tree, page,
2401 sector, iosize, pg_offset,
2402 bdev, &epd->bio, max_nr,
2403 end_bio_extent_writepage,
2404 0, 0, 0);
2405 if (ret)
2406 SetPageError(page);
2408 cur = cur + iosize;
2409 pg_offset += iosize;
2410 nr++;
2412 done:
2413 if (nr == 0) {
2414 /* make sure the mapping tag for page dirty gets cleared */
2415 set_page_writeback(page);
2416 end_page_writeback(page);
2418 unlock_page(page);
2420 done_unlocked:
2422 /* drop our reference on any cached states */
2423 free_extent_state(cached_state);
2424 return 0;
2428 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2429 * @mapping: address space structure to write
2430 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2431 * @writepage: function called for each page
2432 * @data: data passed to writepage function
2434 * If a page is already under I/O, write_cache_pages() skips it, even
2435 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2436 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2437 * and msync() need to guarantee that all the data which was dirty at the time
2438 * the call was made get new I/O started against them. If wbc->sync_mode is
2439 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2440 * existing IO to complete.
2442 static int extent_write_cache_pages(struct extent_io_tree *tree,
2443 struct address_space *mapping,
2444 struct writeback_control *wbc,
2445 writepage_t writepage, void *data,
2446 void (*flush_fn)(void *))
2448 int ret = 0;
2449 int done = 0;
2450 int nr_to_write_done = 0;
2451 struct pagevec pvec;
2452 int nr_pages;
2453 pgoff_t index;
2454 pgoff_t end; /* Inclusive */
2455 int scanned = 0;
2456 int range_whole = 0;
2458 pagevec_init(&pvec, 0);
2459 if (wbc->range_cyclic) {
2460 index = mapping->writeback_index; /* Start from prev offset */
2461 end = -1;
2462 } else {
2463 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2464 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2465 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2466 range_whole = 1;
2467 scanned = 1;
2469 retry:
2470 while (!done && !nr_to_write_done && (index <= end) &&
2471 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2472 PAGECACHE_TAG_DIRTY, min(end - index,
2473 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2474 unsigned i;
2476 scanned = 1;
2477 for (i = 0; i < nr_pages; i++) {
2478 struct page *page = pvec.pages[i];
2481 * At this point we hold neither mapping->tree_lock nor
2482 * lock on the page itself: the page may be truncated or
2483 * invalidated (changing page->mapping to NULL), or even
2484 * swizzled back from swapper_space to tmpfs file
2485 * mapping
2487 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2488 tree->ops->write_cache_pages_lock_hook(page);
2489 else
2490 lock_page(page);
2492 if (unlikely(page->mapping != mapping)) {
2493 unlock_page(page);
2494 continue;
2497 if (!wbc->range_cyclic && page->index > end) {
2498 done = 1;
2499 unlock_page(page);
2500 continue;
2503 if (wbc->sync_mode != WB_SYNC_NONE) {
2504 if (PageWriteback(page))
2505 flush_fn(data);
2506 wait_on_page_writeback(page);
2509 if (PageWriteback(page) ||
2510 !clear_page_dirty_for_io(page)) {
2511 unlock_page(page);
2512 continue;
2515 ret = (*writepage)(page, wbc, data);
2517 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2518 unlock_page(page);
2519 ret = 0;
2521 if (ret)
2522 done = 1;
2525 * the filesystem may choose to bump up nr_to_write.
2526 * We have to make sure to honor the new nr_to_write
2527 * at any time
2529 nr_to_write_done = wbc->nr_to_write <= 0;
2531 pagevec_release(&pvec);
2532 cond_resched();
2534 if (!scanned && !done) {
2536 * We hit the last page and there is more work to be done: wrap
2537 * back to the start of the file
2539 scanned = 1;
2540 index = 0;
2541 goto retry;
2543 return ret;
2546 static void flush_epd_write_bio(struct extent_page_data *epd)
2548 if (epd->bio) {
2549 if (epd->sync_io)
2550 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2551 else
2552 submit_one_bio(WRITE, epd->bio, 0, 0);
2553 epd->bio = NULL;
2557 static noinline void flush_write_bio(void *data)
2559 struct extent_page_data *epd = data;
2560 flush_epd_write_bio(epd);
2563 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2564 get_extent_t *get_extent,
2565 struct writeback_control *wbc)
2567 int ret;
2568 struct address_space *mapping = page->mapping;
2569 struct extent_page_data epd = {
2570 .bio = NULL,
2571 .tree = tree,
2572 .get_extent = get_extent,
2573 .extent_locked = 0,
2574 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2576 struct writeback_control wbc_writepages = {
2577 .bdi = wbc->bdi,
2578 .sync_mode = wbc->sync_mode,
2579 .older_than_this = NULL,
2580 .nr_to_write = 64,
2581 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2582 .range_end = (loff_t)-1,
2585 ret = __extent_writepage(page, wbc, &epd);
2587 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2588 __extent_writepage, &epd, flush_write_bio);
2589 flush_epd_write_bio(&epd);
2590 return ret;
2593 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2594 u64 start, u64 end, get_extent_t *get_extent,
2595 int mode)
2597 int ret = 0;
2598 struct address_space *mapping = inode->i_mapping;
2599 struct page *page;
2600 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2601 PAGE_CACHE_SHIFT;
2603 struct extent_page_data epd = {
2604 .bio = NULL,
2605 .tree = tree,
2606 .get_extent = get_extent,
2607 .extent_locked = 1,
2608 .sync_io = mode == WB_SYNC_ALL,
2610 struct writeback_control wbc_writepages = {
2611 .bdi = inode->i_mapping->backing_dev_info,
2612 .sync_mode = mode,
2613 .older_than_this = NULL,
2614 .nr_to_write = nr_pages * 2,
2615 .range_start = start,
2616 .range_end = end + 1,
2619 while (start <= end) {
2620 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2621 if (clear_page_dirty_for_io(page))
2622 ret = __extent_writepage(page, &wbc_writepages, &epd);
2623 else {
2624 if (tree->ops && tree->ops->writepage_end_io_hook)
2625 tree->ops->writepage_end_io_hook(page, start,
2626 start + PAGE_CACHE_SIZE - 1,
2627 NULL, 1);
2628 unlock_page(page);
2630 page_cache_release(page);
2631 start += PAGE_CACHE_SIZE;
2634 flush_epd_write_bio(&epd);
2635 return ret;
2638 int extent_writepages(struct extent_io_tree *tree,
2639 struct address_space *mapping,
2640 get_extent_t *get_extent,
2641 struct writeback_control *wbc)
2643 int ret = 0;
2644 struct extent_page_data epd = {
2645 .bio = NULL,
2646 .tree = tree,
2647 .get_extent = get_extent,
2648 .extent_locked = 0,
2649 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2652 ret = extent_write_cache_pages(tree, mapping, wbc,
2653 __extent_writepage, &epd,
2654 flush_write_bio);
2655 flush_epd_write_bio(&epd);
2656 return ret;
2659 int extent_readpages(struct extent_io_tree *tree,
2660 struct address_space *mapping,
2661 struct list_head *pages, unsigned nr_pages,
2662 get_extent_t get_extent)
2664 struct bio *bio = NULL;
2665 unsigned page_idx;
2666 struct pagevec pvec;
2667 unsigned long bio_flags = 0;
2669 pagevec_init(&pvec, 0);
2670 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2671 struct page *page = list_entry(pages->prev, struct page, lru);
2673 prefetchw(&page->flags);
2674 list_del(&page->lru);
2676 * what we want to do here is call add_to_page_cache_lru,
2677 * but that isn't exported, so we reproduce it here
2679 if (!add_to_page_cache(page, mapping,
2680 page->index, GFP_KERNEL)) {
2682 /* open coding of lru_cache_add, also not exported */
2683 page_cache_get(page);
2684 if (!pagevec_add(&pvec, page))
2685 __pagevec_lru_add_file(&pvec);
2686 __extent_read_full_page(tree, page, get_extent,
2687 &bio, 0, &bio_flags);
2689 page_cache_release(page);
2691 if (pagevec_count(&pvec))
2692 __pagevec_lru_add_file(&pvec);
2693 BUG_ON(!list_empty(pages));
2694 if (bio)
2695 submit_one_bio(READ, bio, 0, bio_flags);
2696 return 0;
2700 * basic invalidatepage code, this waits on any locked or writeback
2701 * ranges corresponding to the page, and then deletes any extent state
2702 * records from the tree
2704 int extent_invalidatepage(struct extent_io_tree *tree,
2705 struct page *page, unsigned long offset)
2707 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2708 u64 end = start + PAGE_CACHE_SIZE - 1;
2709 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2711 start += (offset + blocksize - 1) & ~(blocksize - 1);
2712 if (start > end)
2713 return 0;
2715 lock_extent(tree, start, end, GFP_NOFS);
2716 wait_on_page_writeback(page);
2717 clear_extent_bit(tree, start, end,
2718 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2719 EXTENT_DO_ACCOUNTING,
2720 1, 1, NULL, GFP_NOFS);
2721 return 0;
2725 * simple commit_write call, set_range_dirty is used to mark both
2726 * the pages and the extent records as dirty
2728 int extent_commit_write(struct extent_io_tree *tree,
2729 struct inode *inode, struct page *page,
2730 unsigned from, unsigned to)
2732 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2734 set_page_extent_mapped(page);
2735 set_page_dirty(page);
2737 if (pos > inode->i_size) {
2738 i_size_write(inode, pos);
2739 mark_inode_dirty(inode);
2741 return 0;
2744 int extent_prepare_write(struct extent_io_tree *tree,
2745 struct inode *inode, struct page *page,
2746 unsigned from, unsigned to, get_extent_t *get_extent)
2748 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2749 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2750 u64 block_start;
2751 u64 orig_block_start;
2752 u64 block_end;
2753 u64 cur_end;
2754 struct extent_map *em;
2755 unsigned blocksize = 1 << inode->i_blkbits;
2756 size_t page_offset = 0;
2757 size_t block_off_start;
2758 size_t block_off_end;
2759 int err = 0;
2760 int iocount = 0;
2761 int ret = 0;
2762 int isnew;
2764 set_page_extent_mapped(page);
2766 block_start = (page_start + from) & ~((u64)blocksize - 1);
2767 block_end = (page_start + to - 1) | (blocksize - 1);
2768 orig_block_start = block_start;
2770 lock_extent(tree, page_start, page_end, GFP_NOFS);
2771 while (block_start <= block_end) {
2772 em = get_extent(inode, page, page_offset, block_start,
2773 block_end - block_start + 1, 1);
2774 if (IS_ERR(em) || !em)
2775 goto err;
2777 cur_end = min(block_end, extent_map_end(em) - 1);
2778 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2779 block_off_end = block_off_start + blocksize;
2780 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2782 if (!PageUptodate(page) && isnew &&
2783 (block_off_end > to || block_off_start < from)) {
2784 void *kaddr;
2786 kaddr = kmap_atomic(page, KM_USER0);
2787 if (block_off_end > to)
2788 memset(kaddr + to, 0, block_off_end - to);
2789 if (block_off_start < from)
2790 memset(kaddr + block_off_start, 0,
2791 from - block_off_start);
2792 flush_dcache_page(page);
2793 kunmap_atomic(kaddr, KM_USER0);
2795 if ((em->block_start != EXTENT_MAP_HOLE &&
2796 em->block_start != EXTENT_MAP_INLINE) &&
2797 !isnew && !PageUptodate(page) &&
2798 (block_off_end > to || block_off_start < from) &&
2799 !test_range_bit(tree, block_start, cur_end,
2800 EXTENT_UPTODATE, 1, NULL)) {
2801 u64 sector;
2802 u64 extent_offset = block_start - em->start;
2803 size_t iosize;
2804 sector = (em->block_start + extent_offset) >> 9;
2805 iosize = (cur_end - block_start + blocksize) &
2806 ~((u64)blocksize - 1);
2808 * we've already got the extent locked, but we
2809 * need to split the state such that our end_bio
2810 * handler can clear the lock.
2812 set_extent_bit(tree, block_start,
2813 block_start + iosize - 1,
2814 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2815 ret = submit_extent_page(READ, tree, page,
2816 sector, iosize, page_offset, em->bdev,
2817 NULL, 1,
2818 end_bio_extent_preparewrite, 0,
2819 0, 0);
2820 iocount++;
2821 block_start = block_start + iosize;
2822 } else {
2823 set_extent_uptodate(tree, block_start, cur_end,
2824 GFP_NOFS);
2825 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2826 block_start = cur_end + 1;
2828 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2829 free_extent_map(em);
2831 if (iocount) {
2832 wait_extent_bit(tree, orig_block_start,
2833 block_end, EXTENT_LOCKED);
2835 check_page_uptodate(tree, page);
2836 err:
2837 /* FIXME, zero out newly allocated blocks on error */
2838 return err;
2842 * a helper for releasepage, this tests for areas of the page that
2843 * are locked or under IO and drops the related state bits if it is safe
2844 * to drop the page.
2846 int try_release_extent_state(struct extent_map_tree *map,
2847 struct extent_io_tree *tree, struct page *page,
2848 gfp_t mask)
2850 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2851 u64 end = start + PAGE_CACHE_SIZE - 1;
2852 int ret = 1;
2854 if (test_range_bit(tree, start, end,
2855 EXTENT_IOBITS, 0, NULL))
2856 ret = 0;
2857 else {
2858 if ((mask & GFP_NOFS) == GFP_NOFS)
2859 mask = GFP_NOFS;
2861 * at this point we can safely clear everything except the
2862 * locked bit and the nodatasum bit
2864 clear_extent_bit(tree, start, end,
2865 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2866 0, 0, NULL, mask);
2868 return ret;
2872 * a helper for releasepage. As long as there are no locked extents
2873 * in the range corresponding to the page, both state records and extent
2874 * map records are removed
2876 int try_release_extent_mapping(struct extent_map_tree *map,
2877 struct extent_io_tree *tree, struct page *page,
2878 gfp_t mask)
2880 struct extent_map *em;
2881 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2882 u64 end = start + PAGE_CACHE_SIZE - 1;
2884 if ((mask & __GFP_WAIT) &&
2885 page->mapping->host->i_size > 16 * 1024 * 1024) {
2886 u64 len;
2887 while (start <= end) {
2888 len = end - start + 1;
2889 write_lock(&map->lock);
2890 em = lookup_extent_mapping(map, start, len);
2891 if (!em || IS_ERR(em)) {
2892 write_unlock(&map->lock);
2893 break;
2895 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2896 em->start != start) {
2897 write_unlock(&map->lock);
2898 free_extent_map(em);
2899 break;
2901 if (!test_range_bit(tree, em->start,
2902 extent_map_end(em) - 1,
2903 EXTENT_LOCKED | EXTENT_WRITEBACK,
2904 0, NULL)) {
2905 remove_extent_mapping(map, em);
2906 /* once for the rb tree */
2907 free_extent_map(em);
2909 start = extent_map_end(em);
2910 write_unlock(&map->lock);
2912 /* once for us */
2913 free_extent_map(em);
2916 return try_release_extent_state(map, tree, page, mask);
2919 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2920 get_extent_t *get_extent)
2922 struct inode *inode = mapping->host;
2923 u64 start = iblock << inode->i_blkbits;
2924 sector_t sector = 0;
2925 size_t blksize = (1 << inode->i_blkbits);
2926 struct extent_map *em;
2928 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2929 GFP_NOFS);
2930 em = get_extent(inode, NULL, 0, start, blksize, 0);
2931 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2932 GFP_NOFS);
2933 if (!em || IS_ERR(em))
2934 return 0;
2936 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2937 goto out;
2939 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2940 out:
2941 free_extent_map(em);
2942 return sector;
2945 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2946 __u64 start, __u64 len, get_extent_t *get_extent)
2948 int ret;
2949 u64 off = start;
2950 u64 max = start + len;
2951 u32 flags = 0;
2952 u64 disko = 0;
2953 struct extent_map *em = NULL;
2954 int end = 0;
2955 u64 em_start = 0, em_len = 0;
2956 unsigned long emflags;
2957 ret = 0;
2959 if (len == 0)
2960 return -EINVAL;
2962 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2963 GFP_NOFS);
2964 em = get_extent(inode, NULL, 0, off, max - off, 0);
2965 if (!em)
2966 goto out;
2967 if (IS_ERR(em)) {
2968 ret = PTR_ERR(em);
2969 goto out;
2971 while (!end) {
2972 off = em->start + em->len;
2973 if (off >= max)
2974 end = 1;
2976 em_start = em->start;
2977 em_len = em->len;
2979 disko = 0;
2980 flags = 0;
2982 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2983 end = 1;
2984 flags |= FIEMAP_EXTENT_LAST;
2985 } else if (em->block_start == EXTENT_MAP_HOLE) {
2986 flags |= FIEMAP_EXTENT_UNWRITTEN;
2987 } else if (em->block_start == EXTENT_MAP_INLINE) {
2988 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2989 FIEMAP_EXTENT_NOT_ALIGNED);
2990 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2991 flags |= (FIEMAP_EXTENT_DELALLOC |
2992 FIEMAP_EXTENT_UNKNOWN);
2993 } else {
2994 disko = em->block_start;
2996 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2997 flags |= FIEMAP_EXTENT_ENCODED;
2999 emflags = em->flags;
3000 free_extent_map(em);
3001 em = NULL;
3003 if (!end) {
3004 em = get_extent(inode, NULL, 0, off, max - off, 0);
3005 if (!em)
3006 goto out;
3007 if (IS_ERR(em)) {
3008 ret = PTR_ERR(em);
3009 goto out;
3011 emflags = em->flags;
3013 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3014 flags |= FIEMAP_EXTENT_LAST;
3015 end = 1;
3018 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3019 em_len, flags);
3020 if (ret)
3021 goto out_free;
3023 out_free:
3024 free_extent_map(em);
3025 out:
3026 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
3027 GFP_NOFS);
3028 return ret;
3031 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3032 unsigned long i)
3034 struct page *p;
3035 struct address_space *mapping;
3037 if (i == 0)
3038 return eb->first_page;
3039 i += eb->start >> PAGE_CACHE_SHIFT;
3040 mapping = eb->first_page->mapping;
3041 if (!mapping)
3042 return NULL;
3045 * extent_buffer_page is only called after pinning the page
3046 * by increasing the reference count. So we know the page must
3047 * be in the radix tree.
3049 rcu_read_lock();
3050 p = radix_tree_lookup(&mapping->page_tree, i);
3051 rcu_read_unlock();
3053 return p;
3056 static inline unsigned long num_extent_pages(u64 start, u64 len)
3058 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3059 (start >> PAGE_CACHE_SHIFT);
3062 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3063 u64 start,
3064 unsigned long len,
3065 gfp_t mask)
3067 struct extent_buffer *eb = NULL;
3068 #if LEAK_DEBUG
3069 unsigned long flags;
3070 #endif
3072 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3073 eb->start = start;
3074 eb->len = len;
3075 spin_lock_init(&eb->lock);
3076 init_waitqueue_head(&eb->lock_wq);
3078 #if LEAK_DEBUG
3079 spin_lock_irqsave(&leak_lock, flags);
3080 list_add(&eb->leak_list, &buffers);
3081 spin_unlock_irqrestore(&leak_lock, flags);
3082 #endif
3083 atomic_set(&eb->refs, 1);
3085 return eb;
3088 static void __free_extent_buffer(struct extent_buffer *eb)
3090 #if LEAK_DEBUG
3091 unsigned long flags;
3092 spin_lock_irqsave(&leak_lock, flags);
3093 list_del(&eb->leak_list);
3094 spin_unlock_irqrestore(&leak_lock, flags);
3095 #endif
3096 kmem_cache_free(extent_buffer_cache, eb);
3099 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3100 u64 start, unsigned long len,
3101 struct page *page0,
3102 gfp_t mask)
3104 unsigned long num_pages = num_extent_pages(start, len);
3105 unsigned long i;
3106 unsigned long index = start >> PAGE_CACHE_SHIFT;
3107 struct extent_buffer *eb;
3108 struct extent_buffer *exists = NULL;
3109 struct page *p;
3110 struct address_space *mapping = tree->mapping;
3111 int uptodate = 1;
3113 spin_lock(&tree->buffer_lock);
3114 eb = buffer_search(tree, start);
3115 if (eb) {
3116 atomic_inc(&eb->refs);
3117 spin_unlock(&tree->buffer_lock);
3118 mark_page_accessed(eb->first_page);
3119 return eb;
3121 spin_unlock(&tree->buffer_lock);
3123 eb = __alloc_extent_buffer(tree, start, len, mask);
3124 if (!eb)
3125 return NULL;
3127 if (page0) {
3128 eb->first_page = page0;
3129 i = 1;
3130 index++;
3131 page_cache_get(page0);
3132 mark_page_accessed(page0);
3133 set_page_extent_mapped(page0);
3134 set_page_extent_head(page0, len);
3135 uptodate = PageUptodate(page0);
3136 } else {
3137 i = 0;
3139 for (; i < num_pages; i++, index++) {
3140 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3141 if (!p) {
3142 WARN_ON(1);
3143 goto free_eb;
3145 set_page_extent_mapped(p);
3146 mark_page_accessed(p);
3147 if (i == 0) {
3148 eb->first_page = p;
3149 set_page_extent_head(p, len);
3150 } else {
3151 set_page_private(p, EXTENT_PAGE_PRIVATE);
3153 if (!PageUptodate(p))
3154 uptodate = 0;
3155 unlock_page(p);
3157 if (uptodate)
3158 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3160 spin_lock(&tree->buffer_lock);
3161 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3162 if (exists) {
3163 /* add one reference for the caller */
3164 atomic_inc(&exists->refs);
3165 spin_unlock(&tree->buffer_lock);
3166 goto free_eb;
3168 spin_unlock(&tree->buffer_lock);
3170 /* add one reference for the tree */
3171 atomic_inc(&eb->refs);
3172 return eb;
3174 free_eb:
3175 if (!atomic_dec_and_test(&eb->refs))
3176 return exists;
3177 for (index = 1; index < i; index++)
3178 page_cache_release(extent_buffer_page(eb, index));
3179 page_cache_release(extent_buffer_page(eb, 0));
3180 __free_extent_buffer(eb);
3181 return exists;
3184 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3185 u64 start, unsigned long len,
3186 gfp_t mask)
3188 struct extent_buffer *eb;
3190 spin_lock(&tree->buffer_lock);
3191 eb = buffer_search(tree, start);
3192 if (eb)
3193 atomic_inc(&eb->refs);
3194 spin_unlock(&tree->buffer_lock);
3196 if (eb)
3197 mark_page_accessed(eb->first_page);
3199 return eb;
3202 void free_extent_buffer(struct extent_buffer *eb)
3204 if (!eb)
3205 return;
3207 if (!atomic_dec_and_test(&eb->refs))
3208 return;
3210 WARN_ON(1);
3213 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3214 struct extent_buffer *eb)
3216 unsigned long i;
3217 unsigned long num_pages;
3218 struct page *page;
3220 num_pages = num_extent_pages(eb->start, eb->len);
3222 for (i = 0; i < num_pages; i++) {
3223 page = extent_buffer_page(eb, i);
3224 if (!PageDirty(page))
3225 continue;
3227 lock_page(page);
3228 if (i == 0)
3229 set_page_extent_head(page, eb->len);
3230 else
3231 set_page_private(page, EXTENT_PAGE_PRIVATE);
3233 clear_page_dirty_for_io(page);
3234 spin_lock_irq(&page->mapping->tree_lock);
3235 if (!PageDirty(page)) {
3236 radix_tree_tag_clear(&page->mapping->page_tree,
3237 page_index(page),
3238 PAGECACHE_TAG_DIRTY);
3240 spin_unlock_irq(&page->mapping->tree_lock);
3241 unlock_page(page);
3243 return 0;
3246 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3247 struct extent_buffer *eb)
3249 return wait_on_extent_writeback(tree, eb->start,
3250 eb->start + eb->len - 1);
3253 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3254 struct extent_buffer *eb)
3256 unsigned long i;
3257 unsigned long num_pages;
3258 int was_dirty = 0;
3260 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3261 num_pages = num_extent_pages(eb->start, eb->len);
3262 for (i = 0; i < num_pages; i++)
3263 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3264 return was_dirty;
3267 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3268 struct extent_buffer *eb)
3270 unsigned long i;
3271 struct page *page;
3272 unsigned long num_pages;
3274 num_pages = num_extent_pages(eb->start, eb->len);
3275 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3277 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3278 GFP_NOFS);
3279 for (i = 0; i < num_pages; i++) {
3280 page = extent_buffer_page(eb, i);
3281 if (page)
3282 ClearPageUptodate(page);
3284 return 0;
3287 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3288 struct extent_buffer *eb)
3290 unsigned long i;
3291 struct page *page;
3292 unsigned long num_pages;
3294 num_pages = num_extent_pages(eb->start, eb->len);
3296 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3297 GFP_NOFS);
3298 for (i = 0; i < num_pages; i++) {
3299 page = extent_buffer_page(eb, i);
3300 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3301 ((i == num_pages - 1) &&
3302 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3303 check_page_uptodate(tree, page);
3304 continue;
3306 SetPageUptodate(page);
3308 return 0;
3311 int extent_range_uptodate(struct extent_io_tree *tree,
3312 u64 start, u64 end)
3314 struct page *page;
3315 int ret;
3316 int pg_uptodate = 1;
3317 int uptodate;
3318 unsigned long index;
3320 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3321 if (ret)
3322 return 1;
3323 while (start <= end) {
3324 index = start >> PAGE_CACHE_SHIFT;
3325 page = find_get_page(tree->mapping, index);
3326 uptodate = PageUptodate(page);
3327 page_cache_release(page);
3328 if (!uptodate) {
3329 pg_uptodate = 0;
3330 break;
3332 start += PAGE_CACHE_SIZE;
3334 return pg_uptodate;
3337 int extent_buffer_uptodate(struct extent_io_tree *tree,
3338 struct extent_buffer *eb)
3340 int ret = 0;
3341 unsigned long num_pages;
3342 unsigned long i;
3343 struct page *page;
3344 int pg_uptodate = 1;
3346 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3347 return 1;
3349 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3350 EXTENT_UPTODATE, 1, NULL);
3351 if (ret)
3352 return ret;
3354 num_pages = num_extent_pages(eb->start, eb->len);
3355 for (i = 0; i < num_pages; i++) {
3356 page = extent_buffer_page(eb, i);
3357 if (!PageUptodate(page)) {
3358 pg_uptodate = 0;
3359 break;
3362 return pg_uptodate;
3365 int read_extent_buffer_pages(struct extent_io_tree *tree,
3366 struct extent_buffer *eb,
3367 u64 start, int wait,
3368 get_extent_t *get_extent, int mirror_num)
3370 unsigned long i;
3371 unsigned long start_i;
3372 struct page *page;
3373 int err;
3374 int ret = 0;
3375 int locked_pages = 0;
3376 int all_uptodate = 1;
3377 int inc_all_pages = 0;
3378 unsigned long num_pages;
3379 struct bio *bio = NULL;
3380 unsigned long bio_flags = 0;
3382 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3383 return 0;
3385 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3386 EXTENT_UPTODATE, 1, NULL)) {
3387 return 0;
3390 if (start) {
3391 WARN_ON(start < eb->start);
3392 start_i = (start >> PAGE_CACHE_SHIFT) -
3393 (eb->start >> PAGE_CACHE_SHIFT);
3394 } else {
3395 start_i = 0;
3398 num_pages = num_extent_pages(eb->start, eb->len);
3399 for (i = start_i; i < num_pages; i++) {
3400 page = extent_buffer_page(eb, i);
3401 if (!wait) {
3402 if (!trylock_page(page))
3403 goto unlock_exit;
3404 } else {
3405 lock_page(page);
3407 locked_pages++;
3408 if (!PageUptodate(page))
3409 all_uptodate = 0;
3411 if (all_uptodate) {
3412 if (start_i == 0)
3413 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3414 goto unlock_exit;
3417 for (i = start_i; i < num_pages; i++) {
3418 page = extent_buffer_page(eb, i);
3419 if (inc_all_pages)
3420 page_cache_get(page);
3421 if (!PageUptodate(page)) {
3422 if (start_i == 0)
3423 inc_all_pages = 1;
3424 ClearPageError(page);
3425 err = __extent_read_full_page(tree, page,
3426 get_extent, &bio,
3427 mirror_num, &bio_flags);
3428 if (err)
3429 ret = err;
3430 } else {
3431 unlock_page(page);
3435 if (bio)
3436 submit_one_bio(READ, bio, mirror_num, bio_flags);
3438 if (ret || !wait)
3439 return ret;
3441 for (i = start_i; i < num_pages; i++) {
3442 page = extent_buffer_page(eb, i);
3443 wait_on_page_locked(page);
3444 if (!PageUptodate(page))
3445 ret = -EIO;
3448 if (!ret)
3449 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3450 return ret;
3452 unlock_exit:
3453 i = start_i;
3454 while (locked_pages > 0) {
3455 page = extent_buffer_page(eb, i);
3456 i++;
3457 unlock_page(page);
3458 locked_pages--;
3460 return ret;
3463 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3464 unsigned long start,
3465 unsigned long len)
3467 size_t cur;
3468 size_t offset;
3469 struct page *page;
3470 char *kaddr;
3471 char *dst = (char *)dstv;
3472 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3473 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3475 WARN_ON(start > eb->len);
3476 WARN_ON(start + len > eb->start + eb->len);
3478 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3480 while (len > 0) {
3481 page = extent_buffer_page(eb, i);
3483 cur = min(len, (PAGE_CACHE_SIZE - offset));
3484 kaddr = kmap_atomic(page, KM_USER1);
3485 memcpy(dst, kaddr + offset, cur);
3486 kunmap_atomic(kaddr, KM_USER1);
3488 dst += cur;
3489 len -= cur;
3490 offset = 0;
3491 i++;
3495 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3496 unsigned long min_len, char **token, char **map,
3497 unsigned long *map_start,
3498 unsigned long *map_len, int km)
3500 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3501 char *kaddr;
3502 struct page *p;
3503 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3504 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3505 unsigned long end_i = (start_offset + start + min_len - 1) >>
3506 PAGE_CACHE_SHIFT;
3508 if (i != end_i)
3509 return -EINVAL;
3511 if (i == 0) {
3512 offset = start_offset;
3513 *map_start = 0;
3514 } else {
3515 offset = 0;
3516 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3519 if (start + min_len > eb->len) {
3520 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3521 "wanted %lu %lu\n", (unsigned long long)eb->start,
3522 eb->len, start, min_len);
3523 WARN_ON(1);
3526 p = extent_buffer_page(eb, i);
3527 kaddr = kmap_atomic(p, km);
3528 *token = kaddr;
3529 *map = kaddr + offset;
3530 *map_len = PAGE_CACHE_SIZE - offset;
3531 return 0;
3534 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3535 unsigned long min_len,
3536 char **token, char **map,
3537 unsigned long *map_start,
3538 unsigned long *map_len, int km)
3540 int err;
3541 int save = 0;
3542 if (eb->map_token) {
3543 unmap_extent_buffer(eb, eb->map_token, km);
3544 eb->map_token = NULL;
3545 save = 1;
3547 err = map_private_extent_buffer(eb, start, min_len, token, map,
3548 map_start, map_len, km);
3549 if (!err && save) {
3550 eb->map_token = *token;
3551 eb->kaddr = *map;
3552 eb->map_start = *map_start;
3553 eb->map_len = *map_len;
3555 return err;
3558 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3560 kunmap_atomic(token, km);
3563 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3564 unsigned long start,
3565 unsigned long len)
3567 size_t cur;
3568 size_t offset;
3569 struct page *page;
3570 char *kaddr;
3571 char *ptr = (char *)ptrv;
3572 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3573 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3574 int ret = 0;
3576 WARN_ON(start > eb->len);
3577 WARN_ON(start + len > eb->start + eb->len);
3579 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3581 while (len > 0) {
3582 page = extent_buffer_page(eb, i);
3584 cur = min(len, (PAGE_CACHE_SIZE - offset));
3586 kaddr = kmap_atomic(page, KM_USER0);
3587 ret = memcmp(ptr, kaddr + offset, cur);
3588 kunmap_atomic(kaddr, KM_USER0);
3589 if (ret)
3590 break;
3592 ptr += cur;
3593 len -= cur;
3594 offset = 0;
3595 i++;
3597 return ret;
3600 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3601 unsigned long start, unsigned long len)
3603 size_t cur;
3604 size_t offset;
3605 struct page *page;
3606 char *kaddr;
3607 char *src = (char *)srcv;
3608 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3609 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3611 WARN_ON(start > eb->len);
3612 WARN_ON(start + len > eb->start + eb->len);
3614 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3616 while (len > 0) {
3617 page = extent_buffer_page(eb, i);
3618 WARN_ON(!PageUptodate(page));
3620 cur = min(len, PAGE_CACHE_SIZE - offset);
3621 kaddr = kmap_atomic(page, KM_USER1);
3622 memcpy(kaddr + offset, src, cur);
3623 kunmap_atomic(kaddr, KM_USER1);
3625 src += cur;
3626 len -= cur;
3627 offset = 0;
3628 i++;
3632 void memset_extent_buffer(struct extent_buffer *eb, char c,
3633 unsigned long start, unsigned long len)
3635 size_t cur;
3636 size_t offset;
3637 struct page *page;
3638 char *kaddr;
3639 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3640 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3642 WARN_ON(start > eb->len);
3643 WARN_ON(start + len > eb->start + eb->len);
3645 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3647 while (len > 0) {
3648 page = extent_buffer_page(eb, i);
3649 WARN_ON(!PageUptodate(page));
3651 cur = min(len, PAGE_CACHE_SIZE - offset);
3652 kaddr = kmap_atomic(page, KM_USER0);
3653 memset(kaddr + offset, c, cur);
3654 kunmap_atomic(kaddr, KM_USER0);
3656 len -= cur;
3657 offset = 0;
3658 i++;
3662 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3663 unsigned long dst_offset, unsigned long src_offset,
3664 unsigned long len)
3666 u64 dst_len = dst->len;
3667 size_t cur;
3668 size_t offset;
3669 struct page *page;
3670 char *kaddr;
3671 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3672 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3674 WARN_ON(src->len != dst_len);
3676 offset = (start_offset + dst_offset) &
3677 ((unsigned long)PAGE_CACHE_SIZE - 1);
3679 while (len > 0) {
3680 page = extent_buffer_page(dst, i);
3681 WARN_ON(!PageUptodate(page));
3683 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3685 kaddr = kmap_atomic(page, KM_USER0);
3686 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3687 kunmap_atomic(kaddr, KM_USER0);
3689 src_offset += cur;
3690 len -= cur;
3691 offset = 0;
3692 i++;
3696 static void move_pages(struct page *dst_page, struct page *src_page,
3697 unsigned long dst_off, unsigned long src_off,
3698 unsigned long len)
3700 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3701 if (dst_page == src_page) {
3702 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3703 } else {
3704 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3705 char *p = dst_kaddr + dst_off + len;
3706 char *s = src_kaddr + src_off + len;
3708 while (len--)
3709 *--p = *--s;
3711 kunmap_atomic(src_kaddr, KM_USER1);
3713 kunmap_atomic(dst_kaddr, KM_USER0);
3716 static void copy_pages(struct page *dst_page, struct page *src_page,
3717 unsigned long dst_off, unsigned long src_off,
3718 unsigned long len)
3720 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3721 char *src_kaddr;
3723 if (dst_page != src_page)
3724 src_kaddr = kmap_atomic(src_page, KM_USER1);
3725 else
3726 src_kaddr = dst_kaddr;
3728 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3729 kunmap_atomic(dst_kaddr, KM_USER0);
3730 if (dst_page != src_page)
3731 kunmap_atomic(src_kaddr, KM_USER1);
3734 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3735 unsigned long src_offset, unsigned long len)
3737 size_t cur;
3738 size_t dst_off_in_page;
3739 size_t src_off_in_page;
3740 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3741 unsigned long dst_i;
3742 unsigned long src_i;
3744 if (src_offset + len > dst->len) {
3745 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3746 "len %lu dst len %lu\n", src_offset, len, dst->len);
3747 BUG_ON(1);
3749 if (dst_offset + len > dst->len) {
3750 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3751 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3752 BUG_ON(1);
3755 while (len > 0) {
3756 dst_off_in_page = (start_offset + dst_offset) &
3757 ((unsigned long)PAGE_CACHE_SIZE - 1);
3758 src_off_in_page = (start_offset + src_offset) &
3759 ((unsigned long)PAGE_CACHE_SIZE - 1);
3761 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3762 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3764 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3765 src_off_in_page));
3766 cur = min_t(unsigned long, cur,
3767 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3769 copy_pages(extent_buffer_page(dst, dst_i),
3770 extent_buffer_page(dst, src_i),
3771 dst_off_in_page, src_off_in_page, cur);
3773 src_offset += cur;
3774 dst_offset += cur;
3775 len -= cur;
3779 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3780 unsigned long src_offset, unsigned long len)
3782 size_t cur;
3783 size_t dst_off_in_page;
3784 size_t src_off_in_page;
3785 unsigned long dst_end = dst_offset + len - 1;
3786 unsigned long src_end = src_offset + len - 1;
3787 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3788 unsigned long dst_i;
3789 unsigned long src_i;
3791 if (src_offset + len > dst->len) {
3792 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3793 "len %lu len %lu\n", src_offset, len, dst->len);
3794 BUG_ON(1);
3796 if (dst_offset + len > dst->len) {
3797 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3798 "len %lu len %lu\n", dst_offset, len, dst->len);
3799 BUG_ON(1);
3801 if (dst_offset < src_offset) {
3802 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3803 return;
3805 while (len > 0) {
3806 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3807 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3809 dst_off_in_page = (start_offset + dst_end) &
3810 ((unsigned long)PAGE_CACHE_SIZE - 1);
3811 src_off_in_page = (start_offset + src_end) &
3812 ((unsigned long)PAGE_CACHE_SIZE - 1);
3814 cur = min_t(unsigned long, len, src_off_in_page + 1);
3815 cur = min(cur, dst_off_in_page + 1);
3816 move_pages(extent_buffer_page(dst, dst_i),
3817 extent_buffer_page(dst, src_i),
3818 dst_off_in_page - cur + 1,
3819 src_off_in_page - cur + 1, cur);
3821 dst_end -= cur;
3822 src_end -= cur;
3823 len -= cur;
3827 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3829 u64 start = page_offset(page);
3830 struct extent_buffer *eb;
3831 int ret = 1;
3832 unsigned long i;
3833 unsigned long num_pages;
3835 spin_lock(&tree->buffer_lock);
3836 eb = buffer_search(tree, start);
3837 if (!eb)
3838 goto out;
3840 if (atomic_read(&eb->refs) > 1) {
3841 ret = 0;
3842 goto out;
3844 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3845 ret = 0;
3846 goto out;
3848 /* at this point we can safely release the extent buffer */
3849 num_pages = num_extent_pages(eb->start, eb->len);
3850 for (i = 0; i < num_pages; i++)
3851 page_cache_release(extent_buffer_page(eb, i));
3852 rb_erase(&eb->rb_node, &tree->buffer);
3853 __free_extent_buffer(eb);
3854 out:
3855 spin_unlock(&tree->buffer_lock);
3856 return ret;