ARM: OMAP: H2 lcd updates for SPI framework
[linux-ginger.git] / mm / vmscan.c
blob56651a10c36645a7f58c87ac9b97599b72255b61
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
46 #include "internal.h"
48 struct scan_control {
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned;
52 /* This context's GFP mask */
53 gfp_t gfp_mask;
55 int may_writepage;
57 /* Can pages be swapped as part of reclaim? */
58 int may_swap;
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
64 int swap_cluster_max;
66 int swappiness;
68 int all_unreclaimable;
72 * The list of shrinker callbacks used by to apply pressure to
73 * ageable caches.
75 struct shrinker {
76 shrinker_t shrinker;
77 struct list_head list;
78 int seeks; /* seeks to recreate an obj */
79 long nr; /* objs pending delete */
82 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84 #ifdef ARCH_HAS_PREFETCH
85 #define prefetch_prev_lru_page(_page, _base, _field) \
86 do { \
87 if ((_page)->lru.prev != _base) { \
88 struct page *prev; \
90 prev = lru_to_page(&(_page->lru)); \
91 prefetch(&prev->_field); \
92 } \
93 } while (0)
94 #else
95 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
96 #endif
98 #ifdef ARCH_HAS_PREFETCHW
99 #define prefetchw_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetchw(&prev->_field); \
107 } while (0)
108 #else
109 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
113 * From 0 .. 100. Higher means more swappy.
115 int vm_swappiness = 60;
116 long vm_total_pages; /* The total number of pages which the VM controls */
118 static LIST_HEAD(shrinker_list);
119 static DECLARE_RWSEM(shrinker_rwsem);
122 * Add a shrinker callback to be called from the vm
124 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
126 struct shrinker *shrinker;
128 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
129 if (shrinker) {
130 shrinker->shrinker = theshrinker;
131 shrinker->seeks = seeks;
132 shrinker->nr = 0;
133 down_write(&shrinker_rwsem);
134 list_add_tail(&shrinker->list, &shrinker_list);
135 up_write(&shrinker_rwsem);
137 return shrinker;
139 EXPORT_SYMBOL(set_shrinker);
142 * Remove one
144 void remove_shrinker(struct shrinker *shrinker)
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
149 kfree(shrinker);
151 EXPORT_SYMBOL(remove_shrinker);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encounted mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 unsigned long lru_pages)
176 struct shrinker *shrinker;
177 unsigned long ret = 0;
179 if (scanned == 0)
180 scanned = SWAP_CLUSTER_MAX;
182 if (!down_read_trylock(&shrinker_rwsem))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker, &shrinker_list, list) {
186 unsigned long long delta;
187 unsigned long total_scan;
188 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
190 delta = (4 * scanned) / shrinker->seeks;
191 delta *= max_pass;
192 do_div(delta, lru_pages + 1);
193 shrinker->nr += delta;
194 if (shrinker->nr < 0) {
195 printk(KERN_ERR "%s: nr=%ld\n",
196 __FUNCTION__, shrinker->nr);
197 shrinker->nr = max_pass;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
203 * freeable entries.
205 if (shrinker->nr > max_pass * 2)
206 shrinker->nr = max_pass * 2;
208 total_scan = shrinker->nr;
209 shrinker->nr = 0;
211 while (total_scan >= SHRINK_BATCH) {
212 long this_scan = SHRINK_BATCH;
213 int shrink_ret;
214 int nr_before;
216 nr_before = (*shrinker->shrinker)(0, gfp_mask);
217 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
218 if (shrink_ret == -1)
219 break;
220 if (shrink_ret < nr_before)
221 ret += nr_before - shrink_ret;
222 count_vm_events(SLABS_SCANNED, this_scan);
223 total_scan -= this_scan;
225 cond_resched();
228 shrinker->nr += total_scan;
230 up_read(&shrinker_rwsem);
231 return ret;
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
237 struct address_space *mapping;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page))
241 return 1;
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page))
245 return 1;
247 mapping = page_mapping(page);
248 if (!mapping)
249 return 0;
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping);
255 static inline int is_page_cache_freeable(struct page *page)
257 return page_count(page) - !!PagePrivate(page) == 2;
260 static int may_write_to_queue(struct backing_dev_info *bdi)
262 if (current->flags & PF_SWAPWRITE)
263 return 1;
264 if (!bdi_write_congested(bdi))
265 return 1;
266 if (bdi == current->backing_dev_info)
267 return 1;
268 return 0;
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
281 * __GFP_FS.
283 static void handle_write_error(struct address_space *mapping,
284 struct page *page, int error)
286 lock_page(page);
287 if (page_mapping(page) == mapping) {
288 if (error == -ENOSPC)
289 set_bit(AS_ENOSPC, &mapping->flags);
290 else
291 set_bit(AS_EIO, &mapping->flags);
293 unlock_page(page);
296 /* possible outcome of pageout() */
297 typedef enum {
298 /* failed to write page out, page is locked */
299 PAGE_KEEP,
300 /* move page to the active list, page is locked */
301 PAGE_ACTIVATE,
302 /* page has been sent to the disk successfully, page is unlocked */
303 PAGE_SUCCESS,
304 /* page is clean and locked */
305 PAGE_CLEAN,
306 } pageout_t;
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
312 static pageout_t pageout(struct page *page, struct address_space *mapping)
315 * If the page is dirty, only perform writeback if that write
316 * will be non-blocking. To prevent this allocation from being
317 * stalled by pagecache activity. But note that there may be
318 * stalls if we need to run get_block(). We could test
319 * PagePrivate for that.
321 * If this process is currently in generic_file_write() against
322 * this page's queue, we can perform writeback even if that
323 * will block.
325 * If the page is swapcache, write it back even if that would
326 * block, for some throttling. This happens by accident, because
327 * swap_backing_dev_info is bust: it doesn't reflect the
328 * congestion state of the swapdevs. Easy to fix, if needed.
329 * See swapfile.c:page_queue_congested().
331 if (!is_page_cache_freeable(page))
332 return PAGE_KEEP;
333 if (!mapping) {
335 * Some data journaling orphaned pages can have
336 * page->mapping == NULL while being dirty with clean buffers.
338 if (PagePrivate(page)) {
339 if (try_to_free_buffers(page)) {
340 ClearPageDirty(page);
341 printk("%s: orphaned page\n", __FUNCTION__);
342 return PAGE_CLEAN;
345 return PAGE_KEEP;
347 if (mapping->a_ops->writepage == NULL)
348 return PAGE_ACTIVATE;
349 if (!may_write_to_queue(mapping->backing_dev_info))
350 return PAGE_KEEP;
352 if (clear_page_dirty_for_io(page)) {
353 int res;
354 struct writeback_control wbc = {
355 .sync_mode = WB_SYNC_NONE,
356 .nr_to_write = SWAP_CLUSTER_MAX,
357 .range_start = 0,
358 .range_end = LLONG_MAX,
359 .nonblocking = 1,
360 .for_reclaim = 1,
363 SetPageReclaim(page);
364 res = mapping->a_ops->writepage(page, &wbc);
365 if (res < 0)
366 handle_write_error(mapping, page, res);
367 if (res == AOP_WRITEPAGE_ACTIVATE) {
368 ClearPageReclaim(page);
369 return PAGE_ACTIVATE;
371 if (!PageWriteback(page)) {
372 /* synchronous write or broken a_ops? */
373 ClearPageReclaim(page);
375 inc_zone_page_state(page, NR_VMSCAN_WRITE);
376 return PAGE_SUCCESS;
379 return PAGE_CLEAN;
383 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
384 * someone else has a ref on the page, abort and return 0. If it was
385 * successfully detached, return 1. Assumes the caller has a single ref on
386 * this page.
388 int remove_mapping(struct address_space *mapping, struct page *page)
390 BUG_ON(!PageLocked(page));
391 BUG_ON(mapping != page_mapping(page));
393 write_lock_irq(&mapping->tree_lock);
395 * The non racy check for a busy page.
397 * Must be careful with the order of the tests. When someone has
398 * a ref to the page, it may be possible that they dirty it then
399 * drop the reference. So if PageDirty is tested before page_count
400 * here, then the following race may occur:
402 * get_user_pages(&page);
403 * [user mapping goes away]
404 * write_to(page);
405 * !PageDirty(page) [good]
406 * SetPageDirty(page);
407 * put_page(page);
408 * !page_count(page) [good, discard it]
410 * [oops, our write_to data is lost]
412 * Reversing the order of the tests ensures such a situation cannot
413 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
414 * load is not satisfied before that of page->_count.
416 * Note that if SetPageDirty is always performed via set_page_dirty,
417 * and thus under tree_lock, then this ordering is not required.
419 if (unlikely(page_count(page) != 2))
420 goto cannot_free;
421 smp_rmb();
422 if (unlikely(PageDirty(page)))
423 goto cannot_free;
425 if (PageSwapCache(page)) {
426 swp_entry_t swap = { .val = page_private(page) };
427 __delete_from_swap_cache(page);
428 write_unlock_irq(&mapping->tree_lock);
429 swap_free(swap);
430 __put_page(page); /* The pagecache ref */
431 return 1;
434 __remove_from_page_cache(page);
435 write_unlock_irq(&mapping->tree_lock);
436 __put_page(page);
437 return 1;
439 cannot_free:
440 write_unlock_irq(&mapping->tree_lock);
441 return 0;
445 * shrink_page_list() returns the number of reclaimed pages
447 static unsigned long shrink_page_list(struct list_head *page_list,
448 struct scan_control *sc)
450 LIST_HEAD(ret_pages);
451 struct pagevec freed_pvec;
452 int pgactivate = 0;
453 unsigned long nr_reclaimed = 0;
455 cond_resched();
457 pagevec_init(&freed_pvec, 1);
458 while (!list_empty(page_list)) {
459 struct address_space *mapping;
460 struct page *page;
461 int may_enter_fs;
462 int referenced;
464 cond_resched();
466 page = lru_to_page(page_list);
467 list_del(&page->lru);
469 if (TestSetPageLocked(page))
470 goto keep;
472 VM_BUG_ON(PageActive(page));
474 sc->nr_scanned++;
476 if (!sc->may_swap && page_mapped(page))
477 goto keep_locked;
479 /* Double the slab pressure for mapped and swapcache pages */
480 if (page_mapped(page) || PageSwapCache(page))
481 sc->nr_scanned++;
483 if (PageWriteback(page))
484 goto keep_locked;
486 referenced = page_referenced(page, 1);
487 /* In active use or really unfreeable? Activate it. */
488 if (referenced && page_mapping_inuse(page))
489 goto activate_locked;
491 #ifdef CONFIG_SWAP
493 * Anonymous process memory has backing store?
494 * Try to allocate it some swap space here.
496 if (PageAnon(page) && !PageSwapCache(page))
497 if (!add_to_swap(page, GFP_ATOMIC))
498 goto activate_locked;
499 #endif /* CONFIG_SWAP */
501 mapping = page_mapping(page);
502 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
503 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
506 * The page is mapped into the page tables of one or more
507 * processes. Try to unmap it here.
509 if (page_mapped(page) && mapping) {
510 switch (try_to_unmap(page, 0)) {
511 case SWAP_FAIL:
512 goto activate_locked;
513 case SWAP_AGAIN:
514 goto keep_locked;
515 case SWAP_SUCCESS:
516 ; /* try to free the page below */
520 if (PageDirty(page)) {
521 if (referenced)
522 goto keep_locked;
523 if (!may_enter_fs)
524 goto keep_locked;
525 if (!sc->may_writepage)
526 goto keep_locked;
528 /* Page is dirty, try to write it out here */
529 switch(pageout(page, mapping)) {
530 case PAGE_KEEP:
531 goto keep_locked;
532 case PAGE_ACTIVATE:
533 goto activate_locked;
534 case PAGE_SUCCESS:
535 if (PageWriteback(page) || PageDirty(page))
536 goto keep;
538 * A synchronous write - probably a ramdisk. Go
539 * ahead and try to reclaim the page.
541 if (TestSetPageLocked(page))
542 goto keep;
543 if (PageDirty(page) || PageWriteback(page))
544 goto keep_locked;
545 mapping = page_mapping(page);
546 case PAGE_CLEAN:
547 ; /* try to free the page below */
552 * If the page has buffers, try to free the buffer mappings
553 * associated with this page. If we succeed we try to free
554 * the page as well.
556 * We do this even if the page is PageDirty().
557 * try_to_release_page() does not perform I/O, but it is
558 * possible for a page to have PageDirty set, but it is actually
559 * clean (all its buffers are clean). This happens if the
560 * buffers were written out directly, with submit_bh(). ext3
561 * will do this, as well as the blockdev mapping.
562 * try_to_release_page() will discover that cleanness and will
563 * drop the buffers and mark the page clean - it can be freed.
565 * Rarely, pages can have buffers and no ->mapping. These are
566 * the pages which were not successfully invalidated in
567 * truncate_complete_page(). We try to drop those buffers here
568 * and if that worked, and the page is no longer mapped into
569 * process address space (page_count == 1) it can be freed.
570 * Otherwise, leave the page on the LRU so it is swappable.
572 if (PagePrivate(page)) {
573 if (!try_to_release_page(page, sc->gfp_mask))
574 goto activate_locked;
575 if (!mapping && page_count(page) == 1)
576 goto free_it;
579 if (!mapping || !remove_mapping(mapping, page))
580 goto keep_locked;
582 free_it:
583 unlock_page(page);
584 nr_reclaimed++;
585 if (!pagevec_add(&freed_pvec, page))
586 __pagevec_release_nonlru(&freed_pvec);
587 continue;
589 activate_locked:
590 SetPageActive(page);
591 pgactivate++;
592 keep_locked:
593 unlock_page(page);
594 keep:
595 list_add(&page->lru, &ret_pages);
596 VM_BUG_ON(PageLRU(page));
598 list_splice(&ret_pages, page_list);
599 if (pagevec_count(&freed_pvec))
600 __pagevec_release_nonlru(&freed_pvec);
601 count_vm_events(PGACTIVATE, pgactivate);
602 return nr_reclaimed;
606 * zone->lru_lock is heavily contended. Some of the functions that
607 * shrink the lists perform better by taking out a batch of pages
608 * and working on them outside the LRU lock.
610 * For pagecache intensive workloads, this function is the hottest
611 * spot in the kernel (apart from copy_*_user functions).
613 * Appropriate locks must be held before calling this function.
615 * @nr_to_scan: The number of pages to look through on the list.
616 * @src: The LRU list to pull pages off.
617 * @dst: The temp list to put pages on to.
618 * @scanned: The number of pages that were scanned.
620 * returns how many pages were moved onto *@dst.
622 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
623 struct list_head *src, struct list_head *dst,
624 unsigned long *scanned)
626 unsigned long nr_taken = 0;
627 struct page *page;
628 unsigned long scan;
630 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
631 struct list_head *target;
632 page = lru_to_page(src);
633 prefetchw_prev_lru_page(page, src, flags);
635 VM_BUG_ON(!PageLRU(page));
637 list_del(&page->lru);
638 target = src;
639 if (likely(get_page_unless_zero(page))) {
641 * Be careful not to clear PageLRU until after we're
642 * sure the page is not being freed elsewhere -- the
643 * page release code relies on it.
645 ClearPageLRU(page);
646 target = dst;
647 nr_taken++;
648 } /* else it is being freed elsewhere */
650 list_add(&page->lru, target);
653 *scanned = scan;
654 return nr_taken;
658 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
659 * of reclaimed pages
661 static unsigned long shrink_inactive_list(unsigned long max_scan,
662 struct zone *zone, struct scan_control *sc)
664 LIST_HEAD(page_list);
665 struct pagevec pvec;
666 unsigned long nr_scanned = 0;
667 unsigned long nr_reclaimed = 0;
669 pagevec_init(&pvec, 1);
671 lru_add_drain();
672 spin_lock_irq(&zone->lru_lock);
673 do {
674 struct page *page;
675 unsigned long nr_taken;
676 unsigned long nr_scan;
677 unsigned long nr_freed;
679 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
680 &zone->inactive_list,
681 &page_list, &nr_scan);
682 __mod_zone_page_state(zone, NR_INACTIVE, -nr_taken);
683 zone->pages_scanned += nr_scan;
684 spin_unlock_irq(&zone->lru_lock);
686 nr_scanned += nr_scan;
687 nr_freed = shrink_page_list(&page_list, sc);
688 nr_reclaimed += nr_freed;
689 local_irq_disable();
690 if (current_is_kswapd()) {
691 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
692 __count_vm_events(KSWAPD_STEAL, nr_freed);
693 } else
694 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
695 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
697 if (nr_taken == 0)
698 goto done;
700 spin_lock(&zone->lru_lock);
702 * Put back any unfreeable pages.
704 while (!list_empty(&page_list)) {
705 page = lru_to_page(&page_list);
706 VM_BUG_ON(PageLRU(page));
707 SetPageLRU(page);
708 list_del(&page->lru);
709 if (PageActive(page))
710 add_page_to_active_list(zone, page);
711 else
712 add_page_to_inactive_list(zone, page);
713 if (!pagevec_add(&pvec, page)) {
714 spin_unlock_irq(&zone->lru_lock);
715 __pagevec_release(&pvec);
716 spin_lock_irq(&zone->lru_lock);
719 } while (nr_scanned < max_scan);
720 spin_unlock(&zone->lru_lock);
721 done:
722 local_irq_enable();
723 pagevec_release(&pvec);
724 return nr_reclaimed;
728 * We are about to scan this zone at a certain priority level. If that priority
729 * level is smaller (ie: more urgent) than the previous priority, then note
730 * that priority level within the zone. This is done so that when the next
731 * process comes in to scan this zone, it will immediately start out at this
732 * priority level rather than having to build up its own scanning priority.
733 * Here, this priority affects only the reclaim-mapped threshold.
735 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
737 if (priority < zone->prev_priority)
738 zone->prev_priority = priority;
741 static inline int zone_is_near_oom(struct zone *zone)
743 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
744 + zone_page_state(zone, NR_INACTIVE))*3;
748 * This moves pages from the active list to the inactive list.
750 * We move them the other way if the page is referenced by one or more
751 * processes, from rmap.
753 * If the pages are mostly unmapped, the processing is fast and it is
754 * appropriate to hold zone->lru_lock across the whole operation. But if
755 * the pages are mapped, the processing is slow (page_referenced()) so we
756 * should drop zone->lru_lock around each page. It's impossible to balance
757 * this, so instead we remove the pages from the LRU while processing them.
758 * It is safe to rely on PG_active against the non-LRU pages in here because
759 * nobody will play with that bit on a non-LRU page.
761 * The downside is that we have to touch page->_count against each page.
762 * But we had to alter page->flags anyway.
764 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
765 struct scan_control *sc, int priority)
767 unsigned long pgmoved;
768 int pgdeactivate = 0;
769 unsigned long pgscanned;
770 LIST_HEAD(l_hold); /* The pages which were snipped off */
771 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
772 LIST_HEAD(l_active); /* Pages to go onto the active_list */
773 struct page *page;
774 struct pagevec pvec;
775 int reclaim_mapped = 0;
777 if (sc->may_swap) {
778 long mapped_ratio;
779 long distress;
780 long swap_tendency;
782 if (zone_is_near_oom(zone))
783 goto force_reclaim_mapped;
786 * `distress' is a measure of how much trouble we're having
787 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
789 distress = 100 >> min(zone->prev_priority, priority);
792 * The point of this algorithm is to decide when to start
793 * reclaiming mapped memory instead of just pagecache. Work out
794 * how much memory
795 * is mapped.
797 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
798 global_page_state(NR_ANON_PAGES)) * 100) /
799 vm_total_pages;
802 * Now decide how much we really want to unmap some pages. The
803 * mapped ratio is downgraded - just because there's a lot of
804 * mapped memory doesn't necessarily mean that page reclaim
805 * isn't succeeding.
807 * The distress ratio is important - we don't want to start
808 * going oom.
810 * A 100% value of vm_swappiness overrides this algorithm
811 * altogether.
813 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
816 * Now use this metric to decide whether to start moving mapped
817 * memory onto the inactive list.
819 if (swap_tendency >= 100)
820 force_reclaim_mapped:
821 reclaim_mapped = 1;
824 lru_add_drain();
825 spin_lock_irq(&zone->lru_lock);
826 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
827 &l_hold, &pgscanned);
828 zone->pages_scanned += pgscanned;
829 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
830 spin_unlock_irq(&zone->lru_lock);
832 while (!list_empty(&l_hold)) {
833 cond_resched();
834 page = lru_to_page(&l_hold);
835 list_del(&page->lru);
836 if (page_mapped(page)) {
837 if (!reclaim_mapped ||
838 (total_swap_pages == 0 && PageAnon(page)) ||
839 page_referenced(page, 0)) {
840 list_add(&page->lru, &l_active);
841 continue;
844 list_add(&page->lru, &l_inactive);
847 pagevec_init(&pvec, 1);
848 pgmoved = 0;
849 spin_lock_irq(&zone->lru_lock);
850 while (!list_empty(&l_inactive)) {
851 page = lru_to_page(&l_inactive);
852 prefetchw_prev_lru_page(page, &l_inactive, flags);
853 VM_BUG_ON(PageLRU(page));
854 SetPageLRU(page);
855 VM_BUG_ON(!PageActive(page));
856 ClearPageActive(page);
858 list_move(&page->lru, &zone->inactive_list);
859 pgmoved++;
860 if (!pagevec_add(&pvec, page)) {
861 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
862 spin_unlock_irq(&zone->lru_lock);
863 pgdeactivate += pgmoved;
864 pgmoved = 0;
865 if (buffer_heads_over_limit)
866 pagevec_strip(&pvec);
867 __pagevec_release(&pvec);
868 spin_lock_irq(&zone->lru_lock);
871 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
872 pgdeactivate += pgmoved;
873 if (buffer_heads_over_limit) {
874 spin_unlock_irq(&zone->lru_lock);
875 pagevec_strip(&pvec);
876 spin_lock_irq(&zone->lru_lock);
879 pgmoved = 0;
880 while (!list_empty(&l_active)) {
881 page = lru_to_page(&l_active);
882 prefetchw_prev_lru_page(page, &l_active, flags);
883 VM_BUG_ON(PageLRU(page));
884 SetPageLRU(page);
885 VM_BUG_ON(!PageActive(page));
886 list_move(&page->lru, &zone->active_list);
887 pgmoved++;
888 if (!pagevec_add(&pvec, page)) {
889 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
890 pgmoved = 0;
891 spin_unlock_irq(&zone->lru_lock);
892 __pagevec_release(&pvec);
893 spin_lock_irq(&zone->lru_lock);
896 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
898 __count_zone_vm_events(PGREFILL, zone, pgscanned);
899 __count_vm_events(PGDEACTIVATE, pgdeactivate);
900 spin_unlock_irq(&zone->lru_lock);
902 pagevec_release(&pvec);
906 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
908 static unsigned long shrink_zone(int priority, struct zone *zone,
909 struct scan_control *sc)
911 unsigned long nr_active;
912 unsigned long nr_inactive;
913 unsigned long nr_to_scan;
914 unsigned long nr_reclaimed = 0;
916 atomic_inc(&zone->reclaim_in_progress);
919 * Add one to `nr_to_scan' just to make sure that the kernel will
920 * slowly sift through the active list.
922 zone->nr_scan_active +=
923 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
924 nr_active = zone->nr_scan_active;
925 if (nr_active >= sc->swap_cluster_max)
926 zone->nr_scan_active = 0;
927 else
928 nr_active = 0;
930 zone->nr_scan_inactive +=
931 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
932 nr_inactive = zone->nr_scan_inactive;
933 if (nr_inactive >= sc->swap_cluster_max)
934 zone->nr_scan_inactive = 0;
935 else
936 nr_inactive = 0;
938 while (nr_active || nr_inactive) {
939 if (nr_active) {
940 nr_to_scan = min(nr_active,
941 (unsigned long)sc->swap_cluster_max);
942 nr_active -= nr_to_scan;
943 shrink_active_list(nr_to_scan, zone, sc, priority);
946 if (nr_inactive) {
947 nr_to_scan = min(nr_inactive,
948 (unsigned long)sc->swap_cluster_max);
949 nr_inactive -= nr_to_scan;
950 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
951 sc);
955 throttle_vm_writeout(sc->gfp_mask);
957 atomic_dec(&zone->reclaim_in_progress);
958 return nr_reclaimed;
962 * This is the direct reclaim path, for page-allocating processes. We only
963 * try to reclaim pages from zones which will satisfy the caller's allocation
964 * request.
966 * We reclaim from a zone even if that zone is over pages_high. Because:
967 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
968 * allocation or
969 * b) The zones may be over pages_high but they must go *over* pages_high to
970 * satisfy the `incremental min' zone defense algorithm.
972 * Returns the number of reclaimed pages.
974 * If a zone is deemed to be full of pinned pages then just give it a light
975 * scan then give up on it.
977 static unsigned long shrink_zones(int priority, struct zone **zones,
978 struct scan_control *sc)
980 unsigned long nr_reclaimed = 0;
981 int i;
983 sc->all_unreclaimable = 1;
984 for (i = 0; zones[i] != NULL; i++) {
985 struct zone *zone = zones[i];
987 if (!populated_zone(zone))
988 continue;
990 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
991 continue;
993 note_zone_scanning_priority(zone, priority);
995 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
996 continue; /* Let kswapd poll it */
998 sc->all_unreclaimable = 0;
1000 nr_reclaimed += shrink_zone(priority, zone, sc);
1002 return nr_reclaimed;
1006 * This is the main entry point to direct page reclaim.
1008 * If a full scan of the inactive list fails to free enough memory then we
1009 * are "out of memory" and something needs to be killed.
1011 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1012 * high - the zone may be full of dirty or under-writeback pages, which this
1013 * caller can't do much about. We kick pdflush and take explicit naps in the
1014 * hope that some of these pages can be written. But if the allocating task
1015 * holds filesystem locks which prevent writeout this might not work, and the
1016 * allocation attempt will fail.
1018 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1020 int priority;
1021 int ret = 0;
1022 unsigned long total_scanned = 0;
1023 unsigned long nr_reclaimed = 0;
1024 struct reclaim_state *reclaim_state = current->reclaim_state;
1025 unsigned long lru_pages = 0;
1026 int i;
1027 struct scan_control sc = {
1028 .gfp_mask = gfp_mask,
1029 .may_writepage = !laptop_mode,
1030 .swap_cluster_max = SWAP_CLUSTER_MAX,
1031 .may_swap = 1,
1032 .swappiness = vm_swappiness,
1035 count_vm_event(ALLOCSTALL);
1037 for (i = 0; zones[i] != NULL; i++) {
1038 struct zone *zone = zones[i];
1040 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1041 continue;
1043 lru_pages += zone_page_state(zone, NR_ACTIVE)
1044 + zone_page_state(zone, NR_INACTIVE);
1047 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1048 sc.nr_scanned = 0;
1049 if (!priority)
1050 disable_swap_token();
1051 nr_reclaimed += shrink_zones(priority, zones, &sc);
1052 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1053 if (reclaim_state) {
1054 nr_reclaimed += reclaim_state->reclaimed_slab;
1055 reclaim_state->reclaimed_slab = 0;
1057 total_scanned += sc.nr_scanned;
1058 if (nr_reclaimed >= sc.swap_cluster_max) {
1059 ret = 1;
1060 goto out;
1064 * Try to write back as many pages as we just scanned. This
1065 * tends to cause slow streaming writers to write data to the
1066 * disk smoothly, at the dirtying rate, which is nice. But
1067 * that's undesirable in laptop mode, where we *want* lumpy
1068 * writeout. So in laptop mode, write out the whole world.
1070 if (total_scanned > sc.swap_cluster_max +
1071 sc.swap_cluster_max / 2) {
1072 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1073 sc.may_writepage = 1;
1076 /* Take a nap, wait for some writeback to complete */
1077 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1078 congestion_wait(WRITE, HZ/10);
1080 /* top priority shrink_caches still had more to do? don't OOM, then */
1081 if (!sc.all_unreclaimable)
1082 ret = 1;
1083 out:
1085 * Now that we've scanned all the zones at this priority level, note
1086 * that level within the zone so that the next thread which performs
1087 * scanning of this zone will immediately start out at this priority
1088 * level. This affects only the decision whether or not to bring
1089 * mapped pages onto the inactive list.
1091 if (priority < 0)
1092 priority = 0;
1093 for (i = 0; zones[i] != 0; i++) {
1094 struct zone *zone = zones[i];
1096 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1097 continue;
1099 zone->prev_priority = priority;
1101 return ret;
1105 * For kswapd, balance_pgdat() will work across all this node's zones until
1106 * they are all at pages_high.
1108 * Returns the number of pages which were actually freed.
1110 * There is special handling here for zones which are full of pinned pages.
1111 * This can happen if the pages are all mlocked, or if they are all used by
1112 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1113 * What we do is to detect the case where all pages in the zone have been
1114 * scanned twice and there has been zero successful reclaim. Mark the zone as
1115 * dead and from now on, only perform a short scan. Basically we're polling
1116 * the zone for when the problem goes away.
1118 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1119 * zones which have free_pages > pages_high, but once a zone is found to have
1120 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1121 * of the number of free pages in the lower zones. This interoperates with
1122 * the page allocator fallback scheme to ensure that aging of pages is balanced
1123 * across the zones.
1125 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1127 int all_zones_ok;
1128 int priority;
1129 int i;
1130 unsigned long total_scanned;
1131 unsigned long nr_reclaimed;
1132 struct reclaim_state *reclaim_state = current->reclaim_state;
1133 struct scan_control sc = {
1134 .gfp_mask = GFP_KERNEL,
1135 .may_swap = 1,
1136 .swap_cluster_max = SWAP_CLUSTER_MAX,
1137 .swappiness = vm_swappiness,
1140 * temp_priority is used to remember the scanning priority at which
1141 * this zone was successfully refilled to free_pages == pages_high.
1143 int temp_priority[MAX_NR_ZONES];
1145 loop_again:
1146 total_scanned = 0;
1147 nr_reclaimed = 0;
1148 sc.may_writepage = !laptop_mode;
1149 count_vm_event(PAGEOUTRUN);
1151 for (i = 0; i < pgdat->nr_zones; i++)
1152 temp_priority[i] = DEF_PRIORITY;
1154 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1155 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1156 unsigned long lru_pages = 0;
1158 /* The swap token gets in the way of swapout... */
1159 if (!priority)
1160 disable_swap_token();
1162 all_zones_ok = 1;
1165 * Scan in the highmem->dma direction for the highest
1166 * zone which needs scanning
1168 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1169 struct zone *zone = pgdat->node_zones + i;
1171 if (!populated_zone(zone))
1172 continue;
1174 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1175 continue;
1177 if (!zone_watermark_ok(zone, order, zone->pages_high,
1178 0, 0)) {
1179 end_zone = i;
1180 break;
1183 if (i < 0)
1184 goto out;
1186 for (i = 0; i <= end_zone; i++) {
1187 struct zone *zone = pgdat->node_zones + i;
1189 lru_pages += zone_page_state(zone, NR_ACTIVE)
1190 + zone_page_state(zone, NR_INACTIVE);
1194 * Now scan the zone in the dma->highmem direction, stopping
1195 * at the last zone which needs scanning.
1197 * We do this because the page allocator works in the opposite
1198 * direction. This prevents the page allocator from allocating
1199 * pages behind kswapd's direction of progress, which would
1200 * cause too much scanning of the lower zones.
1202 for (i = 0; i <= end_zone; i++) {
1203 struct zone *zone = pgdat->node_zones + i;
1204 int nr_slab;
1206 if (!populated_zone(zone))
1207 continue;
1209 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1210 continue;
1212 if (!zone_watermark_ok(zone, order, zone->pages_high,
1213 end_zone, 0))
1214 all_zones_ok = 0;
1215 temp_priority[i] = priority;
1216 sc.nr_scanned = 0;
1217 note_zone_scanning_priority(zone, priority);
1218 nr_reclaimed += shrink_zone(priority, zone, &sc);
1219 reclaim_state->reclaimed_slab = 0;
1220 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1221 lru_pages);
1222 nr_reclaimed += reclaim_state->reclaimed_slab;
1223 total_scanned += sc.nr_scanned;
1224 if (zone->all_unreclaimable)
1225 continue;
1226 if (nr_slab == 0 && zone->pages_scanned >=
1227 (zone_page_state(zone, NR_ACTIVE)
1228 + zone_page_state(zone, NR_INACTIVE)) * 6)
1229 zone->all_unreclaimable = 1;
1231 * If we've done a decent amount of scanning and
1232 * the reclaim ratio is low, start doing writepage
1233 * even in laptop mode
1235 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1236 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1237 sc.may_writepage = 1;
1239 if (all_zones_ok)
1240 break; /* kswapd: all done */
1242 * OK, kswapd is getting into trouble. Take a nap, then take
1243 * another pass across the zones.
1245 if (total_scanned && priority < DEF_PRIORITY - 2)
1246 congestion_wait(WRITE, HZ/10);
1249 * We do this so kswapd doesn't build up large priorities for
1250 * example when it is freeing in parallel with allocators. It
1251 * matches the direct reclaim path behaviour in terms of impact
1252 * on zone->*_priority.
1254 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1255 break;
1257 out:
1259 * Note within each zone the priority level at which this zone was
1260 * brought into a happy state. So that the next thread which scans this
1261 * zone will start out at that priority level.
1263 for (i = 0; i < pgdat->nr_zones; i++) {
1264 struct zone *zone = pgdat->node_zones + i;
1266 zone->prev_priority = temp_priority[i];
1268 if (!all_zones_ok) {
1269 cond_resched();
1271 try_to_freeze();
1273 goto loop_again;
1276 return nr_reclaimed;
1280 * The background pageout daemon, started as a kernel thread
1281 * from the init process.
1283 * This basically trickles out pages so that we have _some_
1284 * free memory available even if there is no other activity
1285 * that frees anything up. This is needed for things like routing
1286 * etc, where we otherwise might have all activity going on in
1287 * asynchronous contexts that cannot page things out.
1289 * If there are applications that are active memory-allocators
1290 * (most normal use), this basically shouldn't matter.
1292 static int kswapd(void *p)
1294 unsigned long order;
1295 pg_data_t *pgdat = (pg_data_t*)p;
1296 struct task_struct *tsk = current;
1297 DEFINE_WAIT(wait);
1298 struct reclaim_state reclaim_state = {
1299 .reclaimed_slab = 0,
1301 cpumask_t cpumask;
1303 cpumask = node_to_cpumask(pgdat->node_id);
1304 if (!cpus_empty(cpumask))
1305 set_cpus_allowed(tsk, cpumask);
1306 current->reclaim_state = &reclaim_state;
1309 * Tell the memory management that we're a "memory allocator",
1310 * and that if we need more memory we should get access to it
1311 * regardless (see "__alloc_pages()"). "kswapd" should
1312 * never get caught in the normal page freeing logic.
1314 * (Kswapd normally doesn't need memory anyway, but sometimes
1315 * you need a small amount of memory in order to be able to
1316 * page out something else, and this flag essentially protects
1317 * us from recursively trying to free more memory as we're
1318 * trying to free the first piece of memory in the first place).
1320 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1322 order = 0;
1323 for ( ; ; ) {
1324 unsigned long new_order;
1326 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1327 new_order = pgdat->kswapd_max_order;
1328 pgdat->kswapd_max_order = 0;
1329 if (order < new_order) {
1331 * Don't sleep if someone wants a larger 'order'
1332 * allocation
1334 order = new_order;
1335 } else {
1336 if (!freezing(current))
1337 schedule();
1339 order = pgdat->kswapd_max_order;
1341 finish_wait(&pgdat->kswapd_wait, &wait);
1343 if (!try_to_freeze()) {
1344 /* We can speed up thawing tasks if we don't call
1345 * balance_pgdat after returning from the refrigerator
1347 balance_pgdat(pgdat, order);
1350 return 0;
1354 * A zone is low on free memory, so wake its kswapd task to service it.
1356 void wakeup_kswapd(struct zone *zone, int order)
1358 pg_data_t *pgdat;
1360 if (!populated_zone(zone))
1361 return;
1363 pgdat = zone->zone_pgdat;
1364 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1365 return;
1366 if (pgdat->kswapd_max_order < order)
1367 pgdat->kswapd_max_order = order;
1368 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1369 return;
1370 if (!waitqueue_active(&pgdat->kswapd_wait))
1371 return;
1372 wake_up_interruptible(&pgdat->kswapd_wait);
1375 #ifdef CONFIG_PM
1377 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1378 * from LRU lists system-wide, for given pass and priority, and returns the
1379 * number of reclaimed pages
1381 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1383 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1384 int pass, struct scan_control *sc)
1386 struct zone *zone;
1387 unsigned long nr_to_scan, ret = 0;
1389 for_each_zone(zone) {
1391 if (!populated_zone(zone))
1392 continue;
1394 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1395 continue;
1397 /* For pass = 0 we don't shrink the active list */
1398 if (pass > 0) {
1399 zone->nr_scan_active +=
1400 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1401 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1402 zone->nr_scan_active = 0;
1403 nr_to_scan = min(nr_pages,
1404 zone_page_state(zone, NR_ACTIVE));
1405 shrink_active_list(nr_to_scan, zone, sc, prio);
1409 zone->nr_scan_inactive +=
1410 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1411 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1412 zone->nr_scan_inactive = 0;
1413 nr_to_scan = min(nr_pages,
1414 zone_page_state(zone, NR_INACTIVE));
1415 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1416 if (ret >= nr_pages)
1417 return ret;
1421 return ret;
1424 static unsigned long count_lru_pages(void)
1426 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1430 * Try to free `nr_pages' of memory, system-wide, and return the number of
1431 * freed pages.
1433 * Rather than trying to age LRUs the aim is to preserve the overall
1434 * LRU order by reclaiming preferentially
1435 * inactive > active > active referenced > active mapped
1437 unsigned long shrink_all_memory(unsigned long nr_pages)
1439 unsigned long lru_pages, nr_slab;
1440 unsigned long ret = 0;
1441 int pass;
1442 struct reclaim_state reclaim_state;
1443 struct scan_control sc = {
1444 .gfp_mask = GFP_KERNEL,
1445 .may_swap = 0,
1446 .swap_cluster_max = nr_pages,
1447 .may_writepage = 1,
1448 .swappiness = vm_swappiness,
1451 current->reclaim_state = &reclaim_state;
1453 lru_pages = count_lru_pages();
1454 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1455 /* If slab caches are huge, it's better to hit them first */
1456 while (nr_slab >= lru_pages) {
1457 reclaim_state.reclaimed_slab = 0;
1458 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1459 if (!reclaim_state.reclaimed_slab)
1460 break;
1462 ret += reclaim_state.reclaimed_slab;
1463 if (ret >= nr_pages)
1464 goto out;
1466 nr_slab -= reclaim_state.reclaimed_slab;
1470 * We try to shrink LRUs in 5 passes:
1471 * 0 = Reclaim from inactive_list only
1472 * 1 = Reclaim from active list but don't reclaim mapped
1473 * 2 = 2nd pass of type 1
1474 * 3 = Reclaim mapped (normal reclaim)
1475 * 4 = 2nd pass of type 3
1477 for (pass = 0; pass < 5; pass++) {
1478 int prio;
1480 /* Force reclaiming mapped pages in the passes #3 and #4 */
1481 if (pass > 2) {
1482 sc.may_swap = 1;
1483 sc.swappiness = 100;
1486 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1487 unsigned long nr_to_scan = nr_pages - ret;
1489 sc.nr_scanned = 0;
1490 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1491 if (ret >= nr_pages)
1492 goto out;
1494 reclaim_state.reclaimed_slab = 0;
1495 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1496 count_lru_pages());
1497 ret += reclaim_state.reclaimed_slab;
1498 if (ret >= nr_pages)
1499 goto out;
1501 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1502 congestion_wait(WRITE, HZ / 10);
1507 * If ret = 0, we could not shrink LRUs, but there may be something
1508 * in slab caches
1510 if (!ret) {
1511 do {
1512 reclaim_state.reclaimed_slab = 0;
1513 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1514 ret += reclaim_state.reclaimed_slab;
1515 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1518 out:
1519 current->reclaim_state = NULL;
1521 return ret;
1523 #endif
1525 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1526 not required for correctness. So if the last cpu in a node goes
1527 away, we get changed to run anywhere: as the first one comes back,
1528 restore their cpu bindings. */
1529 static int __devinit cpu_callback(struct notifier_block *nfb,
1530 unsigned long action, void *hcpu)
1532 pg_data_t *pgdat;
1533 cpumask_t mask;
1535 if (action == CPU_ONLINE) {
1536 for_each_online_pgdat(pgdat) {
1537 mask = node_to_cpumask(pgdat->node_id);
1538 if (any_online_cpu(mask) != NR_CPUS)
1539 /* One of our CPUs online: restore mask */
1540 set_cpus_allowed(pgdat->kswapd, mask);
1543 return NOTIFY_OK;
1547 * This kswapd start function will be called by init and node-hot-add.
1548 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1550 int kswapd_run(int nid)
1552 pg_data_t *pgdat = NODE_DATA(nid);
1553 int ret = 0;
1555 if (pgdat->kswapd)
1556 return 0;
1558 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1559 if (IS_ERR(pgdat->kswapd)) {
1560 /* failure at boot is fatal */
1561 BUG_ON(system_state == SYSTEM_BOOTING);
1562 printk("Failed to start kswapd on node %d\n",nid);
1563 ret = -1;
1565 return ret;
1568 static int __init kswapd_init(void)
1570 int nid;
1572 swap_setup();
1573 for_each_online_node(nid)
1574 kswapd_run(nid);
1575 hotcpu_notifier(cpu_callback, 0);
1576 return 0;
1579 module_init(kswapd_init)
1581 #ifdef CONFIG_NUMA
1583 * Zone reclaim mode
1585 * If non-zero call zone_reclaim when the number of free pages falls below
1586 * the watermarks.
1588 int zone_reclaim_mode __read_mostly;
1590 #define RECLAIM_OFF 0
1591 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1592 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1593 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1596 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1597 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1598 * a zone.
1600 #define ZONE_RECLAIM_PRIORITY 4
1603 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1604 * occur.
1606 int sysctl_min_unmapped_ratio = 1;
1609 * If the number of slab pages in a zone grows beyond this percentage then
1610 * slab reclaim needs to occur.
1612 int sysctl_min_slab_ratio = 5;
1615 * Try to free up some pages from this zone through reclaim.
1617 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1619 /* Minimum pages needed in order to stay on node */
1620 const unsigned long nr_pages = 1 << order;
1621 struct task_struct *p = current;
1622 struct reclaim_state reclaim_state;
1623 int priority;
1624 unsigned long nr_reclaimed = 0;
1625 struct scan_control sc = {
1626 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1627 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1628 .swap_cluster_max = max_t(unsigned long, nr_pages,
1629 SWAP_CLUSTER_MAX),
1630 .gfp_mask = gfp_mask,
1631 .swappiness = vm_swappiness,
1633 unsigned long slab_reclaimable;
1635 disable_swap_token();
1636 cond_resched();
1638 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1639 * and we also need to be able to write out pages for RECLAIM_WRITE
1640 * and RECLAIM_SWAP.
1642 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1643 reclaim_state.reclaimed_slab = 0;
1644 p->reclaim_state = &reclaim_state;
1646 if (zone_page_state(zone, NR_FILE_PAGES) -
1647 zone_page_state(zone, NR_FILE_MAPPED) >
1648 zone->min_unmapped_pages) {
1650 * Free memory by calling shrink zone with increasing
1651 * priorities until we have enough memory freed.
1653 priority = ZONE_RECLAIM_PRIORITY;
1654 do {
1655 note_zone_scanning_priority(zone, priority);
1656 nr_reclaimed += shrink_zone(priority, zone, &sc);
1657 priority--;
1658 } while (priority >= 0 && nr_reclaimed < nr_pages);
1661 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1662 if (slab_reclaimable > zone->min_slab_pages) {
1664 * shrink_slab() does not currently allow us to determine how
1665 * many pages were freed in this zone. So we take the current
1666 * number of slab pages and shake the slab until it is reduced
1667 * by the same nr_pages that we used for reclaiming unmapped
1668 * pages.
1670 * Note that shrink_slab will free memory on all zones and may
1671 * take a long time.
1673 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1674 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1675 slab_reclaimable - nr_pages)
1679 * Update nr_reclaimed by the number of slab pages we
1680 * reclaimed from this zone.
1682 nr_reclaimed += slab_reclaimable -
1683 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1686 p->reclaim_state = NULL;
1687 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1688 return nr_reclaimed >= nr_pages;
1691 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1693 cpumask_t mask;
1694 int node_id;
1697 * Zone reclaim reclaims unmapped file backed pages and
1698 * slab pages if we are over the defined limits.
1700 * A small portion of unmapped file backed pages is needed for
1701 * file I/O otherwise pages read by file I/O will be immediately
1702 * thrown out if the zone is overallocated. So we do not reclaim
1703 * if less than a specified percentage of the zone is used by
1704 * unmapped file backed pages.
1706 if (zone_page_state(zone, NR_FILE_PAGES) -
1707 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1708 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1709 <= zone->min_slab_pages)
1710 return 0;
1713 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1714 * not have reclaimable pages and if we should not delay the allocation
1715 * then do not scan.
1717 if (!(gfp_mask & __GFP_WAIT) ||
1718 zone->all_unreclaimable ||
1719 atomic_read(&zone->reclaim_in_progress) > 0 ||
1720 (current->flags & PF_MEMALLOC))
1721 return 0;
1724 * Only run zone reclaim on the local zone or on zones that do not
1725 * have associated processors. This will favor the local processor
1726 * over remote processors and spread off node memory allocations
1727 * as wide as possible.
1729 node_id = zone_to_nid(zone);
1730 mask = node_to_cpumask(node_id);
1731 if (!cpus_empty(mask) && node_id != numa_node_id())
1732 return 0;
1733 return __zone_reclaim(zone, gfp_mask, order);
1735 #endif