omap: Split OMAP2_IO_ADDRESS to L3 and L4
[linux-ginger.git] / include / linux / perf_event.h
blob2e6d95f97419e489632a7f65ba4d4890851bbaeb
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
35 PERF_TYPE_MAX, /* non-ABI */
39 * Generalized performance event event_id types, used by the
40 * attr.event_id parameter of the sys_perf_event_open()
41 * syscall:
43 enum perf_hw_id {
45 * Common hardware events, generalized by the kernel:
47 PERF_COUNT_HW_CPU_CYCLES = 0,
48 PERF_COUNT_HW_INSTRUCTIONS = 1,
49 PERF_COUNT_HW_CACHE_REFERENCES = 2,
50 PERF_COUNT_HW_CACHE_MISSES = 3,
51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
52 PERF_COUNT_HW_BRANCH_MISSES = 5,
53 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_MAX, /* non-ABI */
59 * Generalized hardware cache events:
61 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62 * { read, write, prefetch } x
63 * { accesses, misses }
65 enum perf_hw_cache_id {
66 PERF_COUNT_HW_CACHE_L1D = 0,
67 PERF_COUNT_HW_CACHE_L1I = 1,
68 PERF_COUNT_HW_CACHE_LL = 2,
69 PERF_COUNT_HW_CACHE_DTLB = 3,
70 PERF_COUNT_HW_CACHE_ITLB = 4,
71 PERF_COUNT_HW_CACHE_BPU = 5,
73 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
76 enum perf_hw_cache_op_id {
77 PERF_COUNT_HW_CACHE_OP_READ = 0,
78 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
79 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
84 enum perf_hw_cache_op_result_id {
85 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
86 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
92 * Special "software" events provided by the kernel, even if the hardware
93 * does not support performance events. These events measure various
94 * physical and sw events of the kernel (and allow the profiling of them as
95 * well):
97 enum perf_sw_ids {
98 PERF_COUNT_SW_CPU_CLOCK = 0,
99 PERF_COUNT_SW_TASK_CLOCK = 1,
100 PERF_COUNT_SW_PAGE_FAULTS = 2,
101 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
102 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
103 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
104 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_MAX, /* non-ABI */
110 * Bits that can be set in attr.sample_type to request information
111 * in the overflow packets.
113 enum perf_event_sample_format {
114 PERF_SAMPLE_IP = 1U << 0,
115 PERF_SAMPLE_TID = 1U << 1,
116 PERF_SAMPLE_TIME = 1U << 2,
117 PERF_SAMPLE_ADDR = 1U << 3,
118 PERF_SAMPLE_READ = 1U << 4,
119 PERF_SAMPLE_CALLCHAIN = 1U << 5,
120 PERF_SAMPLE_ID = 1U << 6,
121 PERF_SAMPLE_CPU = 1U << 7,
122 PERF_SAMPLE_PERIOD = 1U << 8,
123 PERF_SAMPLE_STREAM_ID = 1U << 9,
124 PERF_SAMPLE_RAW = 1U << 10,
126 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130 * The format of the data returned by read() on a perf event fd,
131 * as specified by attr.read_format:
133 * struct read_format {
134 * { u64 value;
135 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
136 * { u64 time_running; } && PERF_FORMAT_RUNNING
137 * { u64 id; } && PERF_FORMAT_ID
138 * } && !PERF_FORMAT_GROUP
140 * { u64 nr;
141 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
142 * { u64 time_running; } && PERF_FORMAT_RUNNING
143 * { u64 value;
144 * { u64 id; } && PERF_FORMAT_ID
145 * } cntr[nr];
146 * } && PERF_FORMAT_GROUP
147 * };
149 enum perf_event_read_format {
150 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
151 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
152 PERF_FORMAT_ID = 1U << 2,
153 PERF_FORMAT_GROUP = 1U << 3,
155 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
158 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
161 * Hardware event_id to monitor via a performance monitoring event:
163 struct perf_event_attr {
166 * Major type: hardware/software/tracepoint/etc.
168 __u32 type;
171 * Size of the attr structure, for fwd/bwd compat.
173 __u32 size;
176 * Type specific configuration information.
178 __u64 config;
180 union {
181 __u64 sample_period;
182 __u64 sample_freq;
185 __u64 sample_type;
186 __u64 read_format;
188 __u64 disabled : 1, /* off by default */
189 inherit : 1, /* children inherit it */
190 pinned : 1, /* must always be on PMU */
191 exclusive : 1, /* only group on PMU */
192 exclude_user : 1, /* don't count user */
193 exclude_kernel : 1, /* ditto kernel */
194 exclude_hv : 1, /* ditto hypervisor */
195 exclude_idle : 1, /* don't count when idle */
196 mmap : 1, /* include mmap data */
197 comm : 1, /* include comm data */
198 freq : 1, /* use freq, not period */
199 inherit_stat : 1, /* per task counts */
200 enable_on_exec : 1, /* next exec enables */
201 task : 1, /* trace fork/exit */
202 watermark : 1, /* wakeup_watermark */
204 __reserved_1 : 49;
206 union {
207 __u32 wakeup_events; /* wakeup every n events */
208 __u32 wakeup_watermark; /* bytes before wakeup */
210 __u32 __reserved_2;
212 __u64 __reserved_3;
216 * Ioctls that can be done on a perf event fd:
218 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
219 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
220 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
221 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
222 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, u64)
223 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
225 enum perf_event_ioc_flags {
226 PERF_IOC_FLAG_GROUP = 1U << 0,
230 * Structure of the page that can be mapped via mmap
232 struct perf_event_mmap_page {
233 __u32 version; /* version number of this structure */
234 __u32 compat_version; /* lowest version this is compat with */
237 * Bits needed to read the hw events in user-space.
239 * u32 seq;
240 * s64 count;
242 * do {
243 * seq = pc->lock;
245 * barrier()
246 * if (pc->index) {
247 * count = pmc_read(pc->index - 1);
248 * count += pc->offset;
249 * } else
250 * goto regular_read;
252 * barrier();
253 * } while (pc->lock != seq);
255 * NOTE: for obvious reason this only works on self-monitoring
256 * processes.
258 __u32 lock; /* seqlock for synchronization */
259 __u32 index; /* hardware event identifier */
260 __s64 offset; /* add to hardware event value */
261 __u64 time_enabled; /* time event active */
262 __u64 time_running; /* time event on cpu */
265 * Hole for extension of the self monitor capabilities
268 __u64 __reserved[123]; /* align to 1k */
271 * Control data for the mmap() data buffer.
273 * User-space reading the @data_head value should issue an rmb(), on
274 * SMP capable platforms, after reading this value -- see
275 * perf_event_wakeup().
277 * When the mapping is PROT_WRITE the @data_tail value should be
278 * written by userspace to reflect the last read data. In this case
279 * the kernel will not over-write unread data.
281 __u64 data_head; /* head in the data section */
282 __u64 data_tail; /* user-space written tail */
285 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
286 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
287 #define PERF_RECORD_MISC_KERNEL (1 << 0)
288 #define PERF_RECORD_MISC_USER (2 << 0)
289 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
291 struct perf_event_header {
292 __u32 type;
293 __u16 misc;
294 __u16 size;
297 enum perf_event_type {
300 * The MMAP events record the PROT_EXEC mappings so that we can
301 * correlate userspace IPs to code. They have the following structure:
303 * struct {
304 * struct perf_event_header header;
306 * u32 pid, tid;
307 * u64 addr;
308 * u64 len;
309 * u64 pgoff;
310 * char filename[];
311 * };
313 PERF_RECORD_MMAP = 1,
316 * struct {
317 * struct perf_event_header header;
318 * u64 id;
319 * u64 lost;
320 * };
322 PERF_RECORD_LOST = 2,
325 * struct {
326 * struct perf_event_header header;
328 * u32 pid, tid;
329 * char comm[];
330 * };
332 PERF_RECORD_COMM = 3,
335 * struct {
336 * struct perf_event_header header;
337 * u32 pid, ppid;
338 * u32 tid, ptid;
339 * u64 time;
340 * };
342 PERF_RECORD_EXIT = 4,
345 * struct {
346 * struct perf_event_header header;
347 * u64 time;
348 * u64 id;
349 * u64 stream_id;
350 * };
352 PERF_RECORD_THROTTLE = 5,
353 PERF_RECORD_UNTHROTTLE = 6,
356 * struct {
357 * struct perf_event_header header;
358 * u32 pid, ppid;
359 * u32 tid, ptid;
360 * u64 time;
361 * };
363 PERF_RECORD_FORK = 7,
366 * struct {
367 * struct perf_event_header header;
368 * u32 pid, tid;
370 * struct read_format values;
371 * };
373 PERF_RECORD_READ = 8,
376 * struct {
377 * struct perf_event_header header;
379 * { u64 ip; } && PERF_SAMPLE_IP
380 * { u32 pid, tid; } && PERF_SAMPLE_TID
381 * { u64 time; } && PERF_SAMPLE_TIME
382 * { u64 addr; } && PERF_SAMPLE_ADDR
383 * { u64 id; } && PERF_SAMPLE_ID
384 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
385 * { u32 cpu, res; } && PERF_SAMPLE_CPU
386 * { u64 period; } && PERF_SAMPLE_PERIOD
388 * { struct read_format values; } && PERF_SAMPLE_READ
390 * { u64 nr,
391 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
394 * # The RAW record below is opaque data wrt the ABI
396 * # That is, the ABI doesn't make any promises wrt to
397 * # the stability of its content, it may vary depending
398 * # on event, hardware, kernel version and phase of
399 * # the moon.
401 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
404 * { u32 size;
405 * char data[size];}&& PERF_SAMPLE_RAW
406 * };
408 PERF_RECORD_SAMPLE = 9,
410 PERF_RECORD_MAX, /* non-ABI */
413 enum perf_callchain_context {
414 PERF_CONTEXT_HV = (__u64)-32,
415 PERF_CONTEXT_KERNEL = (__u64)-128,
416 PERF_CONTEXT_USER = (__u64)-512,
418 PERF_CONTEXT_GUEST = (__u64)-2048,
419 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
420 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
422 PERF_CONTEXT_MAX = (__u64)-4095,
425 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
426 #define PERF_FLAG_FD_OUTPUT (1U << 1)
428 #ifdef __KERNEL__
430 * Kernel-internal data types and definitions:
433 #ifdef CONFIG_PERF_EVENTS
434 # include <asm/perf_event.h>
435 #endif
437 #include <linux/list.h>
438 #include <linux/mutex.h>
439 #include <linux/rculist.h>
440 #include <linux/rcupdate.h>
441 #include <linux/spinlock.h>
442 #include <linux/hrtimer.h>
443 #include <linux/fs.h>
444 #include <linux/pid_namespace.h>
445 #include <linux/workqueue.h>
446 #include <asm/atomic.h>
448 #define PERF_MAX_STACK_DEPTH 255
450 struct perf_callchain_entry {
451 __u64 nr;
452 __u64 ip[PERF_MAX_STACK_DEPTH];
455 struct perf_raw_record {
456 u32 size;
457 void *data;
460 struct task_struct;
463 * struct hw_perf_event - performance event hardware details:
465 struct hw_perf_event {
466 #ifdef CONFIG_PERF_EVENTS
467 union {
468 struct { /* hardware */
469 u64 config;
470 unsigned long config_base;
471 unsigned long event_base;
472 int idx;
474 union { /* software */
475 atomic64_t count;
476 struct hrtimer hrtimer;
479 atomic64_t prev_count;
480 u64 sample_period;
481 u64 last_period;
482 atomic64_t period_left;
483 u64 interrupts;
485 u64 freq_count;
486 u64 freq_interrupts;
487 u64 freq_stamp;
488 #endif
491 struct perf_event;
494 * struct pmu - generic performance monitoring unit
496 struct pmu {
497 int (*enable) (struct perf_event *event);
498 void (*disable) (struct perf_event *event);
499 void (*read) (struct perf_event *event);
500 void (*unthrottle) (struct perf_event *event);
504 * enum perf_event_active_state - the states of a event
506 enum perf_event_active_state {
507 PERF_EVENT_STATE_ERROR = -2,
508 PERF_EVENT_STATE_OFF = -1,
509 PERF_EVENT_STATE_INACTIVE = 0,
510 PERF_EVENT_STATE_ACTIVE = 1,
513 struct file;
515 struct perf_mmap_data {
516 struct rcu_head rcu_head;
517 #ifdef CONFIG_PERF_USE_VMALLOC
518 struct work_struct work;
519 #endif
520 int data_order;
521 int nr_pages; /* nr of data pages */
522 int writable; /* are we writable */
523 int nr_locked; /* nr pages mlocked */
525 atomic_t poll; /* POLL_ for wakeups */
526 atomic_t events; /* event_id limit */
528 atomic_long_t head; /* write position */
529 atomic_long_t done_head; /* completed head */
531 atomic_t lock; /* concurrent writes */
532 atomic_t wakeup; /* needs a wakeup */
533 atomic_t lost; /* nr records lost */
535 long watermark; /* wakeup watermark */
537 struct perf_event_mmap_page *user_page;
538 void *data_pages[0];
541 struct perf_pending_entry {
542 struct perf_pending_entry *next;
543 void (*func)(struct perf_pending_entry *);
547 * struct perf_event - performance event kernel representation:
549 struct perf_event {
550 #ifdef CONFIG_PERF_EVENTS
551 struct list_head group_entry;
552 struct list_head event_entry;
553 struct list_head sibling_list;
554 int nr_siblings;
555 struct perf_event *group_leader;
556 struct perf_event *output;
557 const struct pmu *pmu;
559 enum perf_event_active_state state;
560 atomic64_t count;
563 * These are the total time in nanoseconds that the event
564 * has been enabled (i.e. eligible to run, and the task has
565 * been scheduled in, if this is a per-task event)
566 * and running (scheduled onto the CPU), respectively.
568 * They are computed from tstamp_enabled, tstamp_running and
569 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
571 u64 total_time_enabled;
572 u64 total_time_running;
575 * These are timestamps used for computing total_time_enabled
576 * and total_time_running when the event is in INACTIVE or
577 * ACTIVE state, measured in nanoseconds from an arbitrary point
578 * in time.
579 * tstamp_enabled: the notional time when the event was enabled
580 * tstamp_running: the notional time when the event was scheduled on
581 * tstamp_stopped: in INACTIVE state, the notional time when the
582 * event was scheduled off.
584 u64 tstamp_enabled;
585 u64 tstamp_running;
586 u64 tstamp_stopped;
588 struct perf_event_attr attr;
589 struct hw_perf_event hw;
591 struct perf_event_context *ctx;
592 struct file *filp;
595 * These accumulate total time (in nanoseconds) that children
596 * events have been enabled and running, respectively.
598 atomic64_t child_total_time_enabled;
599 atomic64_t child_total_time_running;
602 * Protect attach/detach and child_list:
604 struct mutex child_mutex;
605 struct list_head child_list;
606 struct perf_event *parent;
608 int oncpu;
609 int cpu;
611 struct list_head owner_entry;
612 struct task_struct *owner;
614 /* mmap bits */
615 struct mutex mmap_mutex;
616 atomic_t mmap_count;
617 struct perf_mmap_data *data;
619 /* poll related */
620 wait_queue_head_t waitq;
621 struct fasync_struct *fasync;
623 /* delayed work for NMIs and such */
624 int pending_wakeup;
625 int pending_kill;
626 int pending_disable;
627 struct perf_pending_entry pending;
629 atomic_t event_limit;
631 void (*destroy)(struct perf_event *);
632 struct rcu_head rcu_head;
634 struct pid_namespace *ns;
635 u64 id;
636 #endif
640 * struct perf_event_context - event context structure
642 * Used as a container for task events and CPU events as well:
644 struct perf_event_context {
646 * Protect the states of the events in the list,
647 * nr_active, and the list:
649 spinlock_t lock;
651 * Protect the list of events. Locking either mutex or lock
652 * is sufficient to ensure the list doesn't change; to change
653 * the list you need to lock both the mutex and the spinlock.
655 struct mutex mutex;
657 struct list_head group_list;
658 struct list_head event_list;
659 int nr_events;
660 int nr_active;
661 int is_active;
662 int nr_stat;
663 atomic_t refcount;
664 struct task_struct *task;
667 * Context clock, runs when context enabled.
669 u64 time;
670 u64 timestamp;
673 * These fields let us detect when two contexts have both
674 * been cloned (inherited) from a common ancestor.
676 struct perf_event_context *parent_ctx;
677 u64 parent_gen;
678 u64 generation;
679 int pin_count;
680 struct rcu_head rcu_head;
684 * struct perf_event_cpu_context - per cpu event context structure
686 struct perf_cpu_context {
687 struct perf_event_context ctx;
688 struct perf_event_context *task_ctx;
689 int active_oncpu;
690 int max_pertask;
691 int exclusive;
694 * Recursion avoidance:
696 * task, softirq, irq, nmi context
698 int recursion[4];
701 struct perf_output_handle {
702 struct perf_event *event;
703 struct perf_mmap_data *data;
704 unsigned long head;
705 unsigned long offset;
706 int nmi;
707 int sample;
708 int locked;
709 unsigned long flags;
712 #ifdef CONFIG_PERF_EVENTS
715 * Set by architecture code:
717 extern int perf_max_events;
719 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
721 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
722 extern void perf_event_task_sched_out(struct task_struct *task,
723 struct task_struct *next, int cpu);
724 extern void perf_event_task_tick(struct task_struct *task, int cpu);
725 extern int perf_event_init_task(struct task_struct *child);
726 extern void perf_event_exit_task(struct task_struct *child);
727 extern void perf_event_free_task(struct task_struct *task);
728 extern void set_perf_event_pending(void);
729 extern void perf_event_do_pending(void);
730 extern void perf_event_print_debug(void);
731 extern void __perf_disable(void);
732 extern bool __perf_enable(void);
733 extern void perf_disable(void);
734 extern void perf_enable(void);
735 extern int perf_event_task_disable(void);
736 extern int perf_event_task_enable(void);
737 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
738 struct perf_cpu_context *cpuctx,
739 struct perf_event_context *ctx, int cpu);
740 extern void perf_event_update_userpage(struct perf_event *event);
742 struct perf_sample_data {
743 u64 type;
745 u64 ip;
746 struct {
747 u32 pid;
748 u32 tid;
749 } tid_entry;
750 u64 time;
751 u64 addr;
752 u64 id;
753 u64 stream_id;
754 struct {
755 u32 cpu;
756 u32 reserved;
757 } cpu_entry;
758 u64 period;
759 struct perf_callchain_entry *callchain;
760 struct perf_raw_record *raw;
763 extern void perf_output_sample(struct perf_output_handle *handle,
764 struct perf_event_header *header,
765 struct perf_sample_data *data,
766 struct perf_event *event);
767 extern void perf_prepare_sample(struct perf_event_header *header,
768 struct perf_sample_data *data,
769 struct perf_event *event,
770 struct pt_regs *regs);
772 extern int perf_event_overflow(struct perf_event *event, int nmi,
773 struct perf_sample_data *data,
774 struct pt_regs *regs);
777 * Return 1 for a software event, 0 for a hardware event
779 static inline int is_software_event(struct perf_event *event)
781 return (event->attr.type != PERF_TYPE_RAW) &&
782 (event->attr.type != PERF_TYPE_HARDWARE) &&
783 (event->attr.type != PERF_TYPE_HW_CACHE);
786 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
788 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
790 static inline void
791 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
793 if (atomic_read(&perf_swevent_enabled[event_id]))
794 __perf_sw_event(event_id, nr, nmi, regs, addr);
797 extern void __perf_event_mmap(struct vm_area_struct *vma);
799 static inline void perf_event_mmap(struct vm_area_struct *vma)
801 if (vma->vm_flags & VM_EXEC)
802 __perf_event_mmap(vma);
805 extern void perf_event_comm(struct task_struct *tsk);
806 extern void perf_event_fork(struct task_struct *tsk);
808 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
810 extern int sysctl_perf_event_paranoid;
811 extern int sysctl_perf_event_mlock;
812 extern int sysctl_perf_event_sample_rate;
814 extern void perf_event_init(void);
815 extern void perf_tp_event(int event_id, u64 addr, u64 count,
816 void *record, int entry_size);
818 #ifndef perf_misc_flags
819 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
820 PERF_RECORD_MISC_KERNEL)
821 #define perf_instruction_pointer(regs) instruction_pointer(regs)
822 #endif
824 extern int perf_output_begin(struct perf_output_handle *handle,
825 struct perf_event *event, unsigned int size,
826 int nmi, int sample);
827 extern void perf_output_end(struct perf_output_handle *handle);
828 extern void perf_output_copy(struct perf_output_handle *handle,
829 const void *buf, unsigned int len);
830 #else
831 static inline void
832 perf_event_task_sched_in(struct task_struct *task, int cpu) { }
833 static inline void
834 perf_event_task_sched_out(struct task_struct *task,
835 struct task_struct *next, int cpu) { }
836 static inline void
837 perf_event_task_tick(struct task_struct *task, int cpu) { }
838 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
839 static inline void perf_event_exit_task(struct task_struct *child) { }
840 static inline void perf_event_free_task(struct task_struct *task) { }
841 static inline void perf_event_do_pending(void) { }
842 static inline void perf_event_print_debug(void) { }
843 static inline void perf_disable(void) { }
844 static inline void perf_enable(void) { }
845 static inline int perf_event_task_disable(void) { return -EINVAL; }
846 static inline int perf_event_task_enable(void) { return -EINVAL; }
848 static inline void
849 perf_sw_event(u32 event_id, u64 nr, int nmi,
850 struct pt_regs *regs, u64 addr) { }
852 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
853 static inline void perf_event_comm(struct task_struct *tsk) { }
854 static inline void perf_event_fork(struct task_struct *tsk) { }
855 static inline void perf_event_init(void) { }
857 #endif
859 #define perf_output_put(handle, x) \
860 perf_output_copy((handle), &(x), sizeof(x))
862 #endif /* __KERNEL__ */
863 #endif /* _LINUX_PERF_EVENT_H */