powerpc/85xx: Add SMP support to MPC8572 DS
[linux-ginger.git] / block / blk-settings.c
blobafa55e14e27896837cb026ce706438520ea848aa
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
11 #include "blk.h"
13 unsigned long blk_max_low_pfn;
14 EXPORT_SYMBOL(blk_max_low_pfn);
16 unsigned long blk_max_pfn;
18 /**
19 * blk_queue_prep_rq - set a prepare_request function for queue
20 * @q: queue
21 * @pfn: prepare_request function
23 * It's possible for a queue to register a prepare_request callback which
24 * is invoked before the request is handed to the request_fn. The goal of
25 * the function is to prepare a request for I/O, it can be used to build a
26 * cdb from the request data for instance.
29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
31 q->prep_rq_fn = pfn;
33 EXPORT_SYMBOL(blk_queue_prep_rq);
35 /**
36 * blk_queue_set_discard - set a discard_sectors function for queue
37 * @q: queue
38 * @dfn: prepare_discard function
40 * It's possible for a queue to register a discard callback which is used
41 * to transform a discard request into the appropriate type for the
42 * hardware. If none is registered, then discard requests are failed
43 * with %EOPNOTSUPP.
46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
48 q->prepare_discard_fn = dfn;
50 EXPORT_SYMBOL(blk_queue_set_discard);
52 /**
53 * blk_queue_merge_bvec - set a merge_bvec function for queue
54 * @q: queue
55 * @mbfn: merge_bvec_fn
57 * Usually queues have static limitations on the max sectors or segments that
58 * we can put in a request. Stacking drivers may have some settings that
59 * are dynamic, and thus we have to query the queue whether it is ok to
60 * add a new bio_vec to a bio at a given offset or not. If the block device
61 * has such limitations, it needs to register a merge_bvec_fn to control
62 * the size of bio's sent to it. Note that a block device *must* allow a
63 * single page to be added to an empty bio. The block device driver may want
64 * to use the bio_split() function to deal with these bio's. By default
65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
66 * honored.
68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
70 q->merge_bvec_fn = mbfn;
72 EXPORT_SYMBOL(blk_queue_merge_bvec);
74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
76 q->softirq_done_fn = fn;
78 EXPORT_SYMBOL(blk_queue_softirq_done);
80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
82 q->rq_timeout = timeout;
84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
88 q->rq_timed_out_fn = fn;
90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
94 q->lld_busy_fn = fn;
96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
98 /**
99 * blk_queue_make_request - define an alternate make_request function for a device
100 * @q: the request queue for the device to be affected
101 * @mfn: the alternate make_request function
103 * Description:
104 * The normal way for &struct bios to be passed to a device
105 * driver is for them to be collected into requests on a request
106 * queue, and then to allow the device driver to select requests
107 * off that queue when it is ready. This works well for many block
108 * devices. However some block devices (typically virtual devices
109 * such as md or lvm) do not benefit from the processing on the
110 * request queue, and are served best by having the requests passed
111 * directly to them. This can be achieved by providing a function
112 * to blk_queue_make_request().
114 * Caveat:
115 * The driver that does this *must* be able to deal appropriately
116 * with buffers in "highmemory". This can be accomplished by either calling
117 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
118 * blk_queue_bounce() to create a buffer in normal memory.
120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
123 * set defaults
125 q->nr_requests = BLKDEV_MAX_RQ;
126 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
127 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
128 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
129 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
131 q->make_request_fn = mfn;
132 q->backing_dev_info.ra_pages =
133 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
134 q->backing_dev_info.state = 0;
135 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
136 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
137 blk_queue_hardsect_size(q, 512);
138 blk_queue_dma_alignment(q, 511);
139 blk_queue_congestion_threshold(q);
140 q->nr_batching = BLK_BATCH_REQ;
142 q->unplug_thresh = 4; /* hmm */
143 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
144 if (q->unplug_delay == 0)
145 q->unplug_delay = 1;
147 q->unplug_timer.function = blk_unplug_timeout;
148 q->unplug_timer.data = (unsigned long)q;
151 * by default assume old behaviour and bounce for any highmem page
153 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
155 EXPORT_SYMBOL(blk_queue_make_request);
158 * blk_queue_bounce_limit - set bounce buffer limit for queue
159 * @q: the request queue for the device
160 * @dma_addr: bus address limit
162 * Description:
163 * Different hardware can have different requirements as to what pages
164 * it can do I/O directly to. A low level driver can call
165 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
166 * buffers for doing I/O to pages residing above @dma_addr.
168 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
170 unsigned long b_pfn = dma_addr >> PAGE_SHIFT;
171 int dma = 0;
173 q->bounce_gfp = GFP_NOIO;
174 #if BITS_PER_LONG == 64
175 /* Assume anything <= 4GB can be handled by IOMMU.
176 Actually some IOMMUs can handle everything, but I don't
177 know of a way to test this here. */
178 if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
179 dma = 1;
180 q->bounce_pfn = max_low_pfn;
181 #else
182 if (b_pfn < blk_max_low_pfn)
183 dma = 1;
184 q->bounce_pfn = b_pfn;
185 #endif
186 if (dma) {
187 init_emergency_isa_pool();
188 q->bounce_gfp = GFP_NOIO | GFP_DMA;
189 q->bounce_pfn = b_pfn;
192 EXPORT_SYMBOL(blk_queue_bounce_limit);
195 * blk_queue_max_sectors - set max sectors for a request for this queue
196 * @q: the request queue for the device
197 * @max_sectors: max sectors in the usual 512b unit
199 * Description:
200 * Enables a low level driver to set an upper limit on the size of
201 * received requests.
203 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
205 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
206 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
207 printk(KERN_INFO "%s: set to minimum %d\n",
208 __func__, max_sectors);
211 if (BLK_DEF_MAX_SECTORS > max_sectors)
212 q->max_hw_sectors = q->max_sectors = max_sectors;
213 else {
214 q->max_sectors = BLK_DEF_MAX_SECTORS;
215 q->max_hw_sectors = max_sectors;
218 EXPORT_SYMBOL(blk_queue_max_sectors);
221 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
222 * @q: the request queue for the device
223 * @max_segments: max number of segments
225 * Description:
226 * Enables a low level driver to set an upper limit on the number of
227 * physical data segments in a request. This would be the largest sized
228 * scatter list the driver could handle.
230 void blk_queue_max_phys_segments(struct request_queue *q,
231 unsigned short max_segments)
233 if (!max_segments) {
234 max_segments = 1;
235 printk(KERN_INFO "%s: set to minimum %d\n",
236 __func__, max_segments);
239 q->max_phys_segments = max_segments;
241 EXPORT_SYMBOL(blk_queue_max_phys_segments);
244 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
245 * @q: the request queue for the device
246 * @max_segments: max number of segments
248 * Description:
249 * Enables a low level driver to set an upper limit on the number of
250 * hw data segments in a request. This would be the largest number of
251 * address/length pairs the host adapter can actually give at once
252 * to the device.
254 void blk_queue_max_hw_segments(struct request_queue *q,
255 unsigned short max_segments)
257 if (!max_segments) {
258 max_segments = 1;
259 printk(KERN_INFO "%s: set to minimum %d\n",
260 __func__, max_segments);
263 q->max_hw_segments = max_segments;
265 EXPORT_SYMBOL(blk_queue_max_hw_segments);
268 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
269 * @q: the request queue for the device
270 * @max_size: max size of segment in bytes
272 * Description:
273 * Enables a low level driver to set an upper limit on the size of a
274 * coalesced segment
276 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
278 if (max_size < PAGE_CACHE_SIZE) {
279 max_size = PAGE_CACHE_SIZE;
280 printk(KERN_INFO "%s: set to minimum %d\n",
281 __func__, max_size);
284 q->max_segment_size = max_size;
286 EXPORT_SYMBOL(blk_queue_max_segment_size);
289 * blk_queue_hardsect_size - set hardware sector size for the queue
290 * @q: the request queue for the device
291 * @size: the hardware sector size, in bytes
293 * Description:
294 * This should typically be set to the lowest possible sector size
295 * that the hardware can operate on (possible without reverting to
296 * even internal read-modify-write operations). Usually the default
297 * of 512 covers most hardware.
299 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
301 q->hardsect_size = size;
303 EXPORT_SYMBOL(blk_queue_hardsect_size);
306 * Returns the minimum that is _not_ zero, unless both are zero.
308 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
311 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
312 * @t: the stacking driver (top)
313 * @b: the underlying device (bottom)
315 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
317 /* zero is "infinity" */
318 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
319 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
320 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask);
322 t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments);
323 t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments);
324 t->max_segment_size = min(t->max_segment_size, b->max_segment_size);
325 t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
326 if (!t->queue_lock)
327 WARN_ON_ONCE(1);
328 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
329 unsigned long flags;
330 spin_lock_irqsave(t->queue_lock, flags);
331 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
332 spin_unlock_irqrestore(t->queue_lock, flags);
335 EXPORT_SYMBOL(blk_queue_stack_limits);
338 * blk_queue_dma_pad - set pad mask
339 * @q: the request queue for the device
340 * @mask: pad mask
342 * Set dma pad mask.
344 * Appending pad buffer to a request modifies the last entry of a
345 * scatter list such that it includes the pad buffer.
347 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
349 q->dma_pad_mask = mask;
351 EXPORT_SYMBOL(blk_queue_dma_pad);
354 * blk_queue_update_dma_pad - update pad mask
355 * @q: the request queue for the device
356 * @mask: pad mask
358 * Update dma pad mask.
360 * Appending pad buffer to a request modifies the last entry of a
361 * scatter list such that it includes the pad buffer.
363 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
365 if (mask > q->dma_pad_mask)
366 q->dma_pad_mask = mask;
368 EXPORT_SYMBOL(blk_queue_update_dma_pad);
371 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
372 * @q: the request queue for the device
373 * @dma_drain_needed: fn which returns non-zero if drain is necessary
374 * @buf: physically contiguous buffer
375 * @size: size of the buffer in bytes
377 * Some devices have excess DMA problems and can't simply discard (or
378 * zero fill) the unwanted piece of the transfer. They have to have a
379 * real area of memory to transfer it into. The use case for this is
380 * ATAPI devices in DMA mode. If the packet command causes a transfer
381 * bigger than the transfer size some HBAs will lock up if there
382 * aren't DMA elements to contain the excess transfer. What this API
383 * does is adjust the queue so that the buf is always appended
384 * silently to the scatterlist.
386 * Note: This routine adjusts max_hw_segments to make room for
387 * appending the drain buffer. If you call
388 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
389 * calling this routine, you must set the limit to one fewer than your
390 * device can support otherwise there won't be room for the drain
391 * buffer.
393 int blk_queue_dma_drain(struct request_queue *q,
394 dma_drain_needed_fn *dma_drain_needed,
395 void *buf, unsigned int size)
397 if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
398 return -EINVAL;
399 /* make room for appending the drain */
400 --q->max_hw_segments;
401 --q->max_phys_segments;
402 q->dma_drain_needed = dma_drain_needed;
403 q->dma_drain_buffer = buf;
404 q->dma_drain_size = size;
406 return 0;
408 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
411 * blk_queue_segment_boundary - set boundary rules for segment merging
412 * @q: the request queue for the device
413 * @mask: the memory boundary mask
415 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
417 if (mask < PAGE_CACHE_SIZE - 1) {
418 mask = PAGE_CACHE_SIZE - 1;
419 printk(KERN_INFO "%s: set to minimum %lx\n",
420 __func__, mask);
423 q->seg_boundary_mask = mask;
425 EXPORT_SYMBOL(blk_queue_segment_boundary);
428 * blk_queue_dma_alignment - set dma length and memory alignment
429 * @q: the request queue for the device
430 * @mask: alignment mask
432 * description:
433 * set required memory and length alignment for direct dma transactions.
434 * this is used when buiding direct io requests for the queue.
437 void blk_queue_dma_alignment(struct request_queue *q, int mask)
439 q->dma_alignment = mask;
441 EXPORT_SYMBOL(blk_queue_dma_alignment);
444 * blk_queue_update_dma_alignment - update dma length and memory alignment
445 * @q: the request queue for the device
446 * @mask: alignment mask
448 * description:
449 * update required memory and length alignment for direct dma transactions.
450 * If the requested alignment is larger than the current alignment, then
451 * the current queue alignment is updated to the new value, otherwise it
452 * is left alone. The design of this is to allow multiple objects
453 * (driver, device, transport etc) to set their respective
454 * alignments without having them interfere.
457 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
459 BUG_ON(mask > PAGE_SIZE);
461 if (mask > q->dma_alignment)
462 q->dma_alignment = mask;
464 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
466 static int __init blk_settings_init(void)
468 blk_max_low_pfn = max_low_pfn - 1;
469 blk_max_pfn = max_pfn - 1;
470 return 0;
472 subsys_initcall(blk_settings_init);