2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
14 * NVRAM support routines
18 * qla2x00_lock_nvram_access() -
22 qla2x00_lock_nvram_access(struct qla_hw_data
*ha
)
25 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
27 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
28 data
= RD_REG_WORD(®
->nvram
);
29 while (data
& NVR_BUSY
) {
31 data
= RD_REG_WORD(®
->nvram
);
35 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
36 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
38 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
39 while ((data
& BIT_0
) == 0) {
42 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
43 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
45 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
51 * qla2x00_unlock_nvram_access() -
55 qla2x00_unlock_nvram_access(struct qla_hw_data
*ha
)
57 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
59 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
60 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0);
61 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
66 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @data: Serial interface selector
71 qla2x00_nv_write(struct qla_hw_data
*ha
, uint16_t data
)
73 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
75 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
76 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
78 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_CLOCK
|
80 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
82 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
83 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
88 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
91 * @nv_cmd: NVRAM command
93 * Bit definitions for NVRAM command:
98 * Bit 15-0 = write data
100 * Returns the word read from nvram @addr.
103 qla2x00_nvram_request(struct qla_hw_data
*ha
, uint32_t nv_cmd
)
106 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
110 /* Send command to NVRAM. */
112 for (cnt
= 0; cnt
< 11; cnt
++) {
114 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
116 qla2x00_nv_write(ha
, 0);
120 /* Read data from NVRAM. */
121 for (cnt
= 0; cnt
< 16; cnt
++) {
122 WRT_REG_WORD(®
->nvram
, NVR_SELECT
| NVR_CLOCK
);
123 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
126 reg_data
= RD_REG_WORD(®
->nvram
);
127 if (reg_data
& NVR_DATA_IN
)
129 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
130 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
135 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
136 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
144 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145 * request routine to get the word from NVRAM.
147 * @addr: Address in NVRAM to read
149 * Returns the word read from nvram @addr.
152 qla2x00_get_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
)
158 nv_cmd
|= NV_READ_OP
;
159 data
= qla2x00_nvram_request(ha
, nv_cmd
);
165 * qla2x00_nv_deselect() - Deselect NVRAM operations.
169 qla2x00_nv_deselect(struct qla_hw_data
*ha
)
171 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
173 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
174 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
179 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @addr: Address in NVRAM to write
182 * @data: word to program
185 qla2x00_write_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
, uint16_t data
)
189 uint32_t nv_cmd
, wait_cnt
;
190 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
192 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
193 qla2x00_nv_write(ha
, 0);
194 qla2x00_nv_write(ha
, 0);
196 for (word
= 0; word
< 8; word
++)
197 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
199 qla2x00_nv_deselect(ha
);
202 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
205 for (count
= 0; count
< 27; count
++) {
207 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
209 qla2x00_nv_write(ha
, 0);
214 qla2x00_nv_deselect(ha
);
216 /* Wait for NVRAM to become ready */
217 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
218 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
219 wait_cnt
= NVR_WAIT_CNT
;
222 DEBUG9_10(qla_printk(KERN_WARNING
, ha
,
223 "NVRAM didn't go ready...\n"));
227 word
= RD_REG_WORD(®
->nvram
);
228 } while ((word
& NVR_DATA_IN
) == 0);
230 qla2x00_nv_deselect(ha
);
233 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
234 for (count
= 0; count
< 10; count
++)
235 qla2x00_nv_write(ha
, 0);
237 qla2x00_nv_deselect(ha
);
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data
*ha
, uint32_t addr
,
242 uint16_t data
, uint32_t tmo
)
247 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
251 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
252 qla2x00_nv_write(ha
, 0);
253 qla2x00_nv_write(ha
, 0);
255 for (word
= 0; word
< 8; word
++)
256 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
258 qla2x00_nv_deselect(ha
);
261 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
264 for (count
= 0; count
< 27; count
++) {
266 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
268 qla2x00_nv_write(ha
, 0);
273 qla2x00_nv_deselect(ha
);
275 /* Wait for NVRAM to become ready */
276 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
277 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
280 word
= RD_REG_WORD(®
->nvram
);
282 ret
= QLA_FUNCTION_FAILED
;
285 } while ((word
& NVR_DATA_IN
) == 0);
287 qla2x00_nv_deselect(ha
);
290 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
291 for (count
= 0; count
< 10; count
++)
292 qla2x00_nv_write(ha
, 0);
294 qla2x00_nv_deselect(ha
);
300 * qla2x00_clear_nvram_protection() -
304 qla2x00_clear_nvram_protection(struct qla_hw_data
*ha
)
307 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
308 uint32_t word
, wait_cnt
;
309 uint16_t wprot
, wprot_old
;
311 /* Clear NVRAM write protection. */
312 ret
= QLA_FUNCTION_FAILED
;
314 wprot_old
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
315 stat
= qla2x00_write_nvram_word_tmo(ha
, ha
->nvram_base
,
316 __constant_cpu_to_le16(0x1234), 100000);
317 wprot
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
318 if (stat
!= QLA_SUCCESS
|| wprot
!= 0x1234) {
320 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
321 qla2x00_nv_write(ha
, 0);
322 qla2x00_nv_write(ha
, 0);
323 for (word
= 0; word
< 8; word
++)
324 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
326 qla2x00_nv_deselect(ha
);
328 /* Enable protection register. */
329 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
330 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
331 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
332 for (word
= 0; word
< 8; word
++)
333 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
335 qla2x00_nv_deselect(ha
);
337 /* Clear protection register (ffff is cleared). */
338 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
339 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
340 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
341 for (word
= 0; word
< 8; word
++)
342 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
344 qla2x00_nv_deselect(ha
);
346 /* Wait for NVRAM to become ready. */
347 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
348 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
349 wait_cnt
= NVR_WAIT_CNT
;
352 DEBUG9_10(qla_printk(KERN_WARNING
, ha
,
353 "NVRAM didn't go ready...\n"));
357 word
= RD_REG_WORD(®
->nvram
);
358 } while ((word
& NVR_DATA_IN
) == 0);
363 qla2x00_write_nvram_word(ha
, ha
->nvram_base
, wprot_old
);
369 qla2x00_set_nvram_protection(struct qla_hw_data
*ha
, int stat
)
371 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
372 uint32_t word
, wait_cnt
;
374 if (stat
!= QLA_SUCCESS
)
377 /* Set NVRAM write protection. */
379 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
380 qla2x00_nv_write(ha
, 0);
381 qla2x00_nv_write(ha
, 0);
382 for (word
= 0; word
< 8; word
++)
383 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
385 qla2x00_nv_deselect(ha
);
387 /* Enable protection register. */
388 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
389 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
390 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
391 for (word
= 0; word
< 8; word
++)
392 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
394 qla2x00_nv_deselect(ha
);
396 /* Enable protection register. */
397 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
398 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
399 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
400 for (word
= 0; word
< 8; word
++)
401 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
403 qla2x00_nv_deselect(ha
);
405 /* Wait for NVRAM to become ready. */
406 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
407 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
408 wait_cnt
= NVR_WAIT_CNT
;
411 DEBUG9_10(qla_printk(KERN_WARNING
, ha
,
412 "NVRAM didn't go ready...\n"));
416 word
= RD_REG_WORD(®
->nvram
);
417 } while ((word
& NVR_DATA_IN
) == 0);
421 /*****************************************************************************/
422 /* Flash Manipulation Routines */
423 /*****************************************************************************/
425 #define OPTROM_BURST_SIZE 0x1000
426 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
428 static inline uint32_t
429 flash_conf_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
431 return ha
->flash_conf_off
| faddr
;
434 static inline uint32_t
435 flash_data_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
437 return ha
->flash_data_off
| faddr
;
440 static inline uint32_t
441 nvram_conf_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
443 return ha
->nvram_conf_off
| naddr
;
446 static inline uint32_t
447 nvram_data_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
449 return ha
->nvram_data_off
| naddr
;
453 qla24xx_read_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
)
457 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
459 WRT_REG_DWORD(®
->flash_addr
, addr
& ~FARX_DATA_FLAG
);
460 /* Wait for READ cycle to complete. */
463 (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) == 0 &&
464 rval
== QLA_SUCCESS
; cnt
--) {
468 rval
= QLA_FUNCTION_TIMEOUT
;
472 /* TODO: What happens if we time out? */
474 if (rval
== QLA_SUCCESS
)
475 data
= RD_REG_DWORD(®
->flash_data
);
481 qla24xx_read_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
485 struct qla_hw_data
*ha
= vha
->hw
;
487 /* Dword reads to flash. */
488 for (i
= 0; i
< dwords
; i
++, faddr
++)
489 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
490 flash_data_addr(ha
, faddr
)));
496 qla24xx_write_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
, uint32_t data
)
500 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
502 WRT_REG_DWORD(®
->flash_data
, data
);
503 RD_REG_DWORD(®
->flash_data
); /* PCI Posting. */
504 WRT_REG_DWORD(®
->flash_addr
, addr
| FARX_DATA_FLAG
);
505 /* Wait for Write cycle to complete. */
507 for (cnt
= 500000; (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) &&
508 rval
== QLA_SUCCESS
; cnt
--) {
512 rval
= QLA_FUNCTION_TIMEOUT
;
519 qla24xx_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
524 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x03ab));
526 *flash_id
= MSB(ids
);
528 /* Check if man_id and flash_id are valid. */
529 if (ids
!= 0xDEADDEAD && (*man_id
== 0 || *flash_id
== 0)) {
530 /* Read information using 0x9f opcode
531 * Device ID, Mfg ID would be read in the format:
532 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
533 * Example: ATMEL 0x00 01 45 1F
534 * Extract MFG and Dev ID from last two bytes.
536 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x009f));
538 *flash_id
= MSB(ids
);
543 qla2xxx_find_flt_start(scsi_qla_host_t
*vha
, uint32_t *start
)
545 const char *loc
, *locations
[] = { "DEF", "PCI" };
546 uint32_t pcihdr
, pcids
;
548 uint8_t *buf
, *bcode
, last_image
;
549 uint16_t cnt
, chksum
, *wptr
;
550 struct qla_flt_location
*fltl
;
551 struct qla_hw_data
*ha
= vha
->hw
;
552 struct req_que
*req
= ha
->req_q_map
[0];
555 * FLT-location structure resides after the last PCI region.
558 /* Begin with sane defaults. */
561 if (IS_QLA24XX_TYPE(ha
))
562 *start
= FA_FLASH_LAYOUT_ADDR_24
;
563 else if (IS_QLA25XX(ha
))
564 *start
= FA_FLASH_LAYOUT_ADDR
;
565 else if (IS_QLA81XX(ha
))
566 *start
= FA_FLASH_LAYOUT_ADDR_81
;
567 /* Begin with first PCI expansion ROM header. */
568 buf
= (uint8_t *)req
->ring
;
569 dcode
= (uint32_t *)req
->ring
;
573 /* Verify PCI expansion ROM header. */
574 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
575 bcode
= buf
+ (pcihdr
% 4);
576 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa)
579 /* Locate PCI data structure. */
580 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
581 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
582 bcode
= buf
+ (pcihdr
% 4);
584 /* Validate signature of PCI data structure. */
585 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
586 bcode
[0x2] != 'I' || bcode
[0x3] != 'R')
589 last_image
= bcode
[0x15] & BIT_7
;
591 /* Locate next PCI expansion ROM. */
592 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
593 } while (!last_image
);
595 /* Now verify FLT-location structure. */
596 fltl
= (struct qla_flt_location
*)req
->ring
;
597 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2,
598 sizeof(struct qla_flt_location
) >> 2);
599 if (fltl
->sig
[0] != 'Q' || fltl
->sig
[1] != 'F' ||
600 fltl
->sig
[2] != 'L' || fltl
->sig
[3] != 'T')
603 wptr
= (uint16_t *)req
->ring
;
604 cnt
= sizeof(struct qla_flt_location
) >> 1;
605 for (chksum
= 0; cnt
; cnt
--)
606 chksum
+= le16_to_cpu(*wptr
++);
608 qla_printk(KERN_ERR
, ha
,
609 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum
);
610 qla2x00_dump_buffer(buf
, sizeof(struct qla_flt_location
));
611 return QLA_FUNCTION_FAILED
;
614 /* Good data. Use specified location. */
616 *start
= (le16_to_cpu(fltl
->start_hi
) << 16 |
617 le16_to_cpu(fltl
->start_lo
)) >> 2;
619 DEBUG2(qla_printk(KERN_DEBUG
, ha
, "FLTL[%s] = 0x%x.\n", loc
, *start
));
624 qla2xxx_get_flt_info(scsi_qla_host_t
*vha
, uint32_t flt_addr
)
626 const char *loc
, *locations
[] = { "DEF", "FLT" };
627 const uint32_t def_fw
[] =
628 { FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR_81
};
629 const uint32_t def_boot
[] =
630 { FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR_81
};
631 const uint32_t def_vpd_nvram
[] =
632 { FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR_81
};
633 const uint32_t def_vpd0
[] =
634 { 0, 0, FA_VPD0_ADDR_81
};
635 const uint32_t def_vpd1
[] =
636 { 0, 0, FA_VPD1_ADDR_81
};
637 const uint32_t def_nvram0
[] =
638 { 0, 0, FA_NVRAM0_ADDR_81
};
639 const uint32_t def_nvram1
[] =
640 { 0, 0, FA_NVRAM1_ADDR_81
};
641 const uint32_t def_fdt
[] =
642 { FA_FLASH_DESCR_ADDR_24
, FA_FLASH_DESCR_ADDR
,
643 FA_FLASH_DESCR_ADDR_81
};
644 const uint32_t def_npiv_conf0
[] =
645 { FA_NPIV_CONF0_ADDR_24
, FA_NPIV_CONF0_ADDR
,
646 FA_NPIV_CONF0_ADDR_81
};
647 const uint32_t def_npiv_conf1
[] =
648 { FA_NPIV_CONF1_ADDR_24
, FA_NPIV_CONF1_ADDR
,
649 FA_NPIV_CONF1_ADDR_81
};
652 uint16_t cnt
, chksum
;
654 struct qla_flt_header
*flt
;
655 struct qla_flt_region
*region
;
656 struct qla_hw_data
*ha
= vha
->hw
;
657 struct req_que
*req
= ha
->req_q_map
[0];
659 ha
->flt_region_flt
= flt_addr
;
660 wptr
= (uint16_t *)req
->ring
;
661 flt
= (struct qla_flt_header
*)req
->ring
;
662 region
= (struct qla_flt_region
*)&flt
[1];
663 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
664 flt_addr
<< 2, OPTROM_BURST_SIZE
);
665 if (*wptr
== __constant_cpu_to_le16(0xffff))
667 if (flt
->version
!= __constant_cpu_to_le16(1)) {
668 DEBUG2(qla_printk(KERN_INFO
, ha
, "Unsupported FLT detected: "
669 "version=0x%x length=0x%x checksum=0x%x.\n",
670 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
671 le16_to_cpu(flt
->checksum
)));
675 cnt
= (sizeof(struct qla_flt_header
) + le16_to_cpu(flt
->length
)) >> 1;
676 for (chksum
= 0; cnt
; cnt
--)
677 chksum
+= le16_to_cpu(*wptr
++);
679 DEBUG2(qla_printk(KERN_INFO
, ha
, "Inconsistent FLT detected: "
680 "version=0x%x length=0x%x checksum=0x%x.\n",
681 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
687 cnt
= le16_to_cpu(flt
->length
) / sizeof(struct qla_flt_region
);
688 for ( ; cnt
; cnt
--, region
++) {
689 /* Store addresses as DWORD offsets. */
690 start
= le32_to_cpu(region
->start
) >> 2;
692 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "FLT[%02x]: start=0x%x "
693 "end=0x%x size=0x%x.\n", le32_to_cpu(region
->code
), start
,
694 le32_to_cpu(region
->end
) >> 2, le32_to_cpu(region
->size
)));
696 switch (le32_to_cpu(region
->code
) & 0xff) {
698 ha
->flt_region_fw
= start
;
700 case FLT_REG_BOOT_CODE
:
701 ha
->flt_region_boot
= start
;
704 ha
->flt_region_vpd_nvram
= start
;
706 ha
->flt_region_vpd
= start
;
709 if (!ha
->flags
.port0
)
710 ha
->flt_region_vpd
= start
;
712 case FLT_REG_NVRAM_0
:
714 ha
->flt_region_nvram
= start
;
716 case FLT_REG_NVRAM_1
:
717 if (!ha
->flags
.port0
)
718 ha
->flt_region_nvram
= start
;
721 ha
->flt_region_fdt
= start
;
723 case FLT_REG_NPIV_CONF_0
:
725 ha
->flt_region_npiv_conf
= start
;
727 case FLT_REG_NPIV_CONF_1
:
728 if (!ha
->flags
.port0
)
729 ha
->flt_region_npiv_conf
= start
;
731 case FLT_REG_GOLD_FW
:
732 ha
->flt_region_gold_fw
= start
;
739 /* Use hardcoded defaults. */
742 if (IS_QLA24XX_TYPE(ha
))
744 else if (IS_QLA25XX(ha
))
746 else if (IS_QLA81XX(ha
))
748 ha
->flt_region_fw
= def_fw
[def
];
749 ha
->flt_region_boot
= def_boot
[def
];
750 ha
->flt_region_vpd_nvram
= def_vpd_nvram
[def
];
751 ha
->flt_region_vpd
= ha
->flags
.port0
?
752 def_vpd0
[def
]: def_vpd1
[def
];
753 ha
->flt_region_nvram
= ha
->flags
.port0
?
754 def_nvram0
[def
]: def_nvram1
[def
];
755 ha
->flt_region_fdt
= def_fdt
[def
];
756 ha
->flt_region_npiv_conf
= ha
->flags
.port0
?
757 def_npiv_conf0
[def
]: def_npiv_conf1
[def
];
759 DEBUG2(qla_printk(KERN_DEBUG
, ha
, "FLT[%s]: boot=0x%x fw=0x%x "
760 "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
761 "npiv=0x%x.\n", loc
, ha
->flt_region_boot
, ha
->flt_region_fw
,
762 ha
->flt_region_vpd_nvram
, ha
->flt_region_vpd
, ha
->flt_region_nvram
,
763 ha
->flt_region_fdt
, ha
->flt_region_flt
, ha
->flt_region_npiv_conf
));
767 qla2xxx_get_fdt_info(scsi_qla_host_t
*vha
)
769 #define FLASH_BLK_SIZE_4K 0x1000
770 #define FLASH_BLK_SIZE_32K 0x8000
771 #define FLASH_BLK_SIZE_64K 0x10000
772 const char *loc
, *locations
[] = { "MID", "FDT" };
773 uint16_t cnt
, chksum
;
775 struct qla_fdt_layout
*fdt
;
776 uint8_t man_id
, flash_id
;
778 struct qla_hw_data
*ha
= vha
->hw
;
779 struct req_que
*req
= ha
->req_q_map
[0];
781 wptr
= (uint16_t *)req
->ring
;
782 fdt
= (struct qla_fdt_layout
*)req
->ring
;
783 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
784 ha
->flt_region_fdt
<< 2, OPTROM_BURST_SIZE
);
785 if (*wptr
== __constant_cpu_to_le16(0xffff))
787 if (fdt
->sig
[0] != 'Q' || fdt
->sig
[1] != 'L' || fdt
->sig
[2] != 'I' ||
791 for (cnt
= 0, chksum
= 0; cnt
< sizeof(struct qla_fdt_layout
) >> 1;
793 chksum
+= le16_to_cpu(*wptr
++);
795 DEBUG2(qla_printk(KERN_INFO
, ha
, "Inconsistent FDT detected: "
796 "checksum=0x%x id=%c version=0x%x.\n", chksum
, fdt
->sig
[0],
797 le16_to_cpu(fdt
->version
)));
798 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt
, sizeof(*fdt
)));
803 mid
= le16_to_cpu(fdt
->man_id
);
804 fid
= le16_to_cpu(fdt
->id
);
805 ha
->fdt_wrt_disable
= fdt
->wrt_disable_bits
;
806 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0300 | fdt
->erase_cmd
);
807 ha
->fdt_block_size
= le32_to_cpu(fdt
->block_size
);
808 if (fdt
->unprotect_sec_cmd
) {
809 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0300 |
810 fdt
->unprotect_sec_cmd
);
811 ha
->fdt_protect_sec_cmd
= fdt
->protect_sec_cmd
?
812 flash_conf_addr(ha
, 0x0300 | fdt
->protect_sec_cmd
):
813 flash_conf_addr(ha
, 0x0336);
818 qla24xx_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
821 ha
->fdt_wrt_disable
= 0x9c;
822 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x03d8);
824 case 0xbf: /* STT flash. */
825 if (flash_id
== 0x8e)
826 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
828 ha
->fdt_block_size
= FLASH_BLK_SIZE_32K
;
830 if (flash_id
== 0x80)
831 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0352);
833 case 0x13: /* ST M25P80. */
834 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
836 case 0x1f: /* Atmel 26DF081A. */
837 ha
->fdt_block_size
= FLASH_BLK_SIZE_4K
;
838 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0320);
839 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0339);
840 ha
->fdt_protect_sec_cmd
= flash_conf_addr(ha
, 0x0336);
843 /* Default to 64 kb sector size. */
844 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
848 DEBUG2(qla_printk(KERN_DEBUG
, ha
, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
849 "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc
, mid
, fid
,
850 ha
->fdt_erase_cmd
, ha
->fdt_protect_sec_cmd
,
851 ha
->fdt_unprotect_sec_cmd
, ha
->fdt_wrt_disable
,
852 ha
->fdt_block_size
));
856 qla2xxx_get_flash_info(scsi_qla_host_t
*vha
)
860 struct qla_hw_data
*ha
= vha
->hw
;
862 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) && !IS_QLA81XX(ha
))
865 ret
= qla2xxx_find_flt_start(vha
, &flt_addr
);
866 if (ret
!= QLA_SUCCESS
)
869 qla2xxx_get_flt_info(vha
, flt_addr
);
870 qla2xxx_get_fdt_info(vha
);
876 qla2xxx_flash_npiv_conf(scsi_qla_host_t
*vha
)
878 #define NPIV_CONFIG_SIZE (16*1024)
881 uint16_t cnt
, chksum
;
883 struct qla_npiv_header hdr
;
884 struct qla_npiv_entry
*entry
;
885 struct qla_hw_data
*ha
= vha
->hw
;
887 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) && !IS_QLA81XX(ha
))
890 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&hdr
,
891 ha
->flt_region_npiv_conf
<< 2, sizeof(struct qla_npiv_header
));
892 if (hdr
.version
== __constant_cpu_to_le16(0xffff))
894 if (hdr
.version
!= __constant_cpu_to_le16(1)) {
895 DEBUG2(qla_printk(KERN_INFO
, ha
, "Unsupported NPIV-Config "
896 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
897 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
898 le16_to_cpu(hdr
.checksum
)));
902 data
= kmalloc(NPIV_CONFIG_SIZE
, GFP_KERNEL
);
904 DEBUG2(qla_printk(KERN_INFO
, ha
, "NPIV-Config: Unable to "
905 "allocate memory.\n"));
909 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)data
,
910 ha
->flt_region_npiv_conf
<< 2, NPIV_CONFIG_SIZE
);
912 cnt
= (sizeof(struct qla_npiv_header
) + le16_to_cpu(hdr
.entries
) *
913 sizeof(struct qla_npiv_entry
)) >> 1;
914 for (wptr
= data
, chksum
= 0; cnt
; cnt
--)
915 chksum
+= le16_to_cpu(*wptr
++);
917 DEBUG2(qla_printk(KERN_INFO
, ha
, "Inconsistent NPIV-Config "
918 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
919 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
924 entry
= data
+ sizeof(struct qla_npiv_header
);
925 cnt
= le16_to_cpu(hdr
.entries
);
926 for (i
= 0; cnt
; cnt
--, entry
++, i
++) {
928 struct fc_vport_identifiers vid
;
929 struct fc_vport
*vport
;
931 memcpy(&ha
->npiv_info
[i
], entry
, sizeof(struct qla_npiv_entry
));
933 flags
= le16_to_cpu(entry
->flags
);
936 if ((flags
& BIT_0
) == 0)
939 memset(&vid
, 0, sizeof(vid
));
940 vid
.roles
= FC_PORT_ROLE_FCP_INITIATOR
;
941 vid
.vport_type
= FC_PORTTYPE_NPIV
;
943 vid
.port_name
= wwn_to_u64(entry
->port_name
);
944 vid
.node_name
= wwn_to_u64(entry
->node_name
);
946 DEBUG2(qla_printk(KERN_INFO
, ha
, "NPIV[%02x]: wwpn=%llx "
947 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt
,
948 (unsigned long long)vid
.port_name
,
949 (unsigned long long)vid
.node_name
,
950 le16_to_cpu(entry
->vf_id
),
951 entry
->q_qos
, entry
->f_qos
));
953 if (i
< QLA_PRECONFIG_VPORTS
) {
954 vport
= fc_vport_create(vha
->host
, 0, &vid
);
956 qla_printk(KERN_INFO
, ha
,
957 "NPIV-Config: Failed to create vport [%02x]: "
958 "wwpn=%llx wwnn=%llx.\n", cnt
,
959 (unsigned long long)vid
.port_name
,
960 (unsigned long long)vid
.node_name
);
968 qla24xx_unprotect_flash(scsi_qla_host_t
*vha
)
970 struct qla_hw_data
*ha
= vha
->hw
;
971 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
973 if (ha
->flags
.fac_supported
)
974 return qla81xx_fac_do_write_enable(vha
, 1);
976 /* Enable flash write. */
977 WRT_REG_DWORD(®
->ctrl_status
,
978 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
979 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
981 if (!ha
->fdt_wrt_disable
)
984 /* Disable flash write-protection, first clear SR protection bit */
985 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
986 /* Then write zero again to clear remaining SR bits.*/
987 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
993 qla24xx_protect_flash(scsi_qla_host_t
*vha
)
996 struct qla_hw_data
*ha
= vha
->hw
;
997 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
999 if (ha
->flags
.fac_supported
)
1000 return qla81xx_fac_do_write_enable(vha
, 0);
1002 if (!ha
->fdt_wrt_disable
)
1003 goto skip_wrt_protect
;
1005 /* Enable flash write-protection and wait for completion. */
1006 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101),
1007 ha
->fdt_wrt_disable
);
1008 for (cnt
= 300; cnt
&&
1009 qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x005)) & BIT_0
;
1015 /* Disable flash write. */
1016 WRT_REG_DWORD(®
->ctrl_status
,
1017 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1018 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1024 qla24xx_erase_sector(scsi_qla_host_t
*vha
, uint32_t fdata
)
1026 struct qla_hw_data
*ha
= vha
->hw
;
1027 uint32_t start
, finish
;
1029 if (ha
->flags
.fac_supported
) {
1031 finish
= start
+ (ha
->fdt_block_size
>> 2) - 1;
1032 return qla81xx_fac_erase_sector(vha
, flash_data_addr(ha
,
1033 start
), flash_data_addr(ha
, finish
));
1036 return qla24xx_write_flash_dword(ha
, ha
->fdt_erase_cmd
,
1037 (fdata
& 0xff00) | ((fdata
<< 16) & 0xff0000) |
1038 ((fdata
>> 16) & 0xff));
1042 qla24xx_write_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
1047 uint32_t sec_mask
, rest_addr
;
1049 dma_addr_t optrom_dma
;
1050 void *optrom
= NULL
;
1051 struct qla_hw_data
*ha
= vha
->hw
;
1053 /* Prepare burst-capable write on supported ISPs. */
1054 if ((IS_QLA25XX(ha
) || IS_QLA81XX(ha
)) && !(faddr
& 0xfff) &&
1055 dwords
> OPTROM_BURST_DWORDS
) {
1056 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
1057 &optrom_dma
, GFP_KERNEL
);
1059 qla_printk(KERN_DEBUG
, ha
,
1060 "Unable to allocate memory for optrom burst write "
1061 "(%x KB).\n", OPTROM_BURST_SIZE
/ 1024);
1065 rest_addr
= (ha
->fdt_block_size
>> 2) - 1;
1066 sec_mask
= ~rest_addr
;
1068 ret
= qla24xx_unprotect_flash(vha
);
1069 if (ret
!= QLA_SUCCESS
) {
1070 qla_printk(KERN_WARNING
, ha
,
1071 "Unable to unprotect flash for update.\n");
1075 for (liter
= 0; liter
< dwords
; liter
++, faddr
++, dwptr
++) {
1076 fdata
= (faddr
& sec_mask
) << 2;
1078 /* Are we at the beginning of a sector? */
1079 if ((faddr
& rest_addr
) == 0) {
1080 /* Do sector unprotect. */
1081 if (ha
->fdt_unprotect_sec_cmd
)
1082 qla24xx_write_flash_dword(ha
,
1083 ha
->fdt_unprotect_sec_cmd
,
1084 (fdata
& 0xff00) | ((fdata
<< 16) &
1085 0xff0000) | ((fdata
>> 16) & 0xff));
1086 ret
= qla24xx_erase_sector(vha
, fdata
);
1087 if (ret
!= QLA_SUCCESS
) {
1088 DEBUG9(qla_printk(KERN_WARNING
, ha
,
1089 "Unable to erase sector: address=%x.\n",
1095 /* Go with burst-write. */
1096 if (optrom
&& (liter
+ OPTROM_BURST_DWORDS
) <= dwords
) {
1097 /* Copy data to DMA'ble buffer. */
1098 memcpy(optrom
, dwptr
, OPTROM_BURST_SIZE
);
1100 ret
= qla2x00_load_ram(vha
, optrom_dma
,
1101 flash_data_addr(ha
, faddr
),
1102 OPTROM_BURST_DWORDS
);
1103 if (ret
!= QLA_SUCCESS
) {
1104 qla_printk(KERN_WARNING
, ha
,
1105 "Unable to burst-write optrom segment "
1106 "(%x/%x/%llx).\n", ret
,
1107 flash_data_addr(ha
, faddr
),
1108 (unsigned long long)optrom_dma
);
1109 qla_printk(KERN_WARNING
, ha
,
1110 "Reverting to slow-write.\n");
1112 dma_free_coherent(&ha
->pdev
->dev
,
1113 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1116 liter
+= OPTROM_BURST_DWORDS
- 1;
1117 faddr
+= OPTROM_BURST_DWORDS
- 1;
1118 dwptr
+= OPTROM_BURST_DWORDS
- 1;
1123 ret
= qla24xx_write_flash_dword(ha
,
1124 flash_data_addr(ha
, faddr
), cpu_to_le32(*dwptr
));
1125 if (ret
!= QLA_SUCCESS
) {
1126 DEBUG9(printk("%s(%ld) Unable to program flash "
1127 "address=%x data=%x.\n", __func__
,
1128 vha
->host_no
, faddr
, *dwptr
));
1132 /* Do sector protect. */
1133 if (ha
->fdt_unprotect_sec_cmd
&&
1134 ((faddr
& rest_addr
) == rest_addr
))
1135 qla24xx_write_flash_dword(ha
,
1136 ha
->fdt_protect_sec_cmd
,
1137 (fdata
& 0xff00) | ((fdata
<< 16) &
1138 0xff0000) | ((fdata
>> 16) & 0xff));
1141 ret
= qla24xx_protect_flash(vha
);
1142 if (ret
!= QLA_SUCCESS
)
1143 qla_printk(KERN_WARNING
, ha
,
1144 "Unable to protect flash after update.\n");
1147 dma_free_coherent(&ha
->pdev
->dev
,
1148 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1154 qla2x00_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1159 struct qla_hw_data
*ha
= vha
->hw
;
1161 /* Word reads to NVRAM via registers. */
1162 wptr
= (uint16_t *)buf
;
1163 qla2x00_lock_nvram_access(ha
);
1164 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++)
1165 wptr
[i
] = cpu_to_le16(qla2x00_get_nvram_word(ha
,
1167 qla2x00_unlock_nvram_access(ha
);
1173 qla24xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1178 struct qla_hw_data
*ha
= vha
->hw
;
1180 /* Dword reads to flash. */
1181 dwptr
= (uint32_t *)buf
;
1182 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1183 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1184 nvram_data_addr(ha
, naddr
)));
1190 qla2x00_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1196 unsigned long flags
;
1197 struct qla_hw_data
*ha
= vha
->hw
;
1201 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1202 qla2x00_lock_nvram_access(ha
);
1204 /* Disable NVRAM write-protection. */
1205 stat
= qla2x00_clear_nvram_protection(ha
);
1207 wptr
= (uint16_t *)buf
;
1208 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++) {
1209 qla2x00_write_nvram_word(ha
, naddr
,
1210 cpu_to_le16(*wptr
));
1214 /* Enable NVRAM write-protection. */
1215 qla2x00_set_nvram_protection(ha
, stat
);
1217 qla2x00_unlock_nvram_access(ha
);
1218 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1224 qla24xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1230 struct qla_hw_data
*ha
= vha
->hw
;
1231 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1235 /* Enable flash write. */
1236 WRT_REG_DWORD(®
->ctrl_status
,
1237 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1238 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1240 /* Disable NVRAM write-protection. */
1241 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1242 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1244 /* Dword writes to flash. */
1245 dwptr
= (uint32_t *)buf
;
1246 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++, dwptr
++) {
1247 ret
= qla24xx_write_flash_dword(ha
,
1248 nvram_data_addr(ha
, naddr
), cpu_to_le32(*dwptr
));
1249 if (ret
!= QLA_SUCCESS
) {
1250 DEBUG9(qla_printk(KERN_WARNING
, ha
,
1251 "Unable to program nvram address=%x data=%x.\n",
1257 /* Enable NVRAM write-protection. */
1258 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0x8c);
1260 /* Disable flash write. */
1261 WRT_REG_DWORD(®
->ctrl_status
,
1262 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1263 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1269 qla25xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1274 struct qla_hw_data
*ha
= vha
->hw
;
1276 /* Dword reads to flash. */
1277 dwptr
= (uint32_t *)buf
;
1278 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1279 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1280 flash_data_addr(ha
, ha
->flt_region_vpd_nvram
| naddr
)));
1286 qla25xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1289 struct qla_hw_data
*ha
= vha
->hw
;
1290 #define RMW_BUFFER_SIZE (64 * 1024)
1293 dbuf
= vmalloc(RMW_BUFFER_SIZE
);
1295 return QLA_MEMORY_ALLOC_FAILED
;
1296 ha
->isp_ops
->read_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1298 memcpy(dbuf
+ (naddr
<< 2), buf
, bytes
);
1299 ha
->isp_ops
->write_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1307 qla2x00_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1309 if (IS_QLA2322(ha
)) {
1310 /* Flip all colors. */
1311 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1313 ha
->beacon_color_state
= 0;
1314 *pflags
= GPIO_LED_ALL_OFF
;
1317 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1318 *pflags
= GPIO_LED_RGA_ON
;
1321 /* Flip green led only. */
1322 if (ha
->beacon_color_state
== QLA_LED_GRN_ON
) {
1324 ha
->beacon_color_state
= 0;
1325 *pflags
= GPIO_LED_GREEN_OFF_AMBER_OFF
;
1328 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1329 *pflags
= GPIO_LED_GREEN_ON_AMBER_OFF
;
1334 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1337 qla2x00_beacon_blink(struct scsi_qla_host
*vha
)
1339 uint16_t gpio_enable
;
1341 uint16_t led_color
= 0;
1342 unsigned long flags
;
1343 struct qla_hw_data
*ha
= vha
->hw
;
1344 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1346 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1348 /* Save the Original GPIOE. */
1349 if (ha
->pio_address
) {
1350 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1351 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1353 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1354 gpio_data
= RD_REG_WORD(®
->gpiod
);
1357 /* Set the modified gpio_enable values */
1358 gpio_enable
|= GPIO_LED_MASK
;
1360 if (ha
->pio_address
) {
1361 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1363 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1364 RD_REG_WORD(®
->gpioe
);
1367 qla2x00_flip_colors(ha
, &led_color
);
1369 /* Clear out any previously set LED color. */
1370 gpio_data
&= ~GPIO_LED_MASK
;
1372 /* Set the new input LED color to GPIOD. */
1373 gpio_data
|= led_color
;
1375 /* Set the modified gpio_data values */
1376 if (ha
->pio_address
) {
1377 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1379 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1380 RD_REG_WORD(®
->gpiod
);
1383 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1387 qla2x00_beacon_on(struct scsi_qla_host
*vha
)
1389 uint16_t gpio_enable
;
1391 unsigned long flags
;
1392 struct qla_hw_data
*ha
= vha
->hw
;
1393 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1395 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1396 ha
->fw_options
[1] |= FO1_DISABLE_GPIO6_7
;
1398 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1399 qla_printk(KERN_WARNING
, ha
,
1400 "Unable to update fw options (beacon on).\n");
1401 return QLA_FUNCTION_FAILED
;
1404 /* Turn off LEDs. */
1405 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1406 if (ha
->pio_address
) {
1407 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1408 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1410 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1411 gpio_data
= RD_REG_WORD(®
->gpiod
);
1413 gpio_enable
|= GPIO_LED_MASK
;
1415 /* Set the modified gpio_enable values. */
1416 if (ha
->pio_address
) {
1417 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1419 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1420 RD_REG_WORD(®
->gpioe
);
1423 /* Clear out previously set LED colour. */
1424 gpio_data
&= ~GPIO_LED_MASK
;
1425 if (ha
->pio_address
) {
1426 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1428 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1429 RD_REG_WORD(®
->gpiod
);
1431 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1434 * Let the per HBA timer kick off the blinking process based on
1435 * the following flags. No need to do anything else now.
1437 ha
->beacon_blink_led
= 1;
1438 ha
->beacon_color_state
= 0;
1444 qla2x00_beacon_off(struct scsi_qla_host
*vha
)
1446 int rval
= QLA_SUCCESS
;
1447 struct qla_hw_data
*ha
= vha
->hw
;
1449 ha
->beacon_blink_led
= 0;
1451 /* Set the on flag so when it gets flipped it will be off. */
1453 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1455 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1457 ha
->isp_ops
->beacon_blink(vha
); /* This turns green LED off */
1459 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1460 ha
->fw_options
[1] &= ~FO1_DISABLE_GPIO6_7
;
1462 rval
= qla2x00_set_fw_options(vha
, ha
->fw_options
);
1463 if (rval
!= QLA_SUCCESS
)
1464 qla_printk(KERN_WARNING
, ha
,
1465 "Unable to update fw options (beacon off).\n");
1471 qla24xx_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1473 /* Flip all colors. */
1474 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1476 ha
->beacon_color_state
= 0;
1480 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1481 *pflags
= GPDX_LED_YELLOW_ON
| GPDX_LED_AMBER_ON
;
1486 qla24xx_beacon_blink(struct scsi_qla_host
*vha
)
1488 uint16_t led_color
= 0;
1490 unsigned long flags
;
1491 struct qla_hw_data
*ha
= vha
->hw
;
1492 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1494 /* Save the Original GPIOD. */
1495 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1496 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1498 /* Enable the gpio_data reg for update. */
1499 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1501 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1502 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1504 /* Set the color bits. */
1505 qla24xx_flip_colors(ha
, &led_color
);
1507 /* Clear out any previously set LED color. */
1508 gpio_data
&= ~GPDX_LED_COLOR_MASK
;
1510 /* Set the new input LED color to GPIOD. */
1511 gpio_data
|= led_color
;
1513 /* Set the modified gpio_data values. */
1514 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1515 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1516 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1520 qla24xx_beacon_on(struct scsi_qla_host
*vha
)
1523 unsigned long flags
;
1524 struct qla_hw_data
*ha
= vha
->hw
;
1525 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1527 if (ha
->beacon_blink_led
== 0) {
1528 /* Enable firmware for update */
1529 ha
->fw_options
[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1531 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
)
1532 return QLA_FUNCTION_FAILED
;
1534 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) !=
1536 qla_printk(KERN_WARNING
, ha
,
1537 "Unable to update fw options (beacon on).\n");
1538 return QLA_FUNCTION_FAILED
;
1541 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1542 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1544 /* Enable the gpio_data reg for update. */
1545 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1546 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1547 RD_REG_DWORD(®
->gpiod
);
1549 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1552 /* So all colors blink together. */
1553 ha
->beacon_color_state
= 0;
1555 /* Let the per HBA timer kick off the blinking process. */
1556 ha
->beacon_blink_led
= 1;
1562 qla24xx_beacon_off(struct scsi_qla_host
*vha
)
1565 unsigned long flags
;
1566 struct qla_hw_data
*ha
= vha
->hw
;
1567 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1569 ha
->beacon_blink_led
= 0;
1570 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1572 ha
->isp_ops
->beacon_blink(vha
); /* Will flip to all off. */
1574 /* Give control back to firmware. */
1575 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1576 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1578 /* Disable the gpio_data reg for update. */
1579 gpio_data
&= ~GPDX_LED_UPDATE_MASK
;
1580 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1581 RD_REG_DWORD(®
->gpiod
);
1582 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1584 ha
->fw_options
[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1586 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1587 qla_printk(KERN_WARNING
, ha
,
1588 "Unable to update fw options (beacon off).\n");
1589 return QLA_FUNCTION_FAILED
;
1592 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1593 qla_printk(KERN_WARNING
, ha
,
1594 "Unable to get fw options (beacon off).\n");
1595 return QLA_FUNCTION_FAILED
;
1603 * Flash support routines
1607 * qla2x00_flash_enable() - Setup flash for reading and writing.
1611 qla2x00_flash_enable(struct qla_hw_data
*ha
)
1614 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1616 data
= RD_REG_WORD(®
->ctrl_status
);
1617 data
|= CSR_FLASH_ENABLE
;
1618 WRT_REG_WORD(®
->ctrl_status
, data
);
1619 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1623 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1627 qla2x00_flash_disable(struct qla_hw_data
*ha
)
1630 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1632 data
= RD_REG_WORD(®
->ctrl_status
);
1633 data
&= ~(CSR_FLASH_ENABLE
);
1634 WRT_REG_WORD(®
->ctrl_status
, data
);
1635 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1639 * qla2x00_read_flash_byte() - Reads a byte from flash
1641 * @addr: Address in flash to read
1643 * A word is read from the chip, but, only the lower byte is valid.
1645 * Returns the byte read from flash @addr.
1648 qla2x00_read_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
)
1651 uint16_t bank_select
;
1652 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1654 bank_select
= RD_REG_WORD(®
->ctrl_status
);
1656 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
1657 /* Specify 64K address range: */
1658 /* clear out Module Select and Flash Address bits [19:16]. */
1659 bank_select
&= ~0xf8;
1660 bank_select
|= addr
>> 12 & 0xf0;
1661 bank_select
|= CSR_FLASH_64K_BANK
;
1662 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1663 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1665 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1666 data
= RD_REG_WORD(®
->flash_data
);
1668 return (uint8_t)data
;
1671 /* Setup bit 16 of flash address. */
1672 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
1673 bank_select
|= CSR_FLASH_64K_BANK
;
1674 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1675 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1676 } else if (((addr
& BIT_16
) == 0) &&
1677 (bank_select
& CSR_FLASH_64K_BANK
)) {
1678 bank_select
&= ~(CSR_FLASH_64K_BANK
);
1679 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1680 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1683 /* Always perform IO mapped accesses to the FLASH registers. */
1684 if (ha
->pio_address
) {
1687 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
1689 data
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
1692 data2
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
1693 } while (data
!= data2
);
1695 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1696 data
= qla2x00_debounce_register(®
->flash_data
);
1699 return (uint8_t)data
;
1703 * qla2x00_write_flash_byte() - Write a byte to flash
1705 * @addr: Address in flash to write
1706 * @data: Data to write
1709 qla2x00_write_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t data
)
1711 uint16_t bank_select
;
1712 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1714 bank_select
= RD_REG_WORD(®
->ctrl_status
);
1715 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
1716 /* Specify 64K address range: */
1717 /* clear out Module Select and Flash Address bits [19:16]. */
1718 bank_select
&= ~0xf8;
1719 bank_select
|= addr
>> 12 & 0xf0;
1720 bank_select
|= CSR_FLASH_64K_BANK
;
1721 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1722 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1724 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1725 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1726 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
1727 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1732 /* Setup bit 16 of flash address. */
1733 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
1734 bank_select
|= CSR_FLASH_64K_BANK
;
1735 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1736 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1737 } else if (((addr
& BIT_16
) == 0) &&
1738 (bank_select
& CSR_FLASH_64K_BANK
)) {
1739 bank_select
&= ~(CSR_FLASH_64K_BANK
);
1740 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1741 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1744 /* Always perform IO mapped accesses to the FLASH registers. */
1745 if (ha
->pio_address
) {
1746 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
1747 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_data
), (uint16_t)data
);
1749 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1750 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1751 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
1752 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1757 * qla2x00_poll_flash() - Polls flash for completion.
1759 * @addr: Address in flash to poll
1760 * @poll_data: Data to be polled
1761 * @man_id: Flash manufacturer ID
1762 * @flash_id: Flash ID
1764 * This function polls the device until bit 7 of what is read matches data
1765 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1766 * out (a fatal error). The flash book recommeds reading bit 7 again after
1767 * reading bit 5 as a 1.
1769 * Returns 0 on success, else non-zero.
1772 qla2x00_poll_flash(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t poll_data
,
1773 uint8_t man_id
, uint8_t flash_id
)
1781 /* Wait for 30 seconds for command to finish. */
1783 for (cnt
= 3000000; cnt
; cnt
--) {
1784 flash_data
= qla2x00_read_flash_byte(ha
, addr
);
1785 if ((flash_data
& BIT_7
) == poll_data
) {
1790 if (man_id
!= 0x40 && man_id
!= 0xda) {
1791 if ((flash_data
& BIT_5
) && cnt
> 2)
1802 * qla2x00_program_flash_address() - Programs a flash address
1804 * @addr: Address in flash to program
1805 * @data: Data to be written in flash
1806 * @man_id: Flash manufacturer ID
1807 * @flash_id: Flash ID
1809 * Returns 0 on success, else non-zero.
1812 qla2x00_program_flash_address(struct qla_hw_data
*ha
, uint32_t addr
,
1813 uint8_t data
, uint8_t man_id
, uint8_t flash_id
)
1815 /* Write Program Command Sequence. */
1816 if (IS_OEM_001(ha
)) {
1817 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
1818 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
1819 qla2x00_write_flash_byte(ha
, 0xaaa, 0xa0);
1820 qla2x00_write_flash_byte(ha
, addr
, data
);
1822 if (man_id
== 0xda && flash_id
== 0xc1) {
1823 qla2x00_write_flash_byte(ha
, addr
, data
);
1827 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1828 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1829 qla2x00_write_flash_byte(ha
, 0x5555, 0xa0);
1830 qla2x00_write_flash_byte(ha
, addr
, data
);
1836 /* Wait for write to complete. */
1837 return qla2x00_poll_flash(ha
, addr
, data
, man_id
, flash_id
);
1841 * qla2x00_erase_flash() - Erase the flash.
1843 * @man_id: Flash manufacturer ID
1844 * @flash_id: Flash ID
1846 * Returns 0 on success, else non-zero.
1849 qla2x00_erase_flash(struct qla_hw_data
*ha
, uint8_t man_id
, uint8_t flash_id
)
1851 /* Individual Sector Erase Command Sequence */
1852 if (IS_OEM_001(ha
)) {
1853 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
1854 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
1855 qla2x00_write_flash_byte(ha
, 0xaaa, 0x80);
1856 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
1857 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
1858 qla2x00_write_flash_byte(ha
, 0xaaa, 0x10);
1860 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1861 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1862 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
1863 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1864 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1865 qla2x00_write_flash_byte(ha
, 0x5555, 0x10);
1870 /* Wait for erase to complete. */
1871 return qla2x00_poll_flash(ha
, 0x00, 0x80, man_id
, flash_id
);
1875 * qla2x00_erase_flash_sector() - Erase a flash sector.
1877 * @addr: Flash sector to erase
1878 * @sec_mask: Sector address mask
1879 * @man_id: Flash manufacturer ID
1880 * @flash_id: Flash ID
1882 * Returns 0 on success, else non-zero.
1885 qla2x00_erase_flash_sector(struct qla_hw_data
*ha
, uint32_t addr
,
1886 uint32_t sec_mask
, uint8_t man_id
, uint8_t flash_id
)
1888 /* Individual Sector Erase Command Sequence */
1889 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1890 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1891 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
1892 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1893 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1894 if (man_id
== 0x1f && flash_id
== 0x13)
1895 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x10);
1897 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x30);
1901 /* Wait for erase to complete. */
1902 return qla2x00_poll_flash(ha
, addr
, 0x80, man_id
, flash_id
);
1906 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1907 * @man_id: Flash manufacturer ID
1908 * @flash_id: Flash ID
1911 qla2x00_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
1914 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1915 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1916 qla2x00_write_flash_byte(ha
, 0x5555, 0x90);
1917 *man_id
= qla2x00_read_flash_byte(ha
, 0x0000);
1918 *flash_id
= qla2x00_read_flash_byte(ha
, 0x0001);
1919 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1920 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1921 qla2x00_write_flash_byte(ha
, 0x5555, 0xf0);
1925 qla2x00_read_flash_data(struct qla_hw_data
*ha
, uint8_t *tmp_buf
,
1926 uint32_t saddr
, uint32_t length
)
1928 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1929 uint32_t midpoint
, ilength
;
1932 midpoint
= length
/ 2;
1934 WRT_REG_WORD(®
->nvram
, 0);
1935 RD_REG_WORD(®
->nvram
);
1936 for (ilength
= 0; ilength
< length
; saddr
++, ilength
++, tmp_buf
++) {
1937 if (ilength
== midpoint
) {
1938 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
1939 RD_REG_WORD(®
->nvram
);
1941 data
= qla2x00_read_flash_byte(ha
, saddr
);
1950 qla2x00_suspend_hba(struct scsi_qla_host
*vha
)
1953 unsigned long flags
;
1954 struct qla_hw_data
*ha
= vha
->hw
;
1955 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1958 scsi_block_requests(vha
->host
);
1959 ha
->isp_ops
->disable_intrs(ha
);
1960 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
1963 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1964 WRT_REG_WORD(®
->hccr
, HCCR_PAUSE_RISC
);
1965 RD_REG_WORD(®
->hccr
);
1966 if (IS_QLA2100(ha
) || IS_QLA2200(ha
) || IS_QLA2300(ha
)) {
1967 for (cnt
= 0; cnt
< 30000; cnt
++) {
1968 if ((RD_REG_WORD(®
->hccr
) & HCCR_RISC_PAUSE
) != 0)
1975 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1979 qla2x00_resume_hba(struct scsi_qla_host
*vha
)
1981 struct qla_hw_data
*ha
= vha
->hw
;
1984 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
1985 set_bit(ISP_ABORT_NEEDED
, &vha
->dpc_flags
);
1986 qla2xxx_wake_dpc(vha
);
1987 qla2x00_wait_for_chip_reset(vha
);
1988 scsi_unblock_requests(vha
->host
);
1992 qla2x00_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
1993 uint32_t offset
, uint32_t length
)
1995 uint32_t addr
, midpoint
;
1997 struct qla_hw_data
*ha
= vha
->hw
;
1998 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2001 qla2x00_suspend_hba(vha
);
2004 midpoint
= ha
->optrom_size
/ 2;
2006 qla2x00_flash_enable(ha
);
2007 WRT_REG_WORD(®
->nvram
, 0);
2008 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2009 for (addr
= offset
, data
= buf
; addr
< length
; addr
++, data
++) {
2010 if (addr
== midpoint
) {
2011 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2012 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2015 *data
= qla2x00_read_flash_byte(ha
, addr
);
2017 qla2x00_flash_disable(ha
);
2020 qla2x00_resume_hba(vha
);
2026 qla2x00_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2027 uint32_t offset
, uint32_t length
)
2031 uint8_t man_id
, flash_id
, sec_number
, data
;
2033 uint32_t addr
, liter
, sec_mask
, rest_addr
;
2034 struct qla_hw_data
*ha
= vha
->hw
;
2035 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2038 qla2x00_suspend_hba(vha
);
2043 /* Reset ISP chip. */
2044 WRT_REG_WORD(®
->ctrl_status
, CSR_ISP_SOFT_RESET
);
2045 pci_read_config_word(ha
->pdev
, PCI_COMMAND
, &wd
);
2047 /* Go with write. */
2048 qla2x00_flash_enable(ha
);
2049 do { /* Loop once to provide quick error exit */
2050 /* Structure of flash memory based on manufacturer */
2051 if (IS_OEM_001(ha
)) {
2052 /* OEM variant with special flash part. */
2053 man_id
= flash_id
= 0;
2058 qla2x00_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
2060 case 0x20: /* ST flash. */
2061 if (flash_id
== 0xd2 || flash_id
== 0xe3) {
2063 * ST m29w008at part - 64kb sector size with
2064 * 32kb,8kb,8kb,16kb sectors at memory address
2072 * ST m29w010b part - 16kb sector size
2073 * Default to 16kb sectors
2078 case 0x40: /* Mostel flash. */
2079 /* Mostel v29c51001 part - 512 byte sector size. */
2083 case 0xbf: /* SST flash. */
2084 /* SST39sf10 part - 4kb sector size. */
2088 case 0xda: /* Winbond flash. */
2089 /* Winbond W29EE011 part - 256 byte sector size. */
2093 case 0xc2: /* Macronix flash. */
2094 /* 64k sector size. */
2095 if (flash_id
== 0x38 || flash_id
== 0x4f) {
2100 /* Fall through... */
2102 case 0x1f: /* Atmel flash. */
2103 /* 512k sector size. */
2104 if (flash_id
== 0x13) {
2105 rest_addr
= 0x7fffffff;
2106 sec_mask
= 0x80000000;
2109 /* Fall through... */
2111 case 0x01: /* AMD flash. */
2112 if (flash_id
== 0x38 || flash_id
== 0x40 ||
2114 /* Am29LV081 part - 64kb sector size. */
2115 /* Am29LV002BT part - 64kb sector size. */
2119 } else if (flash_id
== 0x3e) {
2121 * Am29LV008b part - 64kb sector size with
2122 * 32kb,8kb,8kb,16kb sector at memory address
2128 } else if (flash_id
== 0x20 || flash_id
== 0x6e) {
2130 * Am29LV010 part or AM29f010 - 16kb sector
2136 } else if (flash_id
== 0x6d) {
2137 /* Am29LV001 part - 8kb sector size. */
2143 /* Default to 16 kb sector size. */
2150 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2151 if (qla2x00_erase_flash(ha
, man_id
, flash_id
)) {
2152 rval
= QLA_FUNCTION_FAILED
;
2157 for (addr
= offset
, liter
= 0; liter
< length
; liter
++,
2160 /* Are we at the beginning of a sector? */
2161 if ((addr
& rest_addr
) == 0) {
2162 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2163 if (addr
>= 0x10000UL
) {
2164 if (((addr
>> 12) & 0xf0) &&
2166 flash_id
== 0x3e) ||
2168 flash_id
== 0xd2))) {
2170 if (sec_number
== 1) {
2191 } else if (addr
== ha
->optrom_size
/ 2) {
2192 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2193 RD_REG_WORD(®
->nvram
);
2196 if (flash_id
== 0xda && man_id
== 0xc1) {
2197 qla2x00_write_flash_byte(ha
, 0x5555,
2199 qla2x00_write_flash_byte(ha
, 0x2aaa,
2201 qla2x00_write_flash_byte(ha
, 0x5555,
2203 } else if (!IS_QLA2322(ha
) && !IS_QLA6322(ha
)) {
2205 if (qla2x00_erase_flash_sector(ha
,
2206 addr
, sec_mask
, man_id
,
2208 rval
= QLA_FUNCTION_FAILED
;
2211 if (man_id
== 0x01 && flash_id
== 0x6d)
2216 if (man_id
== 0x01 && flash_id
== 0x6d) {
2217 if (sec_number
== 1 &&
2218 addr
== (rest_addr
- 1)) {
2221 } else if (sec_number
== 3 && (addr
& 0x7ffe)) {
2227 if (qla2x00_program_flash_address(ha
, addr
, data
,
2228 man_id
, flash_id
)) {
2229 rval
= QLA_FUNCTION_FAILED
;
2235 qla2x00_flash_disable(ha
);
2238 qla2x00_resume_hba(vha
);
2244 qla24xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2245 uint32_t offset
, uint32_t length
)
2247 struct qla_hw_data
*ha
= vha
->hw
;
2250 scsi_block_requests(vha
->host
);
2251 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2254 qla24xx_read_flash_data(vha
, (uint32_t *)buf
, offset
>> 2, length
>> 2);
2257 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2258 scsi_unblock_requests(vha
->host
);
2264 qla24xx_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2265 uint32_t offset
, uint32_t length
)
2268 struct qla_hw_data
*ha
= vha
->hw
;
2271 scsi_block_requests(vha
->host
);
2272 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2274 /* Go with write. */
2275 rval
= qla24xx_write_flash_data(vha
, (uint32_t *)buf
, offset
>> 2,
2278 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2279 scsi_unblock_requests(vha
->host
);
2285 qla25xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2286 uint32_t offset
, uint32_t length
)
2289 dma_addr_t optrom_dma
;
2292 uint32_t faddr
, left
, burst
;
2293 struct qla_hw_data
*ha
= vha
->hw
;
2297 if (length
< OPTROM_BURST_SIZE
)
2300 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2301 &optrom_dma
, GFP_KERNEL
);
2303 qla_printk(KERN_DEBUG
, ha
,
2304 "Unable to allocate memory for optrom burst read "
2305 "(%x KB).\n", OPTROM_BURST_SIZE
/ 1024);
2311 faddr
= offset
>> 2;
2313 burst
= OPTROM_BURST_DWORDS
;
2318 rval
= qla2x00_dump_ram(vha
, optrom_dma
,
2319 flash_data_addr(ha
, faddr
), burst
);
2321 qla_printk(KERN_WARNING
, ha
,
2322 "Unable to burst-read optrom segment "
2323 "(%x/%x/%llx).\n", rval
,
2324 flash_data_addr(ha
, faddr
),
2325 (unsigned long long)optrom_dma
);
2326 qla_printk(KERN_WARNING
, ha
,
2327 "Reverting to slow-read.\n");
2329 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2330 optrom
, optrom_dma
);
2334 memcpy(pbuf
, optrom
, burst
* 4);
2341 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
, optrom
,
2347 return qla24xx_read_optrom_data(vha
, buf
, offset
, length
);
2351 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2353 * @pcids: Pointer to the FCODE PCI data structure
2355 * The process of retrieving the FCODE version information is at best
2356 * described as interesting.
2358 * Within the first 100h bytes of the image an ASCII string is present
2359 * which contains several pieces of information including the FCODE
2360 * version. Unfortunately it seems the only reliable way to retrieve
2361 * the version is by scanning for another sentinel within the string,
2362 * the FCODE build date:
2364 * ... 2.00.02 10/17/02 ...
2366 * Returns QLA_SUCCESS on successful retrieval of version.
2369 qla2x00_get_fcode_version(struct qla_hw_data
*ha
, uint32_t pcids
)
2371 int ret
= QLA_FUNCTION_FAILED
;
2372 uint32_t istart
, iend
, iter
, vend
;
2373 uint8_t do_next
, rbyte
, *vbyte
;
2375 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2377 /* Skip the PCI data structure. */
2379 ((qla2x00_read_flash_byte(ha
, pcids
+ 0x0B) << 8) |
2380 qla2x00_read_flash_byte(ha
, pcids
+ 0x0A));
2381 iend
= istart
+ 0x100;
2383 /* Scan for the sentinel date string...eeewww. */
2386 while ((iter
< iend
) && !do_next
) {
2388 if (qla2x00_read_flash_byte(ha
, iter
) == '/') {
2389 if (qla2x00_read_flash_byte(ha
, iter
+ 2) ==
2392 else if (qla2x00_read_flash_byte(ha
,
2400 /* Backtrack to previous ' ' (space). */
2402 while ((iter
> istart
) && !do_next
) {
2404 if (qla2x00_read_flash_byte(ha
, iter
) == ' ')
2411 * Mark end of version tag, and find previous ' ' (space) or
2412 * string length (recent FCODE images -- major hack ahead!!!).
2416 while ((iter
> istart
) && !do_next
) {
2418 rbyte
= qla2x00_read_flash_byte(ha
, iter
);
2419 if (rbyte
== ' ' || rbyte
== 0xd || rbyte
== 0x10)
2425 /* Mark beginning of version tag, and copy data. */
2427 if ((vend
- iter
) &&
2428 ((vend
- iter
) < sizeof(ha
->fcode_revision
))) {
2429 vbyte
= ha
->fcode_revision
;
2430 while (iter
<= vend
) {
2431 *vbyte
++ = qla2x00_read_flash_byte(ha
, iter
);
2438 if (ret
!= QLA_SUCCESS
)
2439 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2443 qla2x00_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2445 int ret
= QLA_SUCCESS
;
2446 uint8_t code_type
, last_image
;
2447 uint32_t pcihdr
, pcids
;
2450 struct qla_hw_data
*ha
= vha
->hw
;
2452 if (!ha
->pio_address
|| !mbuf
)
2453 return QLA_FUNCTION_FAILED
;
2455 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2456 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2457 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2458 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2460 qla2x00_flash_enable(ha
);
2462 /* Begin with first PCI expansion ROM header. */
2466 /* Verify PCI expansion ROM header. */
2467 if (qla2x00_read_flash_byte(ha
, pcihdr
) != 0x55 ||
2468 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x01) != 0xaa) {
2470 DEBUG2(qla_printk(KERN_DEBUG
, ha
, "No matching ROM "
2472 ret
= QLA_FUNCTION_FAILED
;
2476 /* Locate PCI data structure. */
2478 ((qla2x00_read_flash_byte(ha
, pcihdr
+ 0x19) << 8) |
2479 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x18));
2481 /* Validate signature of PCI data structure. */
2482 if (qla2x00_read_flash_byte(ha
, pcids
) != 'P' ||
2483 qla2x00_read_flash_byte(ha
, pcids
+ 0x1) != 'C' ||
2484 qla2x00_read_flash_byte(ha
, pcids
+ 0x2) != 'I' ||
2485 qla2x00_read_flash_byte(ha
, pcids
+ 0x3) != 'R') {
2486 /* Incorrect header. */
2487 DEBUG2(qla_printk(KERN_INFO
, ha
, "PCI data struct not "
2488 "found pcir_adr=%x.\n", pcids
));
2489 ret
= QLA_FUNCTION_FAILED
;
2494 code_type
= qla2x00_read_flash_byte(ha
, pcids
+ 0x14);
2495 switch (code_type
) {
2496 case ROM_CODE_TYPE_BIOS
:
2497 /* Intel x86, PC-AT compatible. */
2498 ha
->bios_revision
[0] =
2499 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2500 ha
->bios_revision
[1] =
2501 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2502 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "read BIOS %d.%d.\n",
2503 ha
->bios_revision
[1], ha
->bios_revision
[0]));
2505 case ROM_CODE_TYPE_FCODE
:
2506 /* Open Firmware standard for PCI (FCode). */
2508 qla2x00_get_fcode_version(ha
, pcids
);
2510 case ROM_CODE_TYPE_EFI
:
2511 /* Extensible Firmware Interface (EFI). */
2512 ha
->efi_revision
[0] =
2513 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2514 ha
->efi_revision
[1] =
2515 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2516 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "read EFI %d.%d.\n",
2517 ha
->efi_revision
[1], ha
->efi_revision
[0]));
2520 DEBUG2(qla_printk(KERN_INFO
, ha
, "Unrecognized code "
2521 "type %x at pcids %x.\n", code_type
, pcids
));
2525 last_image
= qla2x00_read_flash_byte(ha
, pcids
+ 0x15) & BIT_7
;
2527 /* Locate next PCI expansion ROM. */
2528 pcihdr
+= ((qla2x00_read_flash_byte(ha
, pcids
+ 0x11) << 8) |
2529 qla2x00_read_flash_byte(ha
, pcids
+ 0x10)) * 512;
2530 } while (!last_image
);
2532 if (IS_QLA2322(ha
)) {
2533 /* Read firmware image information. */
2534 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2536 memset(dbyte
, 0, 8);
2537 dcode
= (uint16_t *)dbyte
;
2539 qla2x00_read_flash_data(ha
, dbyte
, ha
->flt_region_fw
* 4 + 10,
2541 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "dumping fw ver from "
2543 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte
, 8));
2545 if ((dcode
[0] == 0xffff && dcode
[1] == 0xffff &&
2546 dcode
[2] == 0xffff && dcode
[3] == 0xffff) ||
2547 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
2549 DEBUG2(qla_printk(KERN_INFO
, ha
, "Unrecognized fw "
2550 "revision at %x.\n", ha
->flt_region_fw
* 4));
2552 /* values are in big endian */
2553 ha
->fw_revision
[0] = dbyte
[0] << 16 | dbyte
[1];
2554 ha
->fw_revision
[1] = dbyte
[2] << 16 | dbyte
[3];
2555 ha
->fw_revision
[2] = dbyte
[4] << 16 | dbyte
[5];
2559 qla2x00_flash_disable(ha
);
2565 qla24xx_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2567 int ret
= QLA_SUCCESS
;
2568 uint32_t pcihdr
, pcids
;
2571 uint8_t code_type
, last_image
;
2573 struct qla_hw_data
*ha
= vha
->hw
;
2576 return QLA_FUNCTION_FAILED
;
2578 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2579 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2580 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2581 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2585 /* Begin with first PCI expansion ROM header. */
2586 pcihdr
= ha
->flt_region_boot
<< 2;
2589 /* Verify PCI expansion ROM header. */
2590 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
2591 bcode
= mbuf
+ (pcihdr
% 4);
2592 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa) {
2594 DEBUG2(qla_printk(KERN_DEBUG
, ha
, "No matching ROM "
2596 ret
= QLA_FUNCTION_FAILED
;
2600 /* Locate PCI data structure. */
2601 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
2603 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
2604 bcode
= mbuf
+ (pcihdr
% 4);
2606 /* Validate signature of PCI data structure. */
2607 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
2608 bcode
[0x2] != 'I' || bcode
[0x3] != 'R') {
2609 /* Incorrect header. */
2610 DEBUG2(qla_printk(KERN_INFO
, ha
, "PCI data struct not "
2611 "found pcir_adr=%x.\n", pcids
));
2612 ret
= QLA_FUNCTION_FAILED
;
2617 code_type
= bcode
[0x14];
2618 switch (code_type
) {
2619 case ROM_CODE_TYPE_BIOS
:
2620 /* Intel x86, PC-AT compatible. */
2621 ha
->bios_revision
[0] = bcode
[0x12];
2622 ha
->bios_revision
[1] = bcode
[0x13];
2623 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "read BIOS %d.%d.\n",
2624 ha
->bios_revision
[1], ha
->bios_revision
[0]));
2626 case ROM_CODE_TYPE_FCODE
:
2627 /* Open Firmware standard for PCI (FCode). */
2628 ha
->fcode_revision
[0] = bcode
[0x12];
2629 ha
->fcode_revision
[1] = bcode
[0x13];
2630 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "read FCODE %d.%d.\n",
2631 ha
->fcode_revision
[1], ha
->fcode_revision
[0]));
2633 case ROM_CODE_TYPE_EFI
:
2634 /* Extensible Firmware Interface (EFI). */
2635 ha
->efi_revision
[0] = bcode
[0x12];
2636 ha
->efi_revision
[1] = bcode
[0x13];
2637 DEBUG3(qla_printk(KERN_DEBUG
, ha
, "read EFI %d.%d.\n",
2638 ha
->efi_revision
[1], ha
->efi_revision
[0]));
2641 DEBUG2(qla_printk(KERN_INFO
, ha
, "Unrecognized code "
2642 "type %x at pcids %x.\n", code_type
, pcids
));
2646 last_image
= bcode
[0x15] & BIT_7
;
2648 /* Locate next PCI expansion ROM. */
2649 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
2650 } while (!last_image
);
2652 /* Read firmware image information. */
2653 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2656 qla24xx_read_flash_data(vha
, dcode
, ha
->flt_region_fw
+ 4, 4);
2657 for (i
= 0; i
< 4; i
++)
2658 dcode
[i
] = be32_to_cpu(dcode
[i
]);
2660 if ((dcode
[0] == 0xffffffff && dcode
[1] == 0xffffffff &&
2661 dcode
[2] == 0xffffffff && dcode
[3] == 0xffffffff) ||
2662 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
2664 DEBUG2(qla_printk(KERN_INFO
, ha
, "Unrecognized fw "
2665 "revision at %x.\n", ha
->flt_region_fw
* 4));
2667 ha
->fw_revision
[0] = dcode
[0];
2668 ha
->fw_revision
[1] = dcode
[1];
2669 ha
->fw_revision
[2] = dcode
[2];
2670 ha
->fw_revision
[3] = dcode
[3];
2677 qla2xxx_is_vpd_valid(uint8_t *pos
, uint8_t *end
)
2679 if (pos
>= end
|| *pos
!= 0x82)
2683 if (pos
>= end
|| *pos
!= 0x90)
2687 if (pos
>= end
|| *pos
!= 0x78)
2694 qla2xxx_get_vpd_field(scsi_qla_host_t
*vha
, char *key
, char *str
, size_t size
)
2696 struct qla_hw_data
*ha
= vha
->hw
;
2697 uint8_t *pos
= ha
->vpd
;
2698 uint8_t *end
= pos
+ ha
->vpd_size
;
2701 if (!IS_FWI2_CAPABLE(ha
) || !qla2xxx_is_vpd_valid(pos
, end
))
2704 while (pos
< end
&& *pos
!= 0x78) {
2705 len
= (*pos
== 0x82) ? pos
[1] : pos
[2];
2707 if (!strncmp(pos
, key
, strlen(key
)))
2710 if (*pos
!= 0x90 && *pos
!= 0x91)
2716 if (pos
< end
- len
&& *pos
!= 0x78)
2717 return snprintf(str
, size
, "%.*s", len
, pos
+ 3);