PM: OMAP3: Removed a couple of unused variables from DVFS code
[linux-ginger.git] / fs / udf / inode.c
blob6d24c2c63f9353c7baf7e9c7158360c1ef40a9f4
1 /*
2 * inode.c
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
17 * HISTORY
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
42 #include "udf_i.h"
43 #include "udf_sb.h"
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
49 #define EXTENT_MERGE_SIZE 5
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
71 void udf_delete_inode(struct inode *inode)
73 truncate_inode_pages(&inode->i_data, 0);
75 if (is_bad_inode(inode))
76 goto no_delete;
78 inode->i_size = 0;
79 udf_truncate(inode);
80 lock_kernel();
82 udf_update_inode(inode, IS_SYNC(inode));
83 udf_free_inode(inode);
85 unlock_kernel();
86 return;
88 no_delete:
89 clear_inode(inode);
93 * If we are going to release inode from memory, we truncate last inode extent
94 * to proper length. We could use drop_inode() but it's called under inode_lock
95 * and thus we cannot mark inode dirty there. We use clear_inode() but we have
96 * to make sure to write inode as it's not written automatically.
98 void udf_clear_inode(struct inode *inode)
100 struct udf_inode_info *iinfo;
101 if (!(inode->i_sb->s_flags & MS_RDONLY)) {
102 lock_kernel();
103 udf_truncate_tail_extent(inode);
104 unlock_kernel();
105 write_inode_now(inode, 0);
106 invalidate_inode_buffers(inode);
108 iinfo = UDF_I(inode);
109 kfree(iinfo->i_ext.i_data);
110 iinfo->i_ext.i_data = NULL;
113 static int udf_writepage(struct page *page, struct writeback_control *wbc)
115 return block_write_full_page(page, udf_get_block, wbc);
118 static int udf_readpage(struct file *file, struct page *page)
120 return block_read_full_page(page, udf_get_block);
123 static int udf_write_begin(struct file *file, struct address_space *mapping,
124 loff_t pos, unsigned len, unsigned flags,
125 struct page **pagep, void **fsdata)
127 *pagep = NULL;
128 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
129 udf_get_block);
132 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
134 return generic_block_bmap(mapping, block, udf_get_block);
137 const struct address_space_operations udf_aops = {
138 .readpage = udf_readpage,
139 .writepage = udf_writepage,
140 .sync_page = block_sync_page,
141 .write_begin = udf_write_begin,
142 .write_end = generic_write_end,
143 .bmap = udf_bmap,
146 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
148 struct page *page;
149 char *kaddr;
150 struct udf_inode_info *iinfo = UDF_I(inode);
151 struct writeback_control udf_wbc = {
152 .sync_mode = WB_SYNC_NONE,
153 .nr_to_write = 1,
156 /* from now on we have normal address_space methods */
157 inode->i_data.a_ops = &udf_aops;
159 if (!iinfo->i_lenAlloc) {
160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
161 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
162 else
163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
164 mark_inode_dirty(inode);
165 return;
168 page = grab_cache_page(inode->i_mapping, 0);
169 BUG_ON(!PageLocked(page));
171 if (!PageUptodate(page)) {
172 kaddr = kmap(page);
173 memset(kaddr + iinfo->i_lenAlloc, 0x00,
174 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
175 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
176 iinfo->i_lenAlloc);
177 flush_dcache_page(page);
178 SetPageUptodate(page);
179 kunmap(page);
181 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
182 iinfo->i_lenAlloc);
183 iinfo->i_lenAlloc = 0;
184 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
185 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
186 else
187 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
189 inode->i_data.a_ops->writepage(page, &udf_wbc);
190 page_cache_release(page);
192 mark_inode_dirty(inode);
195 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
196 int *err)
198 int newblock;
199 struct buffer_head *dbh = NULL;
200 struct kernel_lb_addr eloc;
201 uint32_t elen;
202 uint8_t alloctype;
203 struct extent_position epos;
205 struct udf_fileident_bh sfibh, dfibh;
206 loff_t f_pos = udf_ext0_offset(inode);
207 int size = udf_ext0_offset(inode) + inode->i_size;
208 struct fileIdentDesc cfi, *sfi, *dfi;
209 struct udf_inode_info *iinfo = UDF_I(inode);
211 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
212 alloctype = ICBTAG_FLAG_AD_SHORT;
213 else
214 alloctype = ICBTAG_FLAG_AD_LONG;
216 if (!inode->i_size) {
217 iinfo->i_alloc_type = alloctype;
218 mark_inode_dirty(inode);
219 return NULL;
222 /* alloc block, and copy data to it */
223 *block = udf_new_block(inode->i_sb, inode,
224 iinfo->i_location.partitionReferenceNum,
225 iinfo->i_location.logicalBlockNum, err);
226 if (!(*block))
227 return NULL;
228 newblock = udf_get_pblock(inode->i_sb, *block,
229 iinfo->i_location.partitionReferenceNum,
231 if (!newblock)
232 return NULL;
233 dbh = udf_tgetblk(inode->i_sb, newblock);
234 if (!dbh)
235 return NULL;
236 lock_buffer(dbh);
237 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
238 set_buffer_uptodate(dbh);
239 unlock_buffer(dbh);
240 mark_buffer_dirty_inode(dbh, inode);
242 sfibh.soffset = sfibh.eoffset =
243 f_pos & (inode->i_sb->s_blocksize - 1);
244 sfibh.sbh = sfibh.ebh = NULL;
245 dfibh.soffset = dfibh.eoffset = 0;
246 dfibh.sbh = dfibh.ebh = dbh;
247 while (f_pos < size) {
248 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
249 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
250 NULL, NULL, NULL);
251 if (!sfi) {
252 brelse(dbh);
253 return NULL;
255 iinfo->i_alloc_type = alloctype;
256 sfi->descTag.tagLocation = cpu_to_le32(*block);
257 dfibh.soffset = dfibh.eoffset;
258 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
259 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
260 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
261 sfi->fileIdent +
262 le16_to_cpu(sfi->lengthOfImpUse))) {
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
264 brelse(dbh);
265 return NULL;
268 mark_buffer_dirty_inode(dbh, inode);
270 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
271 iinfo->i_lenAlloc);
272 iinfo->i_lenAlloc = 0;
273 eloc.logicalBlockNum = *block;
274 eloc.partitionReferenceNum =
275 iinfo->i_location.partitionReferenceNum;
276 elen = inode->i_sb->s_blocksize;
277 iinfo->i_lenExtents = elen;
278 epos.bh = NULL;
279 epos.block = iinfo->i_location;
280 epos.offset = udf_file_entry_alloc_offset(inode);
281 udf_add_aext(inode, &epos, &eloc, elen, 0);
282 /* UniqueID stuff */
284 brelse(epos.bh);
285 mark_inode_dirty(inode);
286 return dbh;
289 static int udf_get_block(struct inode *inode, sector_t block,
290 struct buffer_head *bh_result, int create)
292 int err, new;
293 struct buffer_head *bh;
294 sector_t phys = 0;
295 struct udf_inode_info *iinfo;
297 if (!create) {
298 phys = udf_block_map(inode, block);
299 if (phys)
300 map_bh(bh_result, inode->i_sb, phys);
301 return 0;
304 err = -EIO;
305 new = 0;
306 bh = NULL;
308 lock_kernel();
310 iinfo = UDF_I(inode);
311 if (block == iinfo->i_next_alloc_block + 1) {
312 iinfo->i_next_alloc_block++;
313 iinfo->i_next_alloc_goal++;
316 err = 0;
318 bh = inode_getblk(inode, block, &err, &phys, &new);
319 BUG_ON(bh);
320 if (err)
321 goto abort;
322 BUG_ON(!phys);
324 if (new)
325 set_buffer_new(bh_result);
326 map_bh(bh_result, inode->i_sb, phys);
328 abort:
329 unlock_kernel();
330 return err;
333 static struct buffer_head *udf_getblk(struct inode *inode, long block,
334 int create, int *err)
336 struct buffer_head *bh;
337 struct buffer_head dummy;
339 dummy.b_state = 0;
340 dummy.b_blocknr = -1000;
341 *err = udf_get_block(inode, block, &dummy, create);
342 if (!*err && buffer_mapped(&dummy)) {
343 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
344 if (buffer_new(&dummy)) {
345 lock_buffer(bh);
346 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
347 set_buffer_uptodate(bh);
348 unlock_buffer(bh);
349 mark_buffer_dirty_inode(bh, inode);
351 return bh;
354 return NULL;
357 /* Extend the file by 'blocks' blocks, return the number of extents added */
358 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
359 struct kernel_long_ad *last_ext, sector_t blocks)
361 sector_t add;
362 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
363 struct super_block *sb = inode->i_sb;
364 struct kernel_lb_addr prealloc_loc = {};
365 int prealloc_len = 0;
366 struct udf_inode_info *iinfo;
368 /* The previous extent is fake and we should not extend by anything
369 * - there's nothing to do... */
370 if (!blocks && fake)
371 return 0;
373 iinfo = UDF_I(inode);
374 /* Round the last extent up to a multiple of block size */
375 if (last_ext->extLength & (sb->s_blocksize - 1)) {
376 last_ext->extLength =
377 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
378 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
379 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
380 iinfo->i_lenExtents =
381 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
382 ~(sb->s_blocksize - 1);
385 /* Last extent are just preallocated blocks? */
386 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
387 EXT_NOT_RECORDED_ALLOCATED) {
388 /* Save the extent so that we can reattach it to the end */
389 prealloc_loc = last_ext->extLocation;
390 prealloc_len = last_ext->extLength;
391 /* Mark the extent as a hole */
392 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
393 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 last_ext->extLocation.logicalBlockNum = 0;
395 last_ext->extLocation.partitionReferenceNum = 0;
398 /* Can we merge with the previous extent? */
399 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
400 EXT_NOT_RECORDED_NOT_ALLOCATED) {
401 add = ((1 << 30) - sb->s_blocksize -
402 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
403 sb->s_blocksize_bits;
404 if (add > blocks)
405 add = blocks;
406 blocks -= add;
407 last_ext->extLength += add << sb->s_blocksize_bits;
410 if (fake) {
411 udf_add_aext(inode, last_pos, &last_ext->extLocation,
412 last_ext->extLength, 1);
413 count++;
414 } else
415 udf_write_aext(inode, last_pos, &last_ext->extLocation,
416 last_ext->extLength, 1);
418 /* Managed to do everything necessary? */
419 if (!blocks)
420 goto out;
422 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
423 last_ext->extLocation.logicalBlockNum = 0;
424 last_ext->extLocation.partitionReferenceNum = 0;
425 add = (1 << (30-sb->s_blocksize_bits)) - 1;
426 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
427 (add << sb->s_blocksize_bits);
429 /* Create enough extents to cover the whole hole */
430 while (blocks > add) {
431 blocks -= add;
432 if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
433 last_ext->extLength, 1) == -1)
434 return -1;
435 count++;
437 if (blocks) {
438 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
439 (blocks << sb->s_blocksize_bits);
440 if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
441 last_ext->extLength, 1) == -1)
442 return -1;
443 count++;
446 out:
447 /* Do we have some preallocated blocks saved? */
448 if (prealloc_len) {
449 if (udf_add_aext(inode, last_pos, &prealloc_loc,
450 prealloc_len, 1) == -1)
451 return -1;
452 last_ext->extLocation = prealloc_loc;
453 last_ext->extLength = prealloc_len;
454 count++;
457 /* last_pos should point to the last written extent... */
458 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
459 last_pos->offset -= sizeof(struct short_ad);
460 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
461 last_pos->offset -= sizeof(struct long_ad);
462 else
463 return -1;
465 return count;
468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
469 int *err, sector_t *phys, int *new)
471 static sector_t last_block;
472 struct buffer_head *result = NULL;
473 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
474 struct extent_position prev_epos, cur_epos, next_epos;
475 int count = 0, startnum = 0, endnum = 0;
476 uint32_t elen = 0, tmpelen;
477 struct kernel_lb_addr eloc, tmpeloc;
478 int c = 1;
479 loff_t lbcount = 0, b_off = 0;
480 uint32_t newblocknum, newblock;
481 sector_t offset = 0;
482 int8_t etype;
483 struct udf_inode_info *iinfo = UDF_I(inode);
484 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
485 int lastblock = 0;
487 prev_epos.offset = udf_file_entry_alloc_offset(inode);
488 prev_epos.block = iinfo->i_location;
489 prev_epos.bh = NULL;
490 cur_epos = next_epos = prev_epos;
491 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
493 /* find the extent which contains the block we are looking for.
494 alternate between laarr[0] and laarr[1] for locations of the
495 current extent, and the previous extent */
496 do {
497 if (prev_epos.bh != cur_epos.bh) {
498 brelse(prev_epos.bh);
499 get_bh(cur_epos.bh);
500 prev_epos.bh = cur_epos.bh;
502 if (cur_epos.bh != next_epos.bh) {
503 brelse(cur_epos.bh);
504 get_bh(next_epos.bh);
505 cur_epos.bh = next_epos.bh;
508 lbcount += elen;
510 prev_epos.block = cur_epos.block;
511 cur_epos.block = next_epos.block;
513 prev_epos.offset = cur_epos.offset;
514 cur_epos.offset = next_epos.offset;
516 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
517 if (etype == -1)
518 break;
520 c = !c;
522 laarr[c].extLength = (etype << 30) | elen;
523 laarr[c].extLocation = eloc;
525 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
526 pgoal = eloc.logicalBlockNum +
527 ((elen + inode->i_sb->s_blocksize - 1) >>
528 inode->i_sb->s_blocksize_bits);
530 count++;
531 } while (lbcount + elen <= b_off);
533 b_off -= lbcount;
534 offset = b_off >> inode->i_sb->s_blocksize_bits;
536 * Move prev_epos and cur_epos into indirect extent if we are at
537 * the pointer to it
539 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
540 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542 /* if the extent is allocated and recorded, return the block
543 if the extent is not a multiple of the blocksize, round up */
545 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
546 if (elen & (inode->i_sb->s_blocksize - 1)) {
547 elen = EXT_RECORDED_ALLOCATED |
548 ((elen + inode->i_sb->s_blocksize - 1) &
549 ~(inode->i_sb->s_blocksize - 1));
550 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
552 brelse(prev_epos.bh);
553 brelse(cur_epos.bh);
554 brelse(next_epos.bh);
555 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
556 *phys = newblock;
557 return NULL;
560 last_block = block;
561 /* Are we beyond EOF? */
562 if (etype == -1) {
563 int ret;
565 if (count) {
566 if (c)
567 laarr[0] = laarr[1];
568 startnum = 1;
569 } else {
570 /* Create a fake extent when there's not one */
571 memset(&laarr[0].extLocation, 0x00,
572 sizeof(struct kernel_lb_addr));
573 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
574 /* Will udf_extend_file() create real extent from
575 a fake one? */
576 startnum = (offset > 0);
578 /* Create extents for the hole between EOF and offset */
579 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
580 if (ret == -1) {
581 brelse(prev_epos.bh);
582 brelse(cur_epos.bh);
583 brelse(next_epos.bh);
584 /* We don't really know the error here so we just make
585 * something up */
586 *err = -ENOSPC;
587 return NULL;
589 c = 0;
590 offset = 0;
591 count += ret;
592 /* We are not covered by a preallocated extent? */
593 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
594 EXT_NOT_RECORDED_ALLOCATED) {
595 /* Is there any real extent? - otherwise we overwrite
596 * the fake one... */
597 if (count)
598 c = !c;
599 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
600 inode->i_sb->s_blocksize;
601 memset(&laarr[c].extLocation, 0x00,
602 sizeof(struct kernel_lb_addr));
603 count++;
604 endnum++;
606 endnum = c + 1;
607 lastblock = 1;
608 } else {
609 endnum = startnum = ((count > 2) ? 2 : count);
611 /* if the current extent is in position 0,
612 swap it with the previous */
613 if (!c && count != 1) {
614 laarr[2] = laarr[0];
615 laarr[0] = laarr[1];
616 laarr[1] = laarr[2];
617 c = 1;
620 /* if the current block is located in an extent,
621 read the next extent */
622 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
623 if (etype != -1) {
624 laarr[c + 1].extLength = (etype << 30) | elen;
625 laarr[c + 1].extLocation = eloc;
626 count++;
627 startnum++;
628 endnum++;
629 } else
630 lastblock = 1;
633 /* if the current extent is not recorded but allocated, get the
634 * block in the extent corresponding to the requested block */
635 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
636 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
637 else { /* otherwise, allocate a new block */
638 if (iinfo->i_next_alloc_block == block)
639 goal = iinfo->i_next_alloc_goal;
641 if (!goal) {
642 if (!(goal = pgoal)) /* XXX: what was intended here? */
643 goal = iinfo->i_location.logicalBlockNum + 1;
646 newblocknum = udf_new_block(inode->i_sb, inode,
647 iinfo->i_location.partitionReferenceNum,
648 goal, err);
649 if (!newblocknum) {
650 brelse(prev_epos.bh);
651 *err = -ENOSPC;
652 return NULL;
654 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
657 /* if the extent the requsted block is located in contains multiple
658 * blocks, split the extent into at most three extents. blocks prior
659 * to requested block, requested block, and blocks after requested
660 * block */
661 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
663 #ifdef UDF_PREALLOCATE
664 /* We preallocate blocks only for regular files. It also makes sense
665 * for directories but there's a problem when to drop the
666 * preallocation. We might use some delayed work for that but I feel
667 * it's overengineering for a filesystem like UDF. */
668 if (S_ISREG(inode->i_mode))
669 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
670 #endif
672 /* merge any continuous blocks in laarr */
673 udf_merge_extents(inode, laarr, &endnum);
675 /* write back the new extents, inserting new extents if the new number
676 * of extents is greater than the old number, and deleting extents if
677 * the new number of extents is less than the old number */
678 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
680 brelse(prev_epos.bh);
682 newblock = udf_get_pblock(inode->i_sb, newblocknum,
683 iinfo->i_location.partitionReferenceNum, 0);
684 if (!newblock)
685 return NULL;
686 *phys = newblock;
687 *err = 0;
688 *new = 1;
689 iinfo->i_next_alloc_block = block;
690 iinfo->i_next_alloc_goal = newblocknum;
691 inode->i_ctime = current_fs_time(inode->i_sb);
693 if (IS_SYNC(inode))
694 udf_sync_inode(inode);
695 else
696 mark_inode_dirty(inode);
698 return result;
701 static void udf_split_extents(struct inode *inode, int *c, int offset,
702 int newblocknum,
703 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
704 int *endnum)
706 unsigned long blocksize = inode->i_sb->s_blocksize;
707 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
709 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
710 (laarr[*c].extLength >> 30) ==
711 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
712 int curr = *c;
713 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
714 blocksize - 1) >> blocksize_bits;
715 int8_t etype = (laarr[curr].extLength >> 30);
717 if (blen == 1)
719 else if (!offset || blen == offset + 1) {
720 laarr[curr + 2] = laarr[curr + 1];
721 laarr[curr + 1] = laarr[curr];
722 } else {
723 laarr[curr + 3] = laarr[curr + 1];
724 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
727 if (offset) {
728 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
729 udf_free_blocks(inode->i_sb, inode,
730 &laarr[curr].extLocation,
731 0, offset);
732 laarr[curr].extLength =
733 EXT_NOT_RECORDED_NOT_ALLOCATED |
734 (offset << blocksize_bits);
735 laarr[curr].extLocation.logicalBlockNum = 0;
736 laarr[curr].extLocation.
737 partitionReferenceNum = 0;
738 } else
739 laarr[curr].extLength = (etype << 30) |
740 (offset << blocksize_bits);
741 curr++;
742 (*c)++;
743 (*endnum)++;
746 laarr[curr].extLocation.logicalBlockNum = newblocknum;
747 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
748 laarr[curr].extLocation.partitionReferenceNum =
749 UDF_I(inode)->i_location.partitionReferenceNum;
750 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
751 blocksize;
752 curr++;
754 if (blen != offset + 1) {
755 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
756 laarr[curr].extLocation.logicalBlockNum +=
757 offset + 1;
758 laarr[curr].extLength = (etype << 30) |
759 ((blen - (offset + 1)) << blocksize_bits);
760 curr++;
761 (*endnum)++;
766 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
767 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
768 int *endnum)
770 int start, length = 0, currlength = 0, i;
772 if (*endnum >= (c + 1)) {
773 if (!lastblock)
774 return;
775 else
776 start = c;
777 } else {
778 if ((laarr[c + 1].extLength >> 30) ==
779 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
780 start = c + 1;
781 length = currlength =
782 (((laarr[c + 1].extLength &
783 UDF_EXTENT_LENGTH_MASK) +
784 inode->i_sb->s_blocksize - 1) >>
785 inode->i_sb->s_blocksize_bits);
786 } else
787 start = c;
790 for (i = start + 1; i <= *endnum; i++) {
791 if (i == *endnum) {
792 if (lastblock)
793 length += UDF_DEFAULT_PREALLOC_BLOCKS;
794 } else if ((laarr[i].extLength >> 30) ==
795 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
796 length += (((laarr[i].extLength &
797 UDF_EXTENT_LENGTH_MASK) +
798 inode->i_sb->s_blocksize - 1) >>
799 inode->i_sb->s_blocksize_bits);
800 } else
801 break;
804 if (length) {
805 int next = laarr[start].extLocation.logicalBlockNum +
806 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
807 inode->i_sb->s_blocksize - 1) >>
808 inode->i_sb->s_blocksize_bits);
809 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
810 laarr[start].extLocation.partitionReferenceNum,
811 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
812 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
813 currlength);
814 if (numalloc) {
815 if (start == (c + 1))
816 laarr[start].extLength +=
817 (numalloc <<
818 inode->i_sb->s_blocksize_bits);
819 else {
820 memmove(&laarr[c + 2], &laarr[c + 1],
821 sizeof(struct long_ad) * (*endnum - (c + 1)));
822 (*endnum)++;
823 laarr[c + 1].extLocation.logicalBlockNum = next;
824 laarr[c + 1].extLocation.partitionReferenceNum =
825 laarr[c].extLocation.
826 partitionReferenceNum;
827 laarr[c + 1].extLength =
828 EXT_NOT_RECORDED_ALLOCATED |
829 (numalloc <<
830 inode->i_sb->s_blocksize_bits);
831 start = c + 1;
834 for (i = start + 1; numalloc && i < *endnum; i++) {
835 int elen = ((laarr[i].extLength &
836 UDF_EXTENT_LENGTH_MASK) +
837 inode->i_sb->s_blocksize - 1) >>
838 inode->i_sb->s_blocksize_bits;
840 if (elen > numalloc) {
841 laarr[i].extLength -=
842 (numalloc <<
843 inode->i_sb->s_blocksize_bits);
844 numalloc = 0;
845 } else {
846 numalloc -= elen;
847 if (*endnum > (i + 1))
848 memmove(&laarr[i],
849 &laarr[i + 1],
850 sizeof(struct long_ad) *
851 (*endnum - (i + 1)));
852 i--;
853 (*endnum)--;
856 UDF_I(inode)->i_lenExtents +=
857 numalloc << inode->i_sb->s_blocksize_bits;
862 static void udf_merge_extents(struct inode *inode,
863 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
864 int *endnum)
866 int i;
867 unsigned long blocksize = inode->i_sb->s_blocksize;
868 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
870 for (i = 0; i < (*endnum - 1); i++) {
871 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
872 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
874 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
875 (((li->extLength >> 30) ==
876 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
877 ((lip1->extLocation.logicalBlockNum -
878 li->extLocation.logicalBlockNum) ==
879 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
880 blocksize - 1) >> blocksize_bits)))) {
882 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
883 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
884 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
885 lip1->extLength = (lip1->extLength -
886 (li->extLength &
887 UDF_EXTENT_LENGTH_MASK) +
888 UDF_EXTENT_LENGTH_MASK) &
889 ~(blocksize - 1);
890 li->extLength = (li->extLength &
891 UDF_EXTENT_FLAG_MASK) +
892 (UDF_EXTENT_LENGTH_MASK + 1) -
893 blocksize;
894 lip1->extLocation.logicalBlockNum =
895 li->extLocation.logicalBlockNum +
896 ((li->extLength &
897 UDF_EXTENT_LENGTH_MASK) >>
898 blocksize_bits);
899 } else {
900 li->extLength = lip1->extLength +
901 (((li->extLength &
902 UDF_EXTENT_LENGTH_MASK) +
903 blocksize - 1) & ~(blocksize - 1));
904 if (*endnum > (i + 2))
905 memmove(&laarr[i + 1], &laarr[i + 2],
906 sizeof(struct long_ad) *
907 (*endnum - (i + 2)));
908 i--;
909 (*endnum)--;
911 } else if (((li->extLength >> 30) ==
912 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
913 ((lip1->extLength >> 30) ==
914 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
915 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
916 ((li->extLength &
917 UDF_EXTENT_LENGTH_MASK) +
918 blocksize - 1) >> blocksize_bits);
919 li->extLocation.logicalBlockNum = 0;
920 li->extLocation.partitionReferenceNum = 0;
922 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
923 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
924 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
925 lip1->extLength = (lip1->extLength -
926 (li->extLength &
927 UDF_EXTENT_LENGTH_MASK) +
928 UDF_EXTENT_LENGTH_MASK) &
929 ~(blocksize - 1);
930 li->extLength = (li->extLength &
931 UDF_EXTENT_FLAG_MASK) +
932 (UDF_EXTENT_LENGTH_MASK + 1) -
933 blocksize;
934 } else {
935 li->extLength = lip1->extLength +
936 (((li->extLength &
937 UDF_EXTENT_LENGTH_MASK) +
938 blocksize - 1) & ~(blocksize - 1));
939 if (*endnum > (i + 2))
940 memmove(&laarr[i + 1], &laarr[i + 2],
941 sizeof(struct long_ad) *
942 (*endnum - (i + 2)));
943 i--;
944 (*endnum)--;
946 } else if ((li->extLength >> 30) ==
947 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
948 udf_free_blocks(inode->i_sb, inode,
949 &li->extLocation, 0,
950 ((li->extLength &
951 UDF_EXTENT_LENGTH_MASK) +
952 blocksize - 1) >> blocksize_bits);
953 li->extLocation.logicalBlockNum = 0;
954 li->extLocation.partitionReferenceNum = 0;
955 li->extLength = (li->extLength &
956 UDF_EXTENT_LENGTH_MASK) |
957 EXT_NOT_RECORDED_NOT_ALLOCATED;
962 static void udf_update_extents(struct inode *inode,
963 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
964 int startnum, int endnum,
965 struct extent_position *epos)
967 int start = 0, i;
968 struct kernel_lb_addr tmploc;
969 uint32_t tmplen;
971 if (startnum > endnum) {
972 for (i = 0; i < (startnum - endnum); i++)
973 udf_delete_aext(inode, *epos, laarr[i].extLocation,
974 laarr[i].extLength);
975 } else if (startnum < endnum) {
976 for (i = 0; i < (endnum - startnum); i++) {
977 udf_insert_aext(inode, *epos, laarr[i].extLocation,
978 laarr[i].extLength);
979 udf_next_aext(inode, epos, &laarr[i].extLocation,
980 &laarr[i].extLength, 1);
981 start++;
985 for (i = start; i < endnum; i++) {
986 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
987 udf_write_aext(inode, epos, &laarr[i].extLocation,
988 laarr[i].extLength, 1);
992 struct buffer_head *udf_bread(struct inode *inode, int block,
993 int create, int *err)
995 struct buffer_head *bh = NULL;
997 bh = udf_getblk(inode, block, create, err);
998 if (!bh)
999 return NULL;
1001 if (buffer_uptodate(bh))
1002 return bh;
1004 ll_rw_block(READ, 1, &bh);
1006 wait_on_buffer(bh);
1007 if (buffer_uptodate(bh))
1008 return bh;
1010 brelse(bh);
1011 *err = -EIO;
1012 return NULL;
1015 void udf_truncate(struct inode *inode)
1017 int offset;
1018 int err;
1019 struct udf_inode_info *iinfo;
1021 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1022 S_ISLNK(inode->i_mode)))
1023 return;
1024 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1025 return;
1027 lock_kernel();
1028 iinfo = UDF_I(inode);
1029 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1030 if (inode->i_sb->s_blocksize <
1031 (udf_file_entry_alloc_offset(inode) +
1032 inode->i_size)) {
1033 udf_expand_file_adinicb(inode, inode->i_size, &err);
1034 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1035 inode->i_size = iinfo->i_lenAlloc;
1036 unlock_kernel();
1037 return;
1038 } else
1039 udf_truncate_extents(inode);
1040 } else {
1041 offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1042 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1043 0x00, inode->i_sb->s_blocksize -
1044 offset - udf_file_entry_alloc_offset(inode));
1045 iinfo->i_lenAlloc = inode->i_size;
1047 } else {
1048 block_truncate_page(inode->i_mapping, inode->i_size,
1049 udf_get_block);
1050 udf_truncate_extents(inode);
1053 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1054 if (IS_SYNC(inode))
1055 udf_sync_inode(inode);
1056 else
1057 mark_inode_dirty(inode);
1058 unlock_kernel();
1061 static void __udf_read_inode(struct inode *inode)
1063 struct buffer_head *bh = NULL;
1064 struct fileEntry *fe;
1065 uint16_t ident;
1066 struct udf_inode_info *iinfo = UDF_I(inode);
1069 * Set defaults, but the inode is still incomplete!
1070 * Note: get_new_inode() sets the following on a new inode:
1071 * i_sb = sb
1072 * i_no = ino
1073 * i_flags = sb->s_flags
1074 * i_state = 0
1075 * clean_inode(): zero fills and sets
1076 * i_count = 1
1077 * i_nlink = 1
1078 * i_op = NULL;
1080 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1081 if (!bh) {
1082 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1083 inode->i_ino);
1084 make_bad_inode(inode);
1085 return;
1088 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1089 ident != TAG_IDENT_USE) {
1090 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1091 "failed ident=%d\n", inode->i_ino, ident);
1092 brelse(bh);
1093 make_bad_inode(inode);
1094 return;
1097 fe = (struct fileEntry *)bh->b_data;
1099 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1100 struct buffer_head *ibh;
1102 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1103 &ident);
1104 if (ident == TAG_IDENT_IE && ibh) {
1105 struct buffer_head *nbh = NULL;
1106 struct kernel_lb_addr loc;
1107 struct indirectEntry *ie;
1109 ie = (struct indirectEntry *)ibh->b_data;
1110 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1112 if (ie->indirectICB.extLength &&
1113 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1114 &ident))) {
1115 if (ident == TAG_IDENT_FE ||
1116 ident == TAG_IDENT_EFE) {
1117 memcpy(&iinfo->i_location,
1118 &loc,
1119 sizeof(struct kernel_lb_addr));
1120 brelse(bh);
1121 brelse(ibh);
1122 brelse(nbh);
1123 __udf_read_inode(inode);
1124 return;
1126 brelse(nbh);
1129 brelse(ibh);
1130 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1131 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1132 le16_to_cpu(fe->icbTag.strategyType));
1133 brelse(bh);
1134 make_bad_inode(inode);
1135 return;
1137 udf_fill_inode(inode, bh);
1139 brelse(bh);
1142 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1144 struct fileEntry *fe;
1145 struct extendedFileEntry *efe;
1146 int offset;
1147 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1148 struct udf_inode_info *iinfo = UDF_I(inode);
1150 fe = (struct fileEntry *)bh->b_data;
1151 efe = (struct extendedFileEntry *)bh->b_data;
1153 if (fe->icbTag.strategyType == cpu_to_le16(4))
1154 iinfo->i_strat4096 = 0;
1155 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1156 iinfo->i_strat4096 = 1;
1158 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1159 ICBTAG_FLAG_AD_MASK;
1160 iinfo->i_unique = 0;
1161 iinfo->i_lenEAttr = 0;
1162 iinfo->i_lenExtents = 0;
1163 iinfo->i_lenAlloc = 0;
1164 iinfo->i_next_alloc_block = 0;
1165 iinfo->i_next_alloc_goal = 0;
1166 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1167 iinfo->i_efe = 1;
1168 iinfo->i_use = 0;
1169 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1170 sizeof(struct extendedFileEntry))) {
1171 make_bad_inode(inode);
1172 return;
1174 memcpy(iinfo->i_ext.i_data,
1175 bh->b_data + sizeof(struct extendedFileEntry),
1176 inode->i_sb->s_blocksize -
1177 sizeof(struct extendedFileEntry));
1178 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1179 iinfo->i_efe = 0;
1180 iinfo->i_use = 0;
1181 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1182 sizeof(struct fileEntry))) {
1183 make_bad_inode(inode);
1184 return;
1186 memcpy(iinfo->i_ext.i_data,
1187 bh->b_data + sizeof(struct fileEntry),
1188 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1189 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1190 iinfo->i_efe = 0;
1191 iinfo->i_use = 1;
1192 iinfo->i_lenAlloc = le32_to_cpu(
1193 ((struct unallocSpaceEntry *)bh->b_data)->
1194 lengthAllocDescs);
1195 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1196 sizeof(struct unallocSpaceEntry))) {
1197 make_bad_inode(inode);
1198 return;
1200 memcpy(iinfo->i_ext.i_data,
1201 bh->b_data + sizeof(struct unallocSpaceEntry),
1202 inode->i_sb->s_blocksize -
1203 sizeof(struct unallocSpaceEntry));
1204 return;
1207 inode->i_uid = le32_to_cpu(fe->uid);
1208 if (inode->i_uid == -1 ||
1209 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1210 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1211 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1213 inode->i_gid = le32_to_cpu(fe->gid);
1214 if (inode->i_gid == -1 ||
1215 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1216 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1217 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1219 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1220 if (!inode->i_nlink)
1221 inode->i_nlink = 1;
1223 inode->i_size = le64_to_cpu(fe->informationLength);
1224 iinfo->i_lenExtents = inode->i_size;
1226 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1227 sbi->s_fmode != UDF_INVALID_MODE)
1228 inode->i_mode = sbi->s_fmode;
1229 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1230 sbi->s_dmode != UDF_INVALID_MODE)
1231 inode->i_mode = sbi->s_dmode;
1232 else
1233 inode->i_mode = udf_convert_permissions(fe);
1234 inode->i_mode &= ~sbi->s_umask;
1236 if (iinfo->i_efe == 0) {
1237 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1238 (inode->i_sb->s_blocksize_bits - 9);
1240 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1241 inode->i_atime = sbi->s_record_time;
1243 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1244 fe->modificationTime))
1245 inode->i_mtime = sbi->s_record_time;
1247 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1248 inode->i_ctime = sbi->s_record_time;
1250 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1251 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1252 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1253 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1254 } else {
1255 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1256 (inode->i_sb->s_blocksize_bits - 9);
1258 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1259 inode->i_atime = sbi->s_record_time;
1261 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1262 efe->modificationTime))
1263 inode->i_mtime = sbi->s_record_time;
1265 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1266 iinfo->i_crtime = sbi->s_record_time;
1268 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1269 inode->i_ctime = sbi->s_record_time;
1271 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1272 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1273 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1274 offset = sizeof(struct extendedFileEntry) +
1275 iinfo->i_lenEAttr;
1278 switch (fe->icbTag.fileType) {
1279 case ICBTAG_FILE_TYPE_DIRECTORY:
1280 inode->i_op = &udf_dir_inode_operations;
1281 inode->i_fop = &udf_dir_operations;
1282 inode->i_mode |= S_IFDIR;
1283 inc_nlink(inode);
1284 break;
1285 case ICBTAG_FILE_TYPE_REALTIME:
1286 case ICBTAG_FILE_TYPE_REGULAR:
1287 case ICBTAG_FILE_TYPE_UNDEF:
1288 case ICBTAG_FILE_TYPE_VAT20:
1289 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1290 inode->i_data.a_ops = &udf_adinicb_aops;
1291 else
1292 inode->i_data.a_ops = &udf_aops;
1293 inode->i_op = &udf_file_inode_operations;
1294 inode->i_fop = &udf_file_operations;
1295 inode->i_mode |= S_IFREG;
1296 break;
1297 case ICBTAG_FILE_TYPE_BLOCK:
1298 inode->i_mode |= S_IFBLK;
1299 break;
1300 case ICBTAG_FILE_TYPE_CHAR:
1301 inode->i_mode |= S_IFCHR;
1302 break;
1303 case ICBTAG_FILE_TYPE_FIFO:
1304 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1305 break;
1306 case ICBTAG_FILE_TYPE_SOCKET:
1307 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1308 break;
1309 case ICBTAG_FILE_TYPE_SYMLINK:
1310 inode->i_data.a_ops = &udf_symlink_aops;
1311 inode->i_op = &page_symlink_inode_operations;
1312 inode->i_mode = S_IFLNK | S_IRWXUGO;
1313 break;
1314 case ICBTAG_FILE_TYPE_MAIN:
1315 udf_debug("METADATA FILE-----\n");
1316 break;
1317 case ICBTAG_FILE_TYPE_MIRROR:
1318 udf_debug("METADATA MIRROR FILE-----\n");
1319 break;
1320 case ICBTAG_FILE_TYPE_BITMAP:
1321 udf_debug("METADATA BITMAP FILE-----\n");
1322 break;
1323 default:
1324 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1325 "file type=%d\n", inode->i_ino,
1326 fe->icbTag.fileType);
1327 make_bad_inode(inode);
1328 return;
1330 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1331 struct deviceSpec *dsea =
1332 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1333 if (dsea) {
1334 init_special_inode(inode, inode->i_mode,
1335 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1336 le32_to_cpu(dsea->minorDeviceIdent)));
1337 /* Developer ID ??? */
1338 } else
1339 make_bad_inode(inode);
1343 static int udf_alloc_i_data(struct inode *inode, size_t size)
1345 struct udf_inode_info *iinfo = UDF_I(inode);
1346 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1348 if (!iinfo->i_ext.i_data) {
1349 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1350 "no free memory\n", inode->i_ino);
1351 return -ENOMEM;
1354 return 0;
1357 static mode_t udf_convert_permissions(struct fileEntry *fe)
1359 mode_t mode;
1360 uint32_t permissions;
1361 uint32_t flags;
1363 permissions = le32_to_cpu(fe->permissions);
1364 flags = le16_to_cpu(fe->icbTag.flags);
1366 mode = ((permissions) & S_IRWXO) |
1367 ((permissions >> 2) & S_IRWXG) |
1368 ((permissions >> 4) & S_IRWXU) |
1369 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1370 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1371 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1373 return mode;
1376 int udf_write_inode(struct inode *inode, int sync)
1378 int ret;
1380 lock_kernel();
1381 ret = udf_update_inode(inode, sync);
1382 unlock_kernel();
1384 return ret;
1387 int udf_sync_inode(struct inode *inode)
1389 return udf_update_inode(inode, 1);
1392 static int udf_update_inode(struct inode *inode, int do_sync)
1394 struct buffer_head *bh = NULL;
1395 struct fileEntry *fe;
1396 struct extendedFileEntry *efe;
1397 uint32_t udfperms;
1398 uint16_t icbflags;
1399 uint16_t crclen;
1400 int err = 0;
1401 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1402 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1403 struct udf_inode_info *iinfo = UDF_I(inode);
1405 bh = udf_tread(inode->i_sb,
1406 udf_get_lb_pblock(inode->i_sb,
1407 &iinfo->i_location, 0));
1408 if (!bh) {
1409 udf_debug("bread failure\n");
1410 return -EIO;
1413 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1415 fe = (struct fileEntry *)bh->b_data;
1416 efe = (struct extendedFileEntry *)bh->b_data;
1418 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1419 struct unallocSpaceEntry *use =
1420 (struct unallocSpaceEntry *)bh->b_data;
1422 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1423 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1424 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1425 sizeof(struct unallocSpaceEntry));
1426 crclen = sizeof(struct unallocSpaceEntry) +
1427 iinfo->i_lenAlloc - sizeof(struct tag);
1428 use->descTag.tagLocation = cpu_to_le32(
1429 iinfo->i_location.
1430 logicalBlockNum);
1431 use->descTag.descCRCLength = cpu_to_le16(crclen);
1432 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1433 sizeof(struct tag),
1434 crclen));
1435 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1437 mark_buffer_dirty(bh);
1438 brelse(bh);
1439 return err;
1442 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1443 fe->uid = cpu_to_le32(-1);
1444 else
1445 fe->uid = cpu_to_le32(inode->i_uid);
1447 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1448 fe->gid = cpu_to_le32(-1);
1449 else
1450 fe->gid = cpu_to_le32(inode->i_gid);
1452 udfperms = ((inode->i_mode & S_IRWXO)) |
1453 ((inode->i_mode & S_IRWXG) << 2) |
1454 ((inode->i_mode & S_IRWXU) << 4);
1456 udfperms |= (le32_to_cpu(fe->permissions) &
1457 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1458 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1459 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1460 fe->permissions = cpu_to_le32(udfperms);
1462 if (S_ISDIR(inode->i_mode))
1463 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1464 else
1465 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1467 fe->informationLength = cpu_to_le64(inode->i_size);
1469 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1470 struct regid *eid;
1471 struct deviceSpec *dsea =
1472 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1473 if (!dsea) {
1474 dsea = (struct deviceSpec *)
1475 udf_add_extendedattr(inode,
1476 sizeof(struct deviceSpec) +
1477 sizeof(struct regid), 12, 0x3);
1478 dsea->attrType = cpu_to_le32(12);
1479 dsea->attrSubtype = 1;
1480 dsea->attrLength = cpu_to_le32(
1481 sizeof(struct deviceSpec) +
1482 sizeof(struct regid));
1483 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1485 eid = (struct regid *)dsea->impUse;
1486 memset(eid, 0, sizeof(struct regid));
1487 strcpy(eid->ident, UDF_ID_DEVELOPER);
1488 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1489 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1490 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1491 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1494 if (iinfo->i_efe == 0) {
1495 memcpy(bh->b_data + sizeof(struct fileEntry),
1496 iinfo->i_ext.i_data,
1497 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1498 fe->logicalBlocksRecorded = cpu_to_le64(
1499 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1500 (blocksize_bits - 9));
1502 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1503 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1504 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1505 memset(&(fe->impIdent), 0, sizeof(struct regid));
1506 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1507 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1508 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1509 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1510 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1511 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1512 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1513 crclen = sizeof(struct fileEntry);
1514 } else {
1515 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1516 iinfo->i_ext.i_data,
1517 inode->i_sb->s_blocksize -
1518 sizeof(struct extendedFileEntry));
1519 efe->objectSize = cpu_to_le64(inode->i_size);
1520 efe->logicalBlocksRecorded = cpu_to_le64(
1521 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1522 (blocksize_bits - 9));
1524 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1525 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1526 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1527 iinfo->i_crtime = inode->i_atime;
1529 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1530 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1531 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1532 iinfo->i_crtime = inode->i_mtime;
1534 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1535 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1536 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1537 iinfo->i_crtime = inode->i_ctime;
1539 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1540 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1541 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1542 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1544 memset(&(efe->impIdent), 0, sizeof(struct regid));
1545 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1546 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1547 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1548 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1549 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1550 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1551 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1552 crclen = sizeof(struct extendedFileEntry);
1554 if (iinfo->i_strat4096) {
1555 fe->icbTag.strategyType = cpu_to_le16(4096);
1556 fe->icbTag.strategyParameter = cpu_to_le16(1);
1557 fe->icbTag.numEntries = cpu_to_le16(2);
1558 } else {
1559 fe->icbTag.strategyType = cpu_to_le16(4);
1560 fe->icbTag.numEntries = cpu_to_le16(1);
1563 if (S_ISDIR(inode->i_mode))
1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1565 else if (S_ISREG(inode->i_mode))
1566 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1567 else if (S_ISLNK(inode->i_mode))
1568 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1569 else if (S_ISBLK(inode->i_mode))
1570 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1571 else if (S_ISCHR(inode->i_mode))
1572 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1573 else if (S_ISFIFO(inode->i_mode))
1574 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1575 else if (S_ISSOCK(inode->i_mode))
1576 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1578 icbflags = iinfo->i_alloc_type |
1579 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1580 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1581 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1582 (le16_to_cpu(fe->icbTag.flags) &
1583 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1584 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1586 fe->icbTag.flags = cpu_to_le16(icbflags);
1587 if (sbi->s_udfrev >= 0x0200)
1588 fe->descTag.descVersion = cpu_to_le16(3);
1589 else
1590 fe->descTag.descVersion = cpu_to_le16(2);
1591 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1592 fe->descTag.tagLocation = cpu_to_le32(
1593 iinfo->i_location.logicalBlockNum);
1594 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1595 sizeof(struct tag);
1596 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1597 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1598 crclen));
1599 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1601 /* write the data blocks */
1602 mark_buffer_dirty(bh);
1603 if (do_sync) {
1604 sync_dirty_buffer(bh);
1605 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1606 printk(KERN_WARNING "IO error syncing udf inode "
1607 "[%s:%08lx]\n", inode->i_sb->s_id,
1608 inode->i_ino);
1609 err = -EIO;
1612 brelse(bh);
1614 return err;
1617 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1619 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1620 struct inode *inode = iget_locked(sb, block);
1622 if (!inode)
1623 return NULL;
1625 if (inode->i_state & I_NEW) {
1626 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1627 __udf_read_inode(inode);
1628 unlock_new_inode(inode);
1631 if (is_bad_inode(inode))
1632 goto out_iput;
1634 if (ino->logicalBlockNum >= UDF_SB(sb)->
1635 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1636 udf_debug("block=%d, partition=%d out of range\n",
1637 ino->logicalBlockNum, ino->partitionReferenceNum);
1638 make_bad_inode(inode);
1639 goto out_iput;
1642 return inode;
1644 out_iput:
1645 iput(inode);
1646 return NULL;
1649 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1650 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1652 int adsize;
1653 struct short_ad *sad = NULL;
1654 struct long_ad *lad = NULL;
1655 struct allocExtDesc *aed;
1656 int8_t etype;
1657 uint8_t *ptr;
1658 struct udf_inode_info *iinfo = UDF_I(inode);
1660 if (!epos->bh)
1661 ptr = iinfo->i_ext.i_data + epos->offset -
1662 udf_file_entry_alloc_offset(inode) +
1663 iinfo->i_lenEAttr;
1664 else
1665 ptr = epos->bh->b_data + epos->offset;
1667 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1668 adsize = sizeof(struct short_ad);
1669 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1670 adsize = sizeof(struct long_ad);
1671 else
1672 return -1;
1674 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1675 char *sptr, *dptr;
1676 struct buffer_head *nbh;
1677 int err, loffset;
1678 struct kernel_lb_addr obloc = epos->block;
1680 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1681 obloc.partitionReferenceNum,
1682 obloc.logicalBlockNum, &err);
1683 if (!epos->block.logicalBlockNum)
1684 return -1;
1685 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1686 &epos->block,
1687 0));
1688 if (!nbh)
1689 return -1;
1690 lock_buffer(nbh);
1691 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1692 set_buffer_uptodate(nbh);
1693 unlock_buffer(nbh);
1694 mark_buffer_dirty_inode(nbh, inode);
1696 aed = (struct allocExtDesc *)(nbh->b_data);
1697 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1698 aed->previousAllocExtLocation =
1699 cpu_to_le32(obloc.logicalBlockNum);
1700 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1701 loffset = epos->offset;
1702 aed->lengthAllocDescs = cpu_to_le32(adsize);
1703 sptr = ptr - adsize;
1704 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1705 memcpy(dptr, sptr, adsize);
1706 epos->offset = sizeof(struct allocExtDesc) + adsize;
1707 } else {
1708 loffset = epos->offset + adsize;
1709 aed->lengthAllocDescs = cpu_to_le32(0);
1710 sptr = ptr;
1711 epos->offset = sizeof(struct allocExtDesc);
1713 if (epos->bh) {
1714 aed = (struct allocExtDesc *)epos->bh->b_data;
1715 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1716 } else {
1717 iinfo->i_lenAlloc += adsize;
1718 mark_inode_dirty(inode);
1721 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1722 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1723 epos->block.logicalBlockNum, sizeof(struct tag));
1724 else
1725 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1726 epos->block.logicalBlockNum, sizeof(struct tag));
1727 switch (iinfo->i_alloc_type) {
1728 case ICBTAG_FLAG_AD_SHORT:
1729 sad = (struct short_ad *)sptr;
1730 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1731 inode->i_sb->s_blocksize);
1732 sad->extPosition =
1733 cpu_to_le32(epos->block.logicalBlockNum);
1734 break;
1735 case ICBTAG_FLAG_AD_LONG:
1736 lad = (struct long_ad *)sptr;
1737 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1738 inode->i_sb->s_blocksize);
1739 lad->extLocation = cpu_to_lelb(epos->block);
1740 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1741 break;
1743 if (epos->bh) {
1744 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1745 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1746 udf_update_tag(epos->bh->b_data, loffset);
1747 else
1748 udf_update_tag(epos->bh->b_data,
1749 sizeof(struct allocExtDesc));
1750 mark_buffer_dirty_inode(epos->bh, inode);
1751 brelse(epos->bh);
1752 } else {
1753 mark_inode_dirty(inode);
1755 epos->bh = nbh;
1758 etype = udf_write_aext(inode, epos, eloc, elen, inc);
1760 if (!epos->bh) {
1761 iinfo->i_lenAlloc += adsize;
1762 mark_inode_dirty(inode);
1763 } else {
1764 aed = (struct allocExtDesc *)epos->bh->b_data;
1765 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1766 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1767 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1768 udf_update_tag(epos->bh->b_data,
1769 epos->offset + (inc ? 0 : adsize));
1770 else
1771 udf_update_tag(epos->bh->b_data,
1772 sizeof(struct allocExtDesc));
1773 mark_buffer_dirty_inode(epos->bh, inode);
1776 return etype;
1779 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1780 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1782 int adsize;
1783 uint8_t *ptr;
1784 struct short_ad *sad;
1785 struct long_ad *lad;
1786 struct udf_inode_info *iinfo = UDF_I(inode);
1788 if (!epos->bh)
1789 ptr = iinfo->i_ext.i_data + epos->offset -
1790 udf_file_entry_alloc_offset(inode) +
1791 iinfo->i_lenEAttr;
1792 else
1793 ptr = epos->bh->b_data + epos->offset;
1795 switch (iinfo->i_alloc_type) {
1796 case ICBTAG_FLAG_AD_SHORT:
1797 sad = (struct short_ad *)ptr;
1798 sad->extLength = cpu_to_le32(elen);
1799 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1800 adsize = sizeof(struct short_ad);
1801 break;
1802 case ICBTAG_FLAG_AD_LONG:
1803 lad = (struct long_ad *)ptr;
1804 lad->extLength = cpu_to_le32(elen);
1805 lad->extLocation = cpu_to_lelb(*eloc);
1806 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1807 adsize = sizeof(struct long_ad);
1808 break;
1809 default:
1810 return -1;
1813 if (epos->bh) {
1814 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1815 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1816 struct allocExtDesc *aed =
1817 (struct allocExtDesc *)epos->bh->b_data;
1818 udf_update_tag(epos->bh->b_data,
1819 le32_to_cpu(aed->lengthAllocDescs) +
1820 sizeof(struct allocExtDesc));
1822 mark_buffer_dirty_inode(epos->bh, inode);
1823 } else {
1824 mark_inode_dirty(inode);
1827 if (inc)
1828 epos->offset += adsize;
1830 return (elen >> 30);
1833 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1834 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1836 int8_t etype;
1838 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1839 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1840 int block;
1841 epos->block = *eloc;
1842 epos->offset = sizeof(struct allocExtDesc);
1843 brelse(epos->bh);
1844 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1845 epos->bh = udf_tread(inode->i_sb, block);
1846 if (!epos->bh) {
1847 udf_debug("reading block %d failed!\n", block);
1848 return -1;
1852 return etype;
1855 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1856 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1858 int alen;
1859 int8_t etype;
1860 uint8_t *ptr;
1861 struct short_ad *sad;
1862 struct long_ad *lad;
1863 struct udf_inode_info *iinfo = UDF_I(inode);
1865 if (!epos->bh) {
1866 if (!epos->offset)
1867 epos->offset = udf_file_entry_alloc_offset(inode);
1868 ptr = iinfo->i_ext.i_data + epos->offset -
1869 udf_file_entry_alloc_offset(inode) +
1870 iinfo->i_lenEAttr;
1871 alen = udf_file_entry_alloc_offset(inode) +
1872 iinfo->i_lenAlloc;
1873 } else {
1874 if (!epos->offset)
1875 epos->offset = sizeof(struct allocExtDesc);
1876 ptr = epos->bh->b_data + epos->offset;
1877 alen = sizeof(struct allocExtDesc) +
1878 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1879 lengthAllocDescs);
1882 switch (iinfo->i_alloc_type) {
1883 case ICBTAG_FLAG_AD_SHORT:
1884 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1885 if (!sad)
1886 return -1;
1887 etype = le32_to_cpu(sad->extLength) >> 30;
1888 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1889 eloc->partitionReferenceNum =
1890 iinfo->i_location.partitionReferenceNum;
1891 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1892 break;
1893 case ICBTAG_FLAG_AD_LONG:
1894 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1895 if (!lad)
1896 return -1;
1897 etype = le32_to_cpu(lad->extLength) >> 30;
1898 *eloc = lelb_to_cpu(lad->extLocation);
1899 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1900 break;
1901 default:
1902 udf_debug("alloc_type = %d unsupported\n",
1903 iinfo->i_alloc_type);
1904 return -1;
1907 return etype;
1910 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1911 struct kernel_lb_addr neloc, uint32_t nelen)
1913 struct kernel_lb_addr oeloc;
1914 uint32_t oelen;
1915 int8_t etype;
1917 if (epos.bh)
1918 get_bh(epos.bh);
1920 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1921 udf_write_aext(inode, &epos, &neloc, nelen, 1);
1922 neloc = oeloc;
1923 nelen = (etype << 30) | oelen;
1925 udf_add_aext(inode, &epos, &neloc, nelen, 1);
1926 brelse(epos.bh);
1928 return (nelen >> 30);
1931 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1932 struct kernel_lb_addr eloc, uint32_t elen)
1934 struct extent_position oepos;
1935 int adsize;
1936 int8_t etype;
1937 struct allocExtDesc *aed;
1938 struct udf_inode_info *iinfo;
1940 if (epos.bh) {
1941 get_bh(epos.bh);
1942 get_bh(epos.bh);
1945 iinfo = UDF_I(inode);
1946 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1947 adsize = sizeof(struct short_ad);
1948 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1949 adsize = sizeof(struct long_ad);
1950 else
1951 adsize = 0;
1953 oepos = epos;
1954 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1955 return -1;
1957 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1958 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1959 if (oepos.bh != epos.bh) {
1960 oepos.block = epos.block;
1961 brelse(oepos.bh);
1962 get_bh(epos.bh);
1963 oepos.bh = epos.bh;
1964 oepos.offset = epos.offset - adsize;
1967 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1968 elen = 0;
1970 if (epos.bh != oepos.bh) {
1971 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1972 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1973 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1974 if (!oepos.bh) {
1975 iinfo->i_lenAlloc -= (adsize * 2);
1976 mark_inode_dirty(inode);
1977 } else {
1978 aed = (struct allocExtDesc *)oepos.bh->b_data;
1979 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1980 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1981 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1982 udf_update_tag(oepos.bh->b_data,
1983 oepos.offset - (2 * adsize));
1984 else
1985 udf_update_tag(oepos.bh->b_data,
1986 sizeof(struct allocExtDesc));
1987 mark_buffer_dirty_inode(oepos.bh, inode);
1989 } else {
1990 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1991 if (!oepos.bh) {
1992 iinfo->i_lenAlloc -= adsize;
1993 mark_inode_dirty(inode);
1994 } else {
1995 aed = (struct allocExtDesc *)oepos.bh->b_data;
1996 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1997 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1998 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1999 udf_update_tag(oepos.bh->b_data,
2000 epos.offset - adsize);
2001 else
2002 udf_update_tag(oepos.bh->b_data,
2003 sizeof(struct allocExtDesc));
2004 mark_buffer_dirty_inode(oepos.bh, inode);
2008 brelse(epos.bh);
2009 brelse(oepos.bh);
2011 return (elen >> 30);
2014 int8_t inode_bmap(struct inode *inode, sector_t block,
2015 struct extent_position *pos, struct kernel_lb_addr *eloc,
2016 uint32_t *elen, sector_t *offset)
2018 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2019 loff_t lbcount = 0, bcount =
2020 (loff_t) block << blocksize_bits;
2021 int8_t etype;
2022 struct udf_inode_info *iinfo;
2024 iinfo = UDF_I(inode);
2025 pos->offset = 0;
2026 pos->block = iinfo->i_location;
2027 pos->bh = NULL;
2028 *elen = 0;
2030 do {
2031 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2032 if (etype == -1) {
2033 *offset = (bcount - lbcount) >> blocksize_bits;
2034 iinfo->i_lenExtents = lbcount;
2035 return -1;
2037 lbcount += *elen;
2038 } while (lbcount <= bcount);
2040 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2042 return etype;
2045 long udf_block_map(struct inode *inode, sector_t block)
2047 struct kernel_lb_addr eloc;
2048 uint32_t elen;
2049 sector_t offset;
2050 struct extent_position epos = {};
2051 int ret;
2053 lock_kernel();
2055 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2056 (EXT_RECORDED_ALLOCATED >> 30))
2057 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2058 else
2059 ret = 0;
2061 unlock_kernel();
2062 brelse(epos.bh);
2064 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2065 return udf_fixed_to_variable(ret);
2066 else
2067 return ret;