PM: OMAP3: Removed a couple of unused variables from DVFS code
[linux-ginger.git] / mm / page_alloc.c
blobbf720550b44d85adc294f7fd0b8ede38f73a8902
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
58 * Array of node states.
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
71 EXPORT_SYMBOL(node_states);
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
171 int page_group_by_mobility_disabled __read_mostly;
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
183 bool oom_killer_disabled __read_mostly;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
200 return ret;
203 static int page_is_consistent(struct zone *zone, struct page *page)
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
210 return 1;
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone *zone, struct page *page)
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
222 return 0;
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
227 return 0;
229 #endif
231 static void bad_page(struct page *page)
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
247 if (nr_shown == 60) {
248 if (time_before(jiffies, resume)) {
249 nr_unshown++;
250 goto out;
252 if (nr_unshown) {
253 printk(KERN_ALERT
254 "BUG: Bad page state: %lu messages suppressed\n",
255 nr_unshown);
256 nr_unshown = 0;
258 nr_shown = 0;
260 if (nr_shown++ == 0)
261 resume = jiffies + 60 * HZ;
263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
264 current->comm, page_to_pfn(page));
265 printk(KERN_ALERT
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page, (void *)page->flags, page_count(page),
268 page_mapcount(page), page->mapping, page->index);
270 dump_stack();
271 out:
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page);
274 add_taint(TAINT_BAD_PAGE);
278 * Higher-order pages are called "compound pages". They are structured thusly:
280 * The first PAGE_SIZE page is called the "head page".
282 * The remaining PAGE_SIZE pages are called "tail pages".
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
292 static void free_compound_page(struct page *page)
294 __free_pages_ok(page, compound_order(page));
297 void prep_compound_page(struct page *page, unsigned long order)
299 int i;
300 int nr_pages = 1 << order;
302 set_compound_page_dtor(page, free_compound_page);
303 set_compound_order(page, order);
304 __SetPageHead(page);
305 for (i = 1; i < nr_pages; i++) {
306 struct page *p = page + i;
308 __SetPageTail(p);
309 p->first_page = page;
313 static int destroy_compound_page(struct page *page, unsigned long order)
315 int i;
316 int nr_pages = 1 << order;
317 int bad = 0;
319 if (unlikely(compound_order(page) != order) ||
320 unlikely(!PageHead(page))) {
321 bad_page(page);
322 bad++;
325 __ClearPageHead(page);
327 for (i = 1; i < nr_pages; i++) {
328 struct page *p = page + i;
330 if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 bad_page(page);
332 bad++;
334 __ClearPageTail(p);
337 return bad;
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 int i;
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 for (i = 0; i < (1 << order); i++)
350 clear_highpage(page + i);
353 static inline void set_page_order(struct page *page, int order)
355 set_page_private(page, order);
356 __SetPageBuddy(page);
359 static inline void rmv_page_order(struct page *page)
361 __ClearPageBuddy(page);
362 set_page_private(page, 0);
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
371 * B2 = B1 ^ (1 << O)
372 * For example, if the starting buddy (buddy2) is #8 its order
373 * 1 buddy is #10:
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
378 * P = B & ~(1 << O)
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385 unsigned long buddy_idx = page_idx ^ (1 << order);
387 return page + (buddy_idx - page_idx);
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
393 return (page_idx & ~(1 << order));
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 * For recording page's order, we use page_private(page).
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 int order)
412 if (!pfn_valid_within(page_to_pfn(buddy)))
413 return 0;
415 if (page_zone_id(page) != page_zone_id(buddy))
416 return 0;
418 if (PageBuddy(buddy) && page_order(buddy) == order) {
419 VM_BUG_ON(page_count(buddy) != 0);
420 return 1;
422 return 0;
426 * Freeing function for a buddy system allocator.
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
446 * -- wli
449 static inline void __free_one_page(struct page *page,
450 struct zone *zone, unsigned int order,
451 int migratetype)
453 unsigned long page_idx;
455 if (unlikely(PageCompound(page)))
456 if (unlikely(destroy_compound_page(page, order)))
457 return;
459 VM_BUG_ON(migratetype == -1);
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463 VM_BUG_ON(page_idx & ((1 << order) - 1));
464 VM_BUG_ON(bad_range(zone, page));
466 while (order < MAX_ORDER-1) {
467 unsigned long combined_idx;
468 struct page *buddy;
470 buddy = __page_find_buddy(page, page_idx, order);
471 if (!page_is_buddy(page, buddy, order))
472 break;
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy->lru);
476 zone->free_area[order].nr_free--;
477 rmv_page_order(buddy);
478 combined_idx = __find_combined_index(page_idx, order);
479 page = page + (combined_idx - page_idx);
480 page_idx = combined_idx;
481 order++;
483 set_page_order(page, order);
484 list_add(&page->lru,
485 &zone->free_area[order].free_list[migratetype]);
486 zone->free_area[order].nr_free++;
489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page *page)
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
500 #else
501 static void free_page_mlock(struct page *page) { }
502 #endif
504 static inline int free_pages_check(struct page *page)
506 if (unlikely(page_mapcount(page) |
507 (page->mapping != NULL) |
508 (atomic_read(&page->_count) != 0) |
509 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
510 bad_page(page);
511 return 1;
513 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
514 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
515 return 0;
519 * Frees a number of pages from the PCP lists
520 * Assumes all pages on list are in same zone, and of same order.
521 * count is the number of pages to free.
523 * If the zone was previously in an "all pages pinned" state then look to
524 * see if this freeing clears that state.
526 * And clear the zone's pages_scanned counter, to hold off the "all pages are
527 * pinned" detection logic.
529 static void free_pcppages_bulk(struct zone *zone, int count,
530 struct per_cpu_pages *pcp)
532 int migratetype = 0;
533 int batch_free = 0;
535 spin_lock(&zone->lock);
536 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
537 zone->pages_scanned = 0;
539 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
540 while (count) {
541 struct page *page;
542 struct list_head *list;
545 * Remove pages from lists in a round-robin fashion. A
546 * batch_free count is maintained that is incremented when an
547 * empty list is encountered. This is so more pages are freed
548 * off fuller lists instead of spinning excessively around empty
549 * lists
551 do {
552 batch_free++;
553 if (++migratetype == MIGRATE_PCPTYPES)
554 migratetype = 0;
555 list = &pcp->lists[migratetype];
556 } while (list_empty(list));
558 do {
559 page = list_entry(list->prev, struct page, lru);
560 /* must delete as __free_one_page list manipulates */
561 list_del(&page->lru);
562 __free_one_page(page, zone, 0, migratetype);
563 trace_mm_page_pcpu_drain(page, 0, migratetype);
564 } while (--count && --batch_free && !list_empty(list));
566 spin_unlock(&zone->lock);
569 static void free_one_page(struct zone *zone, struct page *page, int order,
570 int migratetype)
572 spin_lock(&zone->lock);
573 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
574 zone->pages_scanned = 0;
576 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
577 __free_one_page(page, zone, order, migratetype);
578 spin_unlock(&zone->lock);
581 static void __free_pages_ok(struct page *page, unsigned int order)
583 unsigned long flags;
584 int i;
585 int bad = 0;
586 int wasMlocked = __TestClearPageMlocked(page);
588 kmemcheck_free_shadow(page, order);
590 for (i = 0 ; i < (1 << order) ; ++i)
591 bad += free_pages_check(page + i);
592 if (bad)
593 return;
595 if (!PageHighMem(page)) {
596 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
597 debug_check_no_obj_freed(page_address(page),
598 PAGE_SIZE << order);
600 arch_free_page(page, order);
601 kernel_map_pages(page, 1 << order, 0);
603 local_irq_save(flags);
604 if (unlikely(wasMlocked))
605 free_page_mlock(page);
606 __count_vm_events(PGFREE, 1 << order);
607 free_one_page(page_zone(page), page, order,
608 get_pageblock_migratetype(page));
609 local_irq_restore(flags);
613 * permit the bootmem allocator to evade page validation on high-order frees
615 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
617 if (order == 0) {
618 __ClearPageReserved(page);
619 set_page_count(page, 0);
620 set_page_refcounted(page);
621 __free_page(page);
622 } else {
623 int loop;
625 prefetchw(page);
626 for (loop = 0; loop < BITS_PER_LONG; loop++) {
627 struct page *p = &page[loop];
629 if (loop + 1 < BITS_PER_LONG)
630 prefetchw(p + 1);
631 __ClearPageReserved(p);
632 set_page_count(p, 0);
635 set_page_refcounted(page);
636 __free_pages(page, order);
642 * The order of subdivision here is critical for the IO subsystem.
643 * Please do not alter this order without good reasons and regression
644 * testing. Specifically, as large blocks of memory are subdivided,
645 * the order in which smaller blocks are delivered depends on the order
646 * they're subdivided in this function. This is the primary factor
647 * influencing the order in which pages are delivered to the IO
648 * subsystem according to empirical testing, and this is also justified
649 * by considering the behavior of a buddy system containing a single
650 * large block of memory acted on by a series of small allocations.
651 * This behavior is a critical factor in sglist merging's success.
653 * -- wli
655 static inline void expand(struct zone *zone, struct page *page,
656 int low, int high, struct free_area *area,
657 int migratetype)
659 unsigned long size = 1 << high;
661 while (high > low) {
662 area--;
663 high--;
664 size >>= 1;
665 VM_BUG_ON(bad_range(zone, &page[size]));
666 list_add(&page[size].lru, &area->free_list[migratetype]);
667 area->nr_free++;
668 set_page_order(&page[size], high);
673 * This page is about to be returned from the page allocator
675 static inline int check_new_page(struct page *page)
677 if (unlikely(page_mapcount(page) |
678 (page->mapping != NULL) |
679 (atomic_read(&page->_count) != 0) |
680 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
681 bad_page(page);
682 return 1;
684 return 0;
687 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
689 int i;
691 for (i = 0; i < (1 << order); i++) {
692 struct page *p = page + i;
693 if (unlikely(check_new_page(p)))
694 return 1;
697 set_page_private(page, 0);
698 set_page_refcounted(page);
700 arch_alloc_page(page, order);
701 kernel_map_pages(page, 1 << order, 1);
703 if (gfp_flags & __GFP_ZERO)
704 prep_zero_page(page, order, gfp_flags);
706 if (order && (gfp_flags & __GFP_COMP))
707 prep_compound_page(page, order);
709 return 0;
713 * Go through the free lists for the given migratetype and remove
714 * the smallest available page from the freelists
716 static inline
717 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
718 int migratetype)
720 unsigned int current_order;
721 struct free_area * area;
722 struct page *page;
724 /* Find a page of the appropriate size in the preferred list */
725 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
726 area = &(zone->free_area[current_order]);
727 if (list_empty(&area->free_list[migratetype]))
728 continue;
730 page = list_entry(area->free_list[migratetype].next,
731 struct page, lru);
732 list_del(&page->lru);
733 rmv_page_order(page);
734 area->nr_free--;
735 expand(zone, page, order, current_order, area, migratetype);
736 return page;
739 return NULL;
744 * This array describes the order lists are fallen back to when
745 * the free lists for the desirable migrate type are depleted
747 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
748 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
749 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
750 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
755 * Move the free pages in a range to the free lists of the requested type.
756 * Note that start_page and end_pages are not aligned on a pageblock
757 * boundary. If alignment is required, use move_freepages_block()
759 static int move_freepages(struct zone *zone,
760 struct page *start_page, struct page *end_page,
761 int migratetype)
763 struct page *page;
764 unsigned long order;
765 int pages_moved = 0;
767 #ifndef CONFIG_HOLES_IN_ZONE
769 * page_zone is not safe to call in this context when
770 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
771 * anyway as we check zone boundaries in move_freepages_block().
772 * Remove at a later date when no bug reports exist related to
773 * grouping pages by mobility
775 BUG_ON(page_zone(start_page) != page_zone(end_page));
776 #endif
778 for (page = start_page; page <= end_page;) {
779 /* Make sure we are not inadvertently changing nodes */
780 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
782 if (!pfn_valid_within(page_to_pfn(page))) {
783 page++;
784 continue;
787 if (!PageBuddy(page)) {
788 page++;
789 continue;
792 order = page_order(page);
793 list_del(&page->lru);
794 list_add(&page->lru,
795 &zone->free_area[order].free_list[migratetype]);
796 page += 1 << order;
797 pages_moved += 1 << order;
800 return pages_moved;
803 static int move_freepages_block(struct zone *zone, struct page *page,
804 int migratetype)
806 unsigned long start_pfn, end_pfn;
807 struct page *start_page, *end_page;
809 start_pfn = page_to_pfn(page);
810 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
811 start_page = pfn_to_page(start_pfn);
812 end_page = start_page + pageblock_nr_pages - 1;
813 end_pfn = start_pfn + pageblock_nr_pages - 1;
815 /* Do not cross zone boundaries */
816 if (start_pfn < zone->zone_start_pfn)
817 start_page = page;
818 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
819 return 0;
821 return move_freepages(zone, start_page, end_page, migratetype);
824 static void change_pageblock_range(struct page *pageblock_page,
825 int start_order, int migratetype)
827 int nr_pageblocks = 1 << (start_order - pageblock_order);
829 while (nr_pageblocks--) {
830 set_pageblock_migratetype(pageblock_page, migratetype);
831 pageblock_page += pageblock_nr_pages;
835 /* Remove an element from the buddy allocator from the fallback list */
836 static inline struct page *
837 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
839 struct free_area * area;
840 int current_order;
841 struct page *page;
842 int migratetype, i;
844 /* Find the largest possible block of pages in the other list */
845 for (current_order = MAX_ORDER-1; current_order >= order;
846 --current_order) {
847 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
848 migratetype = fallbacks[start_migratetype][i];
850 /* MIGRATE_RESERVE handled later if necessary */
851 if (migratetype == MIGRATE_RESERVE)
852 continue;
854 area = &(zone->free_area[current_order]);
855 if (list_empty(&area->free_list[migratetype]))
856 continue;
858 page = list_entry(area->free_list[migratetype].next,
859 struct page, lru);
860 area->nr_free--;
863 * If breaking a large block of pages, move all free
864 * pages to the preferred allocation list. If falling
865 * back for a reclaimable kernel allocation, be more
866 * agressive about taking ownership of free pages
868 if (unlikely(current_order >= (pageblock_order >> 1)) ||
869 start_migratetype == MIGRATE_RECLAIMABLE ||
870 page_group_by_mobility_disabled) {
871 unsigned long pages;
872 pages = move_freepages_block(zone, page,
873 start_migratetype);
875 /* Claim the whole block if over half of it is free */
876 if (pages >= (1 << (pageblock_order-1)) ||
877 page_group_by_mobility_disabled)
878 set_pageblock_migratetype(page,
879 start_migratetype);
881 migratetype = start_migratetype;
884 /* Remove the page from the freelists */
885 list_del(&page->lru);
886 rmv_page_order(page);
888 /* Take ownership for orders >= pageblock_order */
889 if (current_order >= pageblock_order)
890 change_pageblock_range(page, current_order,
891 start_migratetype);
893 expand(zone, page, order, current_order, area, migratetype);
895 trace_mm_page_alloc_extfrag(page, order, current_order,
896 start_migratetype, migratetype);
898 return page;
902 return NULL;
906 * Do the hard work of removing an element from the buddy allocator.
907 * Call me with the zone->lock already held.
909 static struct page *__rmqueue(struct zone *zone, unsigned int order,
910 int migratetype)
912 struct page *page;
914 retry_reserve:
915 page = __rmqueue_smallest(zone, order, migratetype);
917 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
918 page = __rmqueue_fallback(zone, order, migratetype);
921 * Use MIGRATE_RESERVE rather than fail an allocation. goto
922 * is used because __rmqueue_smallest is an inline function
923 * and we want just one call site
925 if (!page) {
926 migratetype = MIGRATE_RESERVE;
927 goto retry_reserve;
931 trace_mm_page_alloc_zone_locked(page, order, migratetype);
932 return page;
936 * Obtain a specified number of elements from the buddy allocator, all under
937 * a single hold of the lock, for efficiency. Add them to the supplied list.
938 * Returns the number of new pages which were placed at *list.
940 static int rmqueue_bulk(struct zone *zone, unsigned int order,
941 unsigned long count, struct list_head *list,
942 int migratetype, int cold)
944 int i;
946 spin_lock(&zone->lock);
947 for (i = 0; i < count; ++i) {
948 struct page *page = __rmqueue(zone, order, migratetype);
949 if (unlikely(page == NULL))
950 break;
953 * Split buddy pages returned by expand() are received here
954 * in physical page order. The page is added to the callers and
955 * list and the list head then moves forward. From the callers
956 * perspective, the linked list is ordered by page number in
957 * some conditions. This is useful for IO devices that can
958 * merge IO requests if the physical pages are ordered
959 * properly.
961 if (likely(cold == 0))
962 list_add(&page->lru, list);
963 else
964 list_add_tail(&page->lru, list);
965 set_page_private(page, migratetype);
966 list = &page->lru;
968 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
969 spin_unlock(&zone->lock);
970 return i;
973 #ifdef CONFIG_NUMA
975 * Called from the vmstat counter updater to drain pagesets of this
976 * currently executing processor on remote nodes after they have
977 * expired.
979 * Note that this function must be called with the thread pinned to
980 * a single processor.
982 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
984 unsigned long flags;
985 int to_drain;
987 local_irq_save(flags);
988 if (pcp->count >= pcp->batch)
989 to_drain = pcp->batch;
990 else
991 to_drain = pcp->count;
992 free_pcppages_bulk(zone, to_drain, pcp);
993 pcp->count -= to_drain;
994 local_irq_restore(flags);
996 #endif
999 * Drain pages of the indicated processor.
1001 * The processor must either be the current processor and the
1002 * thread pinned to the current processor or a processor that
1003 * is not online.
1005 static void drain_pages(unsigned int cpu)
1007 unsigned long flags;
1008 struct zone *zone;
1010 for_each_populated_zone(zone) {
1011 struct per_cpu_pageset *pset;
1012 struct per_cpu_pages *pcp;
1014 pset = zone_pcp(zone, cpu);
1016 pcp = &pset->pcp;
1017 local_irq_save(flags);
1018 free_pcppages_bulk(zone, pcp->count, pcp);
1019 pcp->count = 0;
1020 local_irq_restore(flags);
1025 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1027 void drain_local_pages(void *arg)
1029 drain_pages(smp_processor_id());
1033 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1035 void drain_all_pages(void)
1037 on_each_cpu(drain_local_pages, NULL, 1);
1040 #ifdef CONFIG_HIBERNATION
1042 void mark_free_pages(struct zone *zone)
1044 unsigned long pfn, max_zone_pfn;
1045 unsigned long flags;
1046 int order, t;
1047 struct list_head *curr;
1049 if (!zone->spanned_pages)
1050 return;
1052 spin_lock_irqsave(&zone->lock, flags);
1054 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1055 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1056 if (pfn_valid(pfn)) {
1057 struct page *page = pfn_to_page(pfn);
1059 if (!swsusp_page_is_forbidden(page))
1060 swsusp_unset_page_free(page);
1063 for_each_migratetype_order(order, t) {
1064 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1065 unsigned long i;
1067 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1068 for (i = 0; i < (1UL << order); i++)
1069 swsusp_set_page_free(pfn_to_page(pfn + i));
1072 spin_unlock_irqrestore(&zone->lock, flags);
1074 #endif /* CONFIG_PM */
1077 * Free a 0-order page
1079 static void free_hot_cold_page(struct page *page, int cold)
1081 struct zone *zone = page_zone(page);
1082 struct per_cpu_pages *pcp;
1083 unsigned long flags;
1084 int migratetype;
1085 int wasMlocked = __TestClearPageMlocked(page);
1087 kmemcheck_free_shadow(page, 0);
1089 if (PageAnon(page))
1090 page->mapping = NULL;
1091 if (free_pages_check(page))
1092 return;
1094 if (!PageHighMem(page)) {
1095 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1096 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1098 arch_free_page(page, 0);
1099 kernel_map_pages(page, 1, 0);
1101 pcp = &zone_pcp(zone, get_cpu())->pcp;
1102 migratetype = get_pageblock_migratetype(page);
1103 set_page_private(page, migratetype);
1104 local_irq_save(flags);
1105 if (unlikely(wasMlocked))
1106 free_page_mlock(page);
1107 __count_vm_event(PGFREE);
1110 * We only track unmovable, reclaimable and movable on pcp lists.
1111 * Free ISOLATE pages back to the allocator because they are being
1112 * offlined but treat RESERVE as movable pages so we can get those
1113 * areas back if necessary. Otherwise, we may have to free
1114 * excessively into the page allocator
1116 if (migratetype >= MIGRATE_PCPTYPES) {
1117 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1118 free_one_page(zone, page, 0, migratetype);
1119 goto out;
1121 migratetype = MIGRATE_MOVABLE;
1124 if (cold)
1125 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1126 else
1127 list_add(&page->lru, &pcp->lists[migratetype]);
1128 pcp->count++;
1129 if (pcp->count >= pcp->high) {
1130 free_pcppages_bulk(zone, pcp->batch, pcp);
1131 pcp->count -= pcp->batch;
1134 out:
1135 local_irq_restore(flags);
1136 put_cpu();
1139 void free_hot_page(struct page *page)
1141 trace_mm_page_free_direct(page, 0);
1142 free_hot_cold_page(page, 0);
1146 * split_page takes a non-compound higher-order page, and splits it into
1147 * n (1<<order) sub-pages: page[0..n]
1148 * Each sub-page must be freed individually.
1150 * Note: this is probably too low level an operation for use in drivers.
1151 * Please consult with lkml before using this in your driver.
1153 void split_page(struct page *page, unsigned int order)
1155 int i;
1157 VM_BUG_ON(PageCompound(page));
1158 VM_BUG_ON(!page_count(page));
1160 #ifdef CONFIG_KMEMCHECK
1162 * Split shadow pages too, because free(page[0]) would
1163 * otherwise free the whole shadow.
1165 if (kmemcheck_page_is_tracked(page))
1166 split_page(virt_to_page(page[0].shadow), order);
1167 #endif
1169 for (i = 1; i < (1 << order); i++)
1170 set_page_refcounted(page + i);
1174 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1175 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1176 * or two.
1178 static inline
1179 struct page *buffered_rmqueue(struct zone *preferred_zone,
1180 struct zone *zone, int order, gfp_t gfp_flags,
1181 int migratetype)
1183 unsigned long flags;
1184 struct page *page;
1185 int cold = !!(gfp_flags & __GFP_COLD);
1186 int cpu;
1188 again:
1189 cpu = get_cpu();
1190 if (likely(order == 0)) {
1191 struct per_cpu_pages *pcp;
1192 struct list_head *list;
1194 pcp = &zone_pcp(zone, cpu)->pcp;
1195 list = &pcp->lists[migratetype];
1196 local_irq_save(flags);
1197 if (list_empty(list)) {
1198 pcp->count += rmqueue_bulk(zone, 0,
1199 pcp->batch, list,
1200 migratetype, cold);
1201 if (unlikely(list_empty(list)))
1202 goto failed;
1205 if (cold)
1206 page = list_entry(list->prev, struct page, lru);
1207 else
1208 page = list_entry(list->next, struct page, lru);
1210 list_del(&page->lru);
1211 pcp->count--;
1212 } else {
1213 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1215 * __GFP_NOFAIL is not to be used in new code.
1217 * All __GFP_NOFAIL callers should be fixed so that they
1218 * properly detect and handle allocation failures.
1220 * We most definitely don't want callers attempting to
1221 * allocate greater than order-1 page units with
1222 * __GFP_NOFAIL.
1224 WARN_ON_ONCE(order > 1);
1226 spin_lock_irqsave(&zone->lock, flags);
1227 page = __rmqueue(zone, order, migratetype);
1228 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1229 spin_unlock(&zone->lock);
1230 if (!page)
1231 goto failed;
1234 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1235 zone_statistics(preferred_zone, zone);
1236 local_irq_restore(flags);
1237 put_cpu();
1239 VM_BUG_ON(bad_range(zone, page));
1240 if (prep_new_page(page, order, gfp_flags))
1241 goto again;
1242 return page;
1244 failed:
1245 local_irq_restore(flags);
1246 put_cpu();
1247 return NULL;
1250 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1251 #define ALLOC_WMARK_MIN WMARK_MIN
1252 #define ALLOC_WMARK_LOW WMARK_LOW
1253 #define ALLOC_WMARK_HIGH WMARK_HIGH
1254 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1256 /* Mask to get the watermark bits */
1257 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1259 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1260 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1261 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1263 #ifdef CONFIG_FAIL_PAGE_ALLOC
1265 static struct fail_page_alloc_attr {
1266 struct fault_attr attr;
1268 u32 ignore_gfp_highmem;
1269 u32 ignore_gfp_wait;
1270 u32 min_order;
1272 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1274 struct dentry *ignore_gfp_highmem_file;
1275 struct dentry *ignore_gfp_wait_file;
1276 struct dentry *min_order_file;
1278 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1280 } fail_page_alloc = {
1281 .attr = FAULT_ATTR_INITIALIZER,
1282 .ignore_gfp_wait = 1,
1283 .ignore_gfp_highmem = 1,
1284 .min_order = 1,
1287 static int __init setup_fail_page_alloc(char *str)
1289 return setup_fault_attr(&fail_page_alloc.attr, str);
1291 __setup("fail_page_alloc=", setup_fail_page_alloc);
1293 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1295 if (order < fail_page_alloc.min_order)
1296 return 0;
1297 if (gfp_mask & __GFP_NOFAIL)
1298 return 0;
1299 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1300 return 0;
1301 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1302 return 0;
1304 return should_fail(&fail_page_alloc.attr, 1 << order);
1307 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1309 static int __init fail_page_alloc_debugfs(void)
1311 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1312 struct dentry *dir;
1313 int err;
1315 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1316 "fail_page_alloc");
1317 if (err)
1318 return err;
1319 dir = fail_page_alloc.attr.dentries.dir;
1321 fail_page_alloc.ignore_gfp_wait_file =
1322 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1323 &fail_page_alloc.ignore_gfp_wait);
1325 fail_page_alloc.ignore_gfp_highmem_file =
1326 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1327 &fail_page_alloc.ignore_gfp_highmem);
1328 fail_page_alloc.min_order_file =
1329 debugfs_create_u32("min-order", mode, dir,
1330 &fail_page_alloc.min_order);
1332 if (!fail_page_alloc.ignore_gfp_wait_file ||
1333 !fail_page_alloc.ignore_gfp_highmem_file ||
1334 !fail_page_alloc.min_order_file) {
1335 err = -ENOMEM;
1336 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1337 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1338 debugfs_remove(fail_page_alloc.min_order_file);
1339 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1342 return err;
1345 late_initcall(fail_page_alloc_debugfs);
1347 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1349 #else /* CONFIG_FAIL_PAGE_ALLOC */
1351 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1353 return 0;
1356 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1359 * Return 1 if free pages are above 'mark'. This takes into account the order
1360 * of the allocation.
1362 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1363 int classzone_idx, int alloc_flags)
1365 /* free_pages my go negative - that's OK */
1366 long min = mark;
1367 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1368 int o;
1370 if (alloc_flags & ALLOC_HIGH)
1371 min -= min / 2;
1372 if (alloc_flags & ALLOC_HARDER)
1373 min -= min / 4;
1375 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1376 return 0;
1377 for (o = 0; o < order; o++) {
1378 /* At the next order, this order's pages become unavailable */
1379 free_pages -= z->free_area[o].nr_free << o;
1381 /* Require fewer higher order pages to be free */
1382 min >>= 1;
1384 if (free_pages <= min)
1385 return 0;
1387 return 1;
1390 #ifdef CONFIG_NUMA
1392 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1393 * skip over zones that are not allowed by the cpuset, or that have
1394 * been recently (in last second) found to be nearly full. See further
1395 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1396 * that have to skip over a lot of full or unallowed zones.
1398 * If the zonelist cache is present in the passed in zonelist, then
1399 * returns a pointer to the allowed node mask (either the current
1400 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1402 * If the zonelist cache is not available for this zonelist, does
1403 * nothing and returns NULL.
1405 * If the fullzones BITMAP in the zonelist cache is stale (more than
1406 * a second since last zap'd) then we zap it out (clear its bits.)
1408 * We hold off even calling zlc_setup, until after we've checked the
1409 * first zone in the zonelist, on the theory that most allocations will
1410 * be satisfied from that first zone, so best to examine that zone as
1411 * quickly as we can.
1413 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1415 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1416 nodemask_t *allowednodes; /* zonelist_cache approximation */
1418 zlc = zonelist->zlcache_ptr;
1419 if (!zlc)
1420 return NULL;
1422 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1423 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1424 zlc->last_full_zap = jiffies;
1427 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1428 &cpuset_current_mems_allowed :
1429 &node_states[N_HIGH_MEMORY];
1430 return allowednodes;
1434 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1435 * if it is worth looking at further for free memory:
1436 * 1) Check that the zone isn't thought to be full (doesn't have its
1437 * bit set in the zonelist_cache fullzones BITMAP).
1438 * 2) Check that the zones node (obtained from the zonelist_cache
1439 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1440 * Return true (non-zero) if zone is worth looking at further, or
1441 * else return false (zero) if it is not.
1443 * This check -ignores- the distinction between various watermarks,
1444 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1445 * found to be full for any variation of these watermarks, it will
1446 * be considered full for up to one second by all requests, unless
1447 * we are so low on memory on all allowed nodes that we are forced
1448 * into the second scan of the zonelist.
1450 * In the second scan we ignore this zonelist cache and exactly
1451 * apply the watermarks to all zones, even it is slower to do so.
1452 * We are low on memory in the second scan, and should leave no stone
1453 * unturned looking for a free page.
1455 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1456 nodemask_t *allowednodes)
1458 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1459 int i; /* index of *z in zonelist zones */
1460 int n; /* node that zone *z is on */
1462 zlc = zonelist->zlcache_ptr;
1463 if (!zlc)
1464 return 1;
1466 i = z - zonelist->_zonerefs;
1467 n = zlc->z_to_n[i];
1469 /* This zone is worth trying if it is allowed but not full */
1470 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1474 * Given 'z' scanning a zonelist, set the corresponding bit in
1475 * zlc->fullzones, so that subsequent attempts to allocate a page
1476 * from that zone don't waste time re-examining it.
1478 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1480 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1481 int i; /* index of *z in zonelist zones */
1483 zlc = zonelist->zlcache_ptr;
1484 if (!zlc)
1485 return;
1487 i = z - zonelist->_zonerefs;
1489 set_bit(i, zlc->fullzones);
1492 #else /* CONFIG_NUMA */
1494 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1496 return NULL;
1499 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1500 nodemask_t *allowednodes)
1502 return 1;
1505 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1508 #endif /* CONFIG_NUMA */
1511 * get_page_from_freelist goes through the zonelist trying to allocate
1512 * a page.
1514 static struct page *
1515 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1516 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1517 struct zone *preferred_zone, int migratetype)
1519 struct zoneref *z;
1520 struct page *page = NULL;
1521 int classzone_idx;
1522 struct zone *zone;
1523 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1524 int zlc_active = 0; /* set if using zonelist_cache */
1525 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1527 classzone_idx = zone_idx(preferred_zone);
1528 zonelist_scan:
1530 * Scan zonelist, looking for a zone with enough free.
1531 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1533 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1534 high_zoneidx, nodemask) {
1535 if (NUMA_BUILD && zlc_active &&
1536 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1537 continue;
1538 if ((alloc_flags & ALLOC_CPUSET) &&
1539 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1540 goto try_next_zone;
1542 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1543 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1544 unsigned long mark;
1545 int ret;
1547 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1548 if (zone_watermark_ok(zone, order, mark,
1549 classzone_idx, alloc_flags))
1550 goto try_this_zone;
1552 if (zone_reclaim_mode == 0)
1553 goto this_zone_full;
1555 ret = zone_reclaim(zone, gfp_mask, order);
1556 switch (ret) {
1557 case ZONE_RECLAIM_NOSCAN:
1558 /* did not scan */
1559 goto try_next_zone;
1560 case ZONE_RECLAIM_FULL:
1561 /* scanned but unreclaimable */
1562 goto this_zone_full;
1563 default:
1564 /* did we reclaim enough */
1565 if (!zone_watermark_ok(zone, order, mark,
1566 classzone_idx, alloc_flags))
1567 goto this_zone_full;
1571 try_this_zone:
1572 page = buffered_rmqueue(preferred_zone, zone, order,
1573 gfp_mask, migratetype);
1574 if (page)
1575 break;
1576 this_zone_full:
1577 if (NUMA_BUILD)
1578 zlc_mark_zone_full(zonelist, z);
1579 try_next_zone:
1580 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1582 * we do zlc_setup after the first zone is tried but only
1583 * if there are multiple nodes make it worthwhile
1585 allowednodes = zlc_setup(zonelist, alloc_flags);
1586 zlc_active = 1;
1587 did_zlc_setup = 1;
1591 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1592 /* Disable zlc cache for second zonelist scan */
1593 zlc_active = 0;
1594 goto zonelist_scan;
1596 return page;
1599 static inline int
1600 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1601 unsigned long pages_reclaimed)
1603 /* Do not loop if specifically requested */
1604 if (gfp_mask & __GFP_NORETRY)
1605 return 0;
1608 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1609 * means __GFP_NOFAIL, but that may not be true in other
1610 * implementations.
1612 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1613 return 1;
1616 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1617 * specified, then we retry until we no longer reclaim any pages
1618 * (above), or we've reclaimed an order of pages at least as
1619 * large as the allocation's order. In both cases, if the
1620 * allocation still fails, we stop retrying.
1622 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1623 return 1;
1626 * Don't let big-order allocations loop unless the caller
1627 * explicitly requests that.
1629 if (gfp_mask & __GFP_NOFAIL)
1630 return 1;
1632 return 0;
1635 static inline struct page *
1636 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1637 struct zonelist *zonelist, enum zone_type high_zoneidx,
1638 nodemask_t *nodemask, struct zone *preferred_zone,
1639 int migratetype)
1641 struct page *page;
1643 /* Acquire the OOM killer lock for the zones in zonelist */
1644 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1645 schedule_timeout_uninterruptible(1);
1646 return NULL;
1650 * Go through the zonelist yet one more time, keep very high watermark
1651 * here, this is only to catch a parallel oom killing, we must fail if
1652 * we're still under heavy pressure.
1654 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1655 order, zonelist, high_zoneidx,
1656 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1657 preferred_zone, migratetype);
1658 if (page)
1659 goto out;
1661 /* The OOM killer will not help higher order allocs */
1662 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1663 goto out;
1665 /* Exhausted what can be done so it's blamo time */
1666 out_of_memory(zonelist, gfp_mask, order);
1668 out:
1669 clear_zonelist_oom(zonelist, gfp_mask);
1670 return page;
1673 /* The really slow allocator path where we enter direct reclaim */
1674 static inline struct page *
1675 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1676 struct zonelist *zonelist, enum zone_type high_zoneidx,
1677 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1678 int migratetype, unsigned long *did_some_progress)
1680 struct page *page = NULL;
1681 struct reclaim_state reclaim_state;
1682 struct task_struct *p = current;
1684 cond_resched();
1686 /* We now go into synchronous reclaim */
1687 cpuset_memory_pressure_bump();
1688 p->flags |= PF_MEMALLOC;
1689 lockdep_set_current_reclaim_state(gfp_mask);
1690 reclaim_state.reclaimed_slab = 0;
1691 p->reclaim_state = &reclaim_state;
1693 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1695 p->reclaim_state = NULL;
1696 lockdep_clear_current_reclaim_state();
1697 p->flags &= ~PF_MEMALLOC;
1699 cond_resched();
1701 if (order != 0)
1702 drain_all_pages();
1704 if (likely(*did_some_progress))
1705 page = get_page_from_freelist(gfp_mask, nodemask, order,
1706 zonelist, high_zoneidx,
1707 alloc_flags, preferred_zone,
1708 migratetype);
1709 return page;
1713 * This is called in the allocator slow-path if the allocation request is of
1714 * sufficient urgency to ignore watermarks and take other desperate measures
1716 static inline struct page *
1717 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1718 struct zonelist *zonelist, enum zone_type high_zoneidx,
1719 nodemask_t *nodemask, struct zone *preferred_zone,
1720 int migratetype)
1722 struct page *page;
1724 do {
1725 page = get_page_from_freelist(gfp_mask, nodemask, order,
1726 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1727 preferred_zone, migratetype);
1729 if (!page && gfp_mask & __GFP_NOFAIL)
1730 congestion_wait(BLK_RW_ASYNC, HZ/50);
1731 } while (!page && (gfp_mask & __GFP_NOFAIL));
1733 return page;
1736 static inline
1737 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1738 enum zone_type high_zoneidx)
1740 struct zoneref *z;
1741 struct zone *zone;
1743 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1744 wakeup_kswapd(zone, order);
1747 static inline int
1748 gfp_to_alloc_flags(gfp_t gfp_mask)
1750 struct task_struct *p = current;
1751 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1752 const gfp_t wait = gfp_mask & __GFP_WAIT;
1754 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1755 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1758 * The caller may dip into page reserves a bit more if the caller
1759 * cannot run direct reclaim, or if the caller has realtime scheduling
1760 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1761 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1763 alloc_flags |= (gfp_mask & __GFP_HIGH);
1765 if (!wait) {
1766 alloc_flags |= ALLOC_HARDER;
1768 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1769 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1771 alloc_flags &= ~ALLOC_CPUSET;
1772 } else if (unlikely(rt_task(p)))
1773 alloc_flags |= ALLOC_HARDER;
1775 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1776 if (!in_interrupt() &&
1777 ((p->flags & PF_MEMALLOC) ||
1778 unlikely(test_thread_flag(TIF_MEMDIE))))
1779 alloc_flags |= ALLOC_NO_WATERMARKS;
1782 return alloc_flags;
1785 static inline struct page *
1786 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1787 struct zonelist *zonelist, enum zone_type high_zoneidx,
1788 nodemask_t *nodemask, struct zone *preferred_zone,
1789 int migratetype)
1791 const gfp_t wait = gfp_mask & __GFP_WAIT;
1792 struct page *page = NULL;
1793 int alloc_flags;
1794 unsigned long pages_reclaimed = 0;
1795 unsigned long did_some_progress;
1796 struct task_struct *p = current;
1799 * In the slowpath, we sanity check order to avoid ever trying to
1800 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1801 * be using allocators in order of preference for an area that is
1802 * too large.
1804 if (order >= MAX_ORDER) {
1805 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1806 return NULL;
1810 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1811 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1812 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1813 * using a larger set of nodes after it has established that the
1814 * allowed per node queues are empty and that nodes are
1815 * over allocated.
1817 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1818 goto nopage;
1820 wake_all_kswapd(order, zonelist, high_zoneidx);
1822 restart:
1824 * OK, we're below the kswapd watermark and have kicked background
1825 * reclaim. Now things get more complex, so set up alloc_flags according
1826 * to how we want to proceed.
1828 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1830 /* This is the last chance, in general, before the goto nopage. */
1831 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1832 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1833 preferred_zone, migratetype);
1834 if (page)
1835 goto got_pg;
1837 rebalance:
1838 /* Allocate without watermarks if the context allows */
1839 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1840 page = __alloc_pages_high_priority(gfp_mask, order,
1841 zonelist, high_zoneidx, nodemask,
1842 preferred_zone, migratetype);
1843 if (page)
1844 goto got_pg;
1847 /* Atomic allocations - we can't balance anything */
1848 if (!wait)
1849 goto nopage;
1851 /* Avoid recursion of direct reclaim */
1852 if (p->flags & PF_MEMALLOC)
1853 goto nopage;
1855 /* Avoid allocations with no watermarks from looping endlessly */
1856 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1857 goto nopage;
1859 /* Try direct reclaim and then allocating */
1860 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1861 zonelist, high_zoneidx,
1862 nodemask,
1863 alloc_flags, preferred_zone,
1864 migratetype, &did_some_progress);
1865 if (page)
1866 goto got_pg;
1869 * If we failed to make any progress reclaiming, then we are
1870 * running out of options and have to consider going OOM
1872 if (!did_some_progress) {
1873 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1874 if (oom_killer_disabled)
1875 goto nopage;
1876 page = __alloc_pages_may_oom(gfp_mask, order,
1877 zonelist, high_zoneidx,
1878 nodemask, preferred_zone,
1879 migratetype);
1880 if (page)
1881 goto got_pg;
1884 * The OOM killer does not trigger for high-order
1885 * ~__GFP_NOFAIL allocations so if no progress is being
1886 * made, there are no other options and retrying is
1887 * unlikely to help.
1889 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1890 !(gfp_mask & __GFP_NOFAIL))
1891 goto nopage;
1893 goto restart;
1897 /* Check if we should retry the allocation */
1898 pages_reclaimed += did_some_progress;
1899 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1900 /* Wait for some write requests to complete then retry */
1901 congestion_wait(BLK_RW_ASYNC, HZ/50);
1902 goto rebalance;
1905 nopage:
1906 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1907 printk(KERN_WARNING "%s: page allocation failure."
1908 " order:%d, mode:0x%x\n",
1909 p->comm, order, gfp_mask);
1910 dump_stack();
1911 show_mem();
1913 return page;
1914 got_pg:
1915 if (kmemcheck_enabled)
1916 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1917 return page;
1922 * This is the 'heart' of the zoned buddy allocator.
1924 struct page *
1925 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1926 struct zonelist *zonelist, nodemask_t *nodemask)
1928 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1929 struct zone *preferred_zone;
1930 struct page *page;
1931 int migratetype = allocflags_to_migratetype(gfp_mask);
1933 gfp_mask &= gfp_allowed_mask;
1935 lockdep_trace_alloc(gfp_mask);
1937 might_sleep_if(gfp_mask & __GFP_WAIT);
1939 if (should_fail_alloc_page(gfp_mask, order))
1940 return NULL;
1943 * Check the zones suitable for the gfp_mask contain at least one
1944 * valid zone. It's possible to have an empty zonelist as a result
1945 * of GFP_THISNODE and a memoryless node
1947 if (unlikely(!zonelist->_zonerefs->zone))
1948 return NULL;
1950 /* The preferred zone is used for statistics later */
1951 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1952 if (!preferred_zone)
1953 return NULL;
1955 /* First allocation attempt */
1956 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1957 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1958 preferred_zone, migratetype);
1959 if (unlikely(!page))
1960 page = __alloc_pages_slowpath(gfp_mask, order,
1961 zonelist, high_zoneidx, nodemask,
1962 preferred_zone, migratetype);
1964 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1965 return page;
1967 EXPORT_SYMBOL(__alloc_pages_nodemask);
1970 * Common helper functions.
1972 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1974 struct page *page;
1977 * __get_free_pages() returns a 32-bit address, which cannot represent
1978 * a highmem page
1980 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1982 page = alloc_pages(gfp_mask, order);
1983 if (!page)
1984 return 0;
1985 return (unsigned long) page_address(page);
1987 EXPORT_SYMBOL(__get_free_pages);
1989 unsigned long get_zeroed_page(gfp_t gfp_mask)
1991 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1993 EXPORT_SYMBOL(get_zeroed_page);
1995 void __pagevec_free(struct pagevec *pvec)
1997 int i = pagevec_count(pvec);
1999 while (--i >= 0) {
2000 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2001 free_hot_cold_page(pvec->pages[i], pvec->cold);
2005 void __free_pages(struct page *page, unsigned int order)
2007 if (put_page_testzero(page)) {
2008 trace_mm_page_free_direct(page, order);
2009 if (order == 0)
2010 free_hot_page(page);
2011 else
2012 __free_pages_ok(page, order);
2016 EXPORT_SYMBOL(__free_pages);
2018 void free_pages(unsigned long addr, unsigned int order)
2020 if (addr != 0) {
2021 VM_BUG_ON(!virt_addr_valid((void *)addr));
2022 __free_pages(virt_to_page((void *)addr), order);
2026 EXPORT_SYMBOL(free_pages);
2029 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2030 * @size: the number of bytes to allocate
2031 * @gfp_mask: GFP flags for the allocation
2033 * This function is similar to alloc_pages(), except that it allocates the
2034 * minimum number of pages to satisfy the request. alloc_pages() can only
2035 * allocate memory in power-of-two pages.
2037 * This function is also limited by MAX_ORDER.
2039 * Memory allocated by this function must be released by free_pages_exact().
2041 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2043 unsigned int order = get_order(size);
2044 unsigned long addr;
2046 addr = __get_free_pages(gfp_mask, order);
2047 if (addr) {
2048 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2049 unsigned long used = addr + PAGE_ALIGN(size);
2051 split_page(virt_to_page((void *)addr), order);
2052 while (used < alloc_end) {
2053 free_page(used);
2054 used += PAGE_SIZE;
2058 return (void *)addr;
2060 EXPORT_SYMBOL(alloc_pages_exact);
2063 * free_pages_exact - release memory allocated via alloc_pages_exact()
2064 * @virt: the value returned by alloc_pages_exact.
2065 * @size: size of allocation, same value as passed to alloc_pages_exact().
2067 * Release the memory allocated by a previous call to alloc_pages_exact.
2069 void free_pages_exact(void *virt, size_t size)
2071 unsigned long addr = (unsigned long)virt;
2072 unsigned long end = addr + PAGE_ALIGN(size);
2074 while (addr < end) {
2075 free_page(addr);
2076 addr += PAGE_SIZE;
2079 EXPORT_SYMBOL(free_pages_exact);
2081 static unsigned int nr_free_zone_pages(int offset)
2083 struct zoneref *z;
2084 struct zone *zone;
2086 /* Just pick one node, since fallback list is circular */
2087 unsigned int sum = 0;
2089 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2091 for_each_zone_zonelist(zone, z, zonelist, offset) {
2092 unsigned long size = zone->present_pages;
2093 unsigned long high = high_wmark_pages(zone);
2094 if (size > high)
2095 sum += size - high;
2098 return sum;
2102 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2104 unsigned int nr_free_buffer_pages(void)
2106 return nr_free_zone_pages(gfp_zone(GFP_USER));
2108 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2111 * Amount of free RAM allocatable within all zones
2113 unsigned int nr_free_pagecache_pages(void)
2115 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2118 static inline void show_node(struct zone *zone)
2120 if (NUMA_BUILD)
2121 printk("Node %d ", zone_to_nid(zone));
2124 void si_meminfo(struct sysinfo *val)
2126 val->totalram = totalram_pages;
2127 val->sharedram = 0;
2128 val->freeram = global_page_state(NR_FREE_PAGES);
2129 val->bufferram = nr_blockdev_pages();
2130 val->totalhigh = totalhigh_pages;
2131 val->freehigh = nr_free_highpages();
2132 val->mem_unit = PAGE_SIZE;
2135 EXPORT_SYMBOL(si_meminfo);
2137 #ifdef CONFIG_NUMA
2138 void si_meminfo_node(struct sysinfo *val, int nid)
2140 pg_data_t *pgdat = NODE_DATA(nid);
2142 val->totalram = pgdat->node_present_pages;
2143 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2144 #ifdef CONFIG_HIGHMEM
2145 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2146 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2147 NR_FREE_PAGES);
2148 #else
2149 val->totalhigh = 0;
2150 val->freehigh = 0;
2151 #endif
2152 val->mem_unit = PAGE_SIZE;
2154 #endif
2156 #define K(x) ((x) << (PAGE_SHIFT-10))
2159 * Show free area list (used inside shift_scroll-lock stuff)
2160 * We also calculate the percentage fragmentation. We do this by counting the
2161 * memory on each free list with the exception of the first item on the list.
2163 void show_free_areas(void)
2165 int cpu;
2166 struct zone *zone;
2168 for_each_populated_zone(zone) {
2169 show_node(zone);
2170 printk("%s per-cpu:\n", zone->name);
2172 for_each_online_cpu(cpu) {
2173 struct per_cpu_pageset *pageset;
2175 pageset = zone_pcp(zone, cpu);
2177 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2178 cpu, pageset->pcp.high,
2179 pageset->pcp.batch, pageset->pcp.count);
2183 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2184 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2185 " unevictable:%lu"
2186 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2187 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2188 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2189 global_page_state(NR_ACTIVE_ANON),
2190 global_page_state(NR_INACTIVE_ANON),
2191 global_page_state(NR_ISOLATED_ANON),
2192 global_page_state(NR_ACTIVE_FILE),
2193 global_page_state(NR_INACTIVE_FILE),
2194 global_page_state(NR_ISOLATED_FILE),
2195 global_page_state(NR_UNEVICTABLE),
2196 global_page_state(NR_FILE_DIRTY),
2197 global_page_state(NR_WRITEBACK),
2198 global_page_state(NR_UNSTABLE_NFS),
2199 nr_blockdev_pages(),
2200 global_page_state(NR_FREE_PAGES),
2201 global_page_state(NR_SLAB_RECLAIMABLE),
2202 global_page_state(NR_SLAB_UNRECLAIMABLE),
2203 global_page_state(NR_FILE_MAPPED),
2204 global_page_state(NR_SHMEM),
2205 global_page_state(NR_PAGETABLE),
2206 global_page_state(NR_BOUNCE));
2208 for_each_populated_zone(zone) {
2209 int i;
2211 show_node(zone);
2212 printk("%s"
2213 " free:%lukB"
2214 " min:%lukB"
2215 " low:%lukB"
2216 " high:%lukB"
2217 " active_anon:%lukB"
2218 " inactive_anon:%lukB"
2219 " active_file:%lukB"
2220 " inactive_file:%lukB"
2221 " unevictable:%lukB"
2222 " isolated(anon):%lukB"
2223 " isolated(file):%lukB"
2224 " present:%lukB"
2225 " mlocked:%lukB"
2226 " dirty:%lukB"
2227 " writeback:%lukB"
2228 " mapped:%lukB"
2229 " shmem:%lukB"
2230 " slab_reclaimable:%lukB"
2231 " slab_unreclaimable:%lukB"
2232 " kernel_stack:%lukB"
2233 " pagetables:%lukB"
2234 " unstable:%lukB"
2235 " bounce:%lukB"
2236 " writeback_tmp:%lukB"
2237 " pages_scanned:%lu"
2238 " all_unreclaimable? %s"
2239 "\n",
2240 zone->name,
2241 K(zone_page_state(zone, NR_FREE_PAGES)),
2242 K(min_wmark_pages(zone)),
2243 K(low_wmark_pages(zone)),
2244 K(high_wmark_pages(zone)),
2245 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2246 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2247 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2248 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2249 K(zone_page_state(zone, NR_UNEVICTABLE)),
2250 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2251 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2252 K(zone->present_pages),
2253 K(zone_page_state(zone, NR_MLOCK)),
2254 K(zone_page_state(zone, NR_FILE_DIRTY)),
2255 K(zone_page_state(zone, NR_WRITEBACK)),
2256 K(zone_page_state(zone, NR_FILE_MAPPED)),
2257 K(zone_page_state(zone, NR_SHMEM)),
2258 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2259 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2260 zone_page_state(zone, NR_KERNEL_STACK) *
2261 THREAD_SIZE / 1024,
2262 K(zone_page_state(zone, NR_PAGETABLE)),
2263 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2264 K(zone_page_state(zone, NR_BOUNCE)),
2265 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2266 zone->pages_scanned,
2267 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2269 printk("lowmem_reserve[]:");
2270 for (i = 0; i < MAX_NR_ZONES; i++)
2271 printk(" %lu", zone->lowmem_reserve[i]);
2272 printk("\n");
2275 for_each_populated_zone(zone) {
2276 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2278 show_node(zone);
2279 printk("%s: ", zone->name);
2281 spin_lock_irqsave(&zone->lock, flags);
2282 for (order = 0; order < MAX_ORDER; order++) {
2283 nr[order] = zone->free_area[order].nr_free;
2284 total += nr[order] << order;
2286 spin_unlock_irqrestore(&zone->lock, flags);
2287 for (order = 0; order < MAX_ORDER; order++)
2288 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2289 printk("= %lukB\n", K(total));
2292 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2294 show_swap_cache_info();
2297 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2299 zoneref->zone = zone;
2300 zoneref->zone_idx = zone_idx(zone);
2304 * Builds allocation fallback zone lists.
2306 * Add all populated zones of a node to the zonelist.
2308 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2309 int nr_zones, enum zone_type zone_type)
2311 struct zone *zone;
2313 BUG_ON(zone_type >= MAX_NR_ZONES);
2314 zone_type++;
2316 do {
2317 zone_type--;
2318 zone = pgdat->node_zones + zone_type;
2319 if (populated_zone(zone)) {
2320 zoneref_set_zone(zone,
2321 &zonelist->_zonerefs[nr_zones++]);
2322 check_highest_zone(zone_type);
2325 } while (zone_type);
2326 return nr_zones;
2331 * zonelist_order:
2332 * 0 = automatic detection of better ordering.
2333 * 1 = order by ([node] distance, -zonetype)
2334 * 2 = order by (-zonetype, [node] distance)
2336 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2337 * the same zonelist. So only NUMA can configure this param.
2339 #define ZONELIST_ORDER_DEFAULT 0
2340 #define ZONELIST_ORDER_NODE 1
2341 #define ZONELIST_ORDER_ZONE 2
2343 /* zonelist order in the kernel.
2344 * set_zonelist_order() will set this to NODE or ZONE.
2346 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2347 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2350 #ifdef CONFIG_NUMA
2351 /* The value user specified ....changed by config */
2352 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2353 /* string for sysctl */
2354 #define NUMA_ZONELIST_ORDER_LEN 16
2355 char numa_zonelist_order[16] = "default";
2358 * interface for configure zonelist ordering.
2359 * command line option "numa_zonelist_order"
2360 * = "[dD]efault - default, automatic configuration.
2361 * = "[nN]ode - order by node locality, then by zone within node
2362 * = "[zZ]one - order by zone, then by locality within zone
2365 static int __parse_numa_zonelist_order(char *s)
2367 if (*s == 'd' || *s == 'D') {
2368 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2369 } else if (*s == 'n' || *s == 'N') {
2370 user_zonelist_order = ZONELIST_ORDER_NODE;
2371 } else if (*s == 'z' || *s == 'Z') {
2372 user_zonelist_order = ZONELIST_ORDER_ZONE;
2373 } else {
2374 printk(KERN_WARNING
2375 "Ignoring invalid numa_zonelist_order value: "
2376 "%s\n", s);
2377 return -EINVAL;
2379 return 0;
2382 static __init int setup_numa_zonelist_order(char *s)
2384 if (s)
2385 return __parse_numa_zonelist_order(s);
2386 return 0;
2388 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2391 * sysctl handler for numa_zonelist_order
2393 int numa_zonelist_order_handler(ctl_table *table, int write,
2394 void __user *buffer, size_t *length,
2395 loff_t *ppos)
2397 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2398 int ret;
2400 if (write)
2401 strncpy(saved_string, (char*)table->data,
2402 NUMA_ZONELIST_ORDER_LEN);
2403 ret = proc_dostring(table, write, buffer, length, ppos);
2404 if (ret)
2405 return ret;
2406 if (write) {
2407 int oldval = user_zonelist_order;
2408 if (__parse_numa_zonelist_order((char*)table->data)) {
2410 * bogus value. restore saved string
2412 strncpy((char*)table->data, saved_string,
2413 NUMA_ZONELIST_ORDER_LEN);
2414 user_zonelist_order = oldval;
2415 } else if (oldval != user_zonelist_order)
2416 build_all_zonelists();
2418 return 0;
2422 #define MAX_NODE_LOAD (nr_online_nodes)
2423 static int node_load[MAX_NUMNODES];
2426 * find_next_best_node - find the next node that should appear in a given node's fallback list
2427 * @node: node whose fallback list we're appending
2428 * @used_node_mask: nodemask_t of already used nodes
2430 * We use a number of factors to determine which is the next node that should
2431 * appear on a given node's fallback list. The node should not have appeared
2432 * already in @node's fallback list, and it should be the next closest node
2433 * according to the distance array (which contains arbitrary distance values
2434 * from each node to each node in the system), and should also prefer nodes
2435 * with no CPUs, since presumably they'll have very little allocation pressure
2436 * on them otherwise.
2437 * It returns -1 if no node is found.
2439 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2441 int n, val;
2442 int min_val = INT_MAX;
2443 int best_node = -1;
2444 const struct cpumask *tmp = cpumask_of_node(0);
2446 /* Use the local node if we haven't already */
2447 if (!node_isset(node, *used_node_mask)) {
2448 node_set(node, *used_node_mask);
2449 return node;
2452 for_each_node_state(n, N_HIGH_MEMORY) {
2454 /* Don't want a node to appear more than once */
2455 if (node_isset(n, *used_node_mask))
2456 continue;
2458 /* Use the distance array to find the distance */
2459 val = node_distance(node, n);
2461 /* Penalize nodes under us ("prefer the next node") */
2462 val += (n < node);
2464 /* Give preference to headless and unused nodes */
2465 tmp = cpumask_of_node(n);
2466 if (!cpumask_empty(tmp))
2467 val += PENALTY_FOR_NODE_WITH_CPUS;
2469 /* Slight preference for less loaded node */
2470 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2471 val += node_load[n];
2473 if (val < min_val) {
2474 min_val = val;
2475 best_node = n;
2479 if (best_node >= 0)
2480 node_set(best_node, *used_node_mask);
2482 return best_node;
2487 * Build zonelists ordered by node and zones within node.
2488 * This results in maximum locality--normal zone overflows into local
2489 * DMA zone, if any--but risks exhausting DMA zone.
2491 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2493 int j;
2494 struct zonelist *zonelist;
2496 zonelist = &pgdat->node_zonelists[0];
2497 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2499 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2500 MAX_NR_ZONES - 1);
2501 zonelist->_zonerefs[j].zone = NULL;
2502 zonelist->_zonerefs[j].zone_idx = 0;
2506 * Build gfp_thisnode zonelists
2508 static void build_thisnode_zonelists(pg_data_t *pgdat)
2510 int j;
2511 struct zonelist *zonelist;
2513 zonelist = &pgdat->node_zonelists[1];
2514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2515 zonelist->_zonerefs[j].zone = NULL;
2516 zonelist->_zonerefs[j].zone_idx = 0;
2520 * Build zonelists ordered by zone and nodes within zones.
2521 * This results in conserving DMA zone[s] until all Normal memory is
2522 * exhausted, but results in overflowing to remote node while memory
2523 * may still exist in local DMA zone.
2525 static int node_order[MAX_NUMNODES];
2527 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2529 int pos, j, node;
2530 int zone_type; /* needs to be signed */
2531 struct zone *z;
2532 struct zonelist *zonelist;
2534 zonelist = &pgdat->node_zonelists[0];
2535 pos = 0;
2536 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2537 for (j = 0; j < nr_nodes; j++) {
2538 node = node_order[j];
2539 z = &NODE_DATA(node)->node_zones[zone_type];
2540 if (populated_zone(z)) {
2541 zoneref_set_zone(z,
2542 &zonelist->_zonerefs[pos++]);
2543 check_highest_zone(zone_type);
2547 zonelist->_zonerefs[pos].zone = NULL;
2548 zonelist->_zonerefs[pos].zone_idx = 0;
2551 static int default_zonelist_order(void)
2553 int nid, zone_type;
2554 unsigned long low_kmem_size,total_size;
2555 struct zone *z;
2556 int average_size;
2558 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2559 * If they are really small and used heavily, the system can fall
2560 * into OOM very easily.
2561 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2563 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2564 low_kmem_size = 0;
2565 total_size = 0;
2566 for_each_online_node(nid) {
2567 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2568 z = &NODE_DATA(nid)->node_zones[zone_type];
2569 if (populated_zone(z)) {
2570 if (zone_type < ZONE_NORMAL)
2571 low_kmem_size += z->present_pages;
2572 total_size += z->present_pages;
2576 if (!low_kmem_size || /* there are no DMA area. */
2577 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2578 return ZONELIST_ORDER_NODE;
2580 * look into each node's config.
2581 * If there is a node whose DMA/DMA32 memory is very big area on
2582 * local memory, NODE_ORDER may be suitable.
2584 average_size = total_size /
2585 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2586 for_each_online_node(nid) {
2587 low_kmem_size = 0;
2588 total_size = 0;
2589 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2590 z = &NODE_DATA(nid)->node_zones[zone_type];
2591 if (populated_zone(z)) {
2592 if (zone_type < ZONE_NORMAL)
2593 low_kmem_size += z->present_pages;
2594 total_size += z->present_pages;
2597 if (low_kmem_size &&
2598 total_size > average_size && /* ignore small node */
2599 low_kmem_size > total_size * 70/100)
2600 return ZONELIST_ORDER_NODE;
2602 return ZONELIST_ORDER_ZONE;
2605 static void set_zonelist_order(void)
2607 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2608 current_zonelist_order = default_zonelist_order();
2609 else
2610 current_zonelist_order = user_zonelist_order;
2613 static void build_zonelists(pg_data_t *pgdat)
2615 int j, node, load;
2616 enum zone_type i;
2617 nodemask_t used_mask;
2618 int local_node, prev_node;
2619 struct zonelist *zonelist;
2620 int order = current_zonelist_order;
2622 /* initialize zonelists */
2623 for (i = 0; i < MAX_ZONELISTS; i++) {
2624 zonelist = pgdat->node_zonelists + i;
2625 zonelist->_zonerefs[0].zone = NULL;
2626 zonelist->_zonerefs[0].zone_idx = 0;
2629 /* NUMA-aware ordering of nodes */
2630 local_node = pgdat->node_id;
2631 load = nr_online_nodes;
2632 prev_node = local_node;
2633 nodes_clear(used_mask);
2635 memset(node_order, 0, sizeof(node_order));
2636 j = 0;
2638 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2639 int distance = node_distance(local_node, node);
2642 * If another node is sufficiently far away then it is better
2643 * to reclaim pages in a zone before going off node.
2645 if (distance > RECLAIM_DISTANCE)
2646 zone_reclaim_mode = 1;
2649 * We don't want to pressure a particular node.
2650 * So adding penalty to the first node in same
2651 * distance group to make it round-robin.
2653 if (distance != node_distance(local_node, prev_node))
2654 node_load[node] = load;
2656 prev_node = node;
2657 load--;
2658 if (order == ZONELIST_ORDER_NODE)
2659 build_zonelists_in_node_order(pgdat, node);
2660 else
2661 node_order[j++] = node; /* remember order */
2664 if (order == ZONELIST_ORDER_ZONE) {
2665 /* calculate node order -- i.e., DMA last! */
2666 build_zonelists_in_zone_order(pgdat, j);
2669 build_thisnode_zonelists(pgdat);
2672 /* Construct the zonelist performance cache - see further mmzone.h */
2673 static void build_zonelist_cache(pg_data_t *pgdat)
2675 struct zonelist *zonelist;
2676 struct zonelist_cache *zlc;
2677 struct zoneref *z;
2679 zonelist = &pgdat->node_zonelists[0];
2680 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2681 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2682 for (z = zonelist->_zonerefs; z->zone; z++)
2683 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2687 #else /* CONFIG_NUMA */
2689 static void set_zonelist_order(void)
2691 current_zonelist_order = ZONELIST_ORDER_ZONE;
2694 static void build_zonelists(pg_data_t *pgdat)
2696 int node, local_node;
2697 enum zone_type j;
2698 struct zonelist *zonelist;
2700 local_node = pgdat->node_id;
2702 zonelist = &pgdat->node_zonelists[0];
2703 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2706 * Now we build the zonelist so that it contains the zones
2707 * of all the other nodes.
2708 * We don't want to pressure a particular node, so when
2709 * building the zones for node N, we make sure that the
2710 * zones coming right after the local ones are those from
2711 * node N+1 (modulo N)
2713 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2714 if (!node_online(node))
2715 continue;
2716 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2717 MAX_NR_ZONES - 1);
2719 for (node = 0; node < local_node; node++) {
2720 if (!node_online(node))
2721 continue;
2722 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2723 MAX_NR_ZONES - 1);
2726 zonelist->_zonerefs[j].zone = NULL;
2727 zonelist->_zonerefs[j].zone_idx = 0;
2730 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2731 static void build_zonelist_cache(pg_data_t *pgdat)
2733 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2736 #endif /* CONFIG_NUMA */
2738 /* return values int ....just for stop_machine() */
2739 static int __build_all_zonelists(void *dummy)
2741 int nid;
2743 #ifdef CONFIG_NUMA
2744 memset(node_load, 0, sizeof(node_load));
2745 #endif
2746 for_each_online_node(nid) {
2747 pg_data_t *pgdat = NODE_DATA(nid);
2749 build_zonelists(pgdat);
2750 build_zonelist_cache(pgdat);
2752 return 0;
2755 void build_all_zonelists(void)
2757 set_zonelist_order();
2759 if (system_state == SYSTEM_BOOTING) {
2760 __build_all_zonelists(NULL);
2761 mminit_verify_zonelist();
2762 cpuset_init_current_mems_allowed();
2763 } else {
2764 /* we have to stop all cpus to guarantee there is no user
2765 of zonelist */
2766 stop_machine(__build_all_zonelists, NULL, NULL);
2767 /* cpuset refresh routine should be here */
2769 vm_total_pages = nr_free_pagecache_pages();
2771 * Disable grouping by mobility if the number of pages in the
2772 * system is too low to allow the mechanism to work. It would be
2773 * more accurate, but expensive to check per-zone. This check is
2774 * made on memory-hotadd so a system can start with mobility
2775 * disabled and enable it later
2777 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2778 page_group_by_mobility_disabled = 1;
2779 else
2780 page_group_by_mobility_disabled = 0;
2782 printk("Built %i zonelists in %s order, mobility grouping %s. "
2783 "Total pages: %ld\n",
2784 nr_online_nodes,
2785 zonelist_order_name[current_zonelist_order],
2786 page_group_by_mobility_disabled ? "off" : "on",
2787 vm_total_pages);
2788 #ifdef CONFIG_NUMA
2789 printk("Policy zone: %s\n", zone_names[policy_zone]);
2790 #endif
2794 * Helper functions to size the waitqueue hash table.
2795 * Essentially these want to choose hash table sizes sufficiently
2796 * large so that collisions trying to wait on pages are rare.
2797 * But in fact, the number of active page waitqueues on typical
2798 * systems is ridiculously low, less than 200. So this is even
2799 * conservative, even though it seems large.
2801 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2802 * waitqueues, i.e. the size of the waitq table given the number of pages.
2804 #define PAGES_PER_WAITQUEUE 256
2806 #ifndef CONFIG_MEMORY_HOTPLUG
2807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2809 unsigned long size = 1;
2811 pages /= PAGES_PER_WAITQUEUE;
2813 while (size < pages)
2814 size <<= 1;
2817 * Once we have dozens or even hundreds of threads sleeping
2818 * on IO we've got bigger problems than wait queue collision.
2819 * Limit the size of the wait table to a reasonable size.
2821 size = min(size, 4096UL);
2823 return max(size, 4UL);
2825 #else
2827 * A zone's size might be changed by hot-add, so it is not possible to determine
2828 * a suitable size for its wait_table. So we use the maximum size now.
2830 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2832 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2833 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2834 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2836 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2837 * or more by the traditional way. (See above). It equals:
2839 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2840 * ia64(16K page size) : = ( 8G + 4M)byte.
2841 * powerpc (64K page size) : = (32G +16M)byte.
2843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2845 return 4096UL;
2847 #endif
2850 * This is an integer logarithm so that shifts can be used later
2851 * to extract the more random high bits from the multiplicative
2852 * hash function before the remainder is taken.
2854 static inline unsigned long wait_table_bits(unsigned long size)
2856 return ffz(~size);
2859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2862 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2863 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2864 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2865 * higher will lead to a bigger reserve which will get freed as contiguous
2866 * blocks as reclaim kicks in
2868 static void setup_zone_migrate_reserve(struct zone *zone)
2870 unsigned long start_pfn, pfn, end_pfn;
2871 struct page *page;
2872 unsigned long block_migratetype;
2873 int reserve;
2875 /* Get the start pfn, end pfn and the number of blocks to reserve */
2876 start_pfn = zone->zone_start_pfn;
2877 end_pfn = start_pfn + zone->spanned_pages;
2878 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2879 pageblock_order;
2882 * Reserve blocks are generally in place to help high-order atomic
2883 * allocations that are short-lived. A min_free_kbytes value that
2884 * would result in more than 2 reserve blocks for atomic allocations
2885 * is assumed to be in place to help anti-fragmentation for the
2886 * future allocation of hugepages at runtime.
2888 reserve = min(2, reserve);
2890 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2891 if (!pfn_valid(pfn))
2892 continue;
2893 page = pfn_to_page(pfn);
2895 /* Watch out for overlapping nodes */
2896 if (page_to_nid(page) != zone_to_nid(zone))
2897 continue;
2899 /* Blocks with reserved pages will never free, skip them. */
2900 if (PageReserved(page))
2901 continue;
2903 block_migratetype = get_pageblock_migratetype(page);
2905 /* If this block is reserved, account for it */
2906 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2907 reserve--;
2908 continue;
2911 /* Suitable for reserving if this block is movable */
2912 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2913 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2914 move_freepages_block(zone, page, MIGRATE_RESERVE);
2915 reserve--;
2916 continue;
2920 * If the reserve is met and this is a previous reserved block,
2921 * take it back
2923 if (block_migratetype == MIGRATE_RESERVE) {
2924 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2925 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2931 * Initially all pages are reserved - free ones are freed
2932 * up by free_all_bootmem() once the early boot process is
2933 * done. Non-atomic initialization, single-pass.
2935 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2936 unsigned long start_pfn, enum memmap_context context)
2938 struct page *page;
2939 unsigned long end_pfn = start_pfn + size;
2940 unsigned long pfn;
2941 struct zone *z;
2943 if (highest_memmap_pfn < end_pfn - 1)
2944 highest_memmap_pfn = end_pfn - 1;
2946 z = &NODE_DATA(nid)->node_zones[zone];
2947 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2949 * There can be holes in boot-time mem_map[]s
2950 * handed to this function. They do not
2951 * exist on hotplugged memory.
2953 if (context == MEMMAP_EARLY) {
2954 if (!early_pfn_valid(pfn))
2955 continue;
2956 if (!early_pfn_in_nid(pfn, nid))
2957 continue;
2959 page = pfn_to_page(pfn);
2960 set_page_links(page, zone, nid, pfn);
2961 mminit_verify_page_links(page, zone, nid, pfn);
2962 init_page_count(page);
2963 reset_page_mapcount(page);
2964 SetPageReserved(page);
2966 * Mark the block movable so that blocks are reserved for
2967 * movable at startup. This will force kernel allocations
2968 * to reserve their blocks rather than leaking throughout
2969 * the address space during boot when many long-lived
2970 * kernel allocations are made. Later some blocks near
2971 * the start are marked MIGRATE_RESERVE by
2972 * setup_zone_migrate_reserve()
2974 * bitmap is created for zone's valid pfn range. but memmap
2975 * can be created for invalid pages (for alignment)
2976 * check here not to call set_pageblock_migratetype() against
2977 * pfn out of zone.
2979 if ((z->zone_start_pfn <= pfn)
2980 && (pfn < z->zone_start_pfn + z->spanned_pages)
2981 && !(pfn & (pageblock_nr_pages - 1)))
2982 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2984 INIT_LIST_HEAD(&page->lru);
2985 #ifdef WANT_PAGE_VIRTUAL
2986 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2987 if (!is_highmem_idx(zone))
2988 set_page_address(page, __va(pfn << PAGE_SHIFT));
2989 #endif
2993 static void __meminit zone_init_free_lists(struct zone *zone)
2995 int order, t;
2996 for_each_migratetype_order(order, t) {
2997 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2998 zone->free_area[order].nr_free = 0;
3002 #ifndef __HAVE_ARCH_MEMMAP_INIT
3003 #define memmap_init(size, nid, zone, start_pfn) \
3004 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3005 #endif
3007 static int zone_batchsize(struct zone *zone)
3009 #ifdef CONFIG_MMU
3010 int batch;
3013 * The per-cpu-pages pools are set to around 1000th of the
3014 * size of the zone. But no more than 1/2 of a meg.
3016 * OK, so we don't know how big the cache is. So guess.
3018 batch = zone->present_pages / 1024;
3019 if (batch * PAGE_SIZE > 512 * 1024)
3020 batch = (512 * 1024) / PAGE_SIZE;
3021 batch /= 4; /* We effectively *= 4 below */
3022 if (batch < 1)
3023 batch = 1;
3026 * Clamp the batch to a 2^n - 1 value. Having a power
3027 * of 2 value was found to be more likely to have
3028 * suboptimal cache aliasing properties in some cases.
3030 * For example if 2 tasks are alternately allocating
3031 * batches of pages, one task can end up with a lot
3032 * of pages of one half of the possible page colors
3033 * and the other with pages of the other colors.
3035 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3037 return batch;
3039 #else
3040 /* The deferral and batching of frees should be suppressed under NOMMU
3041 * conditions.
3043 * The problem is that NOMMU needs to be able to allocate large chunks
3044 * of contiguous memory as there's no hardware page translation to
3045 * assemble apparent contiguous memory from discontiguous pages.
3047 * Queueing large contiguous runs of pages for batching, however,
3048 * causes the pages to actually be freed in smaller chunks. As there
3049 * can be a significant delay between the individual batches being
3050 * recycled, this leads to the once large chunks of space being
3051 * fragmented and becoming unavailable for high-order allocations.
3053 return 0;
3054 #endif
3057 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3059 struct per_cpu_pages *pcp;
3060 int migratetype;
3062 memset(p, 0, sizeof(*p));
3064 pcp = &p->pcp;
3065 pcp->count = 0;
3066 pcp->high = 6 * batch;
3067 pcp->batch = max(1UL, 1 * batch);
3068 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3069 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3073 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3074 * to the value high for the pageset p.
3077 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3078 unsigned long high)
3080 struct per_cpu_pages *pcp;
3082 pcp = &p->pcp;
3083 pcp->high = high;
3084 pcp->batch = max(1UL, high/4);
3085 if ((high/4) > (PAGE_SHIFT * 8))
3086 pcp->batch = PAGE_SHIFT * 8;
3090 #ifdef CONFIG_NUMA
3092 * Boot pageset table. One per cpu which is going to be used for all
3093 * zones and all nodes. The parameters will be set in such a way
3094 * that an item put on a list will immediately be handed over to
3095 * the buddy list. This is safe since pageset manipulation is done
3096 * with interrupts disabled.
3098 * Some NUMA counter updates may also be caught by the boot pagesets.
3100 * The boot_pagesets must be kept even after bootup is complete for
3101 * unused processors and/or zones. They do play a role for bootstrapping
3102 * hotplugged processors.
3104 * zoneinfo_show() and maybe other functions do
3105 * not check if the processor is online before following the pageset pointer.
3106 * Other parts of the kernel may not check if the zone is available.
3108 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3111 * Dynamically allocate memory for the
3112 * per cpu pageset array in struct zone.
3114 static int __cpuinit process_zones(int cpu)
3116 struct zone *zone, *dzone;
3117 int node = cpu_to_node(cpu);
3119 node_set_state(node, N_CPU); /* this node has a cpu */
3121 for_each_populated_zone(zone) {
3122 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3123 GFP_KERNEL, node);
3124 if (!zone_pcp(zone, cpu))
3125 goto bad;
3127 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3129 if (percpu_pagelist_fraction)
3130 setup_pagelist_highmark(zone_pcp(zone, cpu),
3131 (zone->present_pages / percpu_pagelist_fraction));
3134 return 0;
3135 bad:
3136 for_each_zone(dzone) {
3137 if (!populated_zone(dzone))
3138 continue;
3139 if (dzone == zone)
3140 break;
3141 kfree(zone_pcp(dzone, cpu));
3142 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3144 return -ENOMEM;
3147 static inline void free_zone_pagesets(int cpu)
3149 struct zone *zone;
3151 for_each_zone(zone) {
3152 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3154 /* Free per_cpu_pageset if it is slab allocated */
3155 if (pset != &boot_pageset[cpu])
3156 kfree(pset);
3157 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3161 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3162 unsigned long action,
3163 void *hcpu)
3165 int cpu = (long)hcpu;
3166 int ret = NOTIFY_OK;
3168 switch (action) {
3169 case CPU_UP_PREPARE:
3170 case CPU_UP_PREPARE_FROZEN:
3171 if (process_zones(cpu))
3172 ret = NOTIFY_BAD;
3173 break;
3174 case CPU_UP_CANCELED:
3175 case CPU_UP_CANCELED_FROZEN:
3176 case CPU_DEAD:
3177 case CPU_DEAD_FROZEN:
3178 free_zone_pagesets(cpu);
3179 break;
3180 default:
3181 break;
3183 return ret;
3186 static struct notifier_block __cpuinitdata pageset_notifier =
3187 { &pageset_cpuup_callback, NULL, 0 };
3189 void __init setup_per_cpu_pageset(void)
3191 int err;
3193 /* Initialize per_cpu_pageset for cpu 0.
3194 * A cpuup callback will do this for every cpu
3195 * as it comes online
3197 err = process_zones(smp_processor_id());
3198 BUG_ON(err);
3199 register_cpu_notifier(&pageset_notifier);
3202 #endif
3204 static noinline __init_refok
3205 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3207 int i;
3208 struct pglist_data *pgdat = zone->zone_pgdat;
3209 size_t alloc_size;
3212 * The per-page waitqueue mechanism uses hashed waitqueues
3213 * per zone.
3215 zone->wait_table_hash_nr_entries =
3216 wait_table_hash_nr_entries(zone_size_pages);
3217 zone->wait_table_bits =
3218 wait_table_bits(zone->wait_table_hash_nr_entries);
3219 alloc_size = zone->wait_table_hash_nr_entries
3220 * sizeof(wait_queue_head_t);
3222 if (!slab_is_available()) {
3223 zone->wait_table = (wait_queue_head_t *)
3224 alloc_bootmem_node(pgdat, alloc_size);
3225 } else {
3227 * This case means that a zone whose size was 0 gets new memory
3228 * via memory hot-add.
3229 * But it may be the case that a new node was hot-added. In
3230 * this case vmalloc() will not be able to use this new node's
3231 * memory - this wait_table must be initialized to use this new
3232 * node itself as well.
3233 * To use this new node's memory, further consideration will be
3234 * necessary.
3236 zone->wait_table = vmalloc(alloc_size);
3238 if (!zone->wait_table)
3239 return -ENOMEM;
3241 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3242 init_waitqueue_head(zone->wait_table + i);
3244 return 0;
3247 static int __zone_pcp_update(void *data)
3249 struct zone *zone = data;
3250 int cpu;
3251 unsigned long batch = zone_batchsize(zone), flags;
3253 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3254 struct per_cpu_pageset *pset;
3255 struct per_cpu_pages *pcp;
3257 pset = zone_pcp(zone, cpu);
3258 pcp = &pset->pcp;
3260 local_irq_save(flags);
3261 free_pcppages_bulk(zone, pcp->count, pcp);
3262 setup_pageset(pset, batch);
3263 local_irq_restore(flags);
3265 return 0;
3268 void zone_pcp_update(struct zone *zone)
3270 stop_machine(__zone_pcp_update, zone, NULL);
3273 static __meminit void zone_pcp_init(struct zone *zone)
3275 int cpu;
3276 unsigned long batch = zone_batchsize(zone);
3278 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3279 #ifdef CONFIG_NUMA
3280 /* Early boot. Slab allocator not functional yet */
3281 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3282 setup_pageset(&boot_pageset[cpu],0);
3283 #else
3284 setup_pageset(zone_pcp(zone,cpu), batch);
3285 #endif
3287 if (zone->present_pages)
3288 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3289 zone->name, zone->present_pages, batch);
3292 __meminit int init_currently_empty_zone(struct zone *zone,
3293 unsigned long zone_start_pfn,
3294 unsigned long size,
3295 enum memmap_context context)
3297 struct pglist_data *pgdat = zone->zone_pgdat;
3298 int ret;
3299 ret = zone_wait_table_init(zone, size);
3300 if (ret)
3301 return ret;
3302 pgdat->nr_zones = zone_idx(zone) + 1;
3304 zone->zone_start_pfn = zone_start_pfn;
3306 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3307 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3308 pgdat->node_id,
3309 (unsigned long)zone_idx(zone),
3310 zone_start_pfn, (zone_start_pfn + size));
3312 zone_init_free_lists(zone);
3314 return 0;
3317 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3319 * Basic iterator support. Return the first range of PFNs for a node
3320 * Note: nid == MAX_NUMNODES returns first region regardless of node
3322 static int __meminit first_active_region_index_in_nid(int nid)
3324 int i;
3326 for (i = 0; i < nr_nodemap_entries; i++)
3327 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3328 return i;
3330 return -1;
3334 * Basic iterator support. Return the next active range of PFNs for a node
3335 * Note: nid == MAX_NUMNODES returns next region regardless of node
3337 static int __meminit next_active_region_index_in_nid(int index, int nid)
3339 for (index = index + 1; index < nr_nodemap_entries; index++)
3340 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3341 return index;
3343 return -1;
3346 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3348 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3349 * Architectures may implement their own version but if add_active_range()
3350 * was used and there are no special requirements, this is a convenient
3351 * alternative
3353 int __meminit __early_pfn_to_nid(unsigned long pfn)
3355 int i;
3357 for (i = 0; i < nr_nodemap_entries; i++) {
3358 unsigned long start_pfn = early_node_map[i].start_pfn;
3359 unsigned long end_pfn = early_node_map[i].end_pfn;
3361 if (start_pfn <= pfn && pfn < end_pfn)
3362 return early_node_map[i].nid;
3364 /* This is a memory hole */
3365 return -1;
3367 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3369 int __meminit early_pfn_to_nid(unsigned long pfn)
3371 int nid;
3373 nid = __early_pfn_to_nid(pfn);
3374 if (nid >= 0)
3375 return nid;
3376 /* just returns 0 */
3377 return 0;
3380 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3381 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3383 int nid;
3385 nid = __early_pfn_to_nid(pfn);
3386 if (nid >= 0 && nid != node)
3387 return false;
3388 return true;
3390 #endif
3392 /* Basic iterator support to walk early_node_map[] */
3393 #define for_each_active_range_index_in_nid(i, nid) \
3394 for (i = first_active_region_index_in_nid(nid); i != -1; \
3395 i = next_active_region_index_in_nid(i, nid))
3398 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3399 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3400 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3402 * If an architecture guarantees that all ranges registered with
3403 * add_active_ranges() contain no holes and may be freed, this
3404 * this function may be used instead of calling free_bootmem() manually.
3406 void __init free_bootmem_with_active_regions(int nid,
3407 unsigned long max_low_pfn)
3409 int i;
3411 for_each_active_range_index_in_nid(i, nid) {
3412 unsigned long size_pages = 0;
3413 unsigned long end_pfn = early_node_map[i].end_pfn;
3415 if (early_node_map[i].start_pfn >= max_low_pfn)
3416 continue;
3418 if (end_pfn > max_low_pfn)
3419 end_pfn = max_low_pfn;
3421 size_pages = end_pfn - early_node_map[i].start_pfn;
3422 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3423 PFN_PHYS(early_node_map[i].start_pfn),
3424 size_pages << PAGE_SHIFT);
3428 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3430 int i;
3431 int ret;
3433 for_each_active_range_index_in_nid(i, nid) {
3434 ret = work_fn(early_node_map[i].start_pfn,
3435 early_node_map[i].end_pfn, data);
3436 if (ret)
3437 break;
3441 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3442 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3444 * If an architecture guarantees that all ranges registered with
3445 * add_active_ranges() contain no holes and may be freed, this
3446 * function may be used instead of calling memory_present() manually.
3448 void __init sparse_memory_present_with_active_regions(int nid)
3450 int i;
3452 for_each_active_range_index_in_nid(i, nid)
3453 memory_present(early_node_map[i].nid,
3454 early_node_map[i].start_pfn,
3455 early_node_map[i].end_pfn);
3459 * get_pfn_range_for_nid - Return the start and end page frames for a node
3460 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3461 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3462 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3464 * It returns the start and end page frame of a node based on information
3465 * provided by an arch calling add_active_range(). If called for a node
3466 * with no available memory, a warning is printed and the start and end
3467 * PFNs will be 0.
3469 void __meminit get_pfn_range_for_nid(unsigned int nid,
3470 unsigned long *start_pfn, unsigned long *end_pfn)
3472 int i;
3473 *start_pfn = -1UL;
3474 *end_pfn = 0;
3476 for_each_active_range_index_in_nid(i, nid) {
3477 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3478 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3481 if (*start_pfn == -1UL)
3482 *start_pfn = 0;
3486 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3487 * assumption is made that zones within a node are ordered in monotonic
3488 * increasing memory addresses so that the "highest" populated zone is used
3490 static void __init find_usable_zone_for_movable(void)
3492 int zone_index;
3493 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3494 if (zone_index == ZONE_MOVABLE)
3495 continue;
3497 if (arch_zone_highest_possible_pfn[zone_index] >
3498 arch_zone_lowest_possible_pfn[zone_index])
3499 break;
3502 VM_BUG_ON(zone_index == -1);
3503 movable_zone = zone_index;
3507 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3508 * because it is sized independant of architecture. Unlike the other zones,
3509 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3510 * in each node depending on the size of each node and how evenly kernelcore
3511 * is distributed. This helper function adjusts the zone ranges
3512 * provided by the architecture for a given node by using the end of the
3513 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3514 * zones within a node are in order of monotonic increases memory addresses
3516 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3517 unsigned long zone_type,
3518 unsigned long node_start_pfn,
3519 unsigned long node_end_pfn,
3520 unsigned long *zone_start_pfn,
3521 unsigned long *zone_end_pfn)
3523 /* Only adjust if ZONE_MOVABLE is on this node */
3524 if (zone_movable_pfn[nid]) {
3525 /* Size ZONE_MOVABLE */
3526 if (zone_type == ZONE_MOVABLE) {
3527 *zone_start_pfn = zone_movable_pfn[nid];
3528 *zone_end_pfn = min(node_end_pfn,
3529 arch_zone_highest_possible_pfn[movable_zone]);
3531 /* Adjust for ZONE_MOVABLE starting within this range */
3532 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3533 *zone_end_pfn > zone_movable_pfn[nid]) {
3534 *zone_end_pfn = zone_movable_pfn[nid];
3536 /* Check if this whole range is within ZONE_MOVABLE */
3537 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3538 *zone_start_pfn = *zone_end_pfn;
3543 * Return the number of pages a zone spans in a node, including holes
3544 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3546 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3547 unsigned long zone_type,
3548 unsigned long *ignored)
3550 unsigned long node_start_pfn, node_end_pfn;
3551 unsigned long zone_start_pfn, zone_end_pfn;
3553 /* Get the start and end of the node and zone */
3554 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3555 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3556 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3557 adjust_zone_range_for_zone_movable(nid, zone_type,
3558 node_start_pfn, node_end_pfn,
3559 &zone_start_pfn, &zone_end_pfn);
3561 /* Check that this node has pages within the zone's required range */
3562 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3563 return 0;
3565 /* Move the zone boundaries inside the node if necessary */
3566 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3567 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3569 /* Return the spanned pages */
3570 return zone_end_pfn - zone_start_pfn;
3574 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3575 * then all holes in the requested range will be accounted for.
3577 static unsigned long __meminit __absent_pages_in_range(int nid,
3578 unsigned long range_start_pfn,
3579 unsigned long range_end_pfn)
3581 int i = 0;
3582 unsigned long prev_end_pfn = 0, hole_pages = 0;
3583 unsigned long start_pfn;
3585 /* Find the end_pfn of the first active range of pfns in the node */
3586 i = first_active_region_index_in_nid(nid);
3587 if (i == -1)
3588 return 0;
3590 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3592 /* Account for ranges before physical memory on this node */
3593 if (early_node_map[i].start_pfn > range_start_pfn)
3594 hole_pages = prev_end_pfn - range_start_pfn;
3596 /* Find all holes for the zone within the node */
3597 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3599 /* No need to continue if prev_end_pfn is outside the zone */
3600 if (prev_end_pfn >= range_end_pfn)
3601 break;
3603 /* Make sure the end of the zone is not within the hole */
3604 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3605 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3607 /* Update the hole size cound and move on */
3608 if (start_pfn > range_start_pfn) {
3609 BUG_ON(prev_end_pfn > start_pfn);
3610 hole_pages += start_pfn - prev_end_pfn;
3612 prev_end_pfn = early_node_map[i].end_pfn;
3615 /* Account for ranges past physical memory on this node */
3616 if (range_end_pfn > prev_end_pfn)
3617 hole_pages += range_end_pfn -
3618 max(range_start_pfn, prev_end_pfn);
3620 return hole_pages;
3624 * absent_pages_in_range - Return number of page frames in holes within a range
3625 * @start_pfn: The start PFN to start searching for holes
3626 * @end_pfn: The end PFN to stop searching for holes
3628 * It returns the number of pages frames in memory holes within a range.
3630 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3631 unsigned long end_pfn)
3633 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3636 /* Return the number of page frames in holes in a zone on a node */
3637 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3638 unsigned long zone_type,
3639 unsigned long *ignored)
3641 unsigned long node_start_pfn, node_end_pfn;
3642 unsigned long zone_start_pfn, zone_end_pfn;
3644 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3645 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3646 node_start_pfn);
3647 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3648 node_end_pfn);
3650 adjust_zone_range_for_zone_movable(nid, zone_type,
3651 node_start_pfn, node_end_pfn,
3652 &zone_start_pfn, &zone_end_pfn);
3653 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3656 #else
3657 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3658 unsigned long zone_type,
3659 unsigned long *zones_size)
3661 return zones_size[zone_type];
3664 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3665 unsigned long zone_type,
3666 unsigned long *zholes_size)
3668 if (!zholes_size)
3669 return 0;
3671 return zholes_size[zone_type];
3674 #endif
3676 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3677 unsigned long *zones_size, unsigned long *zholes_size)
3679 unsigned long realtotalpages, totalpages = 0;
3680 enum zone_type i;
3682 for (i = 0; i < MAX_NR_ZONES; i++)
3683 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3684 zones_size);
3685 pgdat->node_spanned_pages = totalpages;
3687 realtotalpages = totalpages;
3688 for (i = 0; i < MAX_NR_ZONES; i++)
3689 realtotalpages -=
3690 zone_absent_pages_in_node(pgdat->node_id, i,
3691 zholes_size);
3692 pgdat->node_present_pages = realtotalpages;
3693 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3694 realtotalpages);
3697 #ifndef CONFIG_SPARSEMEM
3699 * Calculate the size of the zone->blockflags rounded to an unsigned long
3700 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3701 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3702 * round what is now in bits to nearest long in bits, then return it in
3703 * bytes.
3705 static unsigned long __init usemap_size(unsigned long zonesize)
3707 unsigned long usemapsize;
3709 usemapsize = roundup(zonesize, pageblock_nr_pages);
3710 usemapsize = usemapsize >> pageblock_order;
3711 usemapsize *= NR_PAGEBLOCK_BITS;
3712 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3714 return usemapsize / 8;
3717 static void __init setup_usemap(struct pglist_data *pgdat,
3718 struct zone *zone, unsigned long zonesize)
3720 unsigned long usemapsize = usemap_size(zonesize);
3721 zone->pageblock_flags = NULL;
3722 if (usemapsize)
3723 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3725 #else
3726 static void inline setup_usemap(struct pglist_data *pgdat,
3727 struct zone *zone, unsigned long zonesize) {}
3728 #endif /* CONFIG_SPARSEMEM */
3730 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3732 /* Return a sensible default order for the pageblock size. */
3733 static inline int pageblock_default_order(void)
3735 if (HPAGE_SHIFT > PAGE_SHIFT)
3736 return HUGETLB_PAGE_ORDER;
3738 return MAX_ORDER-1;
3741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3742 static inline void __init set_pageblock_order(unsigned int order)
3744 /* Check that pageblock_nr_pages has not already been setup */
3745 if (pageblock_order)
3746 return;
3749 * Assume the largest contiguous order of interest is a huge page.
3750 * This value may be variable depending on boot parameters on IA64
3752 pageblock_order = order;
3754 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3757 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3758 * and pageblock_default_order() are unused as pageblock_order is set
3759 * at compile-time. See include/linux/pageblock-flags.h for the values of
3760 * pageblock_order based on the kernel config
3762 static inline int pageblock_default_order(unsigned int order)
3764 return MAX_ORDER-1;
3766 #define set_pageblock_order(x) do {} while (0)
3768 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3771 * Set up the zone data structures:
3772 * - mark all pages reserved
3773 * - mark all memory queues empty
3774 * - clear the memory bitmaps
3776 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3777 unsigned long *zones_size, unsigned long *zholes_size)
3779 enum zone_type j;
3780 int nid = pgdat->node_id;
3781 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3782 int ret;
3784 pgdat_resize_init(pgdat);
3785 pgdat->nr_zones = 0;
3786 init_waitqueue_head(&pgdat->kswapd_wait);
3787 pgdat->kswapd_max_order = 0;
3788 pgdat_page_cgroup_init(pgdat);
3790 for (j = 0; j < MAX_NR_ZONES; j++) {
3791 struct zone *zone = pgdat->node_zones + j;
3792 unsigned long size, realsize, memmap_pages;
3793 enum lru_list l;
3795 size = zone_spanned_pages_in_node(nid, j, zones_size);
3796 realsize = size - zone_absent_pages_in_node(nid, j,
3797 zholes_size);
3800 * Adjust realsize so that it accounts for how much memory
3801 * is used by this zone for memmap. This affects the watermark
3802 * and per-cpu initialisations
3804 memmap_pages =
3805 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3806 if (realsize >= memmap_pages) {
3807 realsize -= memmap_pages;
3808 if (memmap_pages)
3809 printk(KERN_DEBUG
3810 " %s zone: %lu pages used for memmap\n",
3811 zone_names[j], memmap_pages);
3812 } else
3813 printk(KERN_WARNING
3814 " %s zone: %lu pages exceeds realsize %lu\n",
3815 zone_names[j], memmap_pages, realsize);
3817 /* Account for reserved pages */
3818 if (j == 0 && realsize > dma_reserve) {
3819 realsize -= dma_reserve;
3820 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3821 zone_names[0], dma_reserve);
3824 if (!is_highmem_idx(j))
3825 nr_kernel_pages += realsize;
3826 nr_all_pages += realsize;
3828 zone->spanned_pages = size;
3829 zone->present_pages = realsize;
3830 #ifdef CONFIG_NUMA
3831 zone->node = nid;
3832 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3833 / 100;
3834 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3835 #endif
3836 zone->name = zone_names[j];
3837 spin_lock_init(&zone->lock);
3838 spin_lock_init(&zone->lru_lock);
3839 zone_seqlock_init(zone);
3840 zone->zone_pgdat = pgdat;
3842 zone->prev_priority = DEF_PRIORITY;
3844 zone_pcp_init(zone);
3845 for_each_lru(l) {
3846 INIT_LIST_HEAD(&zone->lru[l].list);
3847 zone->reclaim_stat.nr_saved_scan[l] = 0;
3849 zone->reclaim_stat.recent_rotated[0] = 0;
3850 zone->reclaim_stat.recent_rotated[1] = 0;
3851 zone->reclaim_stat.recent_scanned[0] = 0;
3852 zone->reclaim_stat.recent_scanned[1] = 0;
3853 zap_zone_vm_stats(zone);
3854 zone->flags = 0;
3855 if (!size)
3856 continue;
3858 set_pageblock_order(pageblock_default_order());
3859 setup_usemap(pgdat, zone, size);
3860 ret = init_currently_empty_zone(zone, zone_start_pfn,
3861 size, MEMMAP_EARLY);
3862 BUG_ON(ret);
3863 memmap_init(size, nid, j, zone_start_pfn);
3864 zone_start_pfn += size;
3868 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3870 /* Skip empty nodes */
3871 if (!pgdat->node_spanned_pages)
3872 return;
3874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3875 /* ia64 gets its own node_mem_map, before this, without bootmem */
3876 if (!pgdat->node_mem_map) {
3877 unsigned long size, start, end;
3878 struct page *map;
3881 * The zone's endpoints aren't required to be MAX_ORDER
3882 * aligned but the node_mem_map endpoints must be in order
3883 * for the buddy allocator to function correctly.
3885 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3886 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3887 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3888 size = (end - start) * sizeof(struct page);
3889 map = alloc_remap(pgdat->node_id, size);
3890 if (!map)
3891 map = alloc_bootmem_node(pgdat, size);
3892 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3894 #ifndef CONFIG_NEED_MULTIPLE_NODES
3896 * With no DISCONTIG, the global mem_map is just set as node 0's
3898 if (pgdat == NODE_DATA(0)) {
3899 mem_map = NODE_DATA(0)->node_mem_map;
3900 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3901 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3902 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3903 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3905 #endif
3906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3909 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3910 unsigned long node_start_pfn, unsigned long *zholes_size)
3912 pg_data_t *pgdat = NODE_DATA(nid);
3914 pgdat->node_id = nid;
3915 pgdat->node_start_pfn = node_start_pfn;
3916 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3918 alloc_node_mem_map(pgdat);
3919 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3920 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3921 nid, (unsigned long)pgdat,
3922 (unsigned long)pgdat->node_mem_map);
3923 #endif
3925 free_area_init_core(pgdat, zones_size, zholes_size);
3928 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3930 #if MAX_NUMNODES > 1
3932 * Figure out the number of possible node ids.
3934 static void __init setup_nr_node_ids(void)
3936 unsigned int node;
3937 unsigned int highest = 0;
3939 for_each_node_mask(node, node_possible_map)
3940 highest = node;
3941 nr_node_ids = highest + 1;
3943 #else
3944 static inline void setup_nr_node_ids(void)
3947 #endif
3950 * add_active_range - Register a range of PFNs backed by physical memory
3951 * @nid: The node ID the range resides on
3952 * @start_pfn: The start PFN of the available physical memory
3953 * @end_pfn: The end PFN of the available physical memory
3955 * These ranges are stored in an early_node_map[] and later used by
3956 * free_area_init_nodes() to calculate zone sizes and holes. If the
3957 * range spans a memory hole, it is up to the architecture to ensure
3958 * the memory is not freed by the bootmem allocator. If possible
3959 * the range being registered will be merged with existing ranges.
3961 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3962 unsigned long end_pfn)
3964 int i;
3966 mminit_dprintk(MMINIT_TRACE, "memory_register",
3967 "Entering add_active_range(%d, %#lx, %#lx) "
3968 "%d entries of %d used\n",
3969 nid, start_pfn, end_pfn,
3970 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3972 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3974 /* Merge with existing active regions if possible */
3975 for (i = 0; i < nr_nodemap_entries; i++) {
3976 if (early_node_map[i].nid != nid)
3977 continue;
3979 /* Skip if an existing region covers this new one */
3980 if (start_pfn >= early_node_map[i].start_pfn &&
3981 end_pfn <= early_node_map[i].end_pfn)
3982 return;
3984 /* Merge forward if suitable */
3985 if (start_pfn <= early_node_map[i].end_pfn &&
3986 end_pfn > early_node_map[i].end_pfn) {
3987 early_node_map[i].end_pfn = end_pfn;
3988 return;
3991 /* Merge backward if suitable */
3992 if (start_pfn < early_node_map[i].end_pfn &&
3993 end_pfn >= early_node_map[i].start_pfn) {
3994 early_node_map[i].start_pfn = start_pfn;
3995 return;
3999 /* Check that early_node_map is large enough */
4000 if (i >= MAX_ACTIVE_REGIONS) {
4001 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4002 MAX_ACTIVE_REGIONS);
4003 return;
4006 early_node_map[i].nid = nid;
4007 early_node_map[i].start_pfn = start_pfn;
4008 early_node_map[i].end_pfn = end_pfn;
4009 nr_nodemap_entries = i + 1;
4013 * remove_active_range - Shrink an existing registered range of PFNs
4014 * @nid: The node id the range is on that should be shrunk
4015 * @start_pfn: The new PFN of the range
4016 * @end_pfn: The new PFN of the range
4018 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4019 * The map is kept near the end physical page range that has already been
4020 * registered. This function allows an arch to shrink an existing registered
4021 * range.
4023 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4024 unsigned long end_pfn)
4026 int i, j;
4027 int removed = 0;
4029 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4030 nid, start_pfn, end_pfn);
4032 /* Find the old active region end and shrink */
4033 for_each_active_range_index_in_nid(i, nid) {
4034 if (early_node_map[i].start_pfn >= start_pfn &&
4035 early_node_map[i].end_pfn <= end_pfn) {
4036 /* clear it */
4037 early_node_map[i].start_pfn = 0;
4038 early_node_map[i].end_pfn = 0;
4039 removed = 1;
4040 continue;
4042 if (early_node_map[i].start_pfn < start_pfn &&
4043 early_node_map[i].end_pfn > start_pfn) {
4044 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4045 early_node_map[i].end_pfn = start_pfn;
4046 if (temp_end_pfn > end_pfn)
4047 add_active_range(nid, end_pfn, temp_end_pfn);
4048 continue;
4050 if (early_node_map[i].start_pfn >= start_pfn &&
4051 early_node_map[i].end_pfn > end_pfn &&
4052 early_node_map[i].start_pfn < end_pfn) {
4053 early_node_map[i].start_pfn = end_pfn;
4054 continue;
4058 if (!removed)
4059 return;
4061 /* remove the blank ones */
4062 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4063 if (early_node_map[i].nid != nid)
4064 continue;
4065 if (early_node_map[i].end_pfn)
4066 continue;
4067 /* we found it, get rid of it */
4068 for (j = i; j < nr_nodemap_entries - 1; j++)
4069 memcpy(&early_node_map[j], &early_node_map[j+1],
4070 sizeof(early_node_map[j]));
4071 j = nr_nodemap_entries - 1;
4072 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4073 nr_nodemap_entries--;
4078 * remove_all_active_ranges - Remove all currently registered regions
4080 * During discovery, it may be found that a table like SRAT is invalid
4081 * and an alternative discovery method must be used. This function removes
4082 * all currently registered regions.
4084 void __init remove_all_active_ranges(void)
4086 memset(early_node_map, 0, sizeof(early_node_map));
4087 nr_nodemap_entries = 0;
4090 /* Compare two active node_active_regions */
4091 static int __init cmp_node_active_region(const void *a, const void *b)
4093 struct node_active_region *arange = (struct node_active_region *)a;
4094 struct node_active_region *brange = (struct node_active_region *)b;
4096 /* Done this way to avoid overflows */
4097 if (arange->start_pfn > brange->start_pfn)
4098 return 1;
4099 if (arange->start_pfn < brange->start_pfn)
4100 return -1;
4102 return 0;
4105 /* sort the node_map by start_pfn */
4106 static void __init sort_node_map(void)
4108 sort(early_node_map, (size_t)nr_nodemap_entries,
4109 sizeof(struct node_active_region),
4110 cmp_node_active_region, NULL);
4113 /* Find the lowest pfn for a node */
4114 static unsigned long __init find_min_pfn_for_node(int nid)
4116 int i;
4117 unsigned long min_pfn = ULONG_MAX;
4119 /* Assuming a sorted map, the first range found has the starting pfn */
4120 for_each_active_range_index_in_nid(i, nid)
4121 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4123 if (min_pfn == ULONG_MAX) {
4124 printk(KERN_WARNING
4125 "Could not find start_pfn for node %d\n", nid);
4126 return 0;
4129 return min_pfn;
4133 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4135 * It returns the minimum PFN based on information provided via
4136 * add_active_range().
4138 unsigned long __init find_min_pfn_with_active_regions(void)
4140 return find_min_pfn_for_node(MAX_NUMNODES);
4144 * early_calculate_totalpages()
4145 * Sum pages in active regions for movable zone.
4146 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4148 static unsigned long __init early_calculate_totalpages(void)
4150 int i;
4151 unsigned long totalpages = 0;
4153 for (i = 0; i < nr_nodemap_entries; i++) {
4154 unsigned long pages = early_node_map[i].end_pfn -
4155 early_node_map[i].start_pfn;
4156 totalpages += pages;
4157 if (pages)
4158 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4160 return totalpages;
4164 * Find the PFN the Movable zone begins in each node. Kernel memory
4165 * is spread evenly between nodes as long as the nodes have enough
4166 * memory. When they don't, some nodes will have more kernelcore than
4167 * others
4169 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4171 int i, nid;
4172 unsigned long usable_startpfn;
4173 unsigned long kernelcore_node, kernelcore_remaining;
4174 /* save the state before borrow the nodemask */
4175 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4176 unsigned long totalpages = early_calculate_totalpages();
4177 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4180 * If movablecore was specified, calculate what size of
4181 * kernelcore that corresponds so that memory usable for
4182 * any allocation type is evenly spread. If both kernelcore
4183 * and movablecore are specified, then the value of kernelcore
4184 * will be used for required_kernelcore if it's greater than
4185 * what movablecore would have allowed.
4187 if (required_movablecore) {
4188 unsigned long corepages;
4191 * Round-up so that ZONE_MOVABLE is at least as large as what
4192 * was requested by the user
4194 required_movablecore =
4195 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4196 corepages = totalpages - required_movablecore;
4198 required_kernelcore = max(required_kernelcore, corepages);
4201 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4202 if (!required_kernelcore)
4203 goto out;
4205 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4206 find_usable_zone_for_movable();
4207 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4209 restart:
4210 /* Spread kernelcore memory as evenly as possible throughout nodes */
4211 kernelcore_node = required_kernelcore / usable_nodes;
4212 for_each_node_state(nid, N_HIGH_MEMORY) {
4214 * Recalculate kernelcore_node if the division per node
4215 * now exceeds what is necessary to satisfy the requested
4216 * amount of memory for the kernel
4218 if (required_kernelcore < kernelcore_node)
4219 kernelcore_node = required_kernelcore / usable_nodes;
4222 * As the map is walked, we track how much memory is usable
4223 * by the kernel using kernelcore_remaining. When it is
4224 * 0, the rest of the node is usable by ZONE_MOVABLE
4226 kernelcore_remaining = kernelcore_node;
4228 /* Go through each range of PFNs within this node */
4229 for_each_active_range_index_in_nid(i, nid) {
4230 unsigned long start_pfn, end_pfn;
4231 unsigned long size_pages;
4233 start_pfn = max(early_node_map[i].start_pfn,
4234 zone_movable_pfn[nid]);
4235 end_pfn = early_node_map[i].end_pfn;
4236 if (start_pfn >= end_pfn)
4237 continue;
4239 /* Account for what is only usable for kernelcore */
4240 if (start_pfn < usable_startpfn) {
4241 unsigned long kernel_pages;
4242 kernel_pages = min(end_pfn, usable_startpfn)
4243 - start_pfn;
4245 kernelcore_remaining -= min(kernel_pages,
4246 kernelcore_remaining);
4247 required_kernelcore -= min(kernel_pages,
4248 required_kernelcore);
4250 /* Continue if range is now fully accounted */
4251 if (end_pfn <= usable_startpfn) {
4254 * Push zone_movable_pfn to the end so
4255 * that if we have to rebalance
4256 * kernelcore across nodes, we will
4257 * not double account here
4259 zone_movable_pfn[nid] = end_pfn;
4260 continue;
4262 start_pfn = usable_startpfn;
4266 * The usable PFN range for ZONE_MOVABLE is from
4267 * start_pfn->end_pfn. Calculate size_pages as the
4268 * number of pages used as kernelcore
4270 size_pages = end_pfn - start_pfn;
4271 if (size_pages > kernelcore_remaining)
4272 size_pages = kernelcore_remaining;
4273 zone_movable_pfn[nid] = start_pfn + size_pages;
4276 * Some kernelcore has been met, update counts and
4277 * break if the kernelcore for this node has been
4278 * satisified
4280 required_kernelcore -= min(required_kernelcore,
4281 size_pages);
4282 kernelcore_remaining -= size_pages;
4283 if (!kernelcore_remaining)
4284 break;
4289 * If there is still required_kernelcore, we do another pass with one
4290 * less node in the count. This will push zone_movable_pfn[nid] further
4291 * along on the nodes that still have memory until kernelcore is
4292 * satisified
4294 usable_nodes--;
4295 if (usable_nodes && required_kernelcore > usable_nodes)
4296 goto restart;
4298 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4299 for (nid = 0; nid < MAX_NUMNODES; nid++)
4300 zone_movable_pfn[nid] =
4301 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4303 out:
4304 /* restore the node_state */
4305 node_states[N_HIGH_MEMORY] = saved_node_state;
4308 /* Any regular memory on that node ? */
4309 static void check_for_regular_memory(pg_data_t *pgdat)
4311 #ifdef CONFIG_HIGHMEM
4312 enum zone_type zone_type;
4314 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4315 struct zone *zone = &pgdat->node_zones[zone_type];
4316 if (zone->present_pages)
4317 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4319 #endif
4323 * free_area_init_nodes - Initialise all pg_data_t and zone data
4324 * @max_zone_pfn: an array of max PFNs for each zone
4326 * This will call free_area_init_node() for each active node in the system.
4327 * Using the page ranges provided by add_active_range(), the size of each
4328 * zone in each node and their holes is calculated. If the maximum PFN
4329 * between two adjacent zones match, it is assumed that the zone is empty.
4330 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4331 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4332 * starts where the previous one ended. For example, ZONE_DMA32 starts
4333 * at arch_max_dma_pfn.
4335 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4337 unsigned long nid;
4338 int i;
4340 /* Sort early_node_map as initialisation assumes it is sorted */
4341 sort_node_map();
4343 /* Record where the zone boundaries are */
4344 memset(arch_zone_lowest_possible_pfn, 0,
4345 sizeof(arch_zone_lowest_possible_pfn));
4346 memset(arch_zone_highest_possible_pfn, 0,
4347 sizeof(arch_zone_highest_possible_pfn));
4348 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4349 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4350 for (i = 1; i < MAX_NR_ZONES; i++) {
4351 if (i == ZONE_MOVABLE)
4352 continue;
4353 arch_zone_lowest_possible_pfn[i] =
4354 arch_zone_highest_possible_pfn[i-1];
4355 arch_zone_highest_possible_pfn[i] =
4356 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4358 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4359 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4361 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4362 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4363 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4365 /* Print out the zone ranges */
4366 printk("Zone PFN ranges:\n");
4367 for (i = 0; i < MAX_NR_ZONES; i++) {
4368 if (i == ZONE_MOVABLE)
4369 continue;
4370 printk(" %-8s %0#10lx -> %0#10lx\n",
4371 zone_names[i],
4372 arch_zone_lowest_possible_pfn[i],
4373 arch_zone_highest_possible_pfn[i]);
4376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4377 printk("Movable zone start PFN for each node\n");
4378 for (i = 0; i < MAX_NUMNODES; i++) {
4379 if (zone_movable_pfn[i])
4380 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4383 /* Print out the early_node_map[] */
4384 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4385 for (i = 0; i < nr_nodemap_entries; i++)
4386 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4387 early_node_map[i].start_pfn,
4388 early_node_map[i].end_pfn);
4390 /* Initialise every node */
4391 mminit_verify_pageflags_layout();
4392 setup_nr_node_ids();
4393 for_each_online_node(nid) {
4394 pg_data_t *pgdat = NODE_DATA(nid);
4395 free_area_init_node(nid, NULL,
4396 find_min_pfn_for_node(nid), NULL);
4398 /* Any memory on that node */
4399 if (pgdat->node_present_pages)
4400 node_set_state(nid, N_HIGH_MEMORY);
4401 check_for_regular_memory(pgdat);
4405 static int __init cmdline_parse_core(char *p, unsigned long *core)
4407 unsigned long long coremem;
4408 if (!p)
4409 return -EINVAL;
4411 coremem = memparse(p, &p);
4412 *core = coremem >> PAGE_SHIFT;
4414 /* Paranoid check that UL is enough for the coremem value */
4415 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4417 return 0;
4421 * kernelcore=size sets the amount of memory for use for allocations that
4422 * cannot be reclaimed or migrated.
4424 static int __init cmdline_parse_kernelcore(char *p)
4426 return cmdline_parse_core(p, &required_kernelcore);
4430 * movablecore=size sets the amount of memory for use for allocations that
4431 * can be reclaimed or migrated.
4433 static int __init cmdline_parse_movablecore(char *p)
4435 return cmdline_parse_core(p, &required_movablecore);
4438 early_param("kernelcore", cmdline_parse_kernelcore);
4439 early_param("movablecore", cmdline_parse_movablecore);
4441 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4444 * set_dma_reserve - set the specified number of pages reserved in the first zone
4445 * @new_dma_reserve: The number of pages to mark reserved
4447 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4448 * In the DMA zone, a significant percentage may be consumed by kernel image
4449 * and other unfreeable allocations which can skew the watermarks badly. This
4450 * function may optionally be used to account for unfreeable pages in the
4451 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4452 * smaller per-cpu batchsize.
4454 void __init set_dma_reserve(unsigned long new_dma_reserve)
4456 dma_reserve = new_dma_reserve;
4459 #ifndef CONFIG_NEED_MULTIPLE_NODES
4460 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4461 EXPORT_SYMBOL(contig_page_data);
4462 #endif
4464 void __init free_area_init(unsigned long *zones_size)
4466 free_area_init_node(0, zones_size,
4467 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4470 static int page_alloc_cpu_notify(struct notifier_block *self,
4471 unsigned long action, void *hcpu)
4473 int cpu = (unsigned long)hcpu;
4475 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4476 drain_pages(cpu);
4479 * Spill the event counters of the dead processor
4480 * into the current processors event counters.
4481 * This artificially elevates the count of the current
4482 * processor.
4484 vm_events_fold_cpu(cpu);
4487 * Zero the differential counters of the dead processor
4488 * so that the vm statistics are consistent.
4490 * This is only okay since the processor is dead and cannot
4491 * race with what we are doing.
4493 refresh_cpu_vm_stats(cpu);
4495 return NOTIFY_OK;
4498 void __init page_alloc_init(void)
4500 hotcpu_notifier(page_alloc_cpu_notify, 0);
4504 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4505 * or min_free_kbytes changes.
4507 static void calculate_totalreserve_pages(void)
4509 struct pglist_data *pgdat;
4510 unsigned long reserve_pages = 0;
4511 enum zone_type i, j;
4513 for_each_online_pgdat(pgdat) {
4514 for (i = 0; i < MAX_NR_ZONES; i++) {
4515 struct zone *zone = pgdat->node_zones + i;
4516 unsigned long max = 0;
4518 /* Find valid and maximum lowmem_reserve in the zone */
4519 for (j = i; j < MAX_NR_ZONES; j++) {
4520 if (zone->lowmem_reserve[j] > max)
4521 max = zone->lowmem_reserve[j];
4524 /* we treat the high watermark as reserved pages. */
4525 max += high_wmark_pages(zone);
4527 if (max > zone->present_pages)
4528 max = zone->present_pages;
4529 reserve_pages += max;
4532 totalreserve_pages = reserve_pages;
4536 * setup_per_zone_lowmem_reserve - called whenever
4537 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4538 * has a correct pages reserved value, so an adequate number of
4539 * pages are left in the zone after a successful __alloc_pages().
4541 static void setup_per_zone_lowmem_reserve(void)
4543 struct pglist_data *pgdat;
4544 enum zone_type j, idx;
4546 for_each_online_pgdat(pgdat) {
4547 for (j = 0; j < MAX_NR_ZONES; j++) {
4548 struct zone *zone = pgdat->node_zones + j;
4549 unsigned long present_pages = zone->present_pages;
4551 zone->lowmem_reserve[j] = 0;
4553 idx = j;
4554 while (idx) {
4555 struct zone *lower_zone;
4557 idx--;
4559 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4560 sysctl_lowmem_reserve_ratio[idx] = 1;
4562 lower_zone = pgdat->node_zones + idx;
4563 lower_zone->lowmem_reserve[j] = present_pages /
4564 sysctl_lowmem_reserve_ratio[idx];
4565 present_pages += lower_zone->present_pages;
4570 /* update totalreserve_pages */
4571 calculate_totalreserve_pages();
4575 * setup_per_zone_wmarks - called when min_free_kbytes changes
4576 * or when memory is hot-{added|removed}
4578 * Ensures that the watermark[min,low,high] values for each zone are set
4579 * correctly with respect to min_free_kbytes.
4581 void setup_per_zone_wmarks(void)
4583 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4584 unsigned long lowmem_pages = 0;
4585 struct zone *zone;
4586 unsigned long flags;
4588 /* Calculate total number of !ZONE_HIGHMEM pages */
4589 for_each_zone(zone) {
4590 if (!is_highmem(zone))
4591 lowmem_pages += zone->present_pages;
4594 for_each_zone(zone) {
4595 u64 tmp;
4597 spin_lock_irqsave(&zone->lock, flags);
4598 tmp = (u64)pages_min * zone->present_pages;
4599 do_div(tmp, lowmem_pages);
4600 if (is_highmem(zone)) {
4602 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4603 * need highmem pages, so cap pages_min to a small
4604 * value here.
4606 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4607 * deltas controls asynch page reclaim, and so should
4608 * not be capped for highmem.
4610 int min_pages;
4612 min_pages = zone->present_pages / 1024;
4613 if (min_pages < SWAP_CLUSTER_MAX)
4614 min_pages = SWAP_CLUSTER_MAX;
4615 if (min_pages > 128)
4616 min_pages = 128;
4617 zone->watermark[WMARK_MIN] = min_pages;
4618 } else {
4620 * If it's a lowmem zone, reserve a number of pages
4621 * proportionate to the zone's size.
4623 zone->watermark[WMARK_MIN] = tmp;
4626 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4627 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4628 setup_zone_migrate_reserve(zone);
4629 spin_unlock_irqrestore(&zone->lock, flags);
4632 /* update totalreserve_pages */
4633 calculate_totalreserve_pages();
4637 * The inactive anon list should be small enough that the VM never has to
4638 * do too much work, but large enough that each inactive page has a chance
4639 * to be referenced again before it is swapped out.
4641 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4642 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4643 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4644 * the anonymous pages are kept on the inactive list.
4646 * total target max
4647 * memory ratio inactive anon
4648 * -------------------------------------
4649 * 10MB 1 5MB
4650 * 100MB 1 50MB
4651 * 1GB 3 250MB
4652 * 10GB 10 0.9GB
4653 * 100GB 31 3GB
4654 * 1TB 101 10GB
4655 * 10TB 320 32GB
4657 void calculate_zone_inactive_ratio(struct zone *zone)
4659 unsigned int gb, ratio;
4661 /* Zone size in gigabytes */
4662 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4663 if (gb)
4664 ratio = int_sqrt(10 * gb);
4665 else
4666 ratio = 1;
4668 zone->inactive_ratio = ratio;
4671 static void __init setup_per_zone_inactive_ratio(void)
4673 struct zone *zone;
4675 for_each_zone(zone)
4676 calculate_zone_inactive_ratio(zone);
4680 * Initialise min_free_kbytes.
4682 * For small machines we want it small (128k min). For large machines
4683 * we want it large (64MB max). But it is not linear, because network
4684 * bandwidth does not increase linearly with machine size. We use
4686 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4687 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4689 * which yields
4691 * 16MB: 512k
4692 * 32MB: 724k
4693 * 64MB: 1024k
4694 * 128MB: 1448k
4695 * 256MB: 2048k
4696 * 512MB: 2896k
4697 * 1024MB: 4096k
4698 * 2048MB: 5792k
4699 * 4096MB: 8192k
4700 * 8192MB: 11584k
4701 * 16384MB: 16384k
4703 static int __init init_per_zone_wmark_min(void)
4705 unsigned long lowmem_kbytes;
4707 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4709 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4710 if (min_free_kbytes < 128)
4711 min_free_kbytes = 128;
4712 if (min_free_kbytes > 65536)
4713 min_free_kbytes = 65536;
4714 setup_per_zone_wmarks();
4715 setup_per_zone_lowmem_reserve();
4716 setup_per_zone_inactive_ratio();
4717 return 0;
4719 module_init(init_per_zone_wmark_min)
4722 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4723 * that we can call two helper functions whenever min_free_kbytes
4724 * changes.
4726 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4727 void __user *buffer, size_t *length, loff_t *ppos)
4729 proc_dointvec(table, write, buffer, length, ppos);
4730 if (write)
4731 setup_per_zone_wmarks();
4732 return 0;
4735 #ifdef CONFIG_NUMA
4736 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4737 void __user *buffer, size_t *length, loff_t *ppos)
4739 struct zone *zone;
4740 int rc;
4742 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4743 if (rc)
4744 return rc;
4746 for_each_zone(zone)
4747 zone->min_unmapped_pages = (zone->present_pages *
4748 sysctl_min_unmapped_ratio) / 100;
4749 return 0;
4752 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4753 void __user *buffer, size_t *length, loff_t *ppos)
4755 struct zone *zone;
4756 int rc;
4758 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4759 if (rc)
4760 return rc;
4762 for_each_zone(zone)
4763 zone->min_slab_pages = (zone->present_pages *
4764 sysctl_min_slab_ratio) / 100;
4765 return 0;
4767 #endif
4770 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4771 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4772 * whenever sysctl_lowmem_reserve_ratio changes.
4774 * The reserve ratio obviously has absolutely no relation with the
4775 * minimum watermarks. The lowmem reserve ratio can only make sense
4776 * if in function of the boot time zone sizes.
4778 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4779 void __user *buffer, size_t *length, loff_t *ppos)
4781 proc_dointvec_minmax(table, write, buffer, length, ppos);
4782 setup_per_zone_lowmem_reserve();
4783 return 0;
4787 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4788 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4789 * can have before it gets flushed back to buddy allocator.
4792 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4793 void __user *buffer, size_t *length, loff_t *ppos)
4795 struct zone *zone;
4796 unsigned int cpu;
4797 int ret;
4799 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4800 if (!write || (ret == -EINVAL))
4801 return ret;
4802 for_each_populated_zone(zone) {
4803 for_each_online_cpu(cpu) {
4804 unsigned long high;
4805 high = zone->present_pages / percpu_pagelist_fraction;
4806 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4809 return 0;
4812 int hashdist = HASHDIST_DEFAULT;
4814 #ifdef CONFIG_NUMA
4815 static int __init set_hashdist(char *str)
4817 if (!str)
4818 return 0;
4819 hashdist = simple_strtoul(str, &str, 0);
4820 return 1;
4822 __setup("hashdist=", set_hashdist);
4823 #endif
4826 * allocate a large system hash table from bootmem
4827 * - it is assumed that the hash table must contain an exact power-of-2
4828 * quantity of entries
4829 * - limit is the number of hash buckets, not the total allocation size
4831 void *__init alloc_large_system_hash(const char *tablename,
4832 unsigned long bucketsize,
4833 unsigned long numentries,
4834 int scale,
4835 int flags,
4836 unsigned int *_hash_shift,
4837 unsigned int *_hash_mask,
4838 unsigned long limit)
4840 unsigned long long max = limit;
4841 unsigned long log2qty, size;
4842 void *table = NULL;
4844 /* allow the kernel cmdline to have a say */
4845 if (!numentries) {
4846 /* round applicable memory size up to nearest megabyte */
4847 numentries = nr_kernel_pages;
4848 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4849 numentries >>= 20 - PAGE_SHIFT;
4850 numentries <<= 20 - PAGE_SHIFT;
4852 /* limit to 1 bucket per 2^scale bytes of low memory */
4853 if (scale > PAGE_SHIFT)
4854 numentries >>= (scale - PAGE_SHIFT);
4855 else
4856 numentries <<= (PAGE_SHIFT - scale);
4858 /* Make sure we've got at least a 0-order allocation.. */
4859 if (unlikely(flags & HASH_SMALL)) {
4860 /* Makes no sense without HASH_EARLY */
4861 WARN_ON(!(flags & HASH_EARLY));
4862 if (!(numentries >> *_hash_shift)) {
4863 numentries = 1UL << *_hash_shift;
4864 BUG_ON(!numentries);
4866 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4867 numentries = PAGE_SIZE / bucketsize;
4869 numentries = roundup_pow_of_two(numentries);
4871 /* limit allocation size to 1/16 total memory by default */
4872 if (max == 0) {
4873 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4874 do_div(max, bucketsize);
4877 if (numentries > max)
4878 numentries = max;
4880 log2qty = ilog2(numentries);
4882 do {
4883 size = bucketsize << log2qty;
4884 if (flags & HASH_EARLY)
4885 table = alloc_bootmem_nopanic(size);
4886 else if (hashdist)
4887 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4888 else {
4890 * If bucketsize is not a power-of-two, we may free
4891 * some pages at the end of hash table which
4892 * alloc_pages_exact() automatically does
4894 if (get_order(size) < MAX_ORDER) {
4895 table = alloc_pages_exact(size, GFP_ATOMIC);
4896 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4899 } while (!table && size > PAGE_SIZE && --log2qty);
4901 if (!table)
4902 panic("Failed to allocate %s hash table\n", tablename);
4904 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4905 tablename,
4906 (1U << log2qty),
4907 ilog2(size) - PAGE_SHIFT,
4908 size);
4910 if (_hash_shift)
4911 *_hash_shift = log2qty;
4912 if (_hash_mask)
4913 *_hash_mask = (1 << log2qty) - 1;
4915 return table;
4918 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4919 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4920 unsigned long pfn)
4922 #ifdef CONFIG_SPARSEMEM
4923 return __pfn_to_section(pfn)->pageblock_flags;
4924 #else
4925 return zone->pageblock_flags;
4926 #endif /* CONFIG_SPARSEMEM */
4929 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4931 #ifdef CONFIG_SPARSEMEM
4932 pfn &= (PAGES_PER_SECTION-1);
4933 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4934 #else
4935 pfn = pfn - zone->zone_start_pfn;
4936 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4937 #endif /* CONFIG_SPARSEMEM */
4941 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4942 * @page: The page within the block of interest
4943 * @start_bitidx: The first bit of interest to retrieve
4944 * @end_bitidx: The last bit of interest
4945 * returns pageblock_bits flags
4947 unsigned long get_pageblock_flags_group(struct page *page,
4948 int start_bitidx, int end_bitidx)
4950 struct zone *zone;
4951 unsigned long *bitmap;
4952 unsigned long pfn, bitidx;
4953 unsigned long flags = 0;
4954 unsigned long value = 1;
4956 zone = page_zone(page);
4957 pfn = page_to_pfn(page);
4958 bitmap = get_pageblock_bitmap(zone, pfn);
4959 bitidx = pfn_to_bitidx(zone, pfn);
4961 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4962 if (test_bit(bitidx + start_bitidx, bitmap))
4963 flags |= value;
4965 return flags;
4969 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4970 * @page: The page within the block of interest
4971 * @start_bitidx: The first bit of interest
4972 * @end_bitidx: The last bit of interest
4973 * @flags: The flags to set
4975 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4976 int start_bitidx, int end_bitidx)
4978 struct zone *zone;
4979 unsigned long *bitmap;
4980 unsigned long pfn, bitidx;
4981 unsigned long value = 1;
4983 zone = page_zone(page);
4984 pfn = page_to_pfn(page);
4985 bitmap = get_pageblock_bitmap(zone, pfn);
4986 bitidx = pfn_to_bitidx(zone, pfn);
4987 VM_BUG_ON(pfn < zone->zone_start_pfn);
4988 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4990 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4991 if (flags & value)
4992 __set_bit(bitidx + start_bitidx, bitmap);
4993 else
4994 __clear_bit(bitidx + start_bitidx, bitmap);
4998 * This is designed as sub function...plz see page_isolation.c also.
4999 * set/clear page block's type to be ISOLATE.
5000 * page allocater never alloc memory from ISOLATE block.
5003 int set_migratetype_isolate(struct page *page)
5005 struct zone *zone;
5006 unsigned long flags;
5007 int ret = -EBUSY;
5008 int zone_idx;
5010 zone = page_zone(page);
5011 zone_idx = zone_idx(zone);
5012 spin_lock_irqsave(&zone->lock, flags);
5014 * In future, more migrate types will be able to be isolation target.
5016 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5017 zone_idx != ZONE_MOVABLE)
5018 goto out;
5019 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5020 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5021 ret = 0;
5022 out:
5023 spin_unlock_irqrestore(&zone->lock, flags);
5024 if (!ret)
5025 drain_all_pages();
5026 return ret;
5029 void unset_migratetype_isolate(struct page *page)
5031 struct zone *zone;
5032 unsigned long flags;
5033 zone = page_zone(page);
5034 spin_lock_irqsave(&zone->lock, flags);
5035 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5036 goto out;
5037 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5038 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5039 out:
5040 spin_unlock_irqrestore(&zone->lock, flags);
5043 #ifdef CONFIG_MEMORY_HOTREMOVE
5045 * All pages in the range must be isolated before calling this.
5047 void
5048 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5050 struct page *page;
5051 struct zone *zone;
5052 int order, i;
5053 unsigned long pfn;
5054 unsigned long flags;
5055 /* find the first valid pfn */
5056 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5057 if (pfn_valid(pfn))
5058 break;
5059 if (pfn == end_pfn)
5060 return;
5061 zone = page_zone(pfn_to_page(pfn));
5062 spin_lock_irqsave(&zone->lock, flags);
5063 pfn = start_pfn;
5064 while (pfn < end_pfn) {
5065 if (!pfn_valid(pfn)) {
5066 pfn++;
5067 continue;
5069 page = pfn_to_page(pfn);
5070 BUG_ON(page_count(page));
5071 BUG_ON(!PageBuddy(page));
5072 order = page_order(page);
5073 #ifdef CONFIG_DEBUG_VM
5074 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5075 pfn, 1 << order, end_pfn);
5076 #endif
5077 list_del(&page->lru);
5078 rmv_page_order(page);
5079 zone->free_area[order].nr_free--;
5080 __mod_zone_page_state(zone, NR_FREE_PAGES,
5081 - (1UL << order));
5082 for (i = 0; i < (1 << order); i++)
5083 SetPageReserved((page+i));
5084 pfn += (1 << order);
5086 spin_unlock_irqrestore(&zone->lock, flags);
5088 #endif