2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
5 #include <asm/fixmap.h>
7 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
9 return (pte_t
*)__get_free_page(GFP_KERNEL
|__GFP_REPEAT
|__GFP_ZERO
);
12 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
17 pte
= alloc_pages(GFP_KERNEL
|__GFP_HIGHMEM
|__GFP_REPEAT
|__GFP_ZERO
, 0);
19 pte
= alloc_pages(GFP_KERNEL
|__GFP_REPEAT
|__GFP_ZERO
, 0);
22 pgtable_page_ctor(pte
);
26 void __pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
28 pgtable_page_dtor(pte
);
29 paravirt_release_pte(page_to_pfn(pte
));
30 tlb_remove_page(tlb
, pte
);
33 #if PAGETABLE_LEVELS > 2
34 void __pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
36 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
37 tlb_remove_page(tlb
, virt_to_page(pmd
));
40 #if PAGETABLE_LEVELS > 3
41 void __pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
43 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
44 tlb_remove_page(tlb
, virt_to_page(pud
));
46 #endif /* PAGETABLE_LEVELS > 3 */
47 #endif /* PAGETABLE_LEVELS > 2 */
49 static inline void pgd_list_add(pgd_t
*pgd
)
51 struct page
*page
= virt_to_page(pgd
);
53 list_add(&page
->lru
, &pgd_list
);
56 static inline void pgd_list_del(pgd_t
*pgd
)
58 struct page
*page
= virt_to_page(pgd
);
63 #define UNSHARED_PTRS_PER_PGD \
64 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
66 static void pgd_ctor(pgd_t
*pgd
)
68 /* If the pgd points to a shared pagetable level (either the
69 ptes in non-PAE, or shared PMD in PAE), then just copy the
70 references from swapper_pg_dir. */
71 if (PAGETABLE_LEVELS
== 2 ||
72 (PAGETABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
73 PAGETABLE_LEVELS
== 4) {
74 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
75 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
77 paravirt_alloc_pmd_clone(__pa(pgd
) >> PAGE_SHIFT
,
78 __pa(swapper_pg_dir
) >> PAGE_SHIFT
,
83 /* list required to sync kernel mapping updates */
84 if (!SHARED_KERNEL_PMD
)
88 static void pgd_dtor(pgd_t
*pgd
)
90 unsigned long flags
; /* can be called from interrupt context */
92 if (SHARED_KERNEL_PMD
)
95 spin_lock_irqsave(&pgd_lock
, flags
);
97 spin_unlock_irqrestore(&pgd_lock
, flags
);
101 * List of all pgd's needed for non-PAE so it can invalidate entries
102 * in both cached and uncached pgd's; not needed for PAE since the
103 * kernel pmd is shared. If PAE were not to share the pmd a similar
104 * tactic would be needed. This is essentially codepath-based locking
105 * against pageattr.c; it is the unique case in which a valid change
106 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
107 * vmalloc faults work because attached pagetables are never freed.
111 #ifdef CONFIG_X86_PAE
113 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
114 * updating the top-level pagetable entries to guarantee the
115 * processor notices the update. Since this is expensive, and
116 * all 4 top-level entries are used almost immediately in a
117 * new process's life, we just pre-populate them here.
119 * Also, if we're in a paravirt environment where the kernel pmd is
120 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
121 * and initialize the kernel pmds here.
123 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
125 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
127 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
129 /* Note: almost everything apart from _PAGE_PRESENT is
130 reserved at the pmd (PDPT) level. */
131 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
134 * According to Intel App note "TLBs, Paging-Structure Caches,
135 * and Their Invalidation", April 2007, document 317080-001,
136 * section 8.1: in PAE mode we explicitly have to flush the
137 * TLB via cr3 if the top-level pgd is changed...
139 if (mm
== current
->active_mm
)
140 write_cr3(read_cr3());
142 #else /* !CONFIG_X86_PAE */
144 /* No need to prepopulate any pagetable entries in non-PAE modes. */
145 #define PREALLOCATED_PMDS 0
147 #endif /* CONFIG_X86_PAE */
149 static void free_pmds(pmd_t
*pmds
[])
153 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
155 free_page((unsigned long)pmds
[i
]);
158 static int preallocate_pmds(pmd_t
*pmds
[])
163 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
164 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
|__GFP_REPEAT
);
179 * Mop up any pmd pages which may still be attached to the pgd.
180 * Normally they will be freed by munmap/exit_mmap, but any pmd we
181 * preallocate which never got a corresponding vma will need to be
184 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
188 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
191 if (pgd_val(pgd
) != 0) {
192 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
194 pgdp
[i
] = native_make_pgd(0);
196 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
202 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
208 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
211 pud
= pud_offset(pgd
, 0);
213 for (addr
= i
= 0; i
< PREALLOCATED_PMDS
;
214 i
++, pud
++, addr
+= PUD_SIZE
) {
215 pmd_t
*pmd
= pmds
[i
];
217 if (i
>= KERNEL_PGD_BOUNDARY
)
218 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
219 sizeof(pmd_t
) * PTRS_PER_PMD
);
221 pud_populate(mm
, pud
, pmd
);
225 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
228 pmd_t
*pmds
[PREALLOCATED_PMDS
];
231 pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
238 if (preallocate_pmds(pmds
) != 0)
241 if (paravirt_pgd_alloc(mm
) != 0)
245 * Make sure that pre-populating the pmds is atomic with
246 * respect to anything walking the pgd_list, so that they
247 * never see a partially populated pgd.
249 spin_lock_irqsave(&pgd_lock
, flags
);
252 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
254 spin_unlock_irqrestore(&pgd_lock
, flags
);
261 free_page((unsigned long)pgd
);
266 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
268 pgd_mop_up_pmds(mm
, pgd
);
270 paravirt_pgd_free(mm
, pgd
);
271 free_page((unsigned long)pgd
);
274 int ptep_set_access_flags(struct vm_area_struct
*vma
,
275 unsigned long address
, pte_t
*ptep
,
276 pte_t entry
, int dirty
)
278 int changed
= !pte_same(*ptep
, entry
);
280 if (changed
&& dirty
) {
282 pte_update_defer(vma
->vm_mm
, address
, ptep
);
283 flush_tlb_page(vma
, address
);
289 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
290 unsigned long addr
, pte_t
*ptep
)
294 if (pte_young(*ptep
))
295 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
296 (unsigned long *) &ptep
->pte
);
299 pte_update(vma
->vm_mm
, addr
, ptep
);
304 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
305 unsigned long address
, pte_t
*ptep
)
309 young
= ptep_test_and_clear_young(vma
, address
, ptep
);
311 flush_tlb_page(vma
, address
);
317 * reserve_top_address - reserves a hole in the top of kernel address space
318 * @reserve - size of hole to reserve
320 * Can be used to relocate the fixmap area and poke a hole in the top
321 * of kernel address space to make room for a hypervisor.
323 void __init
reserve_top_address(unsigned long reserve
)
326 BUG_ON(fixmaps_set
> 0);
327 printk(KERN_INFO
"Reserving virtual address space above 0x%08x\n",
329 __FIXADDR_TOP
= -reserve
- PAGE_SIZE
;
330 __VMALLOC_RESERVE
+= reserve
;
336 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
338 unsigned long address
= __fix_to_virt(idx
);
340 if (idx
>= __end_of_fixed_addresses
) {
344 set_pte_vaddr(address
, pte
);
348 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
351 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));