OMAP: Add new function to check wether there is irq pending
[linux-ginger.git] / block / blk-settings.c
blob57af728d94bb08732e9d217a94dafe9bae9ef992
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
11 #include "blk.h"
13 unsigned long blk_max_low_pfn;
14 EXPORT_SYMBOL(blk_max_low_pfn);
16 unsigned long blk_max_pfn;
18 /**
19 * blk_queue_prep_rq - set a prepare_request function for queue
20 * @q: queue
21 * @pfn: prepare_request function
23 * It's possible for a queue to register a prepare_request callback which
24 * is invoked before the request is handed to the request_fn. The goal of
25 * the function is to prepare a request for I/O, it can be used to build a
26 * cdb from the request data for instance.
29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
31 q->prep_rq_fn = pfn;
33 EXPORT_SYMBOL(blk_queue_prep_rq);
35 /**
36 * blk_queue_set_discard - set a discard_sectors function for queue
37 * @q: queue
38 * @dfn: prepare_discard function
40 * It's possible for a queue to register a discard callback which is used
41 * to transform a discard request into the appropriate type for the
42 * hardware. If none is registered, then discard requests are failed
43 * with %EOPNOTSUPP.
46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
48 q->prepare_discard_fn = dfn;
50 EXPORT_SYMBOL(blk_queue_set_discard);
52 /**
53 * blk_queue_merge_bvec - set a merge_bvec function for queue
54 * @q: queue
55 * @mbfn: merge_bvec_fn
57 * Usually queues have static limitations on the max sectors or segments that
58 * we can put in a request. Stacking drivers may have some settings that
59 * are dynamic, and thus we have to query the queue whether it is ok to
60 * add a new bio_vec to a bio at a given offset or not. If the block device
61 * has such limitations, it needs to register a merge_bvec_fn to control
62 * the size of bio's sent to it. Note that a block device *must* allow a
63 * single page to be added to an empty bio. The block device driver may want
64 * to use the bio_split() function to deal with these bio's. By default
65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
66 * honored.
68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
70 q->merge_bvec_fn = mbfn;
72 EXPORT_SYMBOL(blk_queue_merge_bvec);
74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
76 q->softirq_done_fn = fn;
78 EXPORT_SYMBOL(blk_queue_softirq_done);
80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
82 q->rq_timeout = timeout;
84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
88 q->rq_timed_out_fn = fn;
90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
94 q->lld_busy_fn = fn;
96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
98 /**
99 * blk_queue_make_request - define an alternate make_request function for a device
100 * @q: the request queue for the device to be affected
101 * @mfn: the alternate make_request function
103 * Description:
104 * The normal way for &struct bios to be passed to a device
105 * driver is for them to be collected into requests on a request
106 * queue, and then to allow the device driver to select requests
107 * off that queue when it is ready. This works well for many block
108 * devices. However some block devices (typically virtual devices
109 * such as md or lvm) do not benefit from the processing on the
110 * request queue, and are served best by having the requests passed
111 * directly to them. This can be achieved by providing a function
112 * to blk_queue_make_request().
114 * Caveat:
115 * The driver that does this *must* be able to deal appropriately
116 * with buffers in "highmemory". This can be accomplished by either calling
117 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
118 * blk_queue_bounce() to create a buffer in normal memory.
120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
123 * set defaults
125 q->nr_requests = BLKDEV_MAX_RQ;
126 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
127 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
128 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
129 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
131 q->make_request_fn = mfn;
132 q->backing_dev_info.ra_pages =
133 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
134 q->backing_dev_info.state = 0;
135 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
136 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
137 blk_queue_hardsect_size(q, 512);
138 blk_queue_dma_alignment(q, 511);
139 blk_queue_congestion_threshold(q);
140 q->nr_batching = BLK_BATCH_REQ;
142 q->unplug_thresh = 4; /* hmm */
143 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
144 if (q->unplug_delay == 0)
145 q->unplug_delay = 1;
147 q->unplug_timer.function = blk_unplug_timeout;
148 q->unplug_timer.data = (unsigned long)q;
151 * by default assume old behaviour and bounce for any highmem page
153 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
155 EXPORT_SYMBOL(blk_queue_make_request);
158 * blk_queue_bounce_limit - set bounce buffer limit for queue
159 * @q: the request queue for the device
160 * @dma_mask: the maximum address the device can handle
162 * Description:
163 * Different hardware can have different requirements as to what pages
164 * it can do I/O directly to. A low level driver can call
165 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
166 * buffers for doing I/O to pages residing above @dma_mask.
168 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
170 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
171 int dma = 0;
173 q->bounce_gfp = GFP_NOIO;
174 #if BITS_PER_LONG == 64
176 * Assume anything <= 4GB can be handled by IOMMU. Actually
177 * some IOMMUs can handle everything, but I don't know of a
178 * way to test this here.
180 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
181 dma = 1;
182 q->bounce_pfn = max_low_pfn;
183 #else
184 if (b_pfn < blk_max_low_pfn)
185 dma = 1;
186 q->bounce_pfn = b_pfn;
187 #endif
188 if (dma) {
189 init_emergency_isa_pool();
190 q->bounce_gfp = GFP_NOIO | GFP_DMA;
191 q->bounce_pfn = b_pfn;
194 EXPORT_SYMBOL(blk_queue_bounce_limit);
197 * blk_queue_max_sectors - set max sectors for a request for this queue
198 * @q: the request queue for the device
199 * @max_sectors: max sectors in the usual 512b unit
201 * Description:
202 * Enables a low level driver to set an upper limit on the size of
203 * received requests.
205 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
207 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
208 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
209 printk(KERN_INFO "%s: set to minimum %d\n",
210 __func__, max_sectors);
213 if (BLK_DEF_MAX_SECTORS > max_sectors)
214 q->max_hw_sectors = q->max_sectors = max_sectors;
215 else {
216 q->max_sectors = BLK_DEF_MAX_SECTORS;
217 q->max_hw_sectors = max_sectors;
220 EXPORT_SYMBOL(blk_queue_max_sectors);
223 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
224 * @q: the request queue for the device
225 * @max_segments: max number of segments
227 * Description:
228 * Enables a low level driver to set an upper limit on the number of
229 * physical data segments in a request. This would be the largest sized
230 * scatter list the driver could handle.
232 void blk_queue_max_phys_segments(struct request_queue *q,
233 unsigned short max_segments)
235 if (!max_segments) {
236 max_segments = 1;
237 printk(KERN_INFO "%s: set to minimum %d\n",
238 __func__, max_segments);
241 q->max_phys_segments = max_segments;
243 EXPORT_SYMBOL(blk_queue_max_phys_segments);
246 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
247 * @q: the request queue for the device
248 * @max_segments: max number of segments
250 * Description:
251 * Enables a low level driver to set an upper limit on the number of
252 * hw data segments in a request. This would be the largest number of
253 * address/length pairs the host adapter can actually give at once
254 * to the device.
256 void blk_queue_max_hw_segments(struct request_queue *q,
257 unsigned short max_segments)
259 if (!max_segments) {
260 max_segments = 1;
261 printk(KERN_INFO "%s: set to minimum %d\n",
262 __func__, max_segments);
265 q->max_hw_segments = max_segments;
267 EXPORT_SYMBOL(blk_queue_max_hw_segments);
270 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
271 * @q: the request queue for the device
272 * @max_size: max size of segment in bytes
274 * Description:
275 * Enables a low level driver to set an upper limit on the size of a
276 * coalesced segment
278 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
280 if (max_size < PAGE_CACHE_SIZE) {
281 max_size = PAGE_CACHE_SIZE;
282 printk(KERN_INFO "%s: set to minimum %d\n",
283 __func__, max_size);
286 q->max_segment_size = max_size;
288 EXPORT_SYMBOL(blk_queue_max_segment_size);
291 * blk_queue_hardsect_size - set hardware sector size for the queue
292 * @q: the request queue for the device
293 * @size: the hardware sector size, in bytes
295 * Description:
296 * This should typically be set to the lowest possible sector size
297 * that the hardware can operate on (possible without reverting to
298 * even internal read-modify-write operations). Usually the default
299 * of 512 covers most hardware.
301 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
303 q->hardsect_size = size;
305 EXPORT_SYMBOL(blk_queue_hardsect_size);
308 * Returns the minimum that is _not_ zero, unless both are zero.
310 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
313 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
314 * @t: the stacking driver (top)
315 * @b: the underlying device (bottom)
317 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
319 /* zero is "infinity" */
320 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
321 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
322 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask);
324 t->max_phys_segments = min_not_zero(t->max_phys_segments, b->max_phys_segments);
325 t->max_hw_segments = min_not_zero(t->max_hw_segments, b->max_hw_segments);
326 t->max_segment_size = min_not_zero(t->max_segment_size, b->max_segment_size);
327 t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
328 if (!t->queue_lock)
329 WARN_ON_ONCE(1);
330 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
331 unsigned long flags;
332 spin_lock_irqsave(t->queue_lock, flags);
333 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
334 spin_unlock_irqrestore(t->queue_lock, flags);
337 EXPORT_SYMBOL(blk_queue_stack_limits);
340 * blk_queue_dma_pad - set pad mask
341 * @q: the request queue for the device
342 * @mask: pad mask
344 * Set dma pad mask.
346 * Appending pad buffer to a request modifies the last entry of a
347 * scatter list such that it includes the pad buffer.
349 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
351 q->dma_pad_mask = mask;
353 EXPORT_SYMBOL(blk_queue_dma_pad);
356 * blk_queue_update_dma_pad - update pad mask
357 * @q: the request queue for the device
358 * @mask: pad mask
360 * Update dma pad mask.
362 * Appending pad buffer to a request modifies the last entry of a
363 * scatter list such that it includes the pad buffer.
365 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
367 if (mask > q->dma_pad_mask)
368 q->dma_pad_mask = mask;
370 EXPORT_SYMBOL(blk_queue_update_dma_pad);
373 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
374 * @q: the request queue for the device
375 * @dma_drain_needed: fn which returns non-zero if drain is necessary
376 * @buf: physically contiguous buffer
377 * @size: size of the buffer in bytes
379 * Some devices have excess DMA problems and can't simply discard (or
380 * zero fill) the unwanted piece of the transfer. They have to have a
381 * real area of memory to transfer it into. The use case for this is
382 * ATAPI devices in DMA mode. If the packet command causes a transfer
383 * bigger than the transfer size some HBAs will lock up if there
384 * aren't DMA elements to contain the excess transfer. What this API
385 * does is adjust the queue so that the buf is always appended
386 * silently to the scatterlist.
388 * Note: This routine adjusts max_hw_segments to make room for
389 * appending the drain buffer. If you call
390 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
391 * calling this routine, you must set the limit to one fewer than your
392 * device can support otherwise there won't be room for the drain
393 * buffer.
395 int blk_queue_dma_drain(struct request_queue *q,
396 dma_drain_needed_fn *dma_drain_needed,
397 void *buf, unsigned int size)
399 if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
400 return -EINVAL;
401 /* make room for appending the drain */
402 --q->max_hw_segments;
403 --q->max_phys_segments;
404 q->dma_drain_needed = dma_drain_needed;
405 q->dma_drain_buffer = buf;
406 q->dma_drain_size = size;
408 return 0;
410 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
413 * blk_queue_segment_boundary - set boundary rules for segment merging
414 * @q: the request queue for the device
415 * @mask: the memory boundary mask
417 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
419 if (mask < PAGE_CACHE_SIZE - 1) {
420 mask = PAGE_CACHE_SIZE - 1;
421 printk(KERN_INFO "%s: set to minimum %lx\n",
422 __func__, mask);
425 q->seg_boundary_mask = mask;
427 EXPORT_SYMBOL(blk_queue_segment_boundary);
430 * blk_queue_dma_alignment - set dma length and memory alignment
431 * @q: the request queue for the device
432 * @mask: alignment mask
434 * description:
435 * set required memory and length alignment for direct dma transactions.
436 * this is used when building direct io requests for the queue.
439 void blk_queue_dma_alignment(struct request_queue *q, int mask)
441 q->dma_alignment = mask;
443 EXPORT_SYMBOL(blk_queue_dma_alignment);
446 * blk_queue_update_dma_alignment - update dma length and memory alignment
447 * @q: the request queue for the device
448 * @mask: alignment mask
450 * description:
451 * update required memory and length alignment for direct dma transactions.
452 * If the requested alignment is larger than the current alignment, then
453 * the current queue alignment is updated to the new value, otherwise it
454 * is left alone. The design of this is to allow multiple objects
455 * (driver, device, transport etc) to set their respective
456 * alignments without having them interfere.
459 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
461 BUG_ON(mask > PAGE_SIZE);
463 if (mask > q->dma_alignment)
464 q->dma_alignment = mask;
466 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
468 static int __init blk_settings_init(void)
470 blk_max_low_pfn = max_low_pfn - 1;
471 blk_max_pfn = max_pfn - 1;
472 return 0;
474 subsys_initcall(blk_settings_init);