2 * File: arch/blackfin/mm/sram-alloc.c
7 * Description: SRAM allocator for Blackfin L1 and L2 memory
10 * Copyright 2004-2008 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include <asm/mem_map.h>
43 #include "blackfin_sram.h"
45 static DEFINE_PER_CPU(spinlock_t
, l1sram_lock
) ____cacheline_aligned_in_smp
;
46 static DEFINE_PER_CPU(spinlock_t
, l1_data_sram_lock
) ____cacheline_aligned_in_smp
;
47 static DEFINE_PER_CPU(spinlock_t
, l1_inst_sram_lock
) ____cacheline_aligned_in_smp
;
48 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp
;
50 /* the data structure for L1 scratchpad and DATA SRAM */
55 struct sram_piece
*next
;
58 static DEFINE_PER_CPU(struct sram_piece
, free_l1_ssram_head
);
59 static DEFINE_PER_CPU(struct sram_piece
, used_l1_ssram_head
);
61 #if L1_DATA_A_LENGTH != 0
62 static DEFINE_PER_CPU(struct sram_piece
, free_l1_data_A_sram_head
);
63 static DEFINE_PER_CPU(struct sram_piece
, used_l1_data_A_sram_head
);
66 #if L1_DATA_B_LENGTH != 0
67 static DEFINE_PER_CPU(struct sram_piece
, free_l1_data_B_sram_head
);
68 static DEFINE_PER_CPU(struct sram_piece
, used_l1_data_B_sram_head
);
71 #if L1_CODE_LENGTH != 0
72 static DEFINE_PER_CPU(struct sram_piece
, free_l1_inst_sram_head
);
73 static DEFINE_PER_CPU(struct sram_piece
, used_l1_inst_sram_head
);
77 static struct sram_piece free_l2_sram_head
, used_l2_sram_head
;
80 static struct kmem_cache
*sram_piece_cache
;
82 /* L1 Scratchpad SRAM initialization function */
83 static void __init
l1sram_init(void)
86 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
87 per_cpu(free_l1_ssram_head
, cpu
).next
=
88 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
89 if (!per_cpu(free_l1_ssram_head
, cpu
).next
) {
90 printk(KERN_INFO
"Fail to initialize Scratchpad data SRAM.\n");
94 per_cpu(free_l1_ssram_head
, cpu
).next
->paddr
= (void *)get_l1_scratch_start_cpu(cpu
);
95 per_cpu(free_l1_ssram_head
, cpu
).next
->size
= L1_SCRATCH_LENGTH
;
96 per_cpu(free_l1_ssram_head
, cpu
).next
->pid
= 0;
97 per_cpu(free_l1_ssram_head
, cpu
).next
->next
= NULL
;
99 per_cpu(used_l1_ssram_head
, cpu
).next
= NULL
;
101 /* mutex initialize */
102 spin_lock_init(&per_cpu(l1sram_lock
, cpu
));
103 printk(KERN_INFO
"Blackfin Scratchpad data SRAM: %d KB\n",
104 L1_SCRATCH_LENGTH
>> 10);
108 static void __init
l1_data_sram_init(void)
110 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
113 #if L1_DATA_A_LENGTH != 0
114 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
115 per_cpu(free_l1_data_A_sram_head
, cpu
).next
=
116 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
117 if (!per_cpu(free_l1_data_A_sram_head
, cpu
).next
) {
118 printk(KERN_INFO
"Fail to initialize L1 Data A SRAM.\n");
122 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->paddr
=
123 (void *)get_l1_data_a_start_cpu(cpu
) + (_ebss_l1
- _sdata_l1
);
124 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->size
=
125 L1_DATA_A_LENGTH
- (_ebss_l1
- _sdata_l1
);
126 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->pid
= 0;
127 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->next
= NULL
;
129 per_cpu(used_l1_data_A_sram_head
, cpu
).next
= NULL
;
131 printk(KERN_INFO
"Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
132 L1_DATA_A_LENGTH
>> 10,
133 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->size
>> 10);
136 #if L1_DATA_B_LENGTH != 0
137 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
138 per_cpu(free_l1_data_B_sram_head
, cpu
).next
=
139 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
140 if (!per_cpu(free_l1_data_B_sram_head
, cpu
).next
) {
141 printk(KERN_INFO
"Fail to initialize L1 Data B SRAM.\n");
145 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->paddr
=
146 (void *)get_l1_data_b_start_cpu(cpu
) + (_ebss_b_l1
- _sdata_b_l1
);
147 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->size
=
148 L1_DATA_B_LENGTH
- (_ebss_b_l1
- _sdata_b_l1
);
149 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->pid
= 0;
150 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->next
= NULL
;
152 per_cpu(used_l1_data_B_sram_head
, cpu
).next
= NULL
;
154 printk(KERN_INFO
"Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
155 L1_DATA_B_LENGTH
>> 10,
156 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->size
>> 10);
157 /* mutex initialize */
161 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
162 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
)
163 spin_lock_init(&per_cpu(l1_data_sram_lock
, cpu
));
167 static void __init
l1_inst_sram_init(void)
169 #if L1_CODE_LENGTH != 0
171 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
172 per_cpu(free_l1_inst_sram_head
, cpu
).next
=
173 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
174 if (!per_cpu(free_l1_inst_sram_head
, cpu
).next
) {
175 printk(KERN_INFO
"Failed to initialize L1 Instruction SRAM\n");
179 per_cpu(free_l1_inst_sram_head
, cpu
).next
->paddr
=
180 (void *)get_l1_code_start_cpu(cpu
) + (_etext_l1
- _stext_l1
);
181 per_cpu(free_l1_inst_sram_head
, cpu
).next
->size
=
182 L1_CODE_LENGTH
- (_etext_l1
- _stext_l1
);
183 per_cpu(free_l1_inst_sram_head
, cpu
).next
->pid
= 0;
184 per_cpu(free_l1_inst_sram_head
, cpu
).next
->next
= NULL
;
186 per_cpu(used_l1_inst_sram_head
, cpu
).next
= NULL
;
188 printk(KERN_INFO
"Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
189 L1_CODE_LENGTH
>> 10,
190 per_cpu(free_l1_inst_sram_head
, cpu
).next
->size
>> 10);
192 /* mutex initialize */
193 spin_lock_init(&per_cpu(l1_inst_sram_lock
, cpu
));
198 static void __init
l2_sram_init(void)
201 free_l2_sram_head
.next
=
202 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
203 if (!free_l2_sram_head
.next
) {
204 printk(KERN_INFO
"Fail to initialize L2 SRAM.\n");
208 free_l2_sram_head
.next
->paddr
=
209 (void *)L2_START
+ (_ebss_l2
- _stext_l2
);
210 free_l2_sram_head
.next
->size
=
211 L2_LENGTH
- (_ebss_l2
- _stext_l2
);
212 free_l2_sram_head
.next
->pid
= 0;
213 free_l2_sram_head
.next
->next
= NULL
;
215 used_l2_sram_head
.next
= NULL
;
217 printk(KERN_INFO
"Blackfin L2 SRAM: %d KB (%d KB free)\n",
219 free_l2_sram_head
.next
->size
>> 10);
222 /* mutex initialize */
223 spin_lock_init(&l2_sram_lock
);
226 void __init
bfin_sram_init(void)
228 sram_piece_cache
= kmem_cache_create("sram_piece_cache",
229 sizeof(struct sram_piece
),
230 0, SLAB_PANIC
, NULL
);
238 /* SRAM allocate function */
239 static void *_sram_alloc(size_t size
, struct sram_piece
*pfree_head
,
240 struct sram_piece
*pused_head
)
242 struct sram_piece
*pslot
, *plast
, *pavail
;
244 if (size
<= 0 || !pfree_head
|| !pused_head
)
248 size
= (size
+ 3) & ~3;
250 pslot
= pfree_head
->next
;
253 /* search an available piece slot */
254 while (pslot
!= NULL
&& size
> pslot
->size
) {
262 if (pslot
->size
== size
) {
263 plast
->next
= pslot
->next
;
266 pavail
= kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
271 pavail
->paddr
= pslot
->paddr
;
273 pslot
->paddr
+= size
;
277 pavail
->pid
= current
->pid
;
279 pslot
= pused_head
->next
;
282 /* insert new piece into used piece list !!! */
283 while (pslot
!= NULL
&& pavail
->paddr
< pslot
->paddr
) {
288 pavail
->next
= pslot
;
289 plast
->next
= pavail
;
291 return pavail
->paddr
;
294 /* Allocate the largest available block. */
295 static void *_sram_alloc_max(struct sram_piece
*pfree_head
,
296 struct sram_piece
*pused_head
,
297 unsigned long *psize
)
299 struct sram_piece
*pslot
, *pmax
;
301 if (!pfree_head
|| !pused_head
)
304 pmax
= pslot
= pfree_head
->next
;
306 /* search an available piece slot */
307 while (pslot
!= NULL
) {
308 if (pslot
->size
> pmax
->size
)
318 return _sram_alloc(*psize
, pfree_head
, pused_head
);
321 /* SRAM free function */
322 static int _sram_free(const void *addr
,
323 struct sram_piece
*pfree_head
,
324 struct sram_piece
*pused_head
)
326 struct sram_piece
*pslot
, *plast
, *pavail
;
328 if (!pfree_head
|| !pused_head
)
331 /* search the relevant memory slot */
332 pslot
= pused_head
->next
;
335 /* search an available piece slot */
336 while (pslot
!= NULL
&& pslot
->paddr
!= addr
) {
344 plast
->next
= pslot
->next
;
348 /* insert free pieces back to the free list */
349 pslot
= pfree_head
->next
;
352 while (pslot
!= NULL
&& addr
> pslot
->paddr
) {
357 if (plast
!= pfree_head
&& plast
->paddr
+ plast
->size
== pavail
->paddr
) {
358 plast
->size
+= pavail
->size
;
359 kmem_cache_free(sram_piece_cache
, pavail
);
361 pavail
->next
= plast
->next
;
362 plast
->next
= pavail
;
366 if (pslot
&& plast
->paddr
+ plast
->size
== pslot
->paddr
) {
367 plast
->size
+= pslot
->size
;
368 plast
->next
= pslot
->next
;
369 kmem_cache_free(sram_piece_cache
, pslot
);
375 int sram_free(const void *addr
)
378 #if L1_CODE_LENGTH != 0
379 if (addr
>= (void *)get_l1_code_start()
380 && addr
< (void *)(get_l1_code_start() + L1_CODE_LENGTH
))
381 return l1_inst_sram_free(addr
);
384 #if L1_DATA_A_LENGTH != 0
385 if (addr
>= (void *)get_l1_data_a_start()
386 && addr
< (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH
))
387 return l1_data_A_sram_free(addr
);
390 #if L1_DATA_B_LENGTH != 0
391 if (addr
>= (void *)get_l1_data_b_start()
392 && addr
< (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH
))
393 return l1_data_B_sram_free(addr
);
397 if (addr
>= (void *)L2_START
398 && addr
< (void *)(L2_START
+ L2_LENGTH
))
399 return l2_sram_free(addr
);
404 EXPORT_SYMBOL(sram_free
);
406 void *l1_data_A_sram_alloc(size_t size
)
413 /* add mutex operation */
414 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
416 #if L1_DATA_A_LENGTH != 0
417 addr
= _sram_alloc(size
, &per_cpu(free_l1_data_A_sram_head
, cpu
),
418 &per_cpu(used_l1_data_A_sram_head
, cpu
));
421 /* add mutex operation */
422 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
425 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
426 (long unsigned int)addr
, size
);
430 EXPORT_SYMBOL(l1_data_A_sram_alloc
);
432 int l1_data_A_sram_free(const void *addr
)
439 /* add mutex operation */
440 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
442 #if L1_DATA_A_LENGTH != 0
443 ret
= _sram_free(addr
, &per_cpu(free_l1_data_A_sram_head
, cpu
),
444 &per_cpu(used_l1_data_A_sram_head
, cpu
));
449 /* add mutex operation */
450 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
455 EXPORT_SYMBOL(l1_data_A_sram_free
);
457 void *l1_data_B_sram_alloc(size_t size
)
459 #if L1_DATA_B_LENGTH != 0
465 /* add mutex operation */
466 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
468 addr
= _sram_alloc(size
, &per_cpu(free_l1_data_B_sram_head
, cpu
),
469 &per_cpu(used_l1_data_B_sram_head
, cpu
));
471 /* add mutex operation */
472 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
475 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
476 (long unsigned int)addr
, size
);
483 EXPORT_SYMBOL(l1_data_B_sram_alloc
);
485 int l1_data_B_sram_free(const void *addr
)
487 #if L1_DATA_B_LENGTH != 0
493 /* add mutex operation */
494 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
496 ret
= _sram_free(addr
, &per_cpu(free_l1_data_B_sram_head
, cpu
),
497 &per_cpu(used_l1_data_B_sram_head
, cpu
));
499 /* add mutex operation */
500 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
508 EXPORT_SYMBOL(l1_data_B_sram_free
);
510 void *l1_data_sram_alloc(size_t size
)
512 void *addr
= l1_data_A_sram_alloc(size
);
515 addr
= l1_data_B_sram_alloc(size
);
519 EXPORT_SYMBOL(l1_data_sram_alloc
);
521 void *l1_data_sram_zalloc(size_t size
)
523 void *addr
= l1_data_sram_alloc(size
);
526 memset(addr
, 0x00, size
);
530 EXPORT_SYMBOL(l1_data_sram_zalloc
);
532 int l1_data_sram_free(const void *addr
)
535 ret
= l1_data_A_sram_free(addr
);
537 ret
= l1_data_B_sram_free(addr
);
540 EXPORT_SYMBOL(l1_data_sram_free
);
542 void *l1_inst_sram_alloc(size_t size
)
544 #if L1_CODE_LENGTH != 0
550 /* add mutex operation */
551 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
553 addr
= _sram_alloc(size
, &per_cpu(free_l1_inst_sram_head
, cpu
),
554 &per_cpu(used_l1_inst_sram_head
, cpu
));
556 /* add mutex operation */
557 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
560 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
561 (long unsigned int)addr
, size
);
568 EXPORT_SYMBOL(l1_inst_sram_alloc
);
570 int l1_inst_sram_free(const void *addr
)
572 #if L1_CODE_LENGTH != 0
578 /* add mutex operation */
579 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
581 ret
= _sram_free(addr
, &per_cpu(free_l1_inst_sram_head
, cpu
),
582 &per_cpu(used_l1_inst_sram_head
, cpu
));
584 /* add mutex operation */
585 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
593 EXPORT_SYMBOL(l1_inst_sram_free
);
595 /* L1 Scratchpad memory allocate function */
596 void *l1sram_alloc(size_t size
)
603 /* add mutex operation */
604 spin_lock_irqsave(&per_cpu(l1sram_lock
, cpu
), flags
);
606 addr
= _sram_alloc(size
, &per_cpu(free_l1_ssram_head
, cpu
),
607 &per_cpu(used_l1_ssram_head
, cpu
));
609 /* add mutex operation */
610 spin_unlock_irqrestore(&per_cpu(l1sram_lock
, cpu
), flags
);
616 /* L1 Scratchpad memory allocate function */
617 void *l1sram_alloc_max(size_t *psize
)
624 /* add mutex operation */
625 spin_lock_irqsave(&per_cpu(l1sram_lock
, cpu
), flags
);
627 addr
= _sram_alloc_max(&per_cpu(free_l1_ssram_head
, cpu
),
628 &per_cpu(used_l1_ssram_head
, cpu
), psize
);
630 /* add mutex operation */
631 spin_unlock_irqrestore(&per_cpu(l1sram_lock
, cpu
), flags
);
637 /* L1 Scratchpad memory free function */
638 int l1sram_free(const void *addr
)
645 /* add mutex operation */
646 spin_lock_irqsave(&per_cpu(l1sram_lock
, cpu
), flags
);
648 ret
= _sram_free(addr
, &per_cpu(free_l1_ssram_head
, cpu
),
649 &per_cpu(used_l1_ssram_head
, cpu
));
651 /* add mutex operation */
652 spin_unlock_irqrestore(&per_cpu(l1sram_lock
, cpu
), flags
);
658 void *l2_sram_alloc(size_t size
)
664 /* add mutex operation */
665 spin_lock_irqsave(&l2_sram_lock
, flags
);
667 addr
= _sram_alloc(size
, &free_l2_sram_head
,
670 /* add mutex operation */
671 spin_unlock_irqrestore(&l2_sram_lock
, flags
);
673 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
674 (long unsigned int)addr
, size
);
681 EXPORT_SYMBOL(l2_sram_alloc
);
683 void *l2_sram_zalloc(size_t size
)
685 void *addr
= l2_sram_alloc(size
);
688 memset(addr
, 0x00, size
);
692 EXPORT_SYMBOL(l2_sram_zalloc
);
694 int l2_sram_free(const void *addr
)
700 /* add mutex operation */
701 spin_lock_irqsave(&l2_sram_lock
, flags
);
703 ret
= _sram_free(addr
, &free_l2_sram_head
,
706 /* add mutex operation */
707 spin_unlock_irqrestore(&l2_sram_lock
, flags
);
714 EXPORT_SYMBOL(l2_sram_free
);
716 int sram_free_with_lsl(const void *addr
)
718 struct sram_list_struct
*lsl
, **tmp
;
719 struct mm_struct
*mm
= current
->mm
;
721 for (tmp
= &mm
->context
.sram_list
; *tmp
; tmp
= &(*tmp
)->next
)
722 if ((*tmp
)->addr
== addr
)
733 EXPORT_SYMBOL(sram_free_with_lsl
);
735 void *sram_alloc_with_lsl(size_t size
, unsigned long flags
)
738 struct sram_list_struct
*lsl
= NULL
;
739 struct mm_struct
*mm
= current
->mm
;
741 lsl
= kzalloc(sizeof(struct sram_list_struct
), GFP_KERNEL
);
745 if (flags
& L1_INST_SRAM
)
746 addr
= l1_inst_sram_alloc(size
);
748 if (addr
== NULL
&& (flags
& L1_DATA_A_SRAM
))
749 addr
= l1_data_A_sram_alloc(size
);
751 if (addr
== NULL
&& (flags
& L1_DATA_B_SRAM
))
752 addr
= l1_data_B_sram_alloc(size
);
754 if (addr
== NULL
&& (flags
& L2_SRAM
))
755 addr
= l2_sram_alloc(size
);
763 lsl
->next
= mm
->context
.sram_list
;
764 mm
->context
.sram_list
= lsl
;
767 EXPORT_SYMBOL(sram_alloc_with_lsl
);
769 #ifdef CONFIG_PROC_FS
770 /* Once we get a real allocator, we'll throw all of this away.
771 * Until then, we need some sort of visibility into the L1 alloc.
773 /* Need to keep line of output the same. Currently, that is 44 bytes
774 * (including newline).
776 static int _sram_proc_read(char *buf
, int *len
, int count
, const char *desc
,
777 struct sram_piece
*pfree_head
,
778 struct sram_piece
*pused_head
)
780 struct sram_piece
*pslot
;
782 if (!pfree_head
|| !pused_head
)
785 *len
+= sprintf(&buf
[*len
], "--- SRAM %-14s Size PID State \n", desc
);
787 /* search the relevant memory slot */
788 pslot
= pused_head
->next
;
790 while (pslot
!= NULL
) {
791 *len
+= sprintf(&buf
[*len
], "%p-%p %10i %5i %-10s\n",
792 pslot
->paddr
, pslot
->paddr
+ pslot
->size
,
793 pslot
->size
, pslot
->pid
, "ALLOCATED");
798 pslot
= pfree_head
->next
;
800 while (pslot
!= NULL
) {
801 *len
+= sprintf(&buf
[*len
], "%p-%p %10i %5i %-10s\n",
802 pslot
->paddr
, pslot
->paddr
+ pslot
->size
,
803 pslot
->size
, pslot
->pid
, "FREE");
810 static int sram_proc_read(char *buf
, char **start
, off_t offset
, int count
,
811 int *eof
, void *data
)
816 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
817 if (_sram_proc_read(buf
, &len
, count
, "Scratchpad",
818 &per_cpu(free_l1_ssram_head
, cpu
), &per_cpu(used_l1_ssram_head
, cpu
)))
820 #if L1_DATA_A_LENGTH != 0
821 if (_sram_proc_read(buf
, &len
, count
, "L1 Data A",
822 &per_cpu(free_l1_data_A_sram_head
, cpu
),
823 &per_cpu(used_l1_data_A_sram_head
, cpu
)))
826 #if L1_DATA_B_LENGTH != 0
827 if (_sram_proc_read(buf
, &len
, count
, "L1 Data B",
828 &per_cpu(free_l1_data_B_sram_head
, cpu
),
829 &per_cpu(used_l1_data_B_sram_head
, cpu
)))
832 #if L1_CODE_LENGTH != 0
833 if (_sram_proc_read(buf
, &len
, count
, "L1 Instruction",
834 &per_cpu(free_l1_inst_sram_head
, cpu
),
835 &per_cpu(used_l1_inst_sram_head
, cpu
)))
840 if (_sram_proc_read(buf
, &len
, count
, "L2", &free_l2_sram_head
,
849 static int __init
sram_proc_init(void)
851 struct proc_dir_entry
*ptr
;
852 ptr
= create_proc_entry("sram", S_IFREG
| S_IRUGO
, NULL
);
854 printk(KERN_WARNING
"unable to create /proc/sram\n");
857 ptr
->read_proc
= sram_proc_read
;
860 late_initcall(sram_proc_init
);