1 /* Kernel dynamically loadable module help for PARISC.
3 * The best reference for this stuff is probably the Processor-
4 * Specific ELF Supplement for PA-RISC:
5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
7 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 * fail to reach their PLT stub if we only create one big stub array for
32 * all sections at the beginning of the core or init section.
33 * Instead we now insert individual PLT stub entries directly in front of
34 * of the code sections where the stubs are actually called.
35 * This reduces the distance between the PCREL location and the stub entry
36 * so that the relocations can be fulfilled.
37 * While calculating the final layout of the kernel module in memory, the
38 * kernel module loader calls arch_mod_section_prepend() to request the
39 * to be reserved amount of memory in front of each individual section.
42 * We are not doing SEGREL32 handling correctly. According to the ABI, we
43 * should do a value offset, like this:
44 * if (in_init(me, (void *)val))
45 * val -= (uint32_t)me->module_init;
47 * val -= (uint32_t)me->module_core;
48 * However, SEGREL32 is used only for PARISC unwind entries, and we want
49 * those entries to have an absolute address, and not just an offset.
51 * The unwind table mechanism has the ability to specify an offset for
52 * the unwind table; however, because we split off the init functions into
53 * a different piece of memory, it is not possible to do this using a
54 * single offset. Instead, we use the above hack for now.
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
65 #include <asm/unwind.h>
70 #define DEBUGP(fmt...)
73 #define RELOC_REACHABLE(val, bits) \
74 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
75 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
78 #define CHECK_RELOC(val, bits) \
79 if (!RELOC_REACHABLE(val, bits)) { \
80 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
81 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85 /* Maximum number of GOT entries. We use a long displacement ldd from
86 * the bottom of the table, which has a maximum signed displacement of
87 * 0x3fff; however, since we're only going forward, this becomes
88 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
89 * at most 1023 entries */
92 /* three functions to determine where in the module core
93 * or init pieces the location is */
94 static inline int in_init(struct module
*me
, void *loc
)
96 return (loc
>= me
->module_init
&&
97 loc
<= (me
->module_init
+ me
->init_size
));
100 static inline int in_core(struct module
*me
, void *loc
)
102 return (loc
>= me
->module_core
&&
103 loc
<= (me
->module_core
+ me
->core_size
));
106 static inline int in_local(struct module
*me
, void *loc
)
108 return in_init(me
, loc
) || in_core(me
, loc
);
117 Elf32_Word insns
[2]; /* each stub entry has two insns */
125 Elf64_Word insns
[4]; /* each stub entry has four insns */
129 /* Field selection types defined by hppa */
130 #define rnd(x) (((x)+0x1000)&~0x1fff)
131 /* fsel: full 32 bits */
132 #define fsel(v,a) ((v)+(a))
133 /* lsel: select left 21 bits */
134 #define lsel(v,a) (((v)+(a))>>11)
135 /* rsel: select right 11 bits */
136 #define rsel(v,a) (((v)+(a))&0x7ff)
137 /* lrsel with rounding of addend to nearest 8k */
138 #define lrsel(v,a) (((v)+rnd(a))>>11)
139 /* rrsel with rounding of addend to nearest 8k */
140 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
142 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
145 /* The reassemble_* functions prepare an immediate value for
146 insertion into an opcode. pa-risc uses all sorts of weird bitfields
147 in the instruction to hold the value. */
148 static inline int reassemble_14(int as14
)
150 return (((as14
& 0x1fff) << 1) |
151 ((as14
& 0x2000) >> 13));
154 static inline int reassemble_17(int as17
)
156 return (((as17
& 0x10000) >> 16) |
157 ((as17
& 0x0f800) << 5) |
158 ((as17
& 0x00400) >> 8) |
159 ((as17
& 0x003ff) << 3));
162 static inline int reassemble_21(int as21
)
164 return (((as21
& 0x100000) >> 20) |
165 ((as21
& 0x0ffe00) >> 8) |
166 ((as21
& 0x000180) << 7) |
167 ((as21
& 0x00007c) << 14) |
168 ((as21
& 0x000003) << 12));
171 static inline int reassemble_22(int as22
)
173 return (((as22
& 0x200000) >> 21) |
174 ((as22
& 0x1f0000) << 5) |
175 ((as22
& 0x00f800) << 5) |
176 ((as22
& 0x000400) >> 8) |
177 ((as22
& 0x0003ff) << 3));
180 void *module_alloc(unsigned long size
)
184 return vmalloc(size
);
188 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
193 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
198 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
200 unsigned long cnt
= 0;
202 for (; n
> 0; n
--, rela
++)
204 switch (ELF32_R_TYPE(rela
->r_info
)) {
205 case R_PARISC_PCREL17F
:
206 case R_PARISC_PCREL22F
:
214 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
216 unsigned long cnt
= 0;
218 for (; n
> 0; n
--, rela
++)
220 switch (ELF64_R_TYPE(rela
->r_info
)) {
221 case R_PARISC_LTOFF21L
:
222 case R_PARISC_LTOFF14R
:
223 case R_PARISC_PCREL22F
:
231 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
233 unsigned long cnt
= 0;
235 for (; n
> 0; n
--, rela
++)
237 switch (ELF64_R_TYPE(rela
->r_info
)) {
238 case R_PARISC_FPTR64
:
246 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
248 unsigned long cnt
= 0;
250 for (; n
> 0; n
--, rela
++)
252 switch (ELF64_R_TYPE(rela
->r_info
)) {
253 case R_PARISC_PCREL22F
:
263 /* Free memory returned from module_alloc */
264 void module_free(struct module
*mod
, void *module_region
)
266 kfree(mod
->arch
.section
);
267 mod
->arch
.section
= NULL
;
269 vfree(module_region
);
270 /* FIXME: If module_region == mod->init_region, trim exception
274 /* Additional bytes needed in front of individual sections */
275 unsigned int arch_mod_section_prepend(struct module
*mod
,
276 unsigned int section
)
278 /* size needed for all stubs of this section (including
279 * one additional for correct alignment of the stubs) */
280 return (mod
->arch
.section
[section
].stub_entries
+ 1)
281 * sizeof(struct stub_entry
);
285 int module_frob_arch_sections(CONST Elf_Ehdr
*hdr
,
286 CONST Elf_Shdr
*sechdrs
,
287 CONST
char *secstrings
,
290 unsigned long gots
= 0, fdescs
= 0, len
;
293 len
= hdr
->e_shnum
* sizeof(me
->arch
.section
[0]);
294 me
->arch
.section
= kzalloc(len
, GFP_KERNEL
);
295 if (!me
->arch
.section
)
298 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
299 const Elf_Rela
*rels
= (void *)sechdrs
[i
].sh_addr
;
300 unsigned long nrels
= sechdrs
[i
].sh_size
/ sizeof(*rels
);
301 unsigned int count
, s
;
303 if (strncmp(secstrings
+ sechdrs
[i
].sh_name
,
304 ".PARISC.unwind", 14) == 0)
305 me
->arch
.unwind_section
= i
;
307 if (sechdrs
[i
].sh_type
!= SHT_RELA
)
310 /* some of these are not relevant for 32-bit/64-bit
311 * we leave them here to make the code common. the
312 * compiler will do its thing and optimize out the
313 * stuff we don't need
315 gots
+= count_gots(rels
, nrels
);
316 fdescs
+= count_fdescs(rels
, nrels
);
318 /* XXX: By sorting the relocs and finding duplicate entries
319 * we could reduce the number of necessary stubs and save
321 count
= count_stubs(rels
, nrels
);
325 /* so we need relocation stubs. reserve necessary memory. */
326 /* sh_info gives the section for which we need to add stubs. */
327 s
= sechdrs
[i
].sh_info
;
329 /* each code section should only have one relocation section */
330 WARN_ON(me
->arch
.section
[s
].stub_entries
);
332 /* store number of stubs we need for this section */
333 me
->arch
.section
[s
].stub_entries
+= count
;
336 /* align things a bit */
337 me
->core_size
= ALIGN(me
->core_size
, 16);
338 me
->arch
.got_offset
= me
->core_size
;
339 me
->core_size
+= gots
* sizeof(struct got_entry
);
341 me
->core_size
= ALIGN(me
->core_size
, 16);
342 me
->arch
.fdesc_offset
= me
->core_size
;
343 me
->core_size
+= fdescs
* sizeof(Elf_Fdesc
);
345 me
->arch
.got_max
= gots
;
346 me
->arch
.fdesc_max
= fdescs
;
352 static Elf64_Word
get_got(struct module
*me
, unsigned long value
, long addend
)
355 struct got_entry
*got
;
361 got
= me
->module_core
+ me
->arch
.got_offset
;
362 for (i
= 0; got
[i
].addr
; i
++)
363 if (got
[i
].addr
== value
)
366 BUG_ON(++me
->arch
.got_count
> me
->arch
.got_max
);
370 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i
, i
*sizeof(struct got_entry
),
372 return i
* sizeof(struct got_entry
);
374 #endif /* CONFIG_64BIT */
377 static Elf_Addr
get_fdesc(struct module
*me
, unsigned long value
)
379 Elf_Fdesc
*fdesc
= me
->module_core
+ me
->arch
.fdesc_offset
;
382 printk(KERN_ERR
"%s: zero OPD requested!\n", me
->name
);
386 /* Look for existing fdesc entry. */
387 while (fdesc
->addr
) {
388 if (fdesc
->addr
== value
)
389 return (Elf_Addr
)fdesc
;
393 BUG_ON(++me
->arch
.fdesc_count
> me
->arch
.fdesc_max
);
397 fdesc
->gp
= (Elf_Addr
)me
->module_core
+ me
->arch
.got_offset
;
398 return (Elf_Addr
)fdesc
;
400 #endif /* CONFIG_64BIT */
408 static Elf_Addr
get_stub(struct module
*me
, unsigned long value
, long addend
,
409 enum elf_stub_type stub_type
, Elf_Addr loc0
, unsigned int targetsec
)
411 struct stub_entry
*stub
;
413 /* initialize stub_offset to point in front of the section */
414 if (!me
->arch
.section
[targetsec
].stub_offset
) {
415 loc0
-= (me
->arch
.section
[targetsec
].stub_entries
+ 1) *
416 sizeof(struct stub_entry
);
417 /* get correct alignment for the stubs */
418 loc0
= ALIGN(loc0
, sizeof(struct stub_entry
));
419 me
->arch
.section
[targetsec
].stub_offset
= loc0
;
422 /* get address of stub entry */
423 stub
= (void *) me
->arch
.section
[targetsec
].stub_offset
;
424 me
->arch
.section
[targetsec
].stub_offset
+= sizeof(struct stub_entry
);
426 /* do not write outside available stub area */
427 BUG_ON(0 == me
->arch
.section
[targetsec
].stub_entries
--);
431 /* for 32-bit the stub looks like this:
433 * be,n R'XXX(%sr4,%r1)
435 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
437 stub
->insns
[0] = 0x20200000; /* ldil L'XXX,%r1 */
438 stub
->insns
[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
440 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
441 stub
->insns
[1] |= reassemble_17(rrsel(value
, addend
) / 4);
444 /* for 64-bit we have three kinds of stubs:
445 * for normal function calls:
457 * for direct branches (jumps between different section of the
465 stub
->insns
[0] = 0x537b0000; /* ldd 0(%dp),%dp */
466 stub
->insns
[1] = 0x53610020; /* ldd 10(%dp),%r1 */
467 stub
->insns
[2] = 0xe820d000; /* bve (%r1) */
468 stub
->insns
[3] = 0x537b0030; /* ldd 18(%dp),%dp */
470 stub
->insns
[0] |= reassemble_14(get_got(me
, value
, addend
) & 0x3fff);
473 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
474 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
475 stub
->insns
[2] = 0x50210020; /* ldd 10(%r1),%r1 */
476 stub
->insns
[3] = 0xe820d002; /* bve,n (%r1) */
478 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
479 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
481 case ELF_STUB_DIRECT
:
482 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
483 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
484 stub
->insns
[2] = 0xe820d002; /* bve,n (%r1) */
486 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
487 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
493 return (Elf_Addr
)stub
;
496 int apply_relocate(Elf_Shdr
*sechdrs
,
498 unsigned int symindex
,
502 /* parisc should not need this ... */
503 printk(KERN_ERR
"module %s: RELOCATION unsupported\n",
509 int apply_relocate_add(Elf_Shdr
*sechdrs
,
511 unsigned int symindex
,
516 Elf32_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
523 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
524 //unsigned long dp = (unsigned long)$global$;
525 register unsigned long dp
asm ("r27");
527 DEBUGP("Applying relocate section %u to %u\n", relsec
,
529 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
530 /* This is where to make the change */
531 loc
= (void *)sechdrs
[targetsec
].sh_addr
533 /* This is the start of the target section */
534 loc0
= sechdrs
[targetsec
].sh_addr
;
535 /* This is the symbol it is referring to */
536 sym
= (Elf32_Sym
*)sechdrs
[symindex
].sh_addr
537 + ELF32_R_SYM(rel
[i
].r_info
);
538 if (!sym
->st_value
) {
539 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
540 me
->name
, strtab
+ sym
->st_name
);
543 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
544 dot
= (Elf32_Addr
)loc
& ~0x03;
547 addend
= rel
[i
].r_addend
;
550 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
551 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
552 strtab
+ sym
->st_name
,
553 (uint32_t)loc
, val
, addend
,
567 switch (ELF32_R_TYPE(rel
[i
].r_info
)) {
568 case R_PARISC_PLABEL32
:
569 /* 32-bit function address */
570 /* no function descriptors... */
571 *loc
= fsel(val
, addend
);
574 /* direct 32-bit ref */
575 *loc
= fsel(val
, addend
);
577 case R_PARISC_DIR21L
:
578 /* left 21 bits of effective address */
579 val
= lrsel(val
, addend
);
580 *loc
= mask(*loc
, 21) | reassemble_21(val
);
582 case R_PARISC_DIR14R
:
583 /* right 14 bits of effective address */
584 val
= rrsel(val
, addend
);
585 *loc
= mask(*loc
, 14) | reassemble_14(val
);
587 case R_PARISC_SEGREL32
:
588 /* 32-bit segment relative address */
589 /* See note about special handling of SEGREL32 at
590 * the beginning of this file.
592 *loc
= fsel(val
, addend
);
594 case R_PARISC_DPREL21L
:
595 /* left 21 bit of relative address */
596 val
= lrsel(val
- dp
, addend
);
597 *loc
= mask(*loc
, 21) | reassemble_21(val
);
599 case R_PARISC_DPREL14R
:
600 /* right 14 bit of relative address */
601 val
= rrsel(val
- dp
, addend
);
602 *loc
= mask(*loc
, 14) | reassemble_14(val
);
604 case R_PARISC_PCREL17F
:
605 /* 17-bit PC relative address */
606 /* calculate direct call offset */
608 val
= (val
- dot
- 8)/4;
609 if (!RELOC_REACHABLE(val
, 17)) {
610 /* direct distance too far, create
611 * stub entry instead */
612 val
= get_stub(me
, sym
->st_value
, addend
,
613 ELF_STUB_DIRECT
, loc0
, targetsec
);
614 val
= (val
- dot
- 8)/4;
615 CHECK_RELOC(val
, 17);
617 *loc
= (*loc
& ~0x1f1ffd) | reassemble_17(val
);
619 case R_PARISC_PCREL22F
:
620 /* 22-bit PC relative address; only defined for pa20 */
621 /* calculate direct call offset */
623 val
= (val
- dot
- 8)/4;
624 if (!RELOC_REACHABLE(val
, 22)) {
625 /* direct distance too far, create
626 * stub entry instead */
627 val
= get_stub(me
, sym
->st_value
, addend
,
628 ELF_STUB_DIRECT
, loc0
, targetsec
);
629 val
= (val
- dot
- 8)/4;
630 CHECK_RELOC(val
, 22);
632 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
636 printk(KERN_ERR
"module %s: Unknown relocation: %u\n",
637 me
->name
, ELF32_R_TYPE(rel
[i
].r_info
));
646 int apply_relocate_add(Elf_Shdr
*sechdrs
,
648 unsigned int symindex
,
653 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
661 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
663 DEBUGP("Applying relocate section %u to %u\n", relsec
,
665 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
666 /* This is where to make the change */
667 loc
= (void *)sechdrs
[targetsec
].sh_addr
669 /* This is the start of the target section */
670 loc0
= sechdrs
[targetsec
].sh_addr
;
671 /* This is the symbol it is referring to */
672 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
673 + ELF64_R_SYM(rel
[i
].r_info
);
674 if (!sym
->st_value
) {
675 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
676 me
->name
, strtab
+ sym
->st_name
);
679 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
680 dot
= (Elf64_Addr
)loc
& ~0x03;
681 loc64
= (Elf64_Xword
*)loc
;
684 addend
= rel
[i
].r_addend
;
687 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
688 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
689 strtab
+ sym
->st_name
,
701 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
702 case R_PARISC_LTOFF21L
:
703 /* LT-relative; left 21 bits */
704 val
= get_got(me
, val
, addend
);
705 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
706 strtab
+ sym
->st_name
,
709 *loc
= mask(*loc
, 21) | reassemble_21(val
);
711 case R_PARISC_LTOFF14R
:
712 /* L(ltoff(val+addend)) */
713 /* LT-relative; right 14 bits */
714 val
= get_got(me
, val
, addend
);
716 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
717 strtab
+ sym
->st_name
,
719 *loc
= mask(*loc
, 14) | reassemble_14(val
);
721 case R_PARISC_PCREL22F
:
722 /* PC-relative; 22 bits */
723 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
724 strtab
+ sym
->st_name
,
727 /* can we reach it locally? */
728 if (in_local(me
, (void *)val
)) {
729 /* this is the case where the symbol is local
730 * to the module, but in a different section,
731 * so stub the jump in case it's more than 22
733 val
= (val
- dot
- 8)/4;
734 if (!RELOC_REACHABLE(val
, 22)) {
735 /* direct distance too far, create
736 * stub entry instead */
737 val
= get_stub(me
, sym
->st_value
,
738 addend
, ELF_STUB_DIRECT
,
741 /* Ok, we can reach it directly. */
747 if (strncmp(strtab
+ sym
->st_name
, "$$", 2)
749 val
= get_stub(me
, val
, addend
, ELF_STUB_MILLI
,
752 val
= get_stub(me
, val
, addend
, ELF_STUB_GOT
,
755 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
756 strtab
+ sym
->st_name
, loc
, sym
->st_value
,
758 val
= (val
- dot
- 8)/4;
759 CHECK_RELOC(val
, 22);
760 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
763 /* 64-bit effective address */
764 *loc64
= val
+ addend
;
766 case R_PARISC_SEGREL32
:
767 /* 32-bit segment relative address */
768 /* See note about special handling of SEGREL32 at
769 * the beginning of this file.
771 *loc
= fsel(val
, addend
);
773 case R_PARISC_FPTR64
:
774 /* 64-bit function address */
775 if(in_local(me
, (void *)(val
+ addend
))) {
776 *loc64
= get_fdesc(me
, val
+addend
);
777 DEBUGP("FDESC for %s at %p points to %lx\n",
778 strtab
+ sym
->st_name
, *loc64
,
779 ((Elf_Fdesc
*)*loc64
)->addr
);
781 /* if the symbol is not local to this
782 * module then val+addend is a pointer
783 * to the function descriptor */
784 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
785 strtab
+ sym
->st_name
,
787 *loc64
= val
+ addend
;
792 printk(KERN_ERR
"module %s: Unknown relocation: %Lu\n",
793 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
802 register_unwind_table(struct module
*me
,
803 const Elf_Shdr
*sechdrs
)
805 unsigned char *table
, *end
;
808 if (!me
->arch
.unwind_section
)
811 table
= (unsigned char *)sechdrs
[me
->arch
.unwind_section
].sh_addr
;
812 end
= table
+ sechdrs
[me
->arch
.unwind_section
].sh_size
;
813 gp
= (Elf_Addr
)me
->module_core
+ me
->arch
.got_offset
;
815 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
816 me
->arch
.unwind_section
, table
, end
, gp
);
817 me
->arch
.unwind
= unwind_table_add(me
->name
, 0, gp
, table
, end
);
821 deregister_unwind_table(struct module
*me
)
824 unwind_table_remove(me
->arch
.unwind
);
827 int module_finalize(const Elf_Ehdr
*hdr
,
828 const Elf_Shdr
*sechdrs
,
833 const char *strtab
= NULL
;
834 Elf_Sym
*newptr
, *oldptr
;
835 Elf_Shdr
*symhdr
= NULL
;
840 entry
= (Elf_Fdesc
*)me
->init
;
841 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry
,
842 entry
->gp
, entry
->addr
);
843 addr
= (u32
*)entry
->addr
;
844 printk("INSNS: %x %x %x %x\n",
845 addr
[0], addr
[1], addr
[2], addr
[3]);
846 printk("got entries used %ld, gots max %ld\n"
847 "fdescs used %ld, fdescs max %ld\n",
848 me
->arch
.got_count
, me
->arch
.got_max
,
849 me
->arch
.fdesc_count
, me
->arch
.fdesc_max
);
852 register_unwind_table(me
, sechdrs
);
854 /* haven't filled in me->symtab yet, so have to find it
856 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
857 if(sechdrs
[i
].sh_type
== SHT_SYMTAB
858 && (sechdrs
[i
].sh_type
& SHF_ALLOC
)) {
859 int strindex
= sechdrs
[i
].sh_link
;
861 * The cast is to drop the const from
862 * the sechdrs pointer */
863 symhdr
= (Elf_Shdr
*)&sechdrs
[i
];
864 strtab
= (char *)sechdrs
[strindex
].sh_addr
;
869 DEBUGP("module %s: strtab %p, symhdr %p\n",
870 me
->name
, strtab
, symhdr
);
872 if(me
->arch
.got_count
> MAX_GOTS
) {
873 printk(KERN_ERR
"%s: Global Offset Table overflow (used %ld, allowed %d)\n",
874 me
->name
, me
->arch
.got_count
, MAX_GOTS
);
878 kfree(me
->arch
.section
);
879 me
->arch
.section
= NULL
;
881 /* no symbol table */
885 oldptr
= (void *)symhdr
->sh_addr
;
886 newptr
= oldptr
+ 1; /* we start counting at 1 */
887 nsyms
= symhdr
->sh_size
/ sizeof(Elf_Sym
);
888 DEBUGP("OLD num_symtab %lu\n", nsyms
);
890 for (i
= 1; i
< nsyms
; i
++) {
891 oldptr
++; /* note, count starts at 1 so preincrement */
892 if(strncmp(strtab
+ oldptr
->st_name
,
902 nsyms
= newptr
- (Elf_Sym
*)symhdr
->sh_addr
;
903 DEBUGP("NEW num_symtab %lu\n", nsyms
);
904 symhdr
->sh_size
= nsyms
* sizeof(Elf_Sym
);
905 return module_bug_finalize(hdr
, sechdrs
, me
);
908 void module_arch_cleanup(struct module
*mod
)
910 deregister_unwind_table(mod
);
911 module_bug_cleanup(mod
);