1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl
[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
129 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
130 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
131 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
132 static irqreturn_t
e1000_intr(int irq
, void *data
);
133 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
143 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
144 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
146 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
147 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
148 static void e1000_tx_timeout(struct net_device
*dev
);
149 static void e1000_reset_task(struct work_struct
*work
);
150 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
152 struct sk_buff
*skb
);
154 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
155 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
156 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
157 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
160 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
161 static int e1000_resume(struct pci_dev
*pdev
);
163 static void e1000_shutdown(struct pci_dev
*pdev
);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device
*netdev
);
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
172 module_param(copybreak
, uint
, 0644);
173 MODULE_PARM_DESC(copybreak
,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
177 pci_channel_state_t state
);
178 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
179 static void e1000_io_resume(struct pci_dev
*pdev
);
181 static struct pci_error_handlers e1000_err_handler
= {
182 .error_detected
= e1000_io_error_detected
,
183 .slot_reset
= e1000_io_slot_reset
,
184 .resume
= e1000_io_resume
,
187 static struct pci_driver e1000_driver
= {
188 .name
= e1000_driver_name
,
189 .id_table
= e1000_pci_tbl
,
190 .probe
= e1000_probe
,
191 .remove
= __devexit_p(e1000_remove
),
193 /* Power Managment Hooks */
194 .suspend
= e1000_suspend
,
195 .resume
= e1000_resume
,
197 .shutdown
= e1000_shutdown
,
198 .err_handler
= &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION
);
206 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
207 module_param(debug
, int, 0);
208 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init
e1000_init_module(void)
220 printk(KERN_INFO
"%s - version %s\n",
221 e1000_driver_string
, e1000_driver_version
);
223 printk(KERN_INFO
"%s\n", e1000_copyright
);
225 ret
= pci_register_driver(&e1000_driver
);
226 if (copybreak
!= COPYBREAK_DEFAULT
) {
228 printk(KERN_INFO
"e1000: copybreak disabled\n");
230 printk(KERN_INFO
"e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak
);
236 module_init(e1000_init_module
);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
245 static void __exit
e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver
);
250 module_exit(e1000_exit_module
);
252 static int e1000_request_irq(struct e1000_adapter
*adapter
)
254 struct e1000_hw
*hw
= &adapter
->hw
;
255 struct net_device
*netdev
= adapter
->netdev
;
256 irq_handler_t handler
= e1000_intr
;
257 int irq_flags
= IRQF_SHARED
;
260 if (hw
->mac_type
>= e1000_82571
) {
261 adapter
->have_msi
= !pci_enable_msi(adapter
->pdev
);
262 if (adapter
->have_msi
) {
263 handler
= e1000_intr_msi
;
268 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
271 if (adapter
->have_msi
)
272 pci_disable_msi(adapter
->pdev
);
274 "Unable to allocate interrupt Error: %d\n", err
);
280 static void e1000_free_irq(struct e1000_adapter
*adapter
)
282 struct net_device
*netdev
= adapter
->netdev
;
284 free_irq(adapter
->pdev
->irq
, netdev
);
286 if (adapter
->have_msi
)
287 pci_disable_msi(adapter
->pdev
);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
297 struct e1000_hw
*hw
= &adapter
->hw
;
301 synchronize_irq(adapter
->pdev
->irq
);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
311 struct e1000_hw
*hw
= &adapter
->hw
;
313 ew32(IMS
, IMS_ENABLE_MASK
);
317 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
319 struct e1000_hw
*hw
= &adapter
->hw
;
320 struct net_device
*netdev
= adapter
->netdev
;
321 u16 vid
= hw
->mng_cookie
.vlan_id
;
322 u16 old_vid
= adapter
->mng_vlan_id
;
323 if (adapter
->vlgrp
) {
324 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
325 if (hw
->mng_cookie
.status
&
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
327 e1000_vlan_rx_add_vid(netdev
, vid
);
328 adapter
->mng_vlan_id
= vid
;
330 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
332 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
334 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
335 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
337 adapter
->mng_vlan_id
= vid
;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
356 struct e1000_hw
*hw
= &adapter
->hw
;
358 /* Let firmware taken over control of h/w */
359 switch (hw
->mac_type
) {
362 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
366 case e1000_80003es2lan
:
368 ctrl_ext
= er32(CTRL_EXT
);
369 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
391 struct e1000_hw
*hw
= &adapter
->hw
;
393 /* Let firmware know the driver has taken over */
394 switch (hw
->mac_type
) {
397 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
401 case e1000_80003es2lan
:
403 ctrl_ext
= er32(CTRL_EXT
);
404 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
411 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
413 struct e1000_hw
*hw
= &adapter
->hw
;
415 if (adapter
->en_mng_pt
) {
416 u32 manc
= er32(MANC
);
418 /* disable hardware interception of ARP */
419 manc
&= ~(E1000_MANC_ARP_EN
);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw
->has_manc2h
) {
425 u32 manc2h
= er32(MANC2H
);
427 manc
|= E1000_MANC_EN_MNG2HOST
;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h
|= E1000_MNG2HOST_PORT_623
;
431 manc2h
|= E1000_MNG2HOST_PORT_664
;
432 ew32(MANC2H
, manc2h
);
439 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
441 struct e1000_hw
*hw
= &adapter
->hw
;
443 if (adapter
->en_mng_pt
) {
444 u32 manc
= er32(MANC
);
446 /* re-enable hardware interception of ARP */
447 manc
|= E1000_MANC_ARP_EN
;
450 manc
&= ~E1000_MANC_EN_MNG2HOST
;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter
*adapter
)
465 struct net_device
*netdev
= adapter
->netdev
;
468 e1000_set_rx_mode(netdev
);
470 e1000_restore_vlan(adapter
);
471 e1000_init_manageability(adapter
);
473 e1000_configure_tx(adapter
);
474 e1000_setup_rctl(adapter
);
475 e1000_configure_rx(adapter
);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
480 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
481 adapter
->alloc_rx_buf(adapter
, ring
,
482 E1000_DESC_UNUSED(ring
));
485 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
488 int e1000_up(struct e1000_adapter
*adapter
)
490 struct e1000_hw
*hw
= &adapter
->hw
;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter
);
495 clear_bit(__E1000_DOWN
, &adapter
->flags
);
497 napi_enable(&adapter
->napi
);
499 e1000_irq_enable(adapter
);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS
, E1000_ICS_LSC
);
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
518 struct e1000_hw
*hw
= &adapter
->hw
;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw
->media_type
== e1000_media_type_copper
) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
526 mii_reg
&= ~MII_CR_POWER_DOWN
;
527 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
531 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
533 struct e1000_hw
*hw
= &adapter
->hw
;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
539 * (c) SoL/IDER session is active */
540 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
541 hw
->media_type
== e1000_media_type_copper
) {
544 switch (hw
->mac_type
) {
547 case e1000_82545_rev_3
:
549 case e1000_82546_rev_3
:
551 case e1000_82541_rev_2
:
553 case e1000_82547_rev_2
:
554 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
560 case e1000_80003es2lan
:
562 if (e1000_check_mng_mode(hw
) ||
563 e1000_check_phy_reset_block(hw
))
569 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
570 mii_reg
|= MII_CR_POWER_DOWN
;
571 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
578 void e1000_down(struct e1000_adapter
*adapter
)
580 struct e1000_hw
*hw
= &adapter
->hw
;
581 struct net_device
*netdev
= adapter
->netdev
;
584 /* signal that we're down so the interrupt handler does not
585 * reschedule our watchdog timer */
586 set_bit(__E1000_DOWN
, &adapter
->flags
);
588 /* disable receives in the hardware */
590 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
591 /* flush and sleep below */
593 /* can be netif_tx_disable when NETIF_F_LLTX is removed */
594 netif_stop_queue(netdev
);
596 /* disable transmits in the hardware */
598 tctl
&= ~E1000_TCTL_EN
;
600 /* flush both disables and wait for them to finish */
604 napi_disable(&adapter
->napi
);
606 e1000_irq_disable(adapter
);
608 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
609 del_timer_sync(&adapter
->watchdog_timer
);
610 del_timer_sync(&adapter
->phy_info_timer
);
612 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
613 adapter
->link_speed
= 0;
614 adapter
->link_duplex
= 0;
615 netif_carrier_off(netdev
);
617 e1000_reset(adapter
);
618 e1000_clean_all_tx_rings(adapter
);
619 e1000_clean_all_rx_rings(adapter
);
622 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
624 WARN_ON(in_interrupt());
625 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
629 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
632 void e1000_reset(struct e1000_adapter
*adapter
)
634 struct e1000_hw
*hw
= &adapter
->hw
;
635 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
636 u16 fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
637 bool legacy_pba_adjust
= false;
639 /* Repartition Pba for greater than 9k mtu
640 * To take effect CTRL.RST is required.
643 switch (hw
->mac_type
) {
644 case e1000_82542_rev2_0
:
645 case e1000_82542_rev2_1
:
650 case e1000_82541_rev_2
:
651 legacy_pba_adjust
= true;
655 case e1000_82545_rev_3
:
657 case e1000_82546_rev_3
:
661 case e1000_82547_rev_2
:
662 legacy_pba_adjust
= true;
667 case e1000_80003es2lan
:
675 case e1000_undefined
:
680 if (legacy_pba_adjust
) {
681 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
682 pba
-= 8; /* allocate more FIFO for Tx */
684 if (hw
->mac_type
== e1000_82547
) {
685 adapter
->tx_fifo_head
= 0;
686 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
687 adapter
->tx_fifo_size
=
688 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
689 atomic_set(&adapter
->tx_fifo_stall
, 0);
691 } else if (hw
->max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
692 /* adjust PBA for jumbo frames */
695 /* To maintain wire speed transmits, the Tx FIFO should be
696 * large enough to accomodate two full transmit packets,
697 * rounded up to the next 1KB and expressed in KB. Likewise,
698 * the Rx FIFO should be large enough to accomodate at least
699 * one full receive packet and is similarly rounded up and
700 * expressed in KB. */
702 /* upper 16 bits has Tx packet buffer allocation size in KB */
703 tx_space
= pba
>> 16;
704 /* lower 16 bits has Rx packet buffer allocation size in KB */
706 /* don't include ethernet FCS because hardware appends/strips */
707 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
709 min_tx_space
= min_rx_space
;
711 min_tx_space
= ALIGN(min_tx_space
, 1024);
713 min_rx_space
= ALIGN(min_rx_space
, 1024);
716 /* If current Tx allocation is less than the min Tx FIFO size,
717 * and the min Tx FIFO size is less than the current Rx FIFO
718 * allocation, take space away from current Rx allocation */
719 if (tx_space
< min_tx_space
&&
720 ((min_tx_space
- tx_space
) < pba
)) {
721 pba
= pba
- (min_tx_space
- tx_space
);
723 /* PCI/PCIx hardware has PBA alignment constraints */
724 switch (hw
->mac_type
) {
725 case e1000_82545
... e1000_82546_rev_3
:
726 pba
&= ~(E1000_PBA_8K
- 1);
732 /* if short on rx space, rx wins and must trump tx
733 * adjustment or use Early Receive if available */
734 if (pba
< min_rx_space
) {
735 switch (hw
->mac_type
) {
737 /* ERT enabled in e1000_configure_rx */
749 /* flow control settings */
750 /* Set the FC high water mark to 90% of the FIFO size.
751 * Required to clear last 3 LSB */
752 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
753 /* We can't use 90% on small FIFOs because the remainder
754 * would be less than 1 full frame. In this case, we size
755 * it to allow at least a full frame above the high water
757 if (pba
< E1000_PBA_16K
)
758 fc_high_water_mark
= (pba
* 1024) - 1600;
760 hw
->fc_high_water
= fc_high_water_mark
;
761 hw
->fc_low_water
= fc_high_water_mark
- 8;
762 if (hw
->mac_type
== e1000_80003es2lan
)
763 hw
->fc_pause_time
= 0xFFFF;
765 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
767 hw
->fc
= hw
->original_fc
;
769 /* Allow time for pending master requests to run */
771 if (hw
->mac_type
>= e1000_82544
)
774 if (e1000_init_hw(hw
))
775 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
776 e1000_update_mng_vlan(adapter
);
778 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
779 if (hw
->mac_type
>= e1000_82544
&&
780 hw
->mac_type
<= e1000_82547_rev_2
&&
782 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
783 u32 ctrl
= er32(CTRL
);
784 /* clear phy power management bit if we are in gig only mode,
785 * which if enabled will attempt negotiation to 100Mb, which
786 * can cause a loss of link at power off or driver unload */
787 ctrl
&= ~E1000_CTRL_SWDPIN3
;
791 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
792 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
794 e1000_reset_adaptive(hw
);
795 e1000_phy_get_info(hw
, &adapter
->phy_info
);
797 if (!adapter
->smart_power_down
&&
798 (hw
->mac_type
== e1000_82571
||
799 hw
->mac_type
== e1000_82572
)) {
801 /* speed up time to link by disabling smart power down, ignore
802 * the return value of this function because there is nothing
803 * different we would do if it failed */
804 e1000_read_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
806 phy_data
&= ~IGP02E1000_PM_SPD
;
807 e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
811 e1000_release_manageability(adapter
);
815 * Dump the eeprom for users having checksum issues
817 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
819 struct net_device
*netdev
= adapter
->netdev
;
820 struct ethtool_eeprom eeprom
;
821 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
824 u16 csum_old
, csum_new
= 0;
826 eeprom
.len
= ops
->get_eeprom_len(netdev
);
829 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
831 printk(KERN_ERR
"Unable to allocate memory to dump EEPROM"
836 ops
->get_eeprom(netdev
, &eeprom
, data
);
838 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
839 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
840 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
841 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
842 csum_new
= EEPROM_SUM
- csum_new
;
844 printk(KERN_ERR
"/*********************/\n");
845 printk(KERN_ERR
"Current EEPROM Checksum : 0x%04x\n", csum_old
);
846 printk(KERN_ERR
"Calculated : 0x%04x\n", csum_new
);
848 printk(KERN_ERR
"Offset Values\n");
849 printk(KERN_ERR
"======== ======\n");
850 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
852 printk(KERN_ERR
"Include this output when contacting your support "
854 printk(KERN_ERR
"This is not a software error! Something bad "
855 "happened to your hardware or\n");
856 printk(KERN_ERR
"EEPROM image. Ignoring this "
857 "problem could result in further problems,\n");
858 printk(KERN_ERR
"possibly loss of data, corruption or system hangs!\n");
859 printk(KERN_ERR
"The MAC Address will be reset to 00:00:00:00:00:00, "
860 "which is invalid\n");
861 printk(KERN_ERR
"and requires you to set the proper MAC "
862 "address manually before continuing\n");
863 printk(KERN_ERR
"to enable this network device.\n");
864 printk(KERN_ERR
"Please inspect the EEPROM dump and report the issue "
865 "to your hardware vendor\n");
866 printk(KERN_ERR
"or Intel Customer Support.\n");
867 printk(KERN_ERR
"/*********************/\n");
873 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
874 * @pdev: PCI device information struct
876 * Return true if an adapter needs ioport resources
878 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
880 switch (pdev
->device
) {
881 case E1000_DEV_ID_82540EM
:
882 case E1000_DEV_ID_82540EM_LOM
:
883 case E1000_DEV_ID_82540EP
:
884 case E1000_DEV_ID_82540EP_LOM
:
885 case E1000_DEV_ID_82540EP_LP
:
886 case E1000_DEV_ID_82541EI
:
887 case E1000_DEV_ID_82541EI_MOBILE
:
888 case E1000_DEV_ID_82541ER
:
889 case E1000_DEV_ID_82541ER_LOM
:
890 case E1000_DEV_ID_82541GI
:
891 case E1000_DEV_ID_82541GI_LF
:
892 case E1000_DEV_ID_82541GI_MOBILE
:
893 case E1000_DEV_ID_82544EI_COPPER
:
894 case E1000_DEV_ID_82544EI_FIBER
:
895 case E1000_DEV_ID_82544GC_COPPER
:
896 case E1000_DEV_ID_82544GC_LOM
:
897 case E1000_DEV_ID_82545EM_COPPER
:
898 case E1000_DEV_ID_82545EM_FIBER
:
899 case E1000_DEV_ID_82546EB_COPPER
:
900 case E1000_DEV_ID_82546EB_FIBER
:
901 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
908 static const struct net_device_ops e1000_netdev_ops
= {
909 .ndo_open
= e1000_open
,
910 .ndo_stop
= e1000_close
,
911 .ndo_start_xmit
= e1000_xmit_frame
,
912 .ndo_get_stats
= e1000_get_stats
,
913 .ndo_set_rx_mode
= e1000_set_rx_mode
,
914 .ndo_set_mac_address
= e1000_set_mac
,
915 .ndo_tx_timeout
= e1000_tx_timeout
,
916 .ndo_change_mtu
= e1000_change_mtu
,
917 .ndo_do_ioctl
= e1000_ioctl
,
918 .ndo_validate_addr
= eth_validate_addr
,
920 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
921 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
922 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
923 #ifdef CONFIG_NET_POLL_CONTROLLER
924 .ndo_poll_controller
= e1000_netpoll
,
929 * e1000_probe - Device Initialization Routine
930 * @pdev: PCI device information struct
931 * @ent: entry in e1000_pci_tbl
933 * Returns 0 on success, negative on failure
935 * e1000_probe initializes an adapter identified by a pci_dev structure.
936 * The OS initialization, configuring of the adapter private structure,
937 * and a hardware reset occur.
939 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
940 const struct pci_device_id
*ent
)
942 struct net_device
*netdev
;
943 struct e1000_adapter
*adapter
;
946 static int cards_found
= 0;
947 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
948 int i
, err
, pci_using_dac
;
950 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
951 int bars
, need_ioport
;
953 /* do not allocate ioport bars when not needed */
954 need_ioport
= e1000_is_need_ioport(pdev
);
956 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
957 err
= pci_enable_device(pdev
);
959 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
960 err
= pci_enable_device_mem(pdev
);
965 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
966 !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
969 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
971 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
973 E1000_ERR("No usable DMA configuration, "
981 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
985 pci_set_master(pdev
);
988 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
990 goto err_alloc_etherdev
;
992 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
994 pci_set_drvdata(pdev
, netdev
);
995 adapter
= netdev_priv(netdev
);
996 adapter
->netdev
= netdev
;
997 adapter
->pdev
= pdev
;
998 adapter
->msg_enable
= (1 << debug
) - 1;
999 adapter
->bars
= bars
;
1000 adapter
->need_ioport
= need_ioport
;
1006 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
1010 if (adapter
->need_ioport
) {
1011 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
1012 if (pci_resource_len(pdev
, i
) == 0)
1014 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1015 hw
->io_base
= pci_resource_start(pdev
, i
);
1021 netdev
->netdev_ops
= &e1000_netdev_ops
;
1022 e1000_set_ethtool_ops(netdev
);
1023 netdev
->watchdog_timeo
= 5 * HZ
;
1024 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1026 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1028 adapter
->bd_number
= cards_found
;
1030 /* setup the private structure */
1032 err
= e1000_sw_init(adapter
);
1037 /* Flash BAR mapping must happen after e1000_sw_init
1038 * because it depends on mac_type */
1039 if ((hw
->mac_type
== e1000_ich8lan
) &&
1040 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
1041 hw
->flash_address
= pci_ioremap_bar(pdev
, 1);
1042 if (!hw
->flash_address
)
1046 if (e1000_check_phy_reset_block(hw
))
1047 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
1049 if (hw
->mac_type
>= e1000_82543
) {
1050 netdev
->features
= NETIF_F_SG
|
1052 NETIF_F_HW_VLAN_TX
|
1053 NETIF_F_HW_VLAN_RX
|
1054 NETIF_F_HW_VLAN_FILTER
;
1055 if (hw
->mac_type
== e1000_ich8lan
)
1056 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
1059 if ((hw
->mac_type
>= e1000_82544
) &&
1060 (hw
->mac_type
!= e1000_82547
))
1061 netdev
->features
|= NETIF_F_TSO
;
1063 if (hw
->mac_type
> e1000_82547_rev_2
)
1064 netdev
->features
|= NETIF_F_TSO6
;
1066 netdev
->features
|= NETIF_F_HIGHDMA
;
1068 netdev
->vlan_features
|= NETIF_F_TSO
;
1069 netdev
->vlan_features
|= NETIF_F_TSO6
;
1070 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1071 netdev
->vlan_features
|= NETIF_F_SG
;
1073 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw
)) {
1077 E1000_ERR("EEPROM initialization failed\n");
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state */
1086 /* make sure the EEPROM is good */
1087 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1088 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1089 e1000_dump_eeprom(adapter
);
1091 * set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1098 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw
))
1102 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1104 /* don't block initalization here due to bad MAC address */
1105 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1106 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1108 if (!is_valid_ether_addr(netdev
->perm_addr
))
1109 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1111 e1000_get_bus_info(hw
);
1113 init_timer(&adapter
->tx_fifo_stall_timer
);
1114 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1115 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1117 init_timer(&adapter
->watchdog_timer
);
1118 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1119 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1121 init_timer(&adapter
->phy_info_timer
);
1122 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1123 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1125 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1127 e1000_check_options(adapter
);
1129 /* Initial Wake on LAN setting
1130 * If APM wake is enabled in the EEPROM,
1131 * enable the ACPI Magic Packet filter
1134 switch (hw
->mac_type
) {
1135 case e1000_82542_rev2_0
:
1136 case e1000_82542_rev2_1
:
1140 e1000_read_eeprom(hw
,
1141 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1142 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1145 e1000_read_eeprom(hw
,
1146 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1147 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1150 case e1000_82546_rev_3
:
1152 case e1000_80003es2lan
:
1153 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1154 e1000_read_eeprom(hw
,
1155 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1160 e1000_read_eeprom(hw
,
1161 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1164 if (eeprom_data
& eeprom_apme_mask
)
1165 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1167 /* now that we have the eeprom settings, apply the special cases
1168 * where the eeprom may be wrong or the board simply won't support
1169 * wake on lan on a particular port */
1170 switch (pdev
->device
) {
1171 case E1000_DEV_ID_82546GB_PCIE
:
1172 adapter
->eeprom_wol
= 0;
1174 case E1000_DEV_ID_82546EB_FIBER
:
1175 case E1000_DEV_ID_82546GB_FIBER
:
1176 case E1000_DEV_ID_82571EB_FIBER
:
1177 /* Wake events only supported on port A for dual fiber
1178 * regardless of eeprom setting */
1179 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1180 adapter
->eeprom_wol
= 0;
1182 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1183 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1184 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1185 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1186 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1187 /* if quad port adapter, disable WoL on all but port A */
1188 if (global_quad_port_a
!= 0)
1189 adapter
->eeprom_wol
= 0;
1191 adapter
->quad_port_a
= 1;
1192 /* Reset for multiple quad port adapters */
1193 if (++global_quad_port_a
== 4)
1194 global_quad_port_a
= 0;
1198 /* initialize the wol settings based on the eeprom settings */
1199 adapter
->wol
= adapter
->eeprom_wol
;
1200 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1202 /* print bus type/speed/width info */
1203 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1204 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1205 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1206 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1207 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1208 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1209 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1210 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1211 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1212 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1213 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1216 printk("%pM\n", netdev
->dev_addr
);
1218 if (hw
->bus_type
== e1000_bus_type_pci_express
) {
1219 DPRINTK(PROBE
, WARNING
, "This device (id %04x:%04x) will no "
1220 "longer be supported by this driver in the future.\n",
1221 pdev
->vendor
, pdev
->device
);
1222 DPRINTK(PROBE
, WARNING
, "please use the \"e1000e\" "
1223 "driver instead.\n");
1226 /* reset the hardware with the new settings */
1227 e1000_reset(adapter
);
1229 /* If the controller is 82573 and f/w is AMT, do not set
1230 * DRV_LOAD until the interface is up. For all other cases,
1231 * let the f/w know that the h/w is now under the control
1233 if (hw
->mac_type
!= e1000_82573
||
1234 !e1000_check_mng_mode(hw
))
1235 e1000_get_hw_control(adapter
);
1237 /* tell the stack to leave us alone until e1000_open() is called */
1238 netif_carrier_off(netdev
);
1239 netif_stop_queue(netdev
);
1241 strcpy(netdev
->name
, "eth%d");
1242 err
= register_netdev(netdev
);
1246 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1252 e1000_release_hw_control(adapter
);
1254 if (!e1000_check_phy_reset_block(hw
))
1255 e1000_phy_hw_reset(hw
);
1257 if (hw
->flash_address
)
1258 iounmap(hw
->flash_address
);
1260 kfree(adapter
->tx_ring
);
1261 kfree(adapter
->rx_ring
);
1263 iounmap(hw
->hw_addr
);
1265 free_netdev(netdev
);
1267 pci_release_selected_regions(pdev
, bars
);
1270 pci_disable_device(pdev
);
1275 * e1000_remove - Device Removal Routine
1276 * @pdev: PCI device information struct
1278 * e1000_remove is called by the PCI subsystem to alert the driver
1279 * that it should release a PCI device. The could be caused by a
1280 * Hot-Plug event, or because the driver is going to be removed from
1284 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1286 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1287 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1288 struct e1000_hw
*hw
= &adapter
->hw
;
1290 cancel_work_sync(&adapter
->reset_task
);
1292 e1000_release_manageability(adapter
);
1294 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1295 * would have already happened in close and is redundant. */
1296 e1000_release_hw_control(adapter
);
1298 unregister_netdev(netdev
);
1300 if (!e1000_check_phy_reset_block(hw
))
1301 e1000_phy_hw_reset(hw
);
1303 kfree(adapter
->tx_ring
);
1304 kfree(adapter
->rx_ring
);
1306 iounmap(hw
->hw_addr
);
1307 if (hw
->flash_address
)
1308 iounmap(hw
->flash_address
);
1309 pci_release_selected_regions(pdev
, adapter
->bars
);
1311 free_netdev(netdev
);
1313 pci_disable_device(pdev
);
1317 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1318 * @adapter: board private structure to initialize
1320 * e1000_sw_init initializes the Adapter private data structure.
1321 * Fields are initialized based on PCI device information and
1322 * OS network device settings (MTU size).
1325 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1327 struct e1000_hw
*hw
= &adapter
->hw
;
1328 struct net_device
*netdev
= adapter
->netdev
;
1329 struct pci_dev
*pdev
= adapter
->pdev
;
1331 /* PCI config space info */
1333 hw
->vendor_id
= pdev
->vendor
;
1334 hw
->device_id
= pdev
->device
;
1335 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1336 hw
->subsystem_id
= pdev
->subsystem_device
;
1337 hw
->revision_id
= pdev
->revision
;
1339 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1341 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1342 hw
->max_frame_size
= netdev
->mtu
+
1343 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1344 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1346 /* identify the MAC */
1348 if (e1000_set_mac_type(hw
)) {
1349 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1353 switch (hw
->mac_type
) {
1358 case e1000_82541_rev_2
:
1359 case e1000_82547_rev_2
:
1360 hw
->phy_init_script
= 1;
1364 e1000_set_media_type(hw
);
1366 hw
->wait_autoneg_complete
= false;
1367 hw
->tbi_compatibility_en
= true;
1368 hw
->adaptive_ifs
= true;
1370 /* Copper options */
1372 if (hw
->media_type
== e1000_media_type_copper
) {
1373 hw
->mdix
= AUTO_ALL_MODES
;
1374 hw
->disable_polarity_correction
= false;
1375 hw
->master_slave
= E1000_MASTER_SLAVE
;
1378 adapter
->num_tx_queues
= 1;
1379 adapter
->num_rx_queues
= 1;
1381 if (e1000_alloc_queues(adapter
)) {
1382 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1386 /* Explicitly disable IRQ since the NIC can be in any state. */
1387 e1000_irq_disable(adapter
);
1389 spin_lock_init(&adapter
->stats_lock
);
1391 set_bit(__E1000_DOWN
, &adapter
->flags
);
1397 * e1000_alloc_queues - Allocate memory for all rings
1398 * @adapter: board private structure to initialize
1400 * We allocate one ring per queue at run-time since we don't know the
1401 * number of queues at compile-time.
1404 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1406 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1407 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1408 if (!adapter
->tx_ring
)
1411 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1412 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1413 if (!adapter
->rx_ring
) {
1414 kfree(adapter
->tx_ring
);
1418 return E1000_SUCCESS
;
1422 * e1000_open - Called when a network interface is made active
1423 * @netdev: network interface device structure
1425 * Returns 0 on success, negative value on failure
1427 * The open entry point is called when a network interface is made
1428 * active by the system (IFF_UP). At this point all resources needed
1429 * for transmit and receive operations are allocated, the interrupt
1430 * handler is registered with the OS, the watchdog timer is started,
1431 * and the stack is notified that the interface is ready.
1434 static int e1000_open(struct net_device
*netdev
)
1436 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1437 struct e1000_hw
*hw
= &adapter
->hw
;
1440 /* disallow open during test */
1441 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1444 /* allocate transmit descriptors */
1445 err
= e1000_setup_all_tx_resources(adapter
);
1449 /* allocate receive descriptors */
1450 err
= e1000_setup_all_rx_resources(adapter
);
1454 e1000_power_up_phy(adapter
);
1456 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1457 if ((hw
->mng_cookie
.status
&
1458 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1459 e1000_update_mng_vlan(adapter
);
1462 /* If AMT is enabled, let the firmware know that the network
1463 * interface is now open */
1464 if (hw
->mac_type
== e1000_82573
&&
1465 e1000_check_mng_mode(hw
))
1466 e1000_get_hw_control(adapter
);
1468 /* before we allocate an interrupt, we must be ready to handle it.
1469 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1470 * as soon as we call pci_request_irq, so we have to setup our
1471 * clean_rx handler before we do so. */
1472 e1000_configure(adapter
);
1474 err
= e1000_request_irq(adapter
);
1478 /* From here on the code is the same as e1000_up() */
1479 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1481 napi_enable(&adapter
->napi
);
1483 e1000_irq_enable(adapter
);
1485 netif_start_queue(netdev
);
1487 /* fire a link status change interrupt to start the watchdog */
1488 ew32(ICS
, E1000_ICS_LSC
);
1490 return E1000_SUCCESS
;
1493 e1000_release_hw_control(adapter
);
1494 e1000_power_down_phy(adapter
);
1495 e1000_free_all_rx_resources(adapter
);
1497 e1000_free_all_tx_resources(adapter
);
1499 e1000_reset(adapter
);
1505 * e1000_close - Disables a network interface
1506 * @netdev: network interface device structure
1508 * Returns 0, this is not allowed to fail
1510 * The close entry point is called when an interface is de-activated
1511 * by the OS. The hardware is still under the drivers control, but
1512 * needs to be disabled. A global MAC reset is issued to stop the
1513 * hardware, and all transmit and receive resources are freed.
1516 static int e1000_close(struct net_device
*netdev
)
1518 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1519 struct e1000_hw
*hw
= &adapter
->hw
;
1521 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1522 e1000_down(adapter
);
1523 e1000_power_down_phy(adapter
);
1524 e1000_free_irq(adapter
);
1526 e1000_free_all_tx_resources(adapter
);
1527 e1000_free_all_rx_resources(adapter
);
1529 /* kill manageability vlan ID if supported, but not if a vlan with
1530 * the same ID is registered on the host OS (let 8021q kill it) */
1531 if ((hw
->mng_cookie
.status
&
1532 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1534 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1535 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1538 /* If AMT is enabled, let the firmware know that the network
1539 * interface is now closed */
1540 if (hw
->mac_type
== e1000_82573
&&
1541 e1000_check_mng_mode(hw
))
1542 e1000_release_hw_control(adapter
);
1548 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1549 * @adapter: address of board private structure
1550 * @start: address of beginning of memory
1551 * @len: length of memory
1553 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1556 struct e1000_hw
*hw
= &adapter
->hw
;
1557 unsigned long begin
= (unsigned long)start
;
1558 unsigned long end
= begin
+ len
;
1560 /* First rev 82545 and 82546 need to not allow any memory
1561 * write location to cross 64k boundary due to errata 23 */
1562 if (hw
->mac_type
== e1000_82545
||
1563 hw
->mac_type
== e1000_82546
) {
1564 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1571 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1572 * @adapter: board private structure
1573 * @txdr: tx descriptor ring (for a specific queue) to setup
1575 * Return 0 on success, negative on failure
1578 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1579 struct e1000_tx_ring
*txdr
)
1581 struct pci_dev
*pdev
= adapter
->pdev
;
1584 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1585 txdr
->buffer_info
= vmalloc(size
);
1586 if (!txdr
->buffer_info
) {
1588 "Unable to allocate memory for the transmit descriptor ring\n");
1591 memset(txdr
->buffer_info
, 0, size
);
1593 /* round up to nearest 4K */
1595 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1596 txdr
->size
= ALIGN(txdr
->size
, 4096);
1598 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1601 vfree(txdr
->buffer_info
);
1603 "Unable to allocate memory for the transmit descriptor ring\n");
1607 /* Fix for errata 23, can't cross 64kB boundary */
1608 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1609 void *olddesc
= txdr
->desc
;
1610 dma_addr_t olddma
= txdr
->dma
;
1611 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1612 "at %p\n", txdr
->size
, txdr
->desc
);
1613 /* Try again, without freeing the previous */
1614 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1615 /* Failed allocation, critical failure */
1617 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1618 goto setup_tx_desc_die
;
1621 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1623 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1625 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1627 "Unable to allocate aligned memory "
1628 "for the transmit descriptor ring\n");
1629 vfree(txdr
->buffer_info
);
1632 /* Free old allocation, new allocation was successful */
1633 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1636 memset(txdr
->desc
, 0, txdr
->size
);
1638 txdr
->next_to_use
= 0;
1639 txdr
->next_to_clean
= 0;
1645 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1646 * (Descriptors) for all queues
1647 * @adapter: board private structure
1649 * Return 0 on success, negative on failure
1652 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1656 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1657 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1660 "Allocation for Tx Queue %u failed\n", i
);
1661 for (i
-- ; i
>= 0; i
--)
1662 e1000_free_tx_resources(adapter
,
1663 &adapter
->tx_ring
[i
]);
1672 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1673 * @adapter: board private structure
1675 * Configure the Tx unit of the MAC after a reset.
1678 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1681 struct e1000_hw
*hw
= &adapter
->hw
;
1682 u32 tdlen
, tctl
, tipg
, tarc
;
1685 /* Setup the HW Tx Head and Tail descriptor pointers */
1687 switch (adapter
->num_tx_queues
) {
1690 tdba
= adapter
->tx_ring
[0].dma
;
1691 tdlen
= adapter
->tx_ring
[0].count
*
1692 sizeof(struct e1000_tx_desc
);
1694 ew32(TDBAH
, (tdba
>> 32));
1695 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1698 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1699 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1703 /* Set the default values for the Tx Inter Packet Gap timer */
1704 if (hw
->mac_type
<= e1000_82547_rev_2
&&
1705 (hw
->media_type
== e1000_media_type_fiber
||
1706 hw
->media_type
== e1000_media_type_internal_serdes
))
1707 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1709 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1711 switch (hw
->mac_type
) {
1712 case e1000_82542_rev2_0
:
1713 case e1000_82542_rev2_1
:
1714 tipg
= DEFAULT_82542_TIPG_IPGT
;
1715 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1716 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1718 case e1000_80003es2lan
:
1719 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1720 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1723 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1724 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1727 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1728 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1731 /* Set the Tx Interrupt Delay register */
1733 ew32(TIDV
, adapter
->tx_int_delay
);
1734 if (hw
->mac_type
>= e1000_82540
)
1735 ew32(TADV
, adapter
->tx_abs_int_delay
);
1737 /* Program the Transmit Control Register */
1740 tctl
&= ~E1000_TCTL_CT
;
1741 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1742 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1744 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1746 /* set the speed mode bit, we'll clear it if we're not at
1747 * gigabit link later */
1750 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1759 e1000_config_collision_dist(hw
);
1761 /* Setup Transmit Descriptor Settings for eop descriptor */
1762 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1764 /* only set IDE if we are delaying interrupts using the timers */
1765 if (adapter
->tx_int_delay
)
1766 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1768 if (hw
->mac_type
< e1000_82543
)
1769 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1771 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1773 /* Cache if we're 82544 running in PCI-X because we'll
1774 * need this to apply a workaround later in the send path. */
1775 if (hw
->mac_type
== e1000_82544
&&
1776 hw
->bus_type
== e1000_bus_type_pcix
)
1777 adapter
->pcix_82544
= 1;
1784 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1785 * @adapter: board private structure
1786 * @rxdr: rx descriptor ring (for a specific queue) to setup
1788 * Returns 0 on success, negative on failure
1791 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1792 struct e1000_rx_ring
*rxdr
)
1794 struct e1000_hw
*hw
= &adapter
->hw
;
1795 struct pci_dev
*pdev
= adapter
->pdev
;
1798 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1799 rxdr
->buffer_info
= vmalloc(size
);
1800 if (!rxdr
->buffer_info
) {
1802 "Unable to allocate memory for the receive descriptor ring\n");
1805 memset(rxdr
->buffer_info
, 0, size
);
1807 if (hw
->mac_type
<= e1000_82547_rev_2
)
1808 desc_len
= sizeof(struct e1000_rx_desc
);
1810 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1812 /* Round up to nearest 4K */
1814 rxdr
->size
= rxdr
->count
* desc_len
;
1815 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1817 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1821 "Unable to allocate memory for the receive descriptor ring\n");
1823 vfree(rxdr
->buffer_info
);
1827 /* Fix for errata 23, can't cross 64kB boundary */
1828 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1829 void *olddesc
= rxdr
->desc
;
1830 dma_addr_t olddma
= rxdr
->dma
;
1831 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1832 "at %p\n", rxdr
->size
, rxdr
->desc
);
1833 /* Try again, without freeing the previous */
1834 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1835 /* Failed allocation, critical failure */
1837 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1839 "Unable to allocate memory "
1840 "for the receive descriptor ring\n");
1841 goto setup_rx_desc_die
;
1844 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1846 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1848 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1850 "Unable to allocate aligned memory "
1851 "for the receive descriptor ring\n");
1852 goto setup_rx_desc_die
;
1854 /* Free old allocation, new allocation was successful */
1855 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1858 memset(rxdr
->desc
, 0, rxdr
->size
);
1860 rxdr
->next_to_clean
= 0;
1861 rxdr
->next_to_use
= 0;
1867 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1868 * (Descriptors) for all queues
1869 * @adapter: board private structure
1871 * Return 0 on success, negative on failure
1874 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1878 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1879 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1882 "Allocation for Rx Queue %u failed\n", i
);
1883 for (i
-- ; i
>= 0; i
--)
1884 e1000_free_rx_resources(adapter
,
1885 &adapter
->rx_ring
[i
]);
1894 * e1000_setup_rctl - configure the receive control registers
1895 * @adapter: Board private structure
1897 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1899 struct e1000_hw
*hw
= &adapter
->hw
;
1904 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1906 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1907 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1908 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1910 if (hw
->tbi_compatibility_on
== 1)
1911 rctl
|= E1000_RCTL_SBP
;
1913 rctl
&= ~E1000_RCTL_SBP
;
1915 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1916 rctl
&= ~E1000_RCTL_LPE
;
1918 rctl
|= E1000_RCTL_LPE
;
1920 /* Setup buffer sizes */
1921 rctl
&= ~E1000_RCTL_SZ_4096
;
1922 rctl
|= E1000_RCTL_BSEX
;
1923 switch (adapter
->rx_buffer_len
) {
1924 case E1000_RXBUFFER_256
:
1925 rctl
|= E1000_RCTL_SZ_256
;
1926 rctl
&= ~E1000_RCTL_BSEX
;
1928 case E1000_RXBUFFER_512
:
1929 rctl
|= E1000_RCTL_SZ_512
;
1930 rctl
&= ~E1000_RCTL_BSEX
;
1932 case E1000_RXBUFFER_1024
:
1933 rctl
|= E1000_RCTL_SZ_1024
;
1934 rctl
&= ~E1000_RCTL_BSEX
;
1936 case E1000_RXBUFFER_2048
:
1938 rctl
|= E1000_RCTL_SZ_2048
;
1939 rctl
&= ~E1000_RCTL_BSEX
;
1941 case E1000_RXBUFFER_4096
:
1942 rctl
|= E1000_RCTL_SZ_4096
;
1944 case E1000_RXBUFFER_8192
:
1945 rctl
|= E1000_RCTL_SZ_8192
;
1947 case E1000_RXBUFFER_16384
:
1948 rctl
|= E1000_RCTL_SZ_16384
;
1956 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1957 * @adapter: board private structure
1959 * Configure the Rx unit of the MAC after a reset.
1962 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1965 struct e1000_hw
*hw
= &adapter
->hw
;
1966 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
1968 rdlen
= adapter
->rx_ring
[0].count
*
1969 sizeof(struct e1000_rx_desc
);
1970 adapter
->clean_rx
= e1000_clean_rx_irq
;
1971 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1973 /* disable receives while setting up the descriptors */
1975 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1977 /* set the Receive Delay Timer Register */
1978 ew32(RDTR
, adapter
->rx_int_delay
);
1980 if (hw
->mac_type
>= e1000_82540
) {
1981 ew32(RADV
, adapter
->rx_abs_int_delay
);
1982 if (adapter
->itr_setting
!= 0)
1983 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1986 if (hw
->mac_type
>= e1000_82571
) {
1987 ctrl_ext
= er32(CTRL_EXT
);
1988 /* Reset delay timers after every interrupt */
1989 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
1990 /* Auto-Mask interrupts upon ICR access */
1991 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1992 ew32(IAM
, 0xffffffff);
1993 ew32(CTRL_EXT
, ctrl_ext
);
1994 E1000_WRITE_FLUSH();
1997 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1998 * the Base and Length of the Rx Descriptor Ring */
1999 switch (adapter
->num_rx_queues
) {
2002 rdba
= adapter
->rx_ring
[0].dma
;
2004 ew32(RDBAH
, (rdba
>> 32));
2005 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2008 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2009 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2013 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2014 if (hw
->mac_type
>= e1000_82543
) {
2015 rxcsum
= er32(RXCSUM
);
2016 if (adapter
->rx_csum
)
2017 rxcsum
|= E1000_RXCSUM_TUOFL
;
2019 /* don't need to clear IPPCSE as it defaults to 0 */
2020 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2021 ew32(RXCSUM
, rxcsum
);
2024 /* Enable Receives */
2029 * e1000_free_tx_resources - Free Tx Resources per Queue
2030 * @adapter: board private structure
2031 * @tx_ring: Tx descriptor ring for a specific queue
2033 * Free all transmit software resources
2036 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2037 struct e1000_tx_ring
*tx_ring
)
2039 struct pci_dev
*pdev
= adapter
->pdev
;
2041 e1000_clean_tx_ring(adapter
, tx_ring
);
2043 vfree(tx_ring
->buffer_info
);
2044 tx_ring
->buffer_info
= NULL
;
2046 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2048 tx_ring
->desc
= NULL
;
2052 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2053 * @adapter: board private structure
2055 * Free all transmit software resources
2058 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2062 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2063 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2066 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2067 struct e1000_buffer
*buffer_info
)
2069 buffer_info
->dma
= 0;
2070 if (buffer_info
->skb
) {
2071 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
2073 dev_kfree_skb_any(buffer_info
->skb
);
2074 buffer_info
->skb
= NULL
;
2076 buffer_info
->time_stamp
= 0;
2077 /* buffer_info must be completely set up in the transmit path */
2081 * e1000_clean_tx_ring - Free Tx Buffers
2082 * @adapter: board private structure
2083 * @tx_ring: ring to be cleaned
2086 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2087 struct e1000_tx_ring
*tx_ring
)
2089 struct e1000_hw
*hw
= &adapter
->hw
;
2090 struct e1000_buffer
*buffer_info
;
2094 /* Free all the Tx ring sk_buffs */
2096 for (i
= 0; i
< tx_ring
->count
; i
++) {
2097 buffer_info
= &tx_ring
->buffer_info
[i
];
2098 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2101 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2102 memset(tx_ring
->buffer_info
, 0, size
);
2104 /* Zero out the descriptor ring */
2106 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2108 tx_ring
->next_to_use
= 0;
2109 tx_ring
->next_to_clean
= 0;
2110 tx_ring
->last_tx_tso
= 0;
2112 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2113 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2117 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2118 * @adapter: board private structure
2121 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2125 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2126 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2130 * e1000_free_rx_resources - Free Rx Resources
2131 * @adapter: board private structure
2132 * @rx_ring: ring to clean the resources from
2134 * Free all receive software resources
2137 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2138 struct e1000_rx_ring
*rx_ring
)
2140 struct pci_dev
*pdev
= adapter
->pdev
;
2142 e1000_clean_rx_ring(adapter
, rx_ring
);
2144 vfree(rx_ring
->buffer_info
);
2145 rx_ring
->buffer_info
= NULL
;
2147 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2149 rx_ring
->desc
= NULL
;
2153 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2154 * @adapter: board private structure
2156 * Free all receive software resources
2159 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2163 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2164 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2168 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2169 * @adapter: board private structure
2170 * @rx_ring: ring to free buffers from
2173 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2174 struct e1000_rx_ring
*rx_ring
)
2176 struct e1000_hw
*hw
= &adapter
->hw
;
2177 struct e1000_buffer
*buffer_info
;
2178 struct pci_dev
*pdev
= adapter
->pdev
;
2182 /* Free all the Rx ring sk_buffs */
2183 for (i
= 0; i
< rx_ring
->count
; i
++) {
2184 buffer_info
= &rx_ring
->buffer_info
[i
];
2185 if (buffer_info
->skb
) {
2186 pci_unmap_single(pdev
,
2188 buffer_info
->length
,
2189 PCI_DMA_FROMDEVICE
);
2191 dev_kfree_skb(buffer_info
->skb
);
2192 buffer_info
->skb
= NULL
;
2196 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2197 memset(rx_ring
->buffer_info
, 0, size
);
2199 /* Zero out the descriptor ring */
2201 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2203 rx_ring
->next_to_clean
= 0;
2204 rx_ring
->next_to_use
= 0;
2206 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2207 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2211 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2212 * @adapter: board private structure
2215 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2219 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2220 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2223 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2224 * and memory write and invalidate disabled for certain operations
2226 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2228 struct e1000_hw
*hw
= &adapter
->hw
;
2229 struct net_device
*netdev
= adapter
->netdev
;
2232 e1000_pci_clear_mwi(hw
);
2235 rctl
|= E1000_RCTL_RST
;
2237 E1000_WRITE_FLUSH();
2240 if (netif_running(netdev
))
2241 e1000_clean_all_rx_rings(adapter
);
2244 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2246 struct e1000_hw
*hw
= &adapter
->hw
;
2247 struct net_device
*netdev
= adapter
->netdev
;
2251 rctl
&= ~E1000_RCTL_RST
;
2253 E1000_WRITE_FLUSH();
2256 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2257 e1000_pci_set_mwi(hw
);
2259 if (netif_running(netdev
)) {
2260 /* No need to loop, because 82542 supports only 1 queue */
2261 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2262 e1000_configure_rx(adapter
);
2263 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2268 * e1000_set_mac - Change the Ethernet Address of the NIC
2269 * @netdev: network interface device structure
2270 * @p: pointer to an address structure
2272 * Returns 0 on success, negative on failure
2275 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2277 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2278 struct e1000_hw
*hw
= &adapter
->hw
;
2279 struct sockaddr
*addr
= p
;
2281 if (!is_valid_ether_addr(addr
->sa_data
))
2282 return -EADDRNOTAVAIL
;
2284 /* 82542 2.0 needs to be in reset to write receive address registers */
2286 if (hw
->mac_type
== e1000_82542_rev2_0
)
2287 e1000_enter_82542_rst(adapter
);
2289 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2290 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2292 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2294 /* With 82571 controllers, LAA may be overwritten (with the default)
2295 * due to controller reset from the other port. */
2296 if (hw
->mac_type
== e1000_82571
) {
2297 /* activate the work around */
2298 hw
->laa_is_present
= 1;
2300 /* Hold a copy of the LAA in RAR[14] This is done so that
2301 * between the time RAR[0] gets clobbered and the time it
2302 * gets fixed (in e1000_watchdog), the actual LAA is in one
2303 * of the RARs and no incoming packets directed to this port
2304 * are dropped. Eventaully the LAA will be in RAR[0] and
2306 e1000_rar_set(hw
, hw
->mac_addr
,
2307 E1000_RAR_ENTRIES
- 1);
2310 if (hw
->mac_type
== e1000_82542_rev2_0
)
2311 e1000_leave_82542_rst(adapter
);
2317 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2318 * @netdev: network interface device structure
2320 * The set_rx_mode entry point is called whenever the unicast or multicast
2321 * address lists or the network interface flags are updated. This routine is
2322 * responsible for configuring the hardware for proper unicast, multicast,
2323 * promiscuous mode, and all-multi behavior.
2326 static void e1000_set_rx_mode(struct net_device
*netdev
)
2328 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2329 struct e1000_hw
*hw
= &adapter
->hw
;
2330 struct dev_addr_list
*uc_ptr
;
2331 struct dev_addr_list
*mc_ptr
;
2334 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2335 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2336 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2337 E1000_NUM_MTA_REGISTERS
;
2338 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2341 DPRINTK(PROBE
, ERR
, "memory allocation failed\n");
2345 if (hw
->mac_type
== e1000_ich8lan
)
2346 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2348 /* reserve RAR[14] for LAA over-write work-around */
2349 if (hw
->mac_type
== e1000_82571
)
2352 /* Check for Promiscuous and All Multicast modes */
2356 if (netdev
->flags
& IFF_PROMISC
) {
2357 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2358 rctl
&= ~E1000_RCTL_VFE
;
2360 if (netdev
->flags
& IFF_ALLMULTI
) {
2361 rctl
|= E1000_RCTL_MPE
;
2363 rctl
&= ~E1000_RCTL_MPE
;
2365 if (adapter
->hw
.mac_type
!= e1000_ich8lan
)
2366 rctl
|= E1000_RCTL_VFE
;
2370 if (netdev
->uc_count
> rar_entries
- 1) {
2371 rctl
|= E1000_RCTL_UPE
;
2372 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2373 rctl
&= ~E1000_RCTL_UPE
;
2374 uc_ptr
= netdev
->uc_list
;
2379 /* 82542 2.0 needs to be in reset to write receive address registers */
2381 if (hw
->mac_type
== e1000_82542_rev2_0
)
2382 e1000_enter_82542_rst(adapter
);
2384 /* load the first 14 addresses into the exact filters 1-14. Unicast
2385 * addresses take precedence to avoid disabling unicast filtering
2388 * RAR 0 is used for the station MAC adddress
2389 * if there are not 14 addresses, go ahead and clear the filters
2390 * -- with 82571 controllers only 0-13 entries are filled here
2392 mc_ptr
= netdev
->mc_list
;
2394 for (i
= 1; i
< rar_entries
; i
++) {
2396 e1000_rar_set(hw
, uc_ptr
->da_addr
, i
);
2397 uc_ptr
= uc_ptr
->next
;
2398 } else if (mc_ptr
) {
2399 e1000_rar_set(hw
, mc_ptr
->da_addr
, i
);
2400 mc_ptr
= mc_ptr
->next
;
2402 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2403 E1000_WRITE_FLUSH();
2404 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2405 E1000_WRITE_FLUSH();
2408 WARN_ON(uc_ptr
!= NULL
);
2410 /* load any remaining addresses into the hash table */
2412 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2413 u32 hash_reg
, hash_bit
, mta
;
2414 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->da_addr
);
2415 hash_reg
= (hash_value
>> 5) & 0x7F;
2416 hash_bit
= hash_value
& 0x1F;
2417 mta
= (1 << hash_bit
);
2418 mcarray
[hash_reg
] |= mta
;
2421 /* write the hash table completely, write from bottom to avoid
2422 * both stupid write combining chipsets, and flushing each write */
2423 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2425 * If we are on an 82544 has an errata where writing odd
2426 * offsets overwrites the previous even offset, but writing
2427 * backwards over the range solves the issue by always
2428 * writing the odd offset first
2430 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2432 E1000_WRITE_FLUSH();
2434 if (hw
->mac_type
== e1000_82542_rev2_0
)
2435 e1000_leave_82542_rst(adapter
);
2440 /* Need to wait a few seconds after link up to get diagnostic information from
2443 static void e1000_update_phy_info(unsigned long data
)
2445 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2446 struct e1000_hw
*hw
= &adapter
->hw
;
2447 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2451 * e1000_82547_tx_fifo_stall - Timer Call-back
2452 * @data: pointer to adapter cast into an unsigned long
2455 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2457 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2458 struct e1000_hw
*hw
= &adapter
->hw
;
2459 struct net_device
*netdev
= adapter
->netdev
;
2462 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2463 if ((er32(TDT
) == er32(TDH
)) &&
2464 (er32(TDFT
) == er32(TDFH
)) &&
2465 (er32(TDFTS
) == er32(TDFHS
))) {
2467 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2468 ew32(TDFT
, adapter
->tx_head_addr
);
2469 ew32(TDFH
, adapter
->tx_head_addr
);
2470 ew32(TDFTS
, adapter
->tx_head_addr
);
2471 ew32(TDFHS
, adapter
->tx_head_addr
);
2473 E1000_WRITE_FLUSH();
2475 adapter
->tx_fifo_head
= 0;
2476 atomic_set(&adapter
->tx_fifo_stall
, 0);
2477 netif_wake_queue(netdev
);
2479 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2485 * e1000_watchdog - Timer Call-back
2486 * @data: pointer to adapter cast into an unsigned long
2488 static void e1000_watchdog(unsigned long data
)
2490 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2491 struct e1000_hw
*hw
= &adapter
->hw
;
2492 struct net_device
*netdev
= adapter
->netdev
;
2493 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2497 ret_val
= e1000_check_for_link(hw
);
2498 if ((ret_val
== E1000_ERR_PHY
) &&
2499 (hw
->phy_type
== e1000_phy_igp_3
) &&
2500 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2501 /* See e1000_kumeran_lock_loss_workaround() */
2503 "Gigabit has been disabled, downgrading speed\n");
2506 if (hw
->mac_type
== e1000_82573
) {
2507 e1000_enable_tx_pkt_filtering(hw
);
2508 if (adapter
->mng_vlan_id
!= hw
->mng_cookie
.vlan_id
)
2509 e1000_update_mng_vlan(adapter
);
2512 if ((hw
->media_type
== e1000_media_type_internal_serdes
) &&
2513 !(er32(TXCW
) & E1000_TXCW_ANE
))
2514 link
= !hw
->serdes_link_down
;
2516 link
= er32(STATUS
) & E1000_STATUS_LU
;
2519 if (!netif_carrier_ok(netdev
)) {
2522 e1000_get_speed_and_duplex(hw
,
2523 &adapter
->link_speed
,
2524 &adapter
->link_duplex
);
2527 printk(KERN_INFO
"e1000: %s NIC Link is Up %d Mbps %s, "
2528 "Flow Control: %s\n",
2530 adapter
->link_speed
,
2531 adapter
->link_duplex
== FULL_DUPLEX
?
2532 "Full Duplex" : "Half Duplex",
2533 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2534 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2535 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2536 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2538 /* tweak tx_queue_len according to speed/duplex
2539 * and adjust the timeout factor */
2540 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2541 adapter
->tx_timeout_factor
= 1;
2542 switch (adapter
->link_speed
) {
2545 netdev
->tx_queue_len
= 10;
2546 adapter
->tx_timeout_factor
= 8;
2550 netdev
->tx_queue_len
= 100;
2551 /* maybe add some timeout factor ? */
2555 if ((hw
->mac_type
== e1000_82571
||
2556 hw
->mac_type
== e1000_82572
) &&
2559 tarc0
= er32(TARC0
);
2560 tarc0
&= ~(1 << 21);
2564 /* disable TSO for pcie and 10/100 speeds, to avoid
2565 * some hardware issues */
2566 if (!adapter
->tso_force
&&
2567 hw
->bus_type
== e1000_bus_type_pci_express
){
2568 switch (adapter
->link_speed
) {
2572 "10/100 speed: disabling TSO\n");
2573 netdev
->features
&= ~NETIF_F_TSO
;
2574 netdev
->features
&= ~NETIF_F_TSO6
;
2577 netdev
->features
|= NETIF_F_TSO
;
2578 netdev
->features
|= NETIF_F_TSO6
;
2586 /* enable transmits in the hardware, need to do this
2587 * after setting TARC0 */
2589 tctl
|= E1000_TCTL_EN
;
2592 netif_carrier_on(netdev
);
2593 netif_wake_queue(netdev
);
2594 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2595 adapter
->smartspeed
= 0;
2597 /* make sure the receive unit is started */
2598 if (hw
->rx_needs_kicking
) {
2599 u32 rctl
= er32(RCTL
);
2600 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
2604 if (netif_carrier_ok(netdev
)) {
2605 adapter
->link_speed
= 0;
2606 adapter
->link_duplex
= 0;
2607 printk(KERN_INFO
"e1000: %s NIC Link is Down\n",
2609 netif_carrier_off(netdev
);
2610 netif_stop_queue(netdev
);
2611 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2613 /* 80003ES2LAN workaround--
2614 * For packet buffer work-around on link down event;
2615 * disable receives in the ISR and
2616 * reset device here in the watchdog
2618 if (hw
->mac_type
== e1000_80003es2lan
)
2620 schedule_work(&adapter
->reset_task
);
2623 e1000_smartspeed(adapter
);
2626 e1000_update_stats(adapter
);
2628 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2629 adapter
->tpt_old
= adapter
->stats
.tpt
;
2630 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2631 adapter
->colc_old
= adapter
->stats
.colc
;
2633 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2634 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2635 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2636 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2638 e1000_update_adaptive(hw
);
2640 if (!netif_carrier_ok(netdev
)) {
2641 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2642 /* We've lost link, so the controller stops DMA,
2643 * but we've got queued Tx work that's never going
2644 * to get done, so reset controller to flush Tx.
2645 * (Do the reset outside of interrupt context). */
2646 adapter
->tx_timeout_count
++;
2647 schedule_work(&adapter
->reset_task
);
2651 /* Cause software interrupt to ensure rx ring is cleaned */
2652 ew32(ICS
, E1000_ICS_RXDMT0
);
2654 /* Force detection of hung controller every watchdog period */
2655 adapter
->detect_tx_hung
= true;
2657 /* With 82571 controllers, LAA may be overwritten due to controller
2658 * reset from the other port. Set the appropriate LAA in RAR[0] */
2659 if (hw
->mac_type
== e1000_82571
&& hw
->laa_is_present
)
2660 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2662 /* Reset the timer */
2663 mod_timer(&adapter
->watchdog_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2666 enum latency_range
{
2670 latency_invalid
= 255
2674 * e1000_update_itr - update the dynamic ITR value based on statistics
2675 * Stores a new ITR value based on packets and byte
2676 * counts during the last interrupt. The advantage of per interrupt
2677 * computation is faster updates and more accurate ITR for the current
2678 * traffic pattern. Constants in this function were computed
2679 * based on theoretical maximum wire speed and thresholds were set based
2680 * on testing data as well as attempting to minimize response time
2681 * while increasing bulk throughput.
2682 * this functionality is controlled by the InterruptThrottleRate module
2683 * parameter (see e1000_param.c)
2684 * @adapter: pointer to adapter
2685 * @itr_setting: current adapter->itr
2686 * @packets: the number of packets during this measurement interval
2687 * @bytes: the number of bytes during this measurement interval
2689 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2690 u16 itr_setting
, int packets
, int bytes
)
2692 unsigned int retval
= itr_setting
;
2693 struct e1000_hw
*hw
= &adapter
->hw
;
2695 if (unlikely(hw
->mac_type
< e1000_82540
))
2696 goto update_itr_done
;
2699 goto update_itr_done
;
2701 switch (itr_setting
) {
2702 case lowest_latency
:
2703 /* jumbo frames get bulk treatment*/
2704 if (bytes
/packets
> 8000)
2705 retval
= bulk_latency
;
2706 else if ((packets
< 5) && (bytes
> 512))
2707 retval
= low_latency
;
2709 case low_latency
: /* 50 usec aka 20000 ints/s */
2710 if (bytes
> 10000) {
2711 /* jumbo frames need bulk latency setting */
2712 if (bytes
/packets
> 8000)
2713 retval
= bulk_latency
;
2714 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2715 retval
= bulk_latency
;
2716 else if ((packets
> 35))
2717 retval
= lowest_latency
;
2718 } else if (bytes
/packets
> 2000)
2719 retval
= bulk_latency
;
2720 else if (packets
<= 2 && bytes
< 512)
2721 retval
= lowest_latency
;
2723 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2724 if (bytes
> 25000) {
2726 retval
= low_latency
;
2727 } else if (bytes
< 6000) {
2728 retval
= low_latency
;
2737 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2739 struct e1000_hw
*hw
= &adapter
->hw
;
2741 u32 new_itr
= adapter
->itr
;
2743 if (unlikely(hw
->mac_type
< e1000_82540
))
2746 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2747 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2753 adapter
->tx_itr
= e1000_update_itr(adapter
,
2755 adapter
->total_tx_packets
,
2756 adapter
->total_tx_bytes
);
2757 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2758 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2759 adapter
->tx_itr
= low_latency
;
2761 adapter
->rx_itr
= e1000_update_itr(adapter
,
2763 adapter
->total_rx_packets
,
2764 adapter
->total_rx_bytes
);
2765 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2766 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2767 adapter
->rx_itr
= low_latency
;
2769 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2771 switch (current_itr
) {
2772 /* counts and packets in update_itr are dependent on these numbers */
2773 case lowest_latency
:
2777 new_itr
= 20000; /* aka hwitr = ~200 */
2787 if (new_itr
!= adapter
->itr
) {
2788 /* this attempts to bias the interrupt rate towards Bulk
2789 * by adding intermediate steps when interrupt rate is
2791 new_itr
= new_itr
> adapter
->itr
?
2792 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2794 adapter
->itr
= new_itr
;
2795 ew32(ITR
, 1000000000 / (new_itr
* 256));
2801 #define E1000_TX_FLAGS_CSUM 0x00000001
2802 #define E1000_TX_FLAGS_VLAN 0x00000002
2803 #define E1000_TX_FLAGS_TSO 0x00000004
2804 #define E1000_TX_FLAGS_IPV4 0x00000008
2805 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2806 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2808 static int e1000_tso(struct e1000_adapter
*adapter
,
2809 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2811 struct e1000_context_desc
*context_desc
;
2812 struct e1000_buffer
*buffer_info
;
2815 u16 ipcse
= 0, tucse
, mss
;
2816 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2819 if (skb_is_gso(skb
)) {
2820 if (skb_header_cloned(skb
)) {
2821 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2826 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2827 mss
= skb_shinfo(skb
)->gso_size
;
2828 if (skb
->protocol
== htons(ETH_P_IP
)) {
2829 struct iphdr
*iph
= ip_hdr(skb
);
2832 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2836 cmd_length
= E1000_TXD_CMD_IP
;
2837 ipcse
= skb_transport_offset(skb
) - 1;
2838 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2839 ipv6_hdr(skb
)->payload_len
= 0;
2840 tcp_hdr(skb
)->check
=
2841 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2842 &ipv6_hdr(skb
)->daddr
,
2846 ipcss
= skb_network_offset(skb
);
2847 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2848 tucss
= skb_transport_offset(skb
);
2849 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2852 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2853 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2855 i
= tx_ring
->next_to_use
;
2856 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2857 buffer_info
= &tx_ring
->buffer_info
[i
];
2859 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2860 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2861 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2862 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2863 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2864 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2865 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2866 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2867 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2869 buffer_info
->time_stamp
= jiffies
;
2870 buffer_info
->next_to_watch
= i
;
2872 if (++i
== tx_ring
->count
) i
= 0;
2873 tx_ring
->next_to_use
= i
;
2880 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2881 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2883 struct e1000_context_desc
*context_desc
;
2884 struct e1000_buffer
*buffer_info
;
2887 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2889 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2892 switch (skb
->protocol
) {
2893 case cpu_to_be16(ETH_P_IP
):
2894 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2895 cmd_len
|= E1000_TXD_CMD_TCP
;
2897 case cpu_to_be16(ETH_P_IPV6
):
2898 /* XXX not handling all IPV6 headers */
2899 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2900 cmd_len
|= E1000_TXD_CMD_TCP
;
2903 if (unlikely(net_ratelimit()))
2904 DPRINTK(DRV
, WARNING
,
2905 "checksum_partial proto=%x!\n", skb
->protocol
);
2909 css
= skb_transport_offset(skb
);
2911 i
= tx_ring
->next_to_use
;
2912 buffer_info
= &tx_ring
->buffer_info
[i
];
2913 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2915 context_desc
->lower_setup
.ip_config
= 0;
2916 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2917 context_desc
->upper_setup
.tcp_fields
.tucso
=
2918 css
+ skb
->csum_offset
;
2919 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2920 context_desc
->tcp_seg_setup
.data
= 0;
2921 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2923 buffer_info
->time_stamp
= jiffies
;
2924 buffer_info
->next_to_watch
= i
;
2926 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2927 tx_ring
->next_to_use
= i
;
2932 #define E1000_MAX_TXD_PWR 12
2933 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2935 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2936 struct e1000_tx_ring
*tx_ring
,
2937 struct sk_buff
*skb
, unsigned int first
,
2938 unsigned int max_per_txd
, unsigned int nr_frags
,
2941 struct e1000_hw
*hw
= &adapter
->hw
;
2942 struct e1000_buffer
*buffer_info
;
2943 unsigned int len
= skb_headlen(skb
);
2944 unsigned int offset
, size
, count
= 0, i
;
2948 i
= tx_ring
->next_to_use
;
2950 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2951 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2955 map
= skb_shinfo(skb
)->dma_maps
;
2959 buffer_info
= &tx_ring
->buffer_info
[i
];
2960 size
= min(len
, max_per_txd
);
2961 /* Workaround for Controller erratum --
2962 * descriptor for non-tso packet in a linear SKB that follows a
2963 * tso gets written back prematurely before the data is fully
2964 * DMA'd to the controller */
2965 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2967 tx_ring
->last_tx_tso
= 0;
2971 /* Workaround for premature desc write-backs
2972 * in TSO mode. Append 4-byte sentinel desc */
2973 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2975 /* work-around for errata 10 and it applies
2976 * to all controllers in PCI-X mode
2977 * The fix is to make sure that the first descriptor of a
2978 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2980 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2981 (size
> 2015) && count
== 0))
2984 /* Workaround for potential 82544 hang in PCI-X. Avoid
2985 * terminating buffers within evenly-aligned dwords. */
2986 if (unlikely(adapter
->pcix_82544
&&
2987 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2991 buffer_info
->length
= size
;
2992 buffer_info
->dma
= map
[0] + offset
;
2993 buffer_info
->time_stamp
= jiffies
;
2994 buffer_info
->next_to_watch
= i
;
3001 if (unlikely(i
== tx_ring
->count
))
3006 for (f
= 0; f
< nr_frags
; f
++) {
3007 struct skb_frag_struct
*frag
;
3009 frag
= &skb_shinfo(skb
)->frags
[f
];
3015 if (unlikely(i
== tx_ring
->count
))
3018 buffer_info
= &tx_ring
->buffer_info
[i
];
3019 size
= min(len
, max_per_txd
);
3020 /* Workaround for premature desc write-backs
3021 * in TSO mode. Append 4-byte sentinel desc */
3022 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3024 /* Workaround for potential 82544 hang in PCI-X.
3025 * Avoid terminating buffers within evenly-aligned
3027 if (unlikely(adapter
->pcix_82544
&&
3028 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3032 buffer_info
->length
= size
;
3033 buffer_info
->dma
= map
[f
+ 1] + offset
;
3034 buffer_info
->time_stamp
= jiffies
;
3035 buffer_info
->next_to_watch
= i
;
3043 tx_ring
->buffer_info
[i
].skb
= skb
;
3044 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3049 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3050 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
3053 struct e1000_hw
*hw
= &adapter
->hw
;
3054 struct e1000_tx_desc
*tx_desc
= NULL
;
3055 struct e1000_buffer
*buffer_info
;
3056 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3059 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3060 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3062 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3064 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3065 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3068 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3069 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3070 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3073 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3074 txd_lower
|= E1000_TXD_CMD_VLE
;
3075 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3078 i
= tx_ring
->next_to_use
;
3081 buffer_info
= &tx_ring
->buffer_info
[i
];
3082 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3083 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3084 tx_desc
->lower
.data
=
3085 cpu_to_le32(txd_lower
| buffer_info
->length
);
3086 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3087 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3090 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3092 /* Force memory writes to complete before letting h/w
3093 * know there are new descriptors to fetch. (Only
3094 * applicable for weak-ordered memory model archs,
3095 * such as IA-64). */
3098 tx_ring
->next_to_use
= i
;
3099 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3100 /* we need this if more than one processor can write to our tail
3101 * at a time, it syncronizes IO on IA64/Altix systems */
3106 * 82547 workaround to avoid controller hang in half-duplex environment.
3107 * The workaround is to avoid queuing a large packet that would span
3108 * the internal Tx FIFO ring boundary by notifying the stack to resend
3109 * the packet at a later time. This gives the Tx FIFO an opportunity to
3110 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3111 * to the beginning of the Tx FIFO.
3114 #define E1000_FIFO_HDR 0x10
3115 #define E1000_82547_PAD_LEN 0x3E0
3117 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3118 struct sk_buff
*skb
)
3120 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3121 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3123 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3125 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3126 goto no_fifo_stall_required
;
3128 if (atomic_read(&adapter
->tx_fifo_stall
))
3131 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3132 atomic_set(&adapter
->tx_fifo_stall
, 1);
3136 no_fifo_stall_required
:
3137 adapter
->tx_fifo_head
+= skb_fifo_len
;
3138 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3139 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3143 #define MINIMUM_DHCP_PACKET_SIZE 282
3144 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3145 struct sk_buff
*skb
)
3147 struct e1000_hw
*hw
= &adapter
->hw
;
3149 if (vlan_tx_tag_present(skb
)) {
3150 if (!((vlan_tx_tag_get(skb
) == hw
->mng_cookie
.vlan_id
) &&
3151 ( hw
->mng_cookie
.status
&
3152 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3155 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3156 struct ethhdr
*eth
= (struct ethhdr
*)skb
->data
;
3157 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3158 const struct iphdr
*ip
=
3159 (struct iphdr
*)((u8
*)skb
->data
+14);
3160 if (IPPROTO_UDP
== ip
->protocol
) {
3161 struct udphdr
*udp
=
3162 (struct udphdr
*)((u8
*)ip
+
3164 if (ntohs(udp
->dest
) == 67) {
3165 offset
= (u8
*)udp
+ 8 - skb
->data
;
3166 length
= skb
->len
- offset
;
3168 return e1000_mng_write_dhcp_info(hw
,
3178 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3180 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3181 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3183 netif_stop_queue(netdev
);
3184 /* Herbert's original patch had:
3185 * smp_mb__after_netif_stop_queue();
3186 * but since that doesn't exist yet, just open code it. */
3189 /* We need to check again in a case another CPU has just
3190 * made room available. */
3191 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3195 netif_start_queue(netdev
);
3196 ++adapter
->restart_queue
;
3200 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3201 struct e1000_tx_ring
*tx_ring
, int size
)
3203 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3205 return __e1000_maybe_stop_tx(netdev
, size
);
3208 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3209 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3211 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3212 struct e1000_hw
*hw
= &adapter
->hw
;
3213 struct e1000_tx_ring
*tx_ring
;
3214 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3215 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3216 unsigned int tx_flags
= 0;
3217 unsigned int len
= skb
->len
- skb
->data_len
;
3218 unsigned int nr_frags
;
3224 /* This goes back to the question of how to logically map a tx queue
3225 * to a flow. Right now, performance is impacted slightly negatively
3226 * if using multiple tx queues. If the stack breaks away from a
3227 * single qdisc implementation, we can look at this again. */
3228 tx_ring
= adapter
->tx_ring
;
3230 if (unlikely(skb
->len
<= 0)) {
3231 dev_kfree_skb_any(skb
);
3232 return NETDEV_TX_OK
;
3235 /* 82571 and newer doesn't need the workaround that limited descriptor
3237 if (hw
->mac_type
>= e1000_82571
)
3240 mss
= skb_shinfo(skb
)->gso_size
;
3241 /* The controller does a simple calculation to
3242 * make sure there is enough room in the FIFO before
3243 * initiating the DMA for each buffer. The calc is:
3244 * 4 = ceil(buffer len/mss). To make sure we don't
3245 * overrun the FIFO, adjust the max buffer len if mss
3249 max_per_txd
= min(mss
<< 2, max_per_txd
);
3250 max_txd_pwr
= fls(max_per_txd
) - 1;
3252 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3253 * points to just header, pull a few bytes of payload from
3254 * frags into skb->data */
3255 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3256 if (skb
->data_len
&& hdr_len
== len
) {
3257 switch (hw
->mac_type
) {
3258 unsigned int pull_size
;
3260 /* Make sure we have room to chop off 4 bytes,
3261 * and that the end alignment will work out to
3262 * this hardware's requirements
3263 * NOTE: this is a TSO only workaround
3264 * if end byte alignment not correct move us
3265 * into the next dword */
3266 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3273 pull_size
= min((unsigned int)4, skb
->data_len
);
3274 if (!__pskb_pull_tail(skb
, pull_size
)) {
3276 "__pskb_pull_tail failed.\n");
3277 dev_kfree_skb_any(skb
);
3278 return NETDEV_TX_OK
;
3280 len
= skb
->len
- skb
->data_len
;
3289 /* reserve a descriptor for the offload context */
3290 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3294 /* Controller Erratum workaround */
3295 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3298 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3300 if (adapter
->pcix_82544
)
3303 /* work-around for errata 10 and it applies to all controllers
3304 * in PCI-X mode, so add one more descriptor to the count
3306 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3310 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3311 for (f
= 0; f
< nr_frags
; f
++)
3312 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3314 if (adapter
->pcix_82544
)
3318 if (hw
->tx_pkt_filtering
&&
3319 (hw
->mac_type
== e1000_82573
))
3320 e1000_transfer_dhcp_info(adapter
, skb
);
3322 /* need: count + 2 desc gap to keep tail from touching
3323 * head, otherwise try next time */
3324 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3325 return NETDEV_TX_BUSY
;
3327 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3328 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3329 netif_stop_queue(netdev
);
3330 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3331 return NETDEV_TX_BUSY
;
3335 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3336 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3337 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3340 first
= tx_ring
->next_to_use
;
3342 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3344 dev_kfree_skb_any(skb
);
3345 return NETDEV_TX_OK
;
3349 tx_ring
->last_tx_tso
= 1;
3350 tx_flags
|= E1000_TX_FLAGS_TSO
;
3351 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3352 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3354 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3355 * 82571 hardware supports TSO capabilities for IPv6 as well...
3356 * no longer assume, we must. */
3357 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3358 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3360 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3364 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3365 netdev
->trans_start
= jiffies
;
3366 /* Make sure there is space in the ring for the next send. */
3367 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3370 dev_kfree_skb_any(skb
);
3371 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3372 tx_ring
->next_to_use
= first
;
3375 return NETDEV_TX_OK
;
3379 * e1000_tx_timeout - Respond to a Tx Hang
3380 * @netdev: network interface device structure
3383 static void e1000_tx_timeout(struct net_device
*netdev
)
3385 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3387 /* Do the reset outside of interrupt context */
3388 adapter
->tx_timeout_count
++;
3389 schedule_work(&adapter
->reset_task
);
3392 static void e1000_reset_task(struct work_struct
*work
)
3394 struct e1000_adapter
*adapter
=
3395 container_of(work
, struct e1000_adapter
, reset_task
);
3397 e1000_reinit_locked(adapter
);
3401 * e1000_get_stats - Get System Network Statistics
3402 * @netdev: network interface device structure
3404 * Returns the address of the device statistics structure.
3405 * The statistics are actually updated from the timer callback.
3408 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3410 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3412 /* only return the current stats */
3413 return &adapter
->net_stats
;
3417 * e1000_change_mtu - Change the Maximum Transfer Unit
3418 * @netdev: network interface device structure
3419 * @new_mtu: new value for maximum frame size
3421 * Returns 0 on success, negative on failure
3424 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3426 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3427 struct e1000_hw
*hw
= &adapter
->hw
;
3428 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3429 u16 eeprom_data
= 0;
3431 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3432 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3433 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3437 /* Adapter-specific max frame size limits. */
3438 switch (hw
->mac_type
) {
3439 case e1000_undefined
... e1000_82542_rev2_1
:
3441 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3442 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3447 /* Jumbo Frames not supported if:
3448 * - this is not an 82573L device
3449 * - ASPM is enabled in any way (0x1A bits 3:2) */
3450 e1000_read_eeprom(hw
, EEPROM_INIT_3GIO_3
, 1,
3452 if ((hw
->device_id
!= E1000_DEV_ID_82573L
) ||
3453 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3454 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3456 "Jumbo Frames not supported.\n");
3461 /* ERT will be enabled later to enable wire speed receives */
3463 /* fall through to get support */
3466 case e1000_80003es2lan
:
3467 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3468 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3469 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3474 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3478 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3479 * means we reserve 2 more, this pushes us to allocate from the next
3481 * i.e. RXBUFFER_2048 --> size-4096 slab */
3483 if (max_frame
<= E1000_RXBUFFER_256
)
3484 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3485 else if (max_frame
<= E1000_RXBUFFER_512
)
3486 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3487 else if (max_frame
<= E1000_RXBUFFER_1024
)
3488 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3489 else if (max_frame
<= E1000_RXBUFFER_2048
)
3490 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3491 else if (max_frame
<= E1000_RXBUFFER_4096
)
3492 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3493 else if (max_frame
<= E1000_RXBUFFER_8192
)
3494 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3495 else if (max_frame
<= E1000_RXBUFFER_16384
)
3496 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3498 /* adjust allocation if LPE protects us, and we aren't using SBP */
3499 if (!hw
->tbi_compatibility_on
&&
3500 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3501 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3502 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3504 netdev
->mtu
= new_mtu
;
3505 hw
->max_frame_size
= max_frame
;
3507 if (netif_running(netdev
))
3508 e1000_reinit_locked(adapter
);
3514 * e1000_update_stats - Update the board statistics counters
3515 * @adapter: board private structure
3518 void e1000_update_stats(struct e1000_adapter
*adapter
)
3520 struct e1000_hw
*hw
= &adapter
->hw
;
3521 struct pci_dev
*pdev
= adapter
->pdev
;
3522 unsigned long flags
;
3525 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3528 * Prevent stats update while adapter is being reset, or if the pci
3529 * connection is down.
3531 if (adapter
->link_speed
== 0)
3533 if (pci_channel_offline(pdev
))
3536 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3538 /* these counters are modified from e1000_tbi_adjust_stats,
3539 * called from the interrupt context, so they must only
3540 * be written while holding adapter->stats_lock
3543 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3544 adapter
->stats
.gprc
+= er32(GPRC
);
3545 adapter
->stats
.gorcl
+= er32(GORCL
);
3546 adapter
->stats
.gorch
+= er32(GORCH
);
3547 adapter
->stats
.bprc
+= er32(BPRC
);
3548 adapter
->stats
.mprc
+= er32(MPRC
);
3549 adapter
->stats
.roc
+= er32(ROC
);
3551 if (hw
->mac_type
!= e1000_ich8lan
) {
3552 adapter
->stats
.prc64
+= er32(PRC64
);
3553 adapter
->stats
.prc127
+= er32(PRC127
);
3554 adapter
->stats
.prc255
+= er32(PRC255
);
3555 adapter
->stats
.prc511
+= er32(PRC511
);
3556 adapter
->stats
.prc1023
+= er32(PRC1023
);
3557 adapter
->stats
.prc1522
+= er32(PRC1522
);
3560 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3561 adapter
->stats
.mpc
+= er32(MPC
);
3562 adapter
->stats
.scc
+= er32(SCC
);
3563 adapter
->stats
.ecol
+= er32(ECOL
);
3564 adapter
->stats
.mcc
+= er32(MCC
);
3565 adapter
->stats
.latecol
+= er32(LATECOL
);
3566 adapter
->stats
.dc
+= er32(DC
);
3567 adapter
->stats
.sec
+= er32(SEC
);
3568 adapter
->stats
.rlec
+= er32(RLEC
);
3569 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3570 adapter
->stats
.xontxc
+= er32(XONTXC
);
3571 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3572 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3573 adapter
->stats
.fcruc
+= er32(FCRUC
);
3574 adapter
->stats
.gptc
+= er32(GPTC
);
3575 adapter
->stats
.gotcl
+= er32(GOTCL
);
3576 adapter
->stats
.gotch
+= er32(GOTCH
);
3577 adapter
->stats
.rnbc
+= er32(RNBC
);
3578 adapter
->stats
.ruc
+= er32(RUC
);
3579 adapter
->stats
.rfc
+= er32(RFC
);
3580 adapter
->stats
.rjc
+= er32(RJC
);
3581 adapter
->stats
.torl
+= er32(TORL
);
3582 adapter
->stats
.torh
+= er32(TORH
);
3583 adapter
->stats
.totl
+= er32(TOTL
);
3584 adapter
->stats
.toth
+= er32(TOTH
);
3585 adapter
->stats
.tpr
+= er32(TPR
);
3587 if (hw
->mac_type
!= e1000_ich8lan
) {
3588 adapter
->stats
.ptc64
+= er32(PTC64
);
3589 adapter
->stats
.ptc127
+= er32(PTC127
);
3590 adapter
->stats
.ptc255
+= er32(PTC255
);
3591 adapter
->stats
.ptc511
+= er32(PTC511
);
3592 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3593 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3596 adapter
->stats
.mptc
+= er32(MPTC
);
3597 adapter
->stats
.bptc
+= er32(BPTC
);
3599 /* used for adaptive IFS */
3601 hw
->tx_packet_delta
= er32(TPT
);
3602 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3603 hw
->collision_delta
= er32(COLC
);
3604 adapter
->stats
.colc
+= hw
->collision_delta
;
3606 if (hw
->mac_type
>= e1000_82543
) {
3607 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3608 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3609 adapter
->stats
.tncrs
+= er32(TNCRS
);
3610 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3611 adapter
->stats
.tsctc
+= er32(TSCTC
);
3612 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3614 if (hw
->mac_type
> e1000_82547_rev_2
) {
3615 adapter
->stats
.iac
+= er32(IAC
);
3616 adapter
->stats
.icrxoc
+= er32(ICRXOC
);
3618 if (hw
->mac_type
!= e1000_ich8lan
) {
3619 adapter
->stats
.icrxptc
+= er32(ICRXPTC
);
3620 adapter
->stats
.icrxatc
+= er32(ICRXATC
);
3621 adapter
->stats
.ictxptc
+= er32(ICTXPTC
);
3622 adapter
->stats
.ictxatc
+= er32(ICTXATC
);
3623 adapter
->stats
.ictxqec
+= er32(ICTXQEC
);
3624 adapter
->stats
.ictxqmtc
+= er32(ICTXQMTC
);
3625 adapter
->stats
.icrxdmtc
+= er32(ICRXDMTC
);
3629 /* Fill out the OS statistics structure */
3630 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3631 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3635 /* RLEC on some newer hardware can be incorrect so build
3636 * our own version based on RUC and ROC */
3637 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3638 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3639 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3640 adapter
->stats
.cexterr
;
3641 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3642 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3643 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3644 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3645 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3648 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3649 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3650 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3651 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3652 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3653 if (hw
->bad_tx_carr_stats_fd
&&
3654 adapter
->link_duplex
== FULL_DUPLEX
) {
3655 adapter
->net_stats
.tx_carrier_errors
= 0;
3656 adapter
->stats
.tncrs
= 0;
3659 /* Tx Dropped needs to be maintained elsewhere */
3662 if (hw
->media_type
== e1000_media_type_copper
) {
3663 if ((adapter
->link_speed
== SPEED_1000
) &&
3664 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3665 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3666 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3669 if ((hw
->mac_type
<= e1000_82546
) &&
3670 (hw
->phy_type
== e1000_phy_m88
) &&
3671 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3672 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3675 /* Management Stats */
3676 if (hw
->has_smbus
) {
3677 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3678 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3679 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3682 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3686 * e1000_intr_msi - Interrupt Handler
3687 * @irq: interrupt number
3688 * @data: pointer to a network interface device structure
3691 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
3693 struct net_device
*netdev
= data
;
3694 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3695 struct e1000_hw
*hw
= &adapter
->hw
;
3696 u32 icr
= er32(ICR
);
3698 /* in NAPI mode read ICR disables interrupts using IAM */
3700 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3701 hw
->get_link_status
= 1;
3702 /* 80003ES2LAN workaround-- For packet buffer work-around on
3703 * link down event; disable receives here in the ISR and reset
3704 * adapter in watchdog */
3705 if (netif_carrier_ok(netdev
) &&
3706 (hw
->mac_type
== e1000_80003es2lan
)) {
3707 /* disable receives */
3708 u32 rctl
= er32(RCTL
);
3709 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3711 /* guard against interrupt when we're going down */
3712 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3713 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3716 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3717 adapter
->total_tx_bytes
= 0;
3718 adapter
->total_tx_packets
= 0;
3719 adapter
->total_rx_bytes
= 0;
3720 adapter
->total_rx_packets
= 0;
3721 __napi_schedule(&adapter
->napi
);
3723 e1000_irq_enable(adapter
);
3729 * e1000_intr - Interrupt Handler
3730 * @irq: interrupt number
3731 * @data: pointer to a network interface device structure
3734 static irqreturn_t
e1000_intr(int irq
, void *data
)
3736 struct net_device
*netdev
= data
;
3737 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3738 struct e1000_hw
*hw
= &adapter
->hw
;
3739 u32 rctl
, icr
= er32(ICR
);
3741 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3742 return IRQ_NONE
; /* Not our interrupt */
3744 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3745 * not set, then the adapter didn't send an interrupt */
3746 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3747 !(icr
& E1000_ICR_INT_ASSERTED
)))
3750 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3751 * need for the IMC write */
3753 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3754 hw
->get_link_status
= 1;
3755 /* 80003ES2LAN workaround--
3756 * For packet buffer work-around on link down event;
3757 * disable receives here in the ISR and
3758 * reset adapter in watchdog
3760 if (netif_carrier_ok(netdev
) &&
3761 (hw
->mac_type
== e1000_80003es2lan
)) {
3762 /* disable receives */
3764 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3766 /* guard against interrupt when we're going down */
3767 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3768 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3771 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3772 /* disable interrupts, without the synchronize_irq bit */
3774 E1000_WRITE_FLUSH();
3776 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3777 adapter
->total_tx_bytes
= 0;
3778 adapter
->total_tx_packets
= 0;
3779 adapter
->total_rx_bytes
= 0;
3780 adapter
->total_rx_packets
= 0;
3781 __napi_schedule(&adapter
->napi
);
3783 /* this really should not happen! if it does it is basically a
3784 * bug, but not a hard error, so enable ints and continue */
3785 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3786 e1000_irq_enable(adapter
);
3793 * e1000_clean - NAPI Rx polling callback
3794 * @adapter: board private structure
3796 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3798 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3799 struct net_device
*poll_dev
= adapter
->netdev
;
3800 int tx_cleaned
= 0, work_done
= 0;
3802 adapter
= netdev_priv(poll_dev
);
3804 tx_cleaned
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3806 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3807 &work_done
, budget
);
3812 /* If budget not fully consumed, exit the polling mode */
3813 if (work_done
< budget
) {
3814 if (likely(adapter
->itr_setting
& 3))
3815 e1000_set_itr(adapter
);
3816 napi_complete(napi
);
3817 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3818 e1000_irq_enable(adapter
);
3825 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826 * @adapter: board private structure
3828 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3829 struct e1000_tx_ring
*tx_ring
)
3831 struct e1000_hw
*hw
= &adapter
->hw
;
3832 struct net_device
*netdev
= adapter
->netdev
;
3833 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3834 struct e1000_buffer
*buffer_info
;
3835 unsigned int i
, eop
;
3836 unsigned int count
= 0;
3837 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3839 i
= tx_ring
->next_to_clean
;
3840 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3841 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3843 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3844 (count
< tx_ring
->count
)) {
3845 bool cleaned
= false;
3846 for ( ; !cleaned
; count
++) {
3847 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3848 buffer_info
= &tx_ring
->buffer_info
[i
];
3849 cleaned
= (i
== eop
);
3852 struct sk_buff
*skb
= buffer_info
->skb
;
3853 unsigned int segs
, bytecount
;
3854 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3855 /* multiply data chunks by size of headers */
3856 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3858 total_tx_packets
+= segs
;
3859 total_tx_bytes
+= bytecount
;
3861 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3862 tx_desc
->upper
.data
= 0;
3864 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3867 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3868 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3871 tx_ring
->next_to_clean
= i
;
3873 #define TX_WAKE_THRESHOLD 32
3874 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3875 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3876 /* Make sure that anybody stopping the queue after this
3877 * sees the new next_to_clean.
3880 if (netif_queue_stopped(netdev
)) {
3881 netif_wake_queue(netdev
);
3882 ++adapter
->restart_queue
;
3886 if (adapter
->detect_tx_hung
) {
3887 /* Detect a transmit hang in hardware, this serializes the
3888 * check with the clearing of time_stamp and movement of i */
3889 adapter
->detect_tx_hung
= false;
3890 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3891 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3892 (adapter
->tx_timeout_factor
* HZ
))
3893 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3895 /* detected Tx unit hang */
3896 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3900 " next_to_use <%x>\n"
3901 " next_to_clean <%x>\n"
3902 "buffer_info[next_to_clean]\n"
3903 " time_stamp <%lx>\n"
3904 " next_to_watch <%x>\n"
3906 " next_to_watch.status <%x>\n",
3907 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3908 sizeof(struct e1000_tx_ring
)),
3909 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3910 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3911 tx_ring
->next_to_use
,
3912 tx_ring
->next_to_clean
,
3913 tx_ring
->buffer_info
[i
].time_stamp
,
3916 eop_desc
->upper
.fields
.status
);
3917 netif_stop_queue(netdev
);
3920 adapter
->total_tx_bytes
+= total_tx_bytes
;
3921 adapter
->total_tx_packets
+= total_tx_packets
;
3922 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
3923 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
3924 return (count
< tx_ring
->count
);
3928 * e1000_rx_checksum - Receive Checksum Offload for 82543
3929 * @adapter: board private structure
3930 * @status_err: receive descriptor status and error fields
3931 * @csum: receive descriptor csum field
3932 * @sk_buff: socket buffer with received data
3935 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3936 u32 csum
, struct sk_buff
*skb
)
3938 struct e1000_hw
*hw
= &adapter
->hw
;
3939 u16 status
= (u16
)status_err
;
3940 u8 errors
= (u8
)(status_err
>> 24);
3941 skb
->ip_summed
= CHECKSUM_NONE
;
3943 /* 82543 or newer only */
3944 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3945 /* Ignore Checksum bit is set */
3946 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3947 /* TCP/UDP checksum error bit is set */
3948 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3949 /* let the stack verify checksum errors */
3950 adapter
->hw_csum_err
++;
3953 /* TCP/UDP Checksum has not been calculated */
3954 if (hw
->mac_type
<= e1000_82547_rev_2
) {
3955 if (!(status
& E1000_RXD_STAT_TCPCS
))
3958 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
3961 /* It must be a TCP or UDP packet with a valid checksum */
3962 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3963 /* TCP checksum is good */
3964 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3965 } else if (hw
->mac_type
> e1000_82547_rev_2
) {
3966 /* IP fragment with UDP payload */
3967 /* Hardware complements the payload checksum, so we undo it
3968 * and then put the value in host order for further stack use.
3970 __sum16 sum
= (__force __sum16
)htons(csum
);
3971 skb
->csum
= csum_unfold(~sum
);
3972 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3974 adapter
->hw_csum_good
++;
3978 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3979 * @adapter: board private structure
3981 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3982 struct e1000_rx_ring
*rx_ring
,
3983 int *work_done
, int work_to_do
)
3985 struct e1000_hw
*hw
= &adapter
->hw
;
3986 struct net_device
*netdev
= adapter
->netdev
;
3987 struct pci_dev
*pdev
= adapter
->pdev
;
3988 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3989 struct e1000_buffer
*buffer_info
, *next_buffer
;
3990 unsigned long flags
;
3994 int cleaned_count
= 0;
3995 bool cleaned
= false;
3996 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3998 i
= rx_ring
->next_to_clean
;
3999 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4000 buffer_info
= &rx_ring
->buffer_info
[i
];
4002 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4003 struct sk_buff
*skb
;
4006 if (*work_done
>= work_to_do
)
4010 status
= rx_desc
->status
;
4011 skb
= buffer_info
->skb
;
4012 buffer_info
->skb
= NULL
;
4014 prefetch(skb
->data
- NET_IP_ALIGN
);
4016 if (++i
== rx_ring
->count
) i
= 0;
4017 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4020 next_buffer
= &rx_ring
->buffer_info
[i
];
4024 pci_unmap_single(pdev
,
4026 buffer_info
->length
,
4027 PCI_DMA_FROMDEVICE
);
4029 length
= le16_to_cpu(rx_desc
->length
);
4031 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
4032 /* All receives must fit into a single buffer */
4033 E1000_DBG("%s: Receive packet consumed multiple"
4034 " buffers\n", netdev
->name
);
4036 buffer_info
->skb
= skb
;
4040 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4041 last_byte
= *(skb
->data
+ length
- 1);
4042 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4044 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4045 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4047 spin_unlock_irqrestore(&adapter
->stats_lock
,
4052 buffer_info
->skb
= skb
;
4057 /* adjust length to remove Ethernet CRC, this must be
4058 * done after the TBI_ACCEPT workaround above */
4061 /* probably a little skewed due to removing CRC */
4062 total_rx_bytes
+= length
;
4065 /* code added for copybreak, this should improve
4066 * performance for small packets with large amounts
4067 * of reassembly being done in the stack */
4068 if (length
< copybreak
) {
4069 struct sk_buff
*new_skb
=
4070 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4072 skb_reserve(new_skb
, NET_IP_ALIGN
);
4073 skb_copy_to_linear_data_offset(new_skb
,
4079 /* save the skb in buffer_info as good */
4080 buffer_info
->skb
= skb
;
4083 /* else just continue with the old one */
4085 /* end copybreak code */
4086 skb_put(skb
, length
);
4088 /* Receive Checksum Offload */
4089 e1000_rx_checksum(adapter
,
4091 ((u32
)(rx_desc
->errors
) << 24),
4092 le16_to_cpu(rx_desc
->csum
), skb
);
4094 skb
->protocol
= eth_type_trans(skb
, netdev
);
4096 if (unlikely(adapter
->vlgrp
&&
4097 (status
& E1000_RXD_STAT_VP
))) {
4098 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4099 le16_to_cpu(rx_desc
->special
));
4101 netif_receive_skb(skb
);
4105 rx_desc
->status
= 0;
4107 /* return some buffers to hardware, one at a time is too slow */
4108 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4109 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4113 /* use prefetched values */
4115 buffer_info
= next_buffer
;
4117 rx_ring
->next_to_clean
= i
;
4119 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4121 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4123 adapter
->total_rx_packets
+= total_rx_packets
;
4124 adapter
->total_rx_bytes
+= total_rx_bytes
;
4125 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
4126 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
4131 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4132 * @adapter: address of board private structure
4135 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4136 struct e1000_rx_ring
*rx_ring
,
4139 struct e1000_hw
*hw
= &adapter
->hw
;
4140 struct net_device
*netdev
= adapter
->netdev
;
4141 struct pci_dev
*pdev
= adapter
->pdev
;
4142 struct e1000_rx_desc
*rx_desc
;
4143 struct e1000_buffer
*buffer_info
;
4144 struct sk_buff
*skb
;
4146 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4148 i
= rx_ring
->next_to_use
;
4149 buffer_info
= &rx_ring
->buffer_info
[i
];
4151 while (cleaned_count
--) {
4152 skb
= buffer_info
->skb
;
4158 skb
= netdev_alloc_skb(netdev
, bufsz
);
4159 if (unlikely(!skb
)) {
4160 /* Better luck next round */
4161 adapter
->alloc_rx_buff_failed
++;
4165 /* Fix for errata 23, can't cross 64kB boundary */
4166 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4167 struct sk_buff
*oldskb
= skb
;
4168 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4169 "at %p\n", bufsz
, skb
->data
);
4170 /* Try again, without freeing the previous */
4171 skb
= netdev_alloc_skb(netdev
, bufsz
);
4172 /* Failed allocation, critical failure */
4174 dev_kfree_skb(oldskb
);
4178 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4181 dev_kfree_skb(oldskb
);
4182 break; /* while !buffer_info->skb */
4185 /* Use new allocation */
4186 dev_kfree_skb(oldskb
);
4188 /* Make buffer alignment 2 beyond a 16 byte boundary
4189 * this will result in a 16 byte aligned IP header after
4190 * the 14 byte MAC header is removed
4192 skb_reserve(skb
, NET_IP_ALIGN
);
4194 buffer_info
->skb
= skb
;
4195 buffer_info
->length
= adapter
->rx_buffer_len
;
4197 buffer_info
->dma
= pci_map_single(pdev
,
4199 adapter
->rx_buffer_len
,
4200 PCI_DMA_FROMDEVICE
);
4202 /* Fix for errata 23, can't cross 64kB boundary */
4203 if (!e1000_check_64k_bound(adapter
,
4204 (void *)(unsigned long)buffer_info
->dma
,
4205 adapter
->rx_buffer_len
)) {
4206 DPRINTK(RX_ERR
, ERR
,
4207 "dma align check failed: %u bytes at %p\n",
4208 adapter
->rx_buffer_len
,
4209 (void *)(unsigned long)buffer_info
->dma
);
4211 buffer_info
->skb
= NULL
;
4213 pci_unmap_single(pdev
, buffer_info
->dma
,
4214 adapter
->rx_buffer_len
,
4215 PCI_DMA_FROMDEVICE
);
4217 break; /* while !buffer_info->skb */
4219 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4220 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4222 if (unlikely(++i
== rx_ring
->count
))
4224 buffer_info
= &rx_ring
->buffer_info
[i
];
4227 if (likely(rx_ring
->next_to_use
!= i
)) {
4228 rx_ring
->next_to_use
= i
;
4229 if (unlikely(i
-- == 0))
4230 i
= (rx_ring
->count
- 1);
4232 /* Force memory writes to complete before letting h/w
4233 * know there are new descriptors to fetch. (Only
4234 * applicable for weak-ordered memory model archs,
4235 * such as IA-64). */
4237 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4242 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4246 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4248 struct e1000_hw
*hw
= &adapter
->hw
;
4252 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4253 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4256 if (adapter
->smartspeed
== 0) {
4257 /* If Master/Slave config fault is asserted twice,
4258 * we assume back-to-back */
4259 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4260 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4261 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4262 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4263 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4264 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4265 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4266 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4268 adapter
->smartspeed
++;
4269 if (!e1000_phy_setup_autoneg(hw
) &&
4270 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4272 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4273 MII_CR_RESTART_AUTO_NEG
);
4274 e1000_write_phy_reg(hw
, PHY_CTRL
,
4279 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4280 /* If still no link, perhaps using 2/3 pair cable */
4281 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4282 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4283 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4284 if (!e1000_phy_setup_autoneg(hw
) &&
4285 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4286 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4287 MII_CR_RESTART_AUTO_NEG
);
4288 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4291 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4292 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4293 adapter
->smartspeed
= 0;
4303 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4309 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4322 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4325 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4326 struct e1000_hw
*hw
= &adapter
->hw
;
4327 struct mii_ioctl_data
*data
= if_mii(ifr
);
4331 unsigned long flags
;
4333 if (hw
->media_type
!= e1000_media_type_copper
)
4338 data
->phy_id
= hw
->phy_addr
;
4341 if (!capable(CAP_NET_ADMIN
))
4343 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4344 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4346 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4349 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4352 if (!capable(CAP_NET_ADMIN
))
4354 if (data
->reg_num
& ~(0x1F))
4356 mii_reg
= data
->val_in
;
4357 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4358 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4360 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4363 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4364 if (hw
->media_type
== e1000_media_type_copper
) {
4365 switch (data
->reg_num
) {
4367 if (mii_reg
& MII_CR_POWER_DOWN
)
4369 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4371 hw
->autoneg_advertised
= 0x2F;
4374 spddplx
= SPEED_1000
;
4375 else if (mii_reg
& 0x2000)
4376 spddplx
= SPEED_100
;
4379 spddplx
+= (mii_reg
& 0x100)
4382 retval
= e1000_set_spd_dplx(adapter
,
4387 if (netif_running(adapter
->netdev
))
4388 e1000_reinit_locked(adapter
);
4390 e1000_reset(adapter
);
4392 case M88E1000_PHY_SPEC_CTRL
:
4393 case M88E1000_EXT_PHY_SPEC_CTRL
:
4394 if (e1000_phy_reset(hw
))
4399 switch (data
->reg_num
) {
4401 if (mii_reg
& MII_CR_POWER_DOWN
)
4403 if (netif_running(adapter
->netdev
))
4404 e1000_reinit_locked(adapter
);
4406 e1000_reset(adapter
);
4414 return E1000_SUCCESS
;
4417 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4419 struct e1000_adapter
*adapter
= hw
->back
;
4420 int ret_val
= pci_set_mwi(adapter
->pdev
);
4423 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4426 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4428 struct e1000_adapter
*adapter
= hw
->back
;
4430 pci_clear_mwi(adapter
->pdev
);
4433 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4435 struct e1000_adapter
*adapter
= hw
->back
;
4436 return pcix_get_mmrbc(adapter
->pdev
);
4439 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4441 struct e1000_adapter
*adapter
= hw
->back
;
4442 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4445 s32
e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
4447 struct e1000_adapter
*adapter
= hw
->back
;
4450 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4452 return -E1000_ERR_CONFIG
;
4454 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4456 return E1000_SUCCESS
;
4459 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4464 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4465 struct vlan_group
*grp
)
4467 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4468 struct e1000_hw
*hw
= &adapter
->hw
;
4471 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4472 e1000_irq_disable(adapter
);
4473 adapter
->vlgrp
= grp
;
4476 /* enable VLAN tag insert/strip */
4478 ctrl
|= E1000_CTRL_VME
;
4481 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4482 /* enable VLAN receive filtering */
4484 rctl
&= ~E1000_RCTL_CFIEN
;
4486 e1000_update_mng_vlan(adapter
);
4489 /* disable VLAN tag insert/strip */
4491 ctrl
&= ~E1000_CTRL_VME
;
4494 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4495 if (adapter
->mng_vlan_id
!=
4496 (u16
)E1000_MNG_VLAN_NONE
) {
4497 e1000_vlan_rx_kill_vid(netdev
,
4498 adapter
->mng_vlan_id
);
4499 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4504 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4505 e1000_irq_enable(adapter
);
4508 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4510 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4511 struct e1000_hw
*hw
= &adapter
->hw
;
4514 if ((hw
->mng_cookie
.status
&
4515 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4516 (vid
== adapter
->mng_vlan_id
))
4518 /* add VID to filter table */
4519 index
= (vid
>> 5) & 0x7F;
4520 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4521 vfta
|= (1 << (vid
& 0x1F));
4522 e1000_write_vfta(hw
, index
, vfta
);
4525 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4527 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4528 struct e1000_hw
*hw
= &adapter
->hw
;
4531 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4532 e1000_irq_disable(adapter
);
4533 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4534 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4535 e1000_irq_enable(adapter
);
4537 if ((hw
->mng_cookie
.status
&
4538 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4539 (vid
== adapter
->mng_vlan_id
)) {
4540 /* release control to f/w */
4541 e1000_release_hw_control(adapter
);
4545 /* remove VID from filter table */
4546 index
= (vid
>> 5) & 0x7F;
4547 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4548 vfta
&= ~(1 << (vid
& 0x1F));
4549 e1000_write_vfta(hw
, index
, vfta
);
4552 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4554 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4556 if (adapter
->vlgrp
) {
4558 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4559 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4561 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4566 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4568 struct e1000_hw
*hw
= &adapter
->hw
;
4572 /* Fiber NICs only allow 1000 gbps Full duplex */
4573 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4574 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4575 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4580 case SPEED_10
+ DUPLEX_HALF
:
4581 hw
->forced_speed_duplex
= e1000_10_half
;
4583 case SPEED_10
+ DUPLEX_FULL
:
4584 hw
->forced_speed_duplex
= e1000_10_full
;
4586 case SPEED_100
+ DUPLEX_HALF
:
4587 hw
->forced_speed_duplex
= e1000_100_half
;
4589 case SPEED_100
+ DUPLEX_FULL
:
4590 hw
->forced_speed_duplex
= e1000_100_full
;
4592 case SPEED_1000
+ DUPLEX_FULL
:
4594 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4596 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4598 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4604 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4606 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4607 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4608 struct e1000_hw
*hw
= &adapter
->hw
;
4609 u32 ctrl
, ctrl_ext
, rctl
, status
;
4610 u32 wufc
= adapter
->wol
;
4615 netif_device_detach(netdev
);
4617 if (netif_running(netdev
)) {
4618 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4619 e1000_down(adapter
);
4623 retval
= pci_save_state(pdev
);
4628 status
= er32(STATUS
);
4629 if (status
& E1000_STATUS_LU
)
4630 wufc
&= ~E1000_WUFC_LNKC
;
4633 e1000_setup_rctl(adapter
);
4634 e1000_set_rx_mode(netdev
);
4636 /* turn on all-multi mode if wake on multicast is enabled */
4637 if (wufc
& E1000_WUFC_MC
) {
4639 rctl
|= E1000_RCTL_MPE
;
4643 if (hw
->mac_type
>= e1000_82540
) {
4645 /* advertise wake from D3Cold */
4646 #define E1000_CTRL_ADVD3WUC 0x00100000
4647 /* phy power management enable */
4648 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4649 ctrl
|= E1000_CTRL_ADVD3WUC
|
4650 E1000_CTRL_EN_PHY_PWR_MGMT
;
4654 if (hw
->media_type
== e1000_media_type_fiber
||
4655 hw
->media_type
== e1000_media_type_internal_serdes
) {
4656 /* keep the laser running in D3 */
4657 ctrl_ext
= er32(CTRL_EXT
);
4658 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4659 ew32(CTRL_EXT
, ctrl_ext
);
4662 /* Allow time for pending master requests to run */
4663 e1000_disable_pciex_master(hw
);
4665 ew32(WUC
, E1000_WUC_PME_EN
);
4672 e1000_release_manageability(adapter
);
4674 *enable_wake
= !!wufc
;
4676 /* make sure adapter isn't asleep if manageability is enabled */
4677 if (adapter
->en_mng_pt
)
4678 *enable_wake
= true;
4680 if (hw
->phy_type
== e1000_phy_igp_3
)
4681 e1000_phy_powerdown_workaround(hw
);
4683 if (netif_running(netdev
))
4684 e1000_free_irq(adapter
);
4686 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4687 * would have already happened in close and is redundant. */
4688 e1000_release_hw_control(adapter
);
4690 pci_disable_device(pdev
);
4696 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4701 retval
= __e1000_shutdown(pdev
, &wake
);
4706 pci_prepare_to_sleep(pdev
);
4708 pci_wake_from_d3(pdev
, false);
4709 pci_set_power_state(pdev
, PCI_D3hot
);
4715 static int e1000_resume(struct pci_dev
*pdev
)
4717 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4718 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4719 struct e1000_hw
*hw
= &adapter
->hw
;
4722 pci_set_power_state(pdev
, PCI_D0
);
4723 pci_restore_state(pdev
);
4725 if (adapter
->need_ioport
)
4726 err
= pci_enable_device(pdev
);
4728 err
= pci_enable_device_mem(pdev
);
4730 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
4733 pci_set_master(pdev
);
4735 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4736 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4738 if (netif_running(netdev
)) {
4739 err
= e1000_request_irq(adapter
);
4744 e1000_power_up_phy(adapter
);
4745 e1000_reset(adapter
);
4748 e1000_init_manageability(adapter
);
4750 if (netif_running(netdev
))
4753 netif_device_attach(netdev
);
4755 /* If the controller is 82573 and f/w is AMT, do not set
4756 * DRV_LOAD until the interface is up. For all other cases,
4757 * let the f/w know that the h/w is now under the control
4759 if (hw
->mac_type
!= e1000_82573
||
4760 !e1000_check_mng_mode(hw
))
4761 e1000_get_hw_control(adapter
);
4767 static void e1000_shutdown(struct pci_dev
*pdev
)
4771 __e1000_shutdown(pdev
, &wake
);
4773 if (system_state
== SYSTEM_POWER_OFF
) {
4774 pci_wake_from_d3(pdev
, wake
);
4775 pci_set_power_state(pdev
, PCI_D3hot
);
4779 #ifdef CONFIG_NET_POLL_CONTROLLER
4781 * Polling 'interrupt' - used by things like netconsole to send skbs
4782 * without having to re-enable interrupts. It's not called while
4783 * the interrupt routine is executing.
4785 static void e1000_netpoll(struct net_device
*netdev
)
4787 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4789 disable_irq(adapter
->pdev
->irq
);
4790 e1000_intr(adapter
->pdev
->irq
, netdev
);
4791 enable_irq(adapter
->pdev
->irq
);
4796 * e1000_io_error_detected - called when PCI error is detected
4797 * @pdev: Pointer to PCI device
4798 * @state: The current pci conneection state
4800 * This function is called after a PCI bus error affecting
4801 * this device has been detected.
4803 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4804 pci_channel_state_t state
)
4806 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4807 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4809 netif_device_detach(netdev
);
4811 if (netif_running(netdev
))
4812 e1000_down(adapter
);
4813 pci_disable_device(pdev
);
4815 /* Request a slot slot reset. */
4816 return PCI_ERS_RESULT_NEED_RESET
;
4820 * e1000_io_slot_reset - called after the pci bus has been reset.
4821 * @pdev: Pointer to PCI device
4823 * Restart the card from scratch, as if from a cold-boot. Implementation
4824 * resembles the first-half of the e1000_resume routine.
4826 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4828 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4829 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4830 struct e1000_hw
*hw
= &adapter
->hw
;
4833 if (adapter
->need_ioport
)
4834 err
= pci_enable_device(pdev
);
4836 err
= pci_enable_device_mem(pdev
);
4838 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4839 return PCI_ERS_RESULT_DISCONNECT
;
4841 pci_set_master(pdev
);
4843 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4844 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4846 e1000_reset(adapter
);
4849 return PCI_ERS_RESULT_RECOVERED
;
4853 * e1000_io_resume - called when traffic can start flowing again.
4854 * @pdev: Pointer to PCI device
4856 * This callback is called when the error recovery driver tells us that
4857 * its OK to resume normal operation. Implementation resembles the
4858 * second-half of the e1000_resume routine.
4860 static void e1000_io_resume(struct pci_dev
*pdev
)
4862 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4863 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4864 struct e1000_hw
*hw
= &adapter
->hw
;
4866 e1000_init_manageability(adapter
);
4868 if (netif_running(netdev
)) {
4869 if (e1000_up(adapter
)) {
4870 printk("e1000: can't bring device back up after reset\n");
4875 netif_device_attach(netdev
);
4877 /* If the controller is 82573 and f/w is AMT, do not set
4878 * DRV_LOAD until the interface is up. For all other cases,
4879 * let the f/w know that the h/w is now under the control
4881 if (hw
->mac_type
!= e1000_82573
||
4882 !e1000_check_mng_mode(hw
))
4883 e1000_get_hw_control(adapter
);