2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
29 #include "print-tree.h"
30 #include "transaction.h"
33 #include "free-space-cache.h"
35 static int update_block_group(struct btrfs_trans_handle
*trans
,
36 struct btrfs_root
*root
,
37 u64 bytenr
, u64 num_bytes
, int alloc
,
39 static int update_reserved_extents(struct btrfs_block_group_cache
*cache
,
40 u64 num_bytes
, int reserve
);
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
60 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
61 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
62 u64 flags
, int force
);
63 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
64 struct btrfs_root
*root
,
65 struct btrfs_path
*path
,
66 u64 bytenr
, u64 num_bytes
,
67 int is_data
, int reserved
,
68 struct extent_buffer
**must_clean
);
69 static int find_next_key(struct btrfs_path
*path
, int level
,
70 struct btrfs_key
*key
);
71 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
72 int dump_block_groups
);
75 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
78 return cache
->cached
== BTRFS_CACHE_FINISHED
;
81 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
83 return (cache
->flags
& bits
) == bits
;
87 * this adds the block group to the fs_info rb tree for the block group
90 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
91 struct btrfs_block_group_cache
*block_group
)
94 struct rb_node
*parent
= NULL
;
95 struct btrfs_block_group_cache
*cache
;
97 spin_lock(&info
->block_group_cache_lock
);
98 p
= &info
->block_group_cache_tree
.rb_node
;
102 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
104 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
106 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
109 spin_unlock(&info
->block_group_cache_lock
);
114 rb_link_node(&block_group
->cache_node
, parent
, p
);
115 rb_insert_color(&block_group
->cache_node
,
116 &info
->block_group_cache_tree
);
117 spin_unlock(&info
->block_group_cache_lock
);
123 * This will return the block group at or after bytenr if contains is 0, else
124 * it will return the block group that contains the bytenr
126 static struct btrfs_block_group_cache
*
127 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
130 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
134 spin_lock(&info
->block_group_cache_lock
);
135 n
= info
->block_group_cache_tree
.rb_node
;
138 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
140 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
141 start
= cache
->key
.objectid
;
143 if (bytenr
< start
) {
144 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
147 } else if (bytenr
> start
) {
148 if (contains
&& bytenr
<= end
) {
159 atomic_inc(&ret
->count
);
160 spin_unlock(&info
->block_group_cache_lock
);
165 static int add_excluded_extent(struct btrfs_root
*root
,
166 u64 start
, u64 num_bytes
)
168 u64 end
= start
+ num_bytes
- 1;
169 set_extent_bits(&root
->fs_info
->freed_extents
[0],
170 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
171 set_extent_bits(&root
->fs_info
->freed_extents
[1],
172 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
176 static void free_excluded_extents(struct btrfs_root
*root
,
177 struct btrfs_block_group_cache
*cache
)
181 start
= cache
->key
.objectid
;
182 end
= start
+ cache
->key
.offset
- 1;
184 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
185 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
186 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
187 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
190 static int exclude_super_stripes(struct btrfs_root
*root
,
191 struct btrfs_block_group_cache
*cache
)
198 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
199 bytenr
= btrfs_sb_offset(i
);
200 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
201 cache
->key
.objectid
, bytenr
,
202 0, &logical
, &nr
, &stripe_len
);
206 cache
->bytes_super
+= stripe_len
;
207 ret
= add_excluded_extent(root
, logical
[nr
],
217 static struct btrfs_caching_control
*
218 get_caching_control(struct btrfs_block_group_cache
*cache
)
220 struct btrfs_caching_control
*ctl
;
222 spin_lock(&cache
->lock
);
223 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
224 spin_unlock(&cache
->lock
);
228 ctl
= cache
->caching_ctl
;
229 atomic_inc(&ctl
->count
);
230 spin_unlock(&cache
->lock
);
234 static void put_caching_control(struct btrfs_caching_control
*ctl
)
236 if (atomic_dec_and_test(&ctl
->count
))
241 * this is only called by cache_block_group, since we could have freed extents
242 * we need to check the pinned_extents for any extents that can't be used yet
243 * since their free space will be released as soon as the transaction commits.
245 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
246 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
248 u64 extent_start
, extent_end
, size
, total_added
= 0;
251 while (start
< end
) {
252 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
253 &extent_start
, &extent_end
,
254 EXTENT_DIRTY
| EXTENT_UPTODATE
);
258 if (extent_start
== start
) {
259 start
= extent_end
+ 1;
260 } else if (extent_start
> start
&& extent_start
< end
) {
261 size
= extent_start
- start
;
263 ret
= btrfs_add_free_space(block_group
, start
,
266 start
= extent_end
+ 1;
275 ret
= btrfs_add_free_space(block_group
, start
, size
);
282 static int caching_kthread(void *data
)
284 struct btrfs_block_group_cache
*block_group
= data
;
285 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
286 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
287 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
288 struct btrfs_path
*path
;
289 struct extent_buffer
*leaf
;
290 struct btrfs_key key
;
296 path
= btrfs_alloc_path();
300 exclude_super_stripes(extent_root
, block_group
);
301 spin_lock(&block_group
->space_info
->lock
);
302 block_group
->space_info
->bytes_super
+= block_group
->bytes_super
;
303 spin_unlock(&block_group
->space_info
->lock
);
305 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
308 * We don't want to deadlock with somebody trying to allocate a new
309 * extent for the extent root while also trying to search the extent
310 * root to add free space. So we skip locking and search the commit
311 * root, since its read-only
313 path
->skip_locking
= 1;
314 path
->search_commit_root
= 1;
319 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
321 mutex_lock(&caching_ctl
->mutex
);
322 /* need to make sure the commit_root doesn't disappear */
323 down_read(&fs_info
->extent_commit_sem
);
325 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
329 leaf
= path
->nodes
[0];
330 nritems
= btrfs_header_nritems(leaf
);
334 if (fs_info
->closing
> 1) {
339 if (path
->slots
[0] < nritems
) {
340 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
342 ret
= find_next_key(path
, 0, &key
);
346 caching_ctl
->progress
= last
;
347 btrfs_release_path(extent_root
, path
);
348 up_read(&fs_info
->extent_commit_sem
);
349 mutex_unlock(&caching_ctl
->mutex
);
350 if (btrfs_transaction_in_commit(fs_info
))
357 if (key
.objectid
< block_group
->key
.objectid
) {
362 if (key
.objectid
>= block_group
->key
.objectid
+
363 block_group
->key
.offset
)
366 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
367 total_found
+= add_new_free_space(block_group
,
370 last
= key
.objectid
+ key
.offset
;
372 if (total_found
> (1024 * 1024 * 2)) {
374 wake_up(&caching_ctl
->wait
);
381 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
382 block_group
->key
.objectid
+
383 block_group
->key
.offset
);
384 caching_ctl
->progress
= (u64
)-1;
386 spin_lock(&block_group
->lock
);
387 block_group
->caching_ctl
= NULL
;
388 block_group
->cached
= BTRFS_CACHE_FINISHED
;
389 spin_unlock(&block_group
->lock
);
392 btrfs_free_path(path
);
393 up_read(&fs_info
->extent_commit_sem
);
395 free_excluded_extents(extent_root
, block_group
);
397 mutex_unlock(&caching_ctl
->mutex
);
398 wake_up(&caching_ctl
->wait
);
400 put_caching_control(caching_ctl
);
401 atomic_dec(&block_group
->space_info
->caching_threads
);
405 static int cache_block_group(struct btrfs_block_group_cache
*cache
)
407 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
408 struct btrfs_caching_control
*caching_ctl
;
409 struct task_struct
*tsk
;
413 if (cache
->cached
!= BTRFS_CACHE_NO
)
416 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_KERNEL
);
417 BUG_ON(!caching_ctl
);
419 INIT_LIST_HEAD(&caching_ctl
->list
);
420 mutex_init(&caching_ctl
->mutex
);
421 init_waitqueue_head(&caching_ctl
->wait
);
422 caching_ctl
->block_group
= cache
;
423 caching_ctl
->progress
= cache
->key
.objectid
;
424 /* one for caching kthread, one for caching block group list */
425 atomic_set(&caching_ctl
->count
, 2);
427 spin_lock(&cache
->lock
);
428 if (cache
->cached
!= BTRFS_CACHE_NO
) {
429 spin_unlock(&cache
->lock
);
433 cache
->caching_ctl
= caching_ctl
;
434 cache
->cached
= BTRFS_CACHE_STARTED
;
435 spin_unlock(&cache
->lock
);
437 down_write(&fs_info
->extent_commit_sem
);
438 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
439 up_write(&fs_info
->extent_commit_sem
);
441 atomic_inc(&cache
->space_info
->caching_threads
);
443 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
444 cache
->key
.objectid
);
447 printk(KERN_ERR
"error running thread %d\n", ret
);
455 * return the block group that starts at or after bytenr
457 static struct btrfs_block_group_cache
*
458 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
460 struct btrfs_block_group_cache
*cache
;
462 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
468 * return the block group that contains the given bytenr
470 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
471 struct btrfs_fs_info
*info
,
474 struct btrfs_block_group_cache
*cache
;
476 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
481 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
483 if (atomic_dec_and_test(&cache
->count
))
487 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
490 struct list_head
*head
= &info
->space_info
;
491 struct btrfs_space_info
*found
;
494 list_for_each_entry_rcu(found
, head
, list
) {
495 if (found
->flags
== flags
) {
505 * after adding space to the filesystem, we need to clear the full flags
506 * on all the space infos.
508 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
510 struct list_head
*head
= &info
->space_info
;
511 struct btrfs_space_info
*found
;
514 list_for_each_entry_rcu(found
, head
, list
)
519 static u64
div_factor(u64 num
, int factor
)
528 u64
btrfs_find_block_group(struct btrfs_root
*root
,
529 u64 search_start
, u64 search_hint
, int owner
)
531 struct btrfs_block_group_cache
*cache
;
533 u64 last
= max(search_hint
, search_start
);
540 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
544 spin_lock(&cache
->lock
);
545 last
= cache
->key
.objectid
+ cache
->key
.offset
;
546 used
= btrfs_block_group_used(&cache
->item
);
548 if ((full_search
|| !cache
->ro
) &&
549 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
550 if (used
+ cache
->pinned
+ cache
->reserved
<
551 div_factor(cache
->key
.offset
, factor
)) {
552 group_start
= cache
->key
.objectid
;
553 spin_unlock(&cache
->lock
);
554 btrfs_put_block_group(cache
);
558 spin_unlock(&cache
->lock
);
559 btrfs_put_block_group(cache
);
567 if (!full_search
&& factor
< 10) {
577 /* simple helper to search for an existing extent at a given offset */
578 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
581 struct btrfs_key key
;
582 struct btrfs_path
*path
;
584 path
= btrfs_alloc_path();
586 key
.objectid
= start
;
588 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
589 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
591 btrfs_free_path(path
);
596 * Back reference rules. Back refs have three main goals:
598 * 1) differentiate between all holders of references to an extent so that
599 * when a reference is dropped we can make sure it was a valid reference
600 * before freeing the extent.
602 * 2) Provide enough information to quickly find the holders of an extent
603 * if we notice a given block is corrupted or bad.
605 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
606 * maintenance. This is actually the same as #2, but with a slightly
607 * different use case.
609 * There are two kinds of back refs. The implicit back refs is optimized
610 * for pointers in non-shared tree blocks. For a given pointer in a block,
611 * back refs of this kind provide information about the block's owner tree
612 * and the pointer's key. These information allow us to find the block by
613 * b-tree searching. The full back refs is for pointers in tree blocks not
614 * referenced by their owner trees. The location of tree block is recorded
615 * in the back refs. Actually the full back refs is generic, and can be
616 * used in all cases the implicit back refs is used. The major shortcoming
617 * of the full back refs is its overhead. Every time a tree block gets
618 * COWed, we have to update back refs entry for all pointers in it.
620 * For a newly allocated tree block, we use implicit back refs for
621 * pointers in it. This means most tree related operations only involve
622 * implicit back refs. For a tree block created in old transaction, the
623 * only way to drop a reference to it is COW it. So we can detect the
624 * event that tree block loses its owner tree's reference and do the
625 * back refs conversion.
627 * When a tree block is COW'd through a tree, there are four cases:
629 * The reference count of the block is one and the tree is the block's
630 * owner tree. Nothing to do in this case.
632 * The reference count of the block is one and the tree is not the
633 * block's owner tree. In this case, full back refs is used for pointers
634 * in the block. Remove these full back refs, add implicit back refs for
635 * every pointers in the new block.
637 * The reference count of the block is greater than one and the tree is
638 * the block's owner tree. In this case, implicit back refs is used for
639 * pointers in the block. Add full back refs for every pointers in the
640 * block, increase lower level extents' reference counts. The original
641 * implicit back refs are entailed to the new block.
643 * The reference count of the block is greater than one and the tree is
644 * not the block's owner tree. Add implicit back refs for every pointer in
645 * the new block, increase lower level extents' reference count.
647 * Back Reference Key composing:
649 * The key objectid corresponds to the first byte in the extent,
650 * The key type is used to differentiate between types of back refs.
651 * There are different meanings of the key offset for different types
654 * File extents can be referenced by:
656 * - multiple snapshots, subvolumes, or different generations in one subvol
657 * - different files inside a single subvolume
658 * - different offsets inside a file (bookend extents in file.c)
660 * The extent ref structure for the implicit back refs has fields for:
662 * - Objectid of the subvolume root
663 * - objectid of the file holding the reference
664 * - original offset in the file
665 * - how many bookend extents
667 * The key offset for the implicit back refs is hash of the first
670 * The extent ref structure for the full back refs has field for:
672 * - number of pointers in the tree leaf
674 * The key offset for the implicit back refs is the first byte of
677 * When a file extent is allocated, The implicit back refs is used.
678 * the fields are filled in:
680 * (root_key.objectid, inode objectid, offset in file, 1)
682 * When a file extent is removed file truncation, we find the
683 * corresponding implicit back refs and check the following fields:
685 * (btrfs_header_owner(leaf), inode objectid, offset in file)
687 * Btree extents can be referenced by:
689 * - Different subvolumes
691 * Both the implicit back refs and the full back refs for tree blocks
692 * only consist of key. The key offset for the implicit back refs is
693 * objectid of block's owner tree. The key offset for the full back refs
694 * is the first byte of parent block.
696 * When implicit back refs is used, information about the lowest key and
697 * level of the tree block are required. These information are stored in
698 * tree block info structure.
701 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
702 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
703 struct btrfs_root
*root
,
704 struct btrfs_path
*path
,
705 u64 owner
, u32 extra_size
)
707 struct btrfs_extent_item
*item
;
708 struct btrfs_extent_item_v0
*ei0
;
709 struct btrfs_extent_ref_v0
*ref0
;
710 struct btrfs_tree_block_info
*bi
;
711 struct extent_buffer
*leaf
;
712 struct btrfs_key key
;
713 struct btrfs_key found_key
;
714 u32 new_size
= sizeof(*item
);
718 leaf
= path
->nodes
[0];
719 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
721 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
722 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
723 struct btrfs_extent_item_v0
);
724 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
726 if (owner
== (u64
)-1) {
728 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
729 ret
= btrfs_next_leaf(root
, path
);
733 leaf
= path
->nodes
[0];
735 btrfs_item_key_to_cpu(leaf
, &found_key
,
737 BUG_ON(key
.objectid
!= found_key
.objectid
);
738 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
742 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
743 struct btrfs_extent_ref_v0
);
744 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
748 btrfs_release_path(root
, path
);
750 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
751 new_size
+= sizeof(*bi
);
753 new_size
-= sizeof(*ei0
);
754 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
755 new_size
+ extra_size
, 1);
760 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
763 leaf
= path
->nodes
[0];
764 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
765 btrfs_set_extent_refs(leaf
, item
, refs
);
766 /* FIXME: get real generation */
767 btrfs_set_extent_generation(leaf
, item
, 0);
768 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
769 btrfs_set_extent_flags(leaf
, item
,
770 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
771 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
772 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
773 /* FIXME: get first key of the block */
774 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
775 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
777 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
779 btrfs_mark_buffer_dirty(leaf
);
784 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
786 u32 high_crc
= ~(u32
)0;
787 u32 low_crc
= ~(u32
)0;
790 lenum
= cpu_to_le64(root_objectid
);
791 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
792 lenum
= cpu_to_le64(owner
);
793 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
794 lenum
= cpu_to_le64(offset
);
795 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
797 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
800 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
801 struct btrfs_extent_data_ref
*ref
)
803 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
804 btrfs_extent_data_ref_objectid(leaf
, ref
),
805 btrfs_extent_data_ref_offset(leaf
, ref
));
808 static int match_extent_data_ref(struct extent_buffer
*leaf
,
809 struct btrfs_extent_data_ref
*ref
,
810 u64 root_objectid
, u64 owner
, u64 offset
)
812 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
813 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
814 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
819 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
820 struct btrfs_root
*root
,
821 struct btrfs_path
*path
,
822 u64 bytenr
, u64 parent
,
824 u64 owner
, u64 offset
)
826 struct btrfs_key key
;
827 struct btrfs_extent_data_ref
*ref
;
828 struct extent_buffer
*leaf
;
834 key
.objectid
= bytenr
;
836 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
839 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
840 key
.offset
= hash_extent_data_ref(root_objectid
,
845 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
854 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
855 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
856 btrfs_release_path(root
, path
);
857 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
868 leaf
= path
->nodes
[0];
869 nritems
= btrfs_header_nritems(leaf
);
871 if (path
->slots
[0] >= nritems
) {
872 ret
= btrfs_next_leaf(root
, path
);
878 leaf
= path
->nodes
[0];
879 nritems
= btrfs_header_nritems(leaf
);
883 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
884 if (key
.objectid
!= bytenr
||
885 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
888 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
889 struct btrfs_extent_data_ref
);
891 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
894 btrfs_release_path(root
, path
);
906 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
907 struct btrfs_root
*root
,
908 struct btrfs_path
*path
,
909 u64 bytenr
, u64 parent
,
910 u64 root_objectid
, u64 owner
,
911 u64 offset
, int refs_to_add
)
913 struct btrfs_key key
;
914 struct extent_buffer
*leaf
;
919 key
.objectid
= bytenr
;
921 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
923 size
= sizeof(struct btrfs_shared_data_ref
);
925 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
926 key
.offset
= hash_extent_data_ref(root_objectid
,
928 size
= sizeof(struct btrfs_extent_data_ref
);
931 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
932 if (ret
&& ret
!= -EEXIST
)
935 leaf
= path
->nodes
[0];
937 struct btrfs_shared_data_ref
*ref
;
938 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
939 struct btrfs_shared_data_ref
);
941 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
943 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
944 num_refs
+= refs_to_add
;
945 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
948 struct btrfs_extent_data_ref
*ref
;
949 while (ret
== -EEXIST
) {
950 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
951 struct btrfs_extent_data_ref
);
952 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
955 btrfs_release_path(root
, path
);
957 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
959 if (ret
&& ret
!= -EEXIST
)
962 leaf
= path
->nodes
[0];
964 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
965 struct btrfs_extent_data_ref
);
967 btrfs_set_extent_data_ref_root(leaf
, ref
,
969 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
970 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
971 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
973 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
974 num_refs
+= refs_to_add
;
975 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
978 btrfs_mark_buffer_dirty(leaf
);
981 btrfs_release_path(root
, path
);
985 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
986 struct btrfs_root
*root
,
987 struct btrfs_path
*path
,
990 struct btrfs_key key
;
991 struct btrfs_extent_data_ref
*ref1
= NULL
;
992 struct btrfs_shared_data_ref
*ref2
= NULL
;
993 struct extent_buffer
*leaf
;
997 leaf
= path
->nodes
[0];
998 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1000 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1001 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1002 struct btrfs_extent_data_ref
);
1003 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1004 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1005 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1006 struct btrfs_shared_data_ref
);
1007 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1009 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1010 struct btrfs_extent_ref_v0
*ref0
;
1011 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1012 struct btrfs_extent_ref_v0
);
1013 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1019 BUG_ON(num_refs
< refs_to_drop
);
1020 num_refs
-= refs_to_drop
;
1022 if (num_refs
== 0) {
1023 ret
= btrfs_del_item(trans
, root
, path
);
1025 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1026 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1027 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1028 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1029 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1031 struct btrfs_extent_ref_v0
*ref0
;
1032 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1033 struct btrfs_extent_ref_v0
);
1034 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1037 btrfs_mark_buffer_dirty(leaf
);
1042 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1043 struct btrfs_path
*path
,
1044 struct btrfs_extent_inline_ref
*iref
)
1046 struct btrfs_key key
;
1047 struct extent_buffer
*leaf
;
1048 struct btrfs_extent_data_ref
*ref1
;
1049 struct btrfs_shared_data_ref
*ref2
;
1052 leaf
= path
->nodes
[0];
1053 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1055 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1056 BTRFS_EXTENT_DATA_REF_KEY
) {
1057 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1058 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1060 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1061 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1063 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1064 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1065 struct btrfs_extent_data_ref
);
1066 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1067 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1068 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1069 struct btrfs_shared_data_ref
);
1070 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1071 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1072 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1073 struct btrfs_extent_ref_v0
*ref0
;
1074 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1075 struct btrfs_extent_ref_v0
);
1076 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1084 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1085 struct btrfs_root
*root
,
1086 struct btrfs_path
*path
,
1087 u64 bytenr
, u64 parent
,
1090 struct btrfs_key key
;
1093 key
.objectid
= bytenr
;
1095 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1096 key
.offset
= parent
;
1098 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1099 key
.offset
= root_objectid
;
1102 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 if (ret
== -ENOENT
&& parent
) {
1107 btrfs_release_path(root
, path
);
1108 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1109 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1117 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1118 struct btrfs_root
*root
,
1119 struct btrfs_path
*path
,
1120 u64 bytenr
, u64 parent
,
1123 struct btrfs_key key
;
1126 key
.objectid
= bytenr
;
1128 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1129 key
.offset
= parent
;
1131 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1132 key
.offset
= root_objectid
;
1135 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1136 btrfs_release_path(root
, path
);
1140 static inline int extent_ref_type(u64 parent
, u64 owner
)
1143 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1145 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1147 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1150 type
= BTRFS_SHARED_DATA_REF_KEY
;
1152 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1157 static int find_next_key(struct btrfs_path
*path
, int level
,
1158 struct btrfs_key
*key
)
1161 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1162 if (!path
->nodes
[level
])
1164 if (path
->slots
[level
] + 1 >=
1165 btrfs_header_nritems(path
->nodes
[level
]))
1168 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1169 path
->slots
[level
] + 1);
1171 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1172 path
->slots
[level
] + 1);
1179 * look for inline back ref. if back ref is found, *ref_ret is set
1180 * to the address of inline back ref, and 0 is returned.
1182 * if back ref isn't found, *ref_ret is set to the address where it
1183 * should be inserted, and -ENOENT is returned.
1185 * if insert is true and there are too many inline back refs, the path
1186 * points to the extent item, and -EAGAIN is returned.
1188 * NOTE: inline back refs are ordered in the same way that back ref
1189 * items in the tree are ordered.
1191 static noinline_for_stack
1192 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_root
*root
,
1194 struct btrfs_path
*path
,
1195 struct btrfs_extent_inline_ref
**ref_ret
,
1196 u64 bytenr
, u64 num_bytes
,
1197 u64 parent
, u64 root_objectid
,
1198 u64 owner
, u64 offset
, int insert
)
1200 struct btrfs_key key
;
1201 struct extent_buffer
*leaf
;
1202 struct btrfs_extent_item
*ei
;
1203 struct btrfs_extent_inline_ref
*iref
;
1214 key
.objectid
= bytenr
;
1215 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1216 key
.offset
= num_bytes
;
1218 want
= extent_ref_type(parent
, owner
);
1220 extra_size
= btrfs_extent_inline_ref_size(want
);
1221 path
->keep_locks
= 1;
1224 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1231 leaf
= path
->nodes
[0];
1232 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1233 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1234 if (item_size
< sizeof(*ei
)) {
1239 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1245 leaf
= path
->nodes
[0];
1246 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1249 BUG_ON(item_size
< sizeof(*ei
));
1251 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1252 flags
= btrfs_extent_flags(leaf
, ei
);
1254 ptr
= (unsigned long)(ei
+ 1);
1255 end
= (unsigned long)ei
+ item_size
;
1257 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1258 ptr
+= sizeof(struct btrfs_tree_block_info
);
1261 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1270 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1271 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1275 ptr
+= btrfs_extent_inline_ref_size(type
);
1279 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1280 struct btrfs_extent_data_ref
*dref
;
1281 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1282 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1287 if (hash_extent_data_ref_item(leaf
, dref
) <
1288 hash_extent_data_ref(root_objectid
, owner
, offset
))
1292 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1294 if (parent
== ref_offset
) {
1298 if (ref_offset
< parent
)
1301 if (root_objectid
== ref_offset
) {
1305 if (ref_offset
< root_objectid
)
1309 ptr
+= btrfs_extent_inline_ref_size(type
);
1311 if (err
== -ENOENT
&& insert
) {
1312 if (item_size
+ extra_size
>=
1313 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1318 * To add new inline back ref, we have to make sure
1319 * there is no corresponding back ref item.
1320 * For simplicity, we just do not add new inline back
1321 * ref if there is any kind of item for this block
1323 if (find_next_key(path
, 0, &key
) == 0 &&
1324 key
.objectid
== bytenr
&&
1325 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1330 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1333 path
->keep_locks
= 0;
1334 btrfs_unlock_up_safe(path
, 1);
1340 * helper to add new inline back ref
1342 static noinline_for_stack
1343 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1344 struct btrfs_root
*root
,
1345 struct btrfs_path
*path
,
1346 struct btrfs_extent_inline_ref
*iref
,
1347 u64 parent
, u64 root_objectid
,
1348 u64 owner
, u64 offset
, int refs_to_add
,
1349 struct btrfs_delayed_extent_op
*extent_op
)
1351 struct extent_buffer
*leaf
;
1352 struct btrfs_extent_item
*ei
;
1355 unsigned long item_offset
;
1361 leaf
= path
->nodes
[0];
1362 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1363 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1365 type
= extent_ref_type(parent
, owner
);
1366 size
= btrfs_extent_inline_ref_size(type
);
1368 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1371 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1372 refs
= btrfs_extent_refs(leaf
, ei
);
1373 refs
+= refs_to_add
;
1374 btrfs_set_extent_refs(leaf
, ei
, refs
);
1376 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1378 ptr
= (unsigned long)ei
+ item_offset
;
1379 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1380 if (ptr
< end
- size
)
1381 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1384 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1385 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1386 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1387 struct btrfs_extent_data_ref
*dref
;
1388 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1389 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1390 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1391 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1392 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1393 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1394 struct btrfs_shared_data_ref
*sref
;
1395 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1396 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1397 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1398 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1399 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1401 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1403 btrfs_mark_buffer_dirty(leaf
);
1407 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1408 struct btrfs_root
*root
,
1409 struct btrfs_path
*path
,
1410 struct btrfs_extent_inline_ref
**ref_ret
,
1411 u64 bytenr
, u64 num_bytes
, u64 parent
,
1412 u64 root_objectid
, u64 owner
, u64 offset
)
1416 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1417 bytenr
, num_bytes
, parent
,
1418 root_objectid
, owner
, offset
, 0);
1422 btrfs_release_path(root
, path
);
1425 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1426 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1429 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1430 root_objectid
, owner
, offset
);
1436 * helper to update/remove inline back ref
1438 static noinline_for_stack
1439 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1440 struct btrfs_root
*root
,
1441 struct btrfs_path
*path
,
1442 struct btrfs_extent_inline_ref
*iref
,
1444 struct btrfs_delayed_extent_op
*extent_op
)
1446 struct extent_buffer
*leaf
;
1447 struct btrfs_extent_item
*ei
;
1448 struct btrfs_extent_data_ref
*dref
= NULL
;
1449 struct btrfs_shared_data_ref
*sref
= NULL
;
1458 leaf
= path
->nodes
[0];
1459 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1460 refs
= btrfs_extent_refs(leaf
, ei
);
1461 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1462 refs
+= refs_to_mod
;
1463 btrfs_set_extent_refs(leaf
, ei
, refs
);
1465 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1467 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1469 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1470 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1471 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1472 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1473 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1474 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1477 BUG_ON(refs_to_mod
!= -1);
1480 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1481 refs
+= refs_to_mod
;
1484 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1485 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1487 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1489 size
= btrfs_extent_inline_ref_size(type
);
1490 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1491 ptr
= (unsigned long)iref
;
1492 end
= (unsigned long)ei
+ item_size
;
1493 if (ptr
+ size
< end
)
1494 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1497 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1500 btrfs_mark_buffer_dirty(leaf
);
1504 static noinline_for_stack
1505 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1506 struct btrfs_root
*root
,
1507 struct btrfs_path
*path
,
1508 u64 bytenr
, u64 num_bytes
, u64 parent
,
1509 u64 root_objectid
, u64 owner
,
1510 u64 offset
, int refs_to_add
,
1511 struct btrfs_delayed_extent_op
*extent_op
)
1513 struct btrfs_extent_inline_ref
*iref
;
1516 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1517 bytenr
, num_bytes
, parent
,
1518 root_objectid
, owner
, offset
, 1);
1520 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1521 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1522 refs_to_add
, extent_op
);
1523 } else if (ret
== -ENOENT
) {
1524 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1525 parent
, root_objectid
,
1526 owner
, offset
, refs_to_add
,
1532 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1533 struct btrfs_root
*root
,
1534 struct btrfs_path
*path
,
1535 u64 bytenr
, u64 parent
, u64 root_objectid
,
1536 u64 owner
, u64 offset
, int refs_to_add
)
1539 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1540 BUG_ON(refs_to_add
!= 1);
1541 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1542 parent
, root_objectid
);
1544 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1545 parent
, root_objectid
,
1546 owner
, offset
, refs_to_add
);
1551 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1552 struct btrfs_root
*root
,
1553 struct btrfs_path
*path
,
1554 struct btrfs_extent_inline_ref
*iref
,
1555 int refs_to_drop
, int is_data
)
1559 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1561 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1562 -refs_to_drop
, NULL
);
1563 } else if (is_data
) {
1564 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1566 ret
= btrfs_del_item(trans
, root
, path
);
1571 static void btrfs_issue_discard(struct block_device
*bdev
,
1574 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
,
1575 DISCARD_FL_BARRIER
);
1578 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1582 u64 map_length
= num_bytes
;
1583 struct btrfs_multi_bio
*multi
= NULL
;
1585 if (!btrfs_test_opt(root
, DISCARD
))
1588 /* Tell the block device(s) that the sectors can be discarded */
1589 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1590 bytenr
, &map_length
, &multi
, 0);
1592 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1595 if (map_length
> num_bytes
)
1596 map_length
= num_bytes
;
1598 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1599 btrfs_issue_discard(stripe
->dev
->bdev
,
1609 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1610 struct btrfs_root
*root
,
1611 u64 bytenr
, u64 num_bytes
, u64 parent
,
1612 u64 root_objectid
, u64 owner
, u64 offset
)
1615 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1616 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1618 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1619 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1620 parent
, root_objectid
, (int)owner
,
1621 BTRFS_ADD_DELAYED_REF
, NULL
);
1623 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1624 parent
, root_objectid
, owner
, offset
,
1625 BTRFS_ADD_DELAYED_REF
, NULL
);
1630 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1631 struct btrfs_root
*root
,
1632 u64 bytenr
, u64 num_bytes
,
1633 u64 parent
, u64 root_objectid
,
1634 u64 owner
, u64 offset
, int refs_to_add
,
1635 struct btrfs_delayed_extent_op
*extent_op
)
1637 struct btrfs_path
*path
;
1638 struct extent_buffer
*leaf
;
1639 struct btrfs_extent_item
*item
;
1644 path
= btrfs_alloc_path();
1649 path
->leave_spinning
= 1;
1650 /* this will setup the path even if it fails to insert the back ref */
1651 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1652 path
, bytenr
, num_bytes
, parent
,
1653 root_objectid
, owner
, offset
,
1654 refs_to_add
, extent_op
);
1658 if (ret
!= -EAGAIN
) {
1663 leaf
= path
->nodes
[0];
1664 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1665 refs
= btrfs_extent_refs(leaf
, item
);
1666 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1668 __run_delayed_extent_op(extent_op
, leaf
, item
);
1670 btrfs_mark_buffer_dirty(leaf
);
1671 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1674 path
->leave_spinning
= 1;
1676 /* now insert the actual backref */
1677 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1678 path
, bytenr
, parent
, root_objectid
,
1679 owner
, offset
, refs_to_add
);
1682 btrfs_free_path(path
);
1686 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1687 struct btrfs_root
*root
,
1688 struct btrfs_delayed_ref_node
*node
,
1689 struct btrfs_delayed_extent_op
*extent_op
,
1690 int insert_reserved
)
1693 struct btrfs_delayed_data_ref
*ref
;
1694 struct btrfs_key ins
;
1699 ins
.objectid
= node
->bytenr
;
1700 ins
.offset
= node
->num_bytes
;
1701 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1703 ref
= btrfs_delayed_node_to_data_ref(node
);
1704 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1705 parent
= ref
->parent
;
1707 ref_root
= ref
->root
;
1709 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1711 BUG_ON(extent_op
->update_key
);
1712 flags
|= extent_op
->flags_to_set
;
1714 ret
= alloc_reserved_file_extent(trans
, root
,
1715 parent
, ref_root
, flags
,
1716 ref
->objectid
, ref
->offset
,
1717 &ins
, node
->ref_mod
);
1718 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1719 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1720 node
->num_bytes
, parent
,
1721 ref_root
, ref
->objectid
,
1722 ref
->offset
, node
->ref_mod
,
1724 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1725 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1726 node
->num_bytes
, parent
,
1727 ref_root
, ref
->objectid
,
1728 ref
->offset
, node
->ref_mod
,
1736 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1737 struct extent_buffer
*leaf
,
1738 struct btrfs_extent_item
*ei
)
1740 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1741 if (extent_op
->update_flags
) {
1742 flags
|= extent_op
->flags_to_set
;
1743 btrfs_set_extent_flags(leaf
, ei
, flags
);
1746 if (extent_op
->update_key
) {
1747 struct btrfs_tree_block_info
*bi
;
1748 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1749 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1750 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1754 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1755 struct btrfs_root
*root
,
1756 struct btrfs_delayed_ref_node
*node
,
1757 struct btrfs_delayed_extent_op
*extent_op
)
1759 struct btrfs_key key
;
1760 struct btrfs_path
*path
;
1761 struct btrfs_extent_item
*ei
;
1762 struct extent_buffer
*leaf
;
1767 path
= btrfs_alloc_path();
1771 key
.objectid
= node
->bytenr
;
1772 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1773 key
.offset
= node
->num_bytes
;
1776 path
->leave_spinning
= 1;
1777 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1788 leaf
= path
->nodes
[0];
1789 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1790 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1791 if (item_size
< sizeof(*ei
)) {
1792 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1798 leaf
= path
->nodes
[0];
1799 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1802 BUG_ON(item_size
< sizeof(*ei
));
1803 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1804 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1806 btrfs_mark_buffer_dirty(leaf
);
1808 btrfs_free_path(path
);
1812 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1813 struct btrfs_root
*root
,
1814 struct btrfs_delayed_ref_node
*node
,
1815 struct btrfs_delayed_extent_op
*extent_op
,
1816 int insert_reserved
)
1819 struct btrfs_delayed_tree_ref
*ref
;
1820 struct btrfs_key ins
;
1824 ins
.objectid
= node
->bytenr
;
1825 ins
.offset
= node
->num_bytes
;
1826 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1828 ref
= btrfs_delayed_node_to_tree_ref(node
);
1829 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1830 parent
= ref
->parent
;
1832 ref_root
= ref
->root
;
1834 BUG_ON(node
->ref_mod
!= 1);
1835 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1836 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
1837 !extent_op
->update_key
);
1838 ret
= alloc_reserved_tree_block(trans
, root
,
1840 extent_op
->flags_to_set
,
1843 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1844 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1845 node
->num_bytes
, parent
, ref_root
,
1846 ref
->level
, 0, 1, extent_op
);
1847 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1848 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1849 node
->num_bytes
, parent
, ref_root
,
1850 ref
->level
, 0, 1, extent_op
);
1858 /* helper function to actually process a single delayed ref entry */
1859 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1860 struct btrfs_root
*root
,
1861 struct btrfs_delayed_ref_node
*node
,
1862 struct btrfs_delayed_extent_op
*extent_op
,
1863 int insert_reserved
)
1866 if (btrfs_delayed_ref_is_head(node
)) {
1867 struct btrfs_delayed_ref_head
*head
;
1869 * we've hit the end of the chain and we were supposed
1870 * to insert this extent into the tree. But, it got
1871 * deleted before we ever needed to insert it, so all
1872 * we have to do is clean up the accounting
1875 head
= btrfs_delayed_node_to_head(node
);
1876 if (insert_reserved
) {
1878 struct extent_buffer
*must_clean
= NULL
;
1880 ret
= pin_down_bytes(trans
, root
, NULL
,
1881 node
->bytenr
, node
->num_bytes
,
1882 head
->is_data
, 1, &must_clean
);
1887 clean_tree_block(NULL
, root
, must_clean
);
1888 btrfs_tree_unlock(must_clean
);
1889 free_extent_buffer(must_clean
);
1891 if (head
->is_data
) {
1892 ret
= btrfs_del_csums(trans
, root
,
1898 ret
= btrfs_free_reserved_extent(root
,
1904 mutex_unlock(&head
->mutex
);
1908 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1909 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1910 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
1912 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1913 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1914 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
1921 static noinline
struct btrfs_delayed_ref_node
*
1922 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1924 struct rb_node
*node
;
1925 struct btrfs_delayed_ref_node
*ref
;
1926 int action
= BTRFS_ADD_DELAYED_REF
;
1929 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1930 * this prevents ref count from going down to zero when
1931 * there still are pending delayed ref.
1933 node
= rb_prev(&head
->node
.rb_node
);
1937 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
1939 if (ref
->bytenr
!= head
->node
.bytenr
)
1941 if (ref
->action
== action
)
1943 node
= rb_prev(node
);
1945 if (action
== BTRFS_ADD_DELAYED_REF
) {
1946 action
= BTRFS_DROP_DELAYED_REF
;
1952 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
1953 struct btrfs_root
*root
,
1954 struct list_head
*cluster
)
1956 struct btrfs_delayed_ref_root
*delayed_refs
;
1957 struct btrfs_delayed_ref_node
*ref
;
1958 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
1959 struct btrfs_delayed_extent_op
*extent_op
;
1962 int must_insert_reserved
= 0;
1964 delayed_refs
= &trans
->transaction
->delayed_refs
;
1967 /* pick a new head ref from the cluster list */
1968 if (list_empty(cluster
))
1971 locked_ref
= list_entry(cluster
->next
,
1972 struct btrfs_delayed_ref_head
, cluster
);
1974 /* grab the lock that says we are going to process
1975 * all the refs for this head */
1976 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
1979 * we may have dropped the spin lock to get the head
1980 * mutex lock, and that might have given someone else
1981 * time to free the head. If that's true, it has been
1982 * removed from our list and we can move on.
1984 if (ret
== -EAGAIN
) {
1992 * record the must insert reserved flag before we
1993 * drop the spin lock.
1995 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1996 locked_ref
->must_insert_reserved
= 0;
1998 extent_op
= locked_ref
->extent_op
;
1999 locked_ref
->extent_op
= NULL
;
2002 * locked_ref is the head node, so we have to go one
2003 * node back for any delayed ref updates
2005 ref
= select_delayed_ref(locked_ref
);
2007 /* All delayed refs have been processed, Go ahead
2008 * and send the head node to run_one_delayed_ref,
2009 * so that any accounting fixes can happen
2011 ref
= &locked_ref
->node
;
2013 if (extent_op
&& must_insert_reserved
) {
2019 spin_unlock(&delayed_refs
->lock
);
2021 ret
= run_delayed_extent_op(trans
, root
,
2027 spin_lock(&delayed_refs
->lock
);
2031 list_del_init(&locked_ref
->cluster
);
2036 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2037 delayed_refs
->num_entries
--;
2039 spin_unlock(&delayed_refs
->lock
);
2041 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2042 must_insert_reserved
);
2045 btrfs_put_delayed_ref(ref
);
2050 spin_lock(&delayed_refs
->lock
);
2056 * this starts processing the delayed reference count updates and
2057 * extent insertions we have queued up so far. count can be
2058 * 0, which means to process everything in the tree at the start
2059 * of the run (but not newly added entries), or it can be some target
2060 * number you'd like to process.
2062 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2063 struct btrfs_root
*root
, unsigned long count
)
2065 struct rb_node
*node
;
2066 struct btrfs_delayed_ref_root
*delayed_refs
;
2067 struct btrfs_delayed_ref_node
*ref
;
2068 struct list_head cluster
;
2070 int run_all
= count
== (unsigned long)-1;
2073 if (root
== root
->fs_info
->extent_root
)
2074 root
= root
->fs_info
->tree_root
;
2076 delayed_refs
= &trans
->transaction
->delayed_refs
;
2077 INIT_LIST_HEAD(&cluster
);
2079 spin_lock(&delayed_refs
->lock
);
2081 count
= delayed_refs
->num_entries
* 2;
2085 if (!(run_all
|| run_most
) &&
2086 delayed_refs
->num_heads_ready
< 64)
2090 * go find something we can process in the rbtree. We start at
2091 * the beginning of the tree, and then build a cluster
2092 * of refs to process starting at the first one we are able to
2095 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2096 delayed_refs
->run_delayed_start
);
2100 ret
= run_clustered_refs(trans
, root
, &cluster
);
2103 count
-= min_t(unsigned long, ret
, count
);
2110 node
= rb_first(&delayed_refs
->root
);
2113 count
= (unsigned long)-1;
2116 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2118 if (btrfs_delayed_ref_is_head(ref
)) {
2119 struct btrfs_delayed_ref_head
*head
;
2121 head
= btrfs_delayed_node_to_head(ref
);
2122 atomic_inc(&ref
->refs
);
2124 spin_unlock(&delayed_refs
->lock
);
2125 mutex_lock(&head
->mutex
);
2126 mutex_unlock(&head
->mutex
);
2128 btrfs_put_delayed_ref(ref
);
2132 node
= rb_next(node
);
2134 spin_unlock(&delayed_refs
->lock
);
2135 schedule_timeout(1);
2139 spin_unlock(&delayed_refs
->lock
);
2143 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2144 struct btrfs_root
*root
,
2145 u64 bytenr
, u64 num_bytes
, u64 flags
,
2148 struct btrfs_delayed_extent_op
*extent_op
;
2151 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2155 extent_op
->flags_to_set
= flags
;
2156 extent_op
->update_flags
= 1;
2157 extent_op
->update_key
= 0;
2158 extent_op
->is_data
= is_data
? 1 : 0;
2160 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2166 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2167 struct btrfs_root
*root
,
2168 struct btrfs_path
*path
,
2169 u64 objectid
, u64 offset
, u64 bytenr
)
2171 struct btrfs_delayed_ref_head
*head
;
2172 struct btrfs_delayed_ref_node
*ref
;
2173 struct btrfs_delayed_data_ref
*data_ref
;
2174 struct btrfs_delayed_ref_root
*delayed_refs
;
2175 struct rb_node
*node
;
2179 delayed_refs
= &trans
->transaction
->delayed_refs
;
2180 spin_lock(&delayed_refs
->lock
);
2181 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2185 if (!mutex_trylock(&head
->mutex
)) {
2186 atomic_inc(&head
->node
.refs
);
2187 spin_unlock(&delayed_refs
->lock
);
2189 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2191 mutex_lock(&head
->mutex
);
2192 mutex_unlock(&head
->mutex
);
2193 btrfs_put_delayed_ref(&head
->node
);
2197 node
= rb_prev(&head
->node
.rb_node
);
2201 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2203 if (ref
->bytenr
!= bytenr
)
2207 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2210 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2212 node
= rb_prev(node
);
2214 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2215 if (ref
->bytenr
== bytenr
)
2219 if (data_ref
->root
!= root
->root_key
.objectid
||
2220 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2225 mutex_unlock(&head
->mutex
);
2227 spin_unlock(&delayed_refs
->lock
);
2231 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2232 struct btrfs_root
*root
,
2233 struct btrfs_path
*path
,
2234 u64 objectid
, u64 offset
, u64 bytenr
)
2236 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2237 struct extent_buffer
*leaf
;
2238 struct btrfs_extent_data_ref
*ref
;
2239 struct btrfs_extent_inline_ref
*iref
;
2240 struct btrfs_extent_item
*ei
;
2241 struct btrfs_key key
;
2245 key
.objectid
= bytenr
;
2246 key
.offset
= (u64
)-1;
2247 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2249 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2255 if (path
->slots
[0] == 0)
2259 leaf
= path
->nodes
[0];
2260 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2262 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2266 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2268 if (item_size
< sizeof(*ei
)) {
2269 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2273 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2275 if (item_size
!= sizeof(*ei
) +
2276 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2279 if (btrfs_extent_generation(leaf
, ei
) <=
2280 btrfs_root_last_snapshot(&root
->root_item
))
2283 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2284 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2285 BTRFS_EXTENT_DATA_REF_KEY
)
2288 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2289 if (btrfs_extent_refs(leaf
, ei
) !=
2290 btrfs_extent_data_ref_count(leaf
, ref
) ||
2291 btrfs_extent_data_ref_root(leaf
, ref
) !=
2292 root
->root_key
.objectid
||
2293 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2294 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2302 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2303 struct btrfs_root
*root
,
2304 u64 objectid
, u64 offset
, u64 bytenr
)
2306 struct btrfs_path
*path
;
2310 path
= btrfs_alloc_path();
2315 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2317 if (ret
&& ret
!= -ENOENT
)
2320 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2322 } while (ret2
== -EAGAIN
);
2324 if (ret2
&& ret2
!= -ENOENT
) {
2329 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2332 btrfs_free_path(path
);
2337 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2338 struct extent_buffer
*buf
, u32 nr_extents
)
2340 struct btrfs_key key
;
2341 struct btrfs_file_extent_item
*fi
;
2349 if (!root
->ref_cows
)
2352 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2354 root_gen
= root
->root_key
.offset
;
2357 root_gen
= trans
->transid
- 1;
2360 level
= btrfs_header_level(buf
);
2361 nritems
= btrfs_header_nritems(buf
);
2364 struct btrfs_leaf_ref
*ref
;
2365 struct btrfs_extent_info
*info
;
2367 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2373 ref
->root_gen
= root_gen
;
2374 ref
->bytenr
= buf
->start
;
2375 ref
->owner
= btrfs_header_owner(buf
);
2376 ref
->generation
= btrfs_header_generation(buf
);
2377 ref
->nritems
= nr_extents
;
2378 info
= ref
->extents
;
2380 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2382 btrfs_item_key_to_cpu(buf
, &key
, i
);
2383 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2385 fi
= btrfs_item_ptr(buf
, i
,
2386 struct btrfs_file_extent_item
);
2387 if (btrfs_file_extent_type(buf
, fi
) ==
2388 BTRFS_FILE_EXTENT_INLINE
)
2390 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2391 if (disk_bytenr
== 0)
2394 info
->bytenr
= disk_bytenr
;
2396 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2397 info
->objectid
= key
.objectid
;
2398 info
->offset
= key
.offset
;
2402 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2403 if (ret
== -EEXIST
&& shared
) {
2404 struct btrfs_leaf_ref
*old
;
2405 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2407 btrfs_remove_leaf_ref(root
, old
);
2408 btrfs_free_leaf_ref(root
, old
);
2409 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2412 btrfs_free_leaf_ref(root
, ref
);
2418 /* when a block goes through cow, we update the reference counts of
2419 * everything that block points to. The internal pointers of the block
2420 * can be in just about any order, and it is likely to have clusters of
2421 * things that are close together and clusters of things that are not.
2423 * To help reduce the seeks that come with updating all of these reference
2424 * counts, sort them by byte number before actual updates are done.
2426 * struct refsort is used to match byte number to slot in the btree block.
2427 * we sort based on the byte number and then use the slot to actually
2430 * struct refsort is smaller than strcut btrfs_item and smaller than
2431 * struct btrfs_key_ptr. Since we're currently limited to the page size
2432 * for a btree block, there's no way for a kmalloc of refsorts for a
2433 * single node to be bigger than a page.
2441 * for passing into sort()
2443 static int refsort_cmp(const void *a_void
, const void *b_void
)
2445 const struct refsort
*a
= a_void
;
2446 const struct refsort
*b
= b_void
;
2448 if (a
->bytenr
< b
->bytenr
)
2450 if (a
->bytenr
> b
->bytenr
)
2456 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2457 struct btrfs_root
*root
,
2458 struct extent_buffer
*buf
,
2459 int full_backref
, int inc
)
2466 struct btrfs_key key
;
2467 struct btrfs_file_extent_item
*fi
;
2471 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2472 u64
, u64
, u64
, u64
, u64
, u64
);
2474 ref_root
= btrfs_header_owner(buf
);
2475 nritems
= btrfs_header_nritems(buf
);
2476 level
= btrfs_header_level(buf
);
2478 if (!root
->ref_cows
&& level
== 0)
2482 process_func
= btrfs_inc_extent_ref
;
2484 process_func
= btrfs_free_extent
;
2487 parent
= buf
->start
;
2491 for (i
= 0; i
< nritems
; i
++) {
2493 btrfs_item_key_to_cpu(buf
, &key
, i
);
2494 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2496 fi
= btrfs_item_ptr(buf
, i
,
2497 struct btrfs_file_extent_item
);
2498 if (btrfs_file_extent_type(buf
, fi
) ==
2499 BTRFS_FILE_EXTENT_INLINE
)
2501 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2505 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2506 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2507 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2508 parent
, ref_root
, key
.objectid
,
2513 bytenr
= btrfs_node_blockptr(buf
, i
);
2514 num_bytes
= btrfs_level_size(root
, level
- 1);
2515 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2516 parent
, ref_root
, level
- 1, 0);
2527 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2528 struct extent_buffer
*buf
, int full_backref
)
2530 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2533 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2534 struct extent_buffer
*buf
, int full_backref
)
2536 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2539 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2540 struct btrfs_root
*root
,
2541 struct btrfs_path
*path
,
2542 struct btrfs_block_group_cache
*cache
)
2545 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2547 struct extent_buffer
*leaf
;
2549 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2554 leaf
= path
->nodes
[0];
2555 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2556 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2557 btrfs_mark_buffer_dirty(leaf
);
2558 btrfs_release_path(extent_root
, path
);
2566 static struct btrfs_block_group_cache
*
2567 next_block_group(struct btrfs_root
*root
,
2568 struct btrfs_block_group_cache
*cache
)
2570 struct rb_node
*node
;
2571 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2572 node
= rb_next(&cache
->cache_node
);
2573 btrfs_put_block_group(cache
);
2575 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2577 atomic_inc(&cache
->count
);
2580 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2584 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2585 struct btrfs_root
*root
)
2587 struct btrfs_block_group_cache
*cache
;
2589 struct btrfs_path
*path
;
2592 path
= btrfs_alloc_path();
2598 err
= btrfs_run_delayed_refs(trans
, root
,
2603 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2607 cache
= next_block_group(root
, cache
);
2617 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2619 err
= write_one_cache_group(trans
, root
, path
, cache
);
2621 btrfs_put_block_group(cache
);
2624 btrfs_free_path(path
);
2628 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2630 struct btrfs_block_group_cache
*block_group
;
2633 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2634 if (!block_group
|| block_group
->ro
)
2637 btrfs_put_block_group(block_group
);
2641 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2642 u64 total_bytes
, u64 bytes_used
,
2643 struct btrfs_space_info
**space_info
)
2645 struct btrfs_space_info
*found
;
2647 found
= __find_space_info(info
, flags
);
2649 spin_lock(&found
->lock
);
2650 found
->total_bytes
+= total_bytes
;
2651 found
->bytes_used
+= bytes_used
;
2653 spin_unlock(&found
->lock
);
2654 *space_info
= found
;
2657 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2661 INIT_LIST_HEAD(&found
->block_groups
);
2662 init_rwsem(&found
->groups_sem
);
2663 spin_lock_init(&found
->lock
);
2664 found
->flags
= flags
;
2665 found
->total_bytes
= total_bytes
;
2666 found
->bytes_used
= bytes_used
;
2667 found
->bytes_pinned
= 0;
2668 found
->bytes_reserved
= 0;
2669 found
->bytes_readonly
= 0;
2670 found
->bytes_delalloc
= 0;
2672 found
->force_alloc
= 0;
2673 *space_info
= found
;
2674 list_add_rcu(&found
->list
, &info
->space_info
);
2675 atomic_set(&found
->caching_threads
, 0);
2679 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2681 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2682 BTRFS_BLOCK_GROUP_RAID1
|
2683 BTRFS_BLOCK_GROUP_RAID10
|
2684 BTRFS_BLOCK_GROUP_DUP
);
2686 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2687 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2688 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2689 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2690 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2691 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2695 static void set_block_group_readonly(struct btrfs_block_group_cache
*cache
)
2697 spin_lock(&cache
->space_info
->lock
);
2698 spin_lock(&cache
->lock
);
2700 cache
->space_info
->bytes_readonly
+= cache
->key
.offset
-
2701 btrfs_block_group_used(&cache
->item
);
2704 spin_unlock(&cache
->lock
);
2705 spin_unlock(&cache
->space_info
->lock
);
2708 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2710 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
2712 if (num_devices
== 1)
2713 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2714 if (num_devices
< 4)
2715 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2717 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2718 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2719 BTRFS_BLOCK_GROUP_RAID10
))) {
2720 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2723 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2724 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2725 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2728 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2729 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2730 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2731 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2732 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2736 static u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, u64 data
)
2738 struct btrfs_fs_info
*info
= root
->fs_info
;
2742 alloc_profile
= info
->avail_data_alloc_bits
&
2743 info
->data_alloc_profile
;
2744 data
= BTRFS_BLOCK_GROUP_DATA
| alloc_profile
;
2745 } else if (root
== root
->fs_info
->chunk_root
) {
2746 alloc_profile
= info
->avail_system_alloc_bits
&
2747 info
->system_alloc_profile
;
2748 data
= BTRFS_BLOCK_GROUP_SYSTEM
| alloc_profile
;
2750 alloc_profile
= info
->avail_metadata_alloc_bits
&
2751 info
->metadata_alloc_profile
;
2752 data
= BTRFS_BLOCK_GROUP_METADATA
| alloc_profile
;
2755 return btrfs_reduce_alloc_profile(root
, data
);
2758 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
2762 alloc_target
= btrfs_get_alloc_profile(root
, 1);
2763 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
2767 static u64
calculate_bytes_needed(struct btrfs_root
*root
, int num_items
)
2772 level
= BTRFS_MAX_LEVEL
- 2;
2774 * NOTE: these calculations are absolutely the worst possible case.
2775 * This assumes that _every_ item we insert will require a new leaf, and
2776 * that the tree has grown to its maximum level size.
2780 * for every item we insert we could insert both an extent item and a
2781 * extent ref item. Then for ever item we insert, we will need to cow
2782 * both the original leaf, plus the leaf to the left and right of it.
2784 * Unless we are talking about the extent root, then we just want the
2785 * number of items * 2, since we just need the extent item plus its ref.
2787 if (root
== root
->fs_info
->extent_root
)
2788 num_bytes
= num_items
* 2;
2790 num_bytes
= (num_items
+ (2 * num_items
)) * 3;
2793 * num_bytes is total number of leaves we could need times the leaf
2794 * size, and then for every leaf we could end up cow'ing 2 nodes per
2795 * level, down to the leaf level.
2797 num_bytes
= (num_bytes
* root
->leafsize
) +
2798 (num_bytes
* (level
* 2)) * root
->nodesize
;
2804 * Unreserve metadata space for delalloc. If we have less reserved credits than
2805 * we have extents, this function does nothing.
2807 int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root
*root
,
2808 struct inode
*inode
, int num_items
)
2810 struct btrfs_fs_info
*info
= root
->fs_info
;
2811 struct btrfs_space_info
*meta_sinfo
;
2816 /* get the space info for where the metadata will live */
2817 alloc_target
= btrfs_get_alloc_profile(root
, 0);
2818 meta_sinfo
= __find_space_info(info
, alloc_target
);
2820 num_bytes
= calculate_bytes_needed(root
->fs_info
->extent_root
,
2823 spin_lock(&meta_sinfo
->lock
);
2824 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
2825 if (BTRFS_I(inode
)->reserved_extents
<=
2826 BTRFS_I(inode
)->outstanding_extents
) {
2827 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
2828 spin_unlock(&meta_sinfo
->lock
);
2831 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
2833 BTRFS_I(inode
)->reserved_extents
--;
2834 BUG_ON(BTRFS_I(inode
)->reserved_extents
< 0);
2836 if (meta_sinfo
->bytes_delalloc
< num_bytes
) {
2838 meta_sinfo
->bytes_delalloc
= 0;
2840 meta_sinfo
->bytes_delalloc
-= num_bytes
;
2842 spin_unlock(&meta_sinfo
->lock
);
2849 static void check_force_delalloc(struct btrfs_space_info
*meta_sinfo
)
2853 thresh
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
2854 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
2855 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
2856 meta_sinfo
->bytes_may_use
;
2858 thresh
= meta_sinfo
->total_bytes
- thresh
;
2860 do_div(thresh
, 100);
2861 if (thresh
<= meta_sinfo
->bytes_delalloc
)
2862 meta_sinfo
->force_delalloc
= 1;
2864 meta_sinfo
->force_delalloc
= 0;
2867 struct async_flush
{
2868 struct btrfs_root
*root
;
2869 struct btrfs_space_info
*info
;
2870 struct btrfs_work work
;
2873 static noinline
void flush_delalloc_async(struct btrfs_work
*work
)
2875 struct async_flush
*async
;
2876 struct btrfs_root
*root
;
2877 struct btrfs_space_info
*info
;
2879 async
= container_of(work
, struct async_flush
, work
);
2883 btrfs_start_delalloc_inodes(root
);
2884 wake_up(&info
->flush_wait
);
2885 btrfs_wait_ordered_extents(root
, 0);
2887 spin_lock(&info
->lock
);
2889 spin_unlock(&info
->lock
);
2890 wake_up(&info
->flush_wait
);
2895 static void wait_on_flush(struct btrfs_space_info
*info
)
2901 prepare_to_wait(&info
->flush_wait
, &wait
,
2902 TASK_UNINTERRUPTIBLE
);
2903 spin_lock(&info
->lock
);
2904 if (!info
->flushing
) {
2905 spin_unlock(&info
->lock
);
2909 used
= info
->bytes_used
+ info
->bytes_reserved
+
2910 info
->bytes_pinned
+ info
->bytes_readonly
+
2911 info
->bytes_super
+ info
->bytes_root
+
2912 info
->bytes_may_use
+ info
->bytes_delalloc
;
2913 if (used
< info
->total_bytes
) {
2914 spin_unlock(&info
->lock
);
2917 spin_unlock(&info
->lock
);
2920 finish_wait(&info
->flush_wait
, &wait
);
2923 static void flush_delalloc(struct btrfs_root
*root
,
2924 struct btrfs_space_info
*info
)
2926 struct async_flush
*async
;
2929 spin_lock(&info
->lock
);
2931 if (!info
->flushing
) {
2933 init_waitqueue_head(&info
->flush_wait
);
2938 spin_unlock(&info
->lock
);
2941 wait_on_flush(info
);
2945 async
= kzalloc(sizeof(*async
), GFP_NOFS
);
2951 async
->work
.func
= flush_delalloc_async
;
2953 btrfs_queue_worker(&root
->fs_info
->enospc_workers
,
2955 wait_on_flush(info
);
2959 btrfs_start_delalloc_inodes(root
);
2960 btrfs_wait_ordered_extents(root
, 0);
2962 spin_lock(&info
->lock
);
2964 spin_unlock(&info
->lock
);
2965 wake_up(&info
->flush_wait
);
2968 static int maybe_allocate_chunk(struct btrfs_root
*root
,
2969 struct btrfs_space_info
*info
)
2971 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
2972 struct btrfs_trans_handle
*trans
;
2978 free_space
= btrfs_super_total_bytes(disk_super
);
2980 * we allow the metadata to grow to a max of either 5gb or 5% of the
2981 * space in the volume.
2983 min_metadata
= min((u64
)5 * 1024 * 1024 * 1024,
2984 div64_u64(free_space
* 5, 100));
2985 if (info
->total_bytes
>= min_metadata
) {
2986 spin_unlock(&info
->lock
);
2991 spin_unlock(&info
->lock
);
2995 if (!info
->allocating_chunk
) {
2996 info
->force_alloc
= 1;
2997 info
->allocating_chunk
= 1;
2998 init_waitqueue_head(&info
->allocate_wait
);
3003 spin_unlock(&info
->lock
);
3006 wait_event(info
->allocate_wait
,
3007 !info
->allocating_chunk
);
3011 trans
= btrfs_start_transaction(root
, 1);
3017 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3018 4096 + 2 * 1024 * 1024,
3020 btrfs_end_transaction(trans
, root
);
3024 spin_lock(&info
->lock
);
3025 info
->allocating_chunk
= 0;
3026 spin_unlock(&info
->lock
);
3027 wake_up(&info
->allocate_wait
);
3035 * Reserve metadata space for delalloc.
3037 int btrfs_reserve_metadata_for_delalloc(struct btrfs_root
*root
,
3038 struct inode
*inode
, int num_items
)
3040 struct btrfs_fs_info
*info
= root
->fs_info
;
3041 struct btrfs_space_info
*meta_sinfo
;
3048 /* get the space info for where the metadata will live */
3049 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3050 meta_sinfo
= __find_space_info(info
, alloc_target
);
3052 num_bytes
= calculate_bytes_needed(root
->fs_info
->extent_root
,
3055 spin_lock(&meta_sinfo
->lock
);
3057 force_delalloc
= meta_sinfo
->force_delalloc
;
3059 if (unlikely(!meta_sinfo
->bytes_root
))
3060 meta_sinfo
->bytes_root
= calculate_bytes_needed(root
, 6);
3063 meta_sinfo
->bytes_delalloc
+= num_bytes
;
3065 used
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
3066 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
3067 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
3068 meta_sinfo
->bytes_may_use
+ meta_sinfo
->bytes_delalloc
;
3070 if (used
> meta_sinfo
->total_bytes
) {
3074 if (maybe_allocate_chunk(root
, meta_sinfo
))
3078 spin_unlock(&meta_sinfo
->lock
);
3082 filemap_flush(inode
->i_mapping
);
3084 } else if (flushed
== 3) {
3085 flush_delalloc(root
, meta_sinfo
);
3088 spin_lock(&meta_sinfo
->lock
);
3089 meta_sinfo
->bytes_delalloc
-= num_bytes
;
3090 spin_unlock(&meta_sinfo
->lock
);
3091 printk(KERN_ERR
"enospc, has %d, reserved %d\n",
3092 BTRFS_I(inode
)->outstanding_extents
,
3093 BTRFS_I(inode
)->reserved_extents
);
3094 dump_space_info(meta_sinfo
, 0, 0);
3098 BTRFS_I(inode
)->reserved_extents
++;
3099 check_force_delalloc(meta_sinfo
);
3100 spin_unlock(&meta_sinfo
->lock
);
3102 if (!flushed
&& force_delalloc
)
3103 filemap_flush(inode
->i_mapping
);
3109 * unreserve num_items number of items worth of metadata space. This needs to
3110 * be paired with btrfs_reserve_metadata_space.
3112 * NOTE: if you have the option, run this _AFTER_ you do a
3113 * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
3114 * oprations which will result in more used metadata, so we want to make sure we
3115 * can do that without issue.
3117 int btrfs_unreserve_metadata_space(struct btrfs_root
*root
, int num_items
)
3119 struct btrfs_fs_info
*info
= root
->fs_info
;
3120 struct btrfs_space_info
*meta_sinfo
;
3125 /* get the space info for where the metadata will live */
3126 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3127 meta_sinfo
= __find_space_info(info
, alloc_target
);
3129 num_bytes
= calculate_bytes_needed(root
, num_items
);
3131 spin_lock(&meta_sinfo
->lock
);
3132 if (meta_sinfo
->bytes_may_use
< num_bytes
) {
3134 meta_sinfo
->bytes_may_use
= 0;
3136 meta_sinfo
->bytes_may_use
-= num_bytes
;
3138 spin_unlock(&meta_sinfo
->lock
);
3146 * Reserve some metadata space for use. We'll calculate the worste case number
3147 * of bytes that would be needed to modify num_items number of items. If we
3148 * have space, fantastic, if not, you get -ENOSPC. Please call
3149 * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
3150 * items you reserved, since whatever metadata you needed should have already
3153 * This will commit the transaction to make more space if we don't have enough
3154 * metadata space. THe only time we don't do this is if we're reserving space
3155 * inside of a transaction, then we will just return -ENOSPC and it is the
3156 * callers responsibility to handle it properly.
3158 int btrfs_reserve_metadata_space(struct btrfs_root
*root
, int num_items
)
3160 struct btrfs_fs_info
*info
= root
->fs_info
;
3161 struct btrfs_space_info
*meta_sinfo
;
3167 /* get the space info for where the metadata will live */
3168 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3169 meta_sinfo
= __find_space_info(info
, alloc_target
);
3171 num_bytes
= calculate_bytes_needed(root
, num_items
);
3173 spin_lock(&meta_sinfo
->lock
);
3175 if (unlikely(!meta_sinfo
->bytes_root
))
3176 meta_sinfo
->bytes_root
= calculate_bytes_needed(root
, 6);
3179 meta_sinfo
->bytes_may_use
+= num_bytes
;
3181 used
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
3182 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
3183 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
3184 meta_sinfo
->bytes_may_use
+ meta_sinfo
->bytes_delalloc
;
3186 if (used
> meta_sinfo
->total_bytes
) {
3189 if (maybe_allocate_chunk(root
, meta_sinfo
))
3193 spin_unlock(&meta_sinfo
->lock
);
3197 flush_delalloc(root
, meta_sinfo
);
3200 spin_lock(&meta_sinfo
->lock
);
3201 meta_sinfo
->bytes_may_use
-= num_bytes
;
3202 spin_unlock(&meta_sinfo
->lock
);
3204 dump_space_info(meta_sinfo
, 0, 0);
3208 check_force_delalloc(meta_sinfo
);
3209 spin_unlock(&meta_sinfo
->lock
);
3215 * This will check the space that the inode allocates from to make sure we have
3216 * enough space for bytes.
3218 int btrfs_check_data_free_space(struct btrfs_root
*root
, struct inode
*inode
,
3221 struct btrfs_space_info
*data_sinfo
;
3222 int ret
= 0, committed
= 0;
3224 /* make sure bytes are sectorsize aligned */
3225 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3227 data_sinfo
= BTRFS_I(inode
)->space_info
;
3232 /* make sure we have enough space to handle the data first */
3233 spin_lock(&data_sinfo
->lock
);
3234 if (data_sinfo
->total_bytes
- data_sinfo
->bytes_used
-
3235 data_sinfo
->bytes_delalloc
- data_sinfo
->bytes_reserved
-
3236 data_sinfo
->bytes_pinned
- data_sinfo
->bytes_readonly
-
3237 data_sinfo
->bytes_may_use
- data_sinfo
->bytes_super
< bytes
) {
3238 struct btrfs_trans_handle
*trans
;
3241 * if we don't have enough free bytes in this space then we need
3242 * to alloc a new chunk.
3244 if (!data_sinfo
->full
) {
3247 data_sinfo
->force_alloc
= 1;
3248 spin_unlock(&data_sinfo
->lock
);
3250 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3251 trans
= btrfs_start_transaction(root
, 1);
3255 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3256 bytes
+ 2 * 1024 * 1024,
3258 btrfs_end_transaction(trans
, root
);
3263 btrfs_set_inode_space_info(root
, inode
);
3264 data_sinfo
= BTRFS_I(inode
)->space_info
;
3268 spin_unlock(&data_sinfo
->lock
);
3270 /* commit the current transaction and try again */
3271 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
3273 trans
= btrfs_join_transaction(root
, 1);
3276 ret
= btrfs_commit_transaction(trans
, root
);
3282 printk(KERN_ERR
"no space left, need %llu, %llu delalloc bytes"
3283 ", %llu bytes_used, %llu bytes_reserved, "
3284 "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
3285 "%llu total\n", (unsigned long long)bytes
,
3286 (unsigned long long)data_sinfo
->bytes_delalloc
,
3287 (unsigned long long)data_sinfo
->bytes_used
,
3288 (unsigned long long)data_sinfo
->bytes_reserved
,
3289 (unsigned long long)data_sinfo
->bytes_pinned
,
3290 (unsigned long long)data_sinfo
->bytes_readonly
,
3291 (unsigned long long)data_sinfo
->bytes_may_use
,
3292 (unsigned long long)data_sinfo
->total_bytes
);
3295 data_sinfo
->bytes_may_use
+= bytes
;
3296 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3297 spin_unlock(&data_sinfo
->lock
);
3303 * if there was an error for whatever reason after calling
3304 * btrfs_check_data_free_space, call this so we can cleanup the counters.
3306 void btrfs_free_reserved_data_space(struct btrfs_root
*root
,
3307 struct inode
*inode
, u64 bytes
)
3309 struct btrfs_space_info
*data_sinfo
;
3311 /* make sure bytes are sectorsize aligned */
3312 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3314 data_sinfo
= BTRFS_I(inode
)->space_info
;
3315 spin_lock(&data_sinfo
->lock
);
3316 data_sinfo
->bytes_may_use
-= bytes
;
3317 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3318 spin_unlock(&data_sinfo
->lock
);
3321 /* called when we are adding a delalloc extent to the inode's io_tree */
3322 void btrfs_delalloc_reserve_space(struct btrfs_root
*root
, struct inode
*inode
,
3325 struct btrfs_space_info
*data_sinfo
;
3327 /* get the space info for where this inode will be storing its data */
3328 data_sinfo
= BTRFS_I(inode
)->space_info
;
3330 /* make sure we have enough space to handle the data first */
3331 spin_lock(&data_sinfo
->lock
);
3332 data_sinfo
->bytes_delalloc
+= bytes
;
3335 * we are adding a delalloc extent without calling
3336 * btrfs_check_data_free_space first. This happens on a weird
3337 * writepage condition, but shouldn't hurt our accounting
3339 if (unlikely(bytes
> BTRFS_I(inode
)->reserved_bytes
)) {
3340 data_sinfo
->bytes_may_use
-= BTRFS_I(inode
)->reserved_bytes
;
3341 BTRFS_I(inode
)->reserved_bytes
= 0;
3343 data_sinfo
->bytes_may_use
-= bytes
;
3344 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3347 spin_unlock(&data_sinfo
->lock
);
3350 /* called when we are clearing an delalloc extent from the inode's io_tree */
3351 void btrfs_delalloc_free_space(struct btrfs_root
*root
, struct inode
*inode
,
3354 struct btrfs_space_info
*info
;
3356 info
= BTRFS_I(inode
)->space_info
;
3358 spin_lock(&info
->lock
);
3359 info
->bytes_delalloc
-= bytes
;
3360 spin_unlock(&info
->lock
);
3363 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3365 struct list_head
*head
= &info
->space_info
;
3366 struct btrfs_space_info
*found
;
3369 list_for_each_entry_rcu(found
, head
, list
) {
3370 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3371 found
->force_alloc
= 1;
3376 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3377 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3378 u64 flags
, int force
)
3380 struct btrfs_space_info
*space_info
;
3381 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3385 mutex_lock(&fs_info
->chunk_mutex
);
3387 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3389 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3391 ret
= update_space_info(extent_root
->fs_info
, flags
,
3395 BUG_ON(!space_info
);
3397 spin_lock(&space_info
->lock
);
3398 if (space_info
->force_alloc
)
3400 if (space_info
->full
) {
3401 spin_unlock(&space_info
->lock
);
3405 thresh
= space_info
->total_bytes
- space_info
->bytes_readonly
;
3406 thresh
= div_factor(thresh
, 8);
3408 (space_info
->bytes_used
+ space_info
->bytes_pinned
+
3409 space_info
->bytes_reserved
+ alloc_bytes
) < thresh
) {
3410 spin_unlock(&space_info
->lock
);
3413 spin_unlock(&space_info
->lock
);
3416 * if we're doing a data chunk, go ahead and make sure that
3417 * we keep a reasonable number of metadata chunks allocated in the
3420 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3421 fs_info
->data_chunk_allocations
++;
3422 if (!(fs_info
->data_chunk_allocations
%
3423 fs_info
->metadata_ratio
))
3424 force_metadata_allocation(fs_info
);
3427 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3428 spin_lock(&space_info
->lock
);
3430 space_info
->full
= 1;
3431 space_info
->force_alloc
= 0;
3432 spin_unlock(&space_info
->lock
);
3434 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3438 static int update_block_group(struct btrfs_trans_handle
*trans
,
3439 struct btrfs_root
*root
,
3440 u64 bytenr
, u64 num_bytes
, int alloc
,
3443 struct btrfs_block_group_cache
*cache
;
3444 struct btrfs_fs_info
*info
= root
->fs_info
;
3445 u64 total
= num_bytes
;
3449 /* block accounting for super block */
3450 spin_lock(&info
->delalloc_lock
);
3451 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
3453 old_val
+= num_bytes
;
3455 old_val
-= num_bytes
;
3456 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
3458 /* block accounting for root item */
3459 old_val
= btrfs_root_used(&root
->root_item
);
3461 old_val
+= num_bytes
;
3463 old_val
-= num_bytes
;
3464 btrfs_set_root_used(&root
->root_item
, old_val
);
3465 spin_unlock(&info
->delalloc_lock
);
3468 cache
= btrfs_lookup_block_group(info
, bytenr
);
3471 byte_in_group
= bytenr
- cache
->key
.objectid
;
3472 WARN_ON(byte_in_group
> cache
->key
.offset
);
3474 spin_lock(&cache
->space_info
->lock
);
3475 spin_lock(&cache
->lock
);
3477 old_val
= btrfs_block_group_used(&cache
->item
);
3478 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
3480 old_val
+= num_bytes
;
3481 btrfs_set_block_group_used(&cache
->item
, old_val
);
3482 cache
->reserved
-= num_bytes
;
3483 cache
->space_info
->bytes_used
+= num_bytes
;
3484 cache
->space_info
->bytes_reserved
-= num_bytes
;
3486 cache
->space_info
->bytes_readonly
-= num_bytes
;
3487 spin_unlock(&cache
->lock
);
3488 spin_unlock(&cache
->space_info
->lock
);
3490 old_val
-= num_bytes
;
3491 cache
->space_info
->bytes_used
-= num_bytes
;
3493 cache
->space_info
->bytes_readonly
+= num_bytes
;
3494 btrfs_set_block_group_used(&cache
->item
, old_val
);
3495 spin_unlock(&cache
->lock
);
3496 spin_unlock(&cache
->space_info
->lock
);
3500 ret
= btrfs_discard_extent(root
, bytenr
,
3504 ret
= btrfs_add_free_space(cache
, bytenr
,
3509 btrfs_put_block_group(cache
);
3511 bytenr
+= num_bytes
;
3516 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
3518 struct btrfs_block_group_cache
*cache
;
3521 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
3525 bytenr
= cache
->key
.objectid
;
3526 btrfs_put_block_group(cache
);
3532 * this function must be called within transaction
3534 int btrfs_pin_extent(struct btrfs_root
*root
,
3535 u64 bytenr
, u64 num_bytes
, int reserved
)
3537 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3538 struct btrfs_block_group_cache
*cache
;
3540 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
3543 spin_lock(&cache
->space_info
->lock
);
3544 spin_lock(&cache
->lock
);
3545 cache
->pinned
+= num_bytes
;
3546 cache
->space_info
->bytes_pinned
+= num_bytes
;
3548 cache
->reserved
-= num_bytes
;
3549 cache
->space_info
->bytes_reserved
-= num_bytes
;
3551 spin_unlock(&cache
->lock
);
3552 spin_unlock(&cache
->space_info
->lock
);
3554 btrfs_put_block_group(cache
);
3556 set_extent_dirty(fs_info
->pinned_extents
,
3557 bytenr
, bytenr
+ num_bytes
- 1, GFP_NOFS
);
3561 static int update_reserved_extents(struct btrfs_block_group_cache
*cache
,
3562 u64 num_bytes
, int reserve
)
3564 spin_lock(&cache
->space_info
->lock
);
3565 spin_lock(&cache
->lock
);
3567 cache
->reserved
+= num_bytes
;
3568 cache
->space_info
->bytes_reserved
+= num_bytes
;
3570 cache
->reserved
-= num_bytes
;
3571 cache
->space_info
->bytes_reserved
-= num_bytes
;
3573 spin_unlock(&cache
->lock
);
3574 spin_unlock(&cache
->space_info
->lock
);
3578 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
3579 struct btrfs_root
*root
)
3581 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3582 struct btrfs_caching_control
*next
;
3583 struct btrfs_caching_control
*caching_ctl
;
3584 struct btrfs_block_group_cache
*cache
;
3586 down_write(&fs_info
->extent_commit_sem
);
3588 list_for_each_entry_safe(caching_ctl
, next
,
3589 &fs_info
->caching_block_groups
, list
) {
3590 cache
= caching_ctl
->block_group
;
3591 if (block_group_cache_done(cache
)) {
3592 cache
->last_byte_to_unpin
= (u64
)-1;
3593 list_del_init(&caching_ctl
->list
);
3594 put_caching_control(caching_ctl
);
3596 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
3600 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3601 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
3603 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
3605 up_write(&fs_info
->extent_commit_sem
);
3609 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
3611 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3612 struct btrfs_block_group_cache
*cache
= NULL
;
3615 while (start
<= end
) {
3617 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
3619 btrfs_put_block_group(cache
);
3620 cache
= btrfs_lookup_block_group(fs_info
, start
);
3624 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
3625 len
= min(len
, end
+ 1 - start
);
3627 if (start
< cache
->last_byte_to_unpin
) {
3628 len
= min(len
, cache
->last_byte_to_unpin
- start
);
3629 btrfs_add_free_space(cache
, start
, len
);
3632 spin_lock(&cache
->space_info
->lock
);
3633 spin_lock(&cache
->lock
);
3634 cache
->pinned
-= len
;
3635 cache
->space_info
->bytes_pinned
-= len
;
3636 spin_unlock(&cache
->lock
);
3637 spin_unlock(&cache
->space_info
->lock
);
3643 btrfs_put_block_group(cache
);
3647 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
3648 struct btrfs_root
*root
)
3650 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3651 struct extent_io_tree
*unpin
;
3656 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3657 unpin
= &fs_info
->freed_extents
[1];
3659 unpin
= &fs_info
->freed_extents
[0];
3662 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3667 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
3669 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3670 unpin_extent_range(root
, start
, end
);
3677 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
3678 struct btrfs_root
*root
,
3679 struct btrfs_path
*path
,
3680 u64 bytenr
, u64 num_bytes
,
3681 int is_data
, int reserved
,
3682 struct extent_buffer
**must_clean
)
3685 struct extent_buffer
*buf
;
3691 * discard is sloooow, and so triggering discards on
3692 * individual btree blocks isn't a good plan. Just
3693 * pin everything in discard mode.
3695 if (btrfs_test_opt(root
, DISCARD
))
3698 buf
= btrfs_find_tree_block(root
, bytenr
, num_bytes
);
3702 /* we can reuse a block if it hasn't been written
3703 * and it is from this transaction. We can't
3704 * reuse anything from the tree log root because
3705 * it has tiny sub-transactions.
3707 if (btrfs_buffer_uptodate(buf
, 0) &&
3708 btrfs_try_tree_lock(buf
)) {
3709 u64 header_owner
= btrfs_header_owner(buf
);
3710 u64 header_transid
= btrfs_header_generation(buf
);
3711 if (header_owner
!= BTRFS_TREE_LOG_OBJECTID
&&
3712 header_transid
== trans
->transid
&&
3713 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3717 btrfs_tree_unlock(buf
);
3719 free_extent_buffer(buf
);
3722 btrfs_set_path_blocking(path
);
3723 /* unlocks the pinned mutex */
3724 btrfs_pin_extent(root
, bytenr
, num_bytes
, reserved
);
3730 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
3731 struct btrfs_root
*root
,
3732 u64 bytenr
, u64 num_bytes
, u64 parent
,
3733 u64 root_objectid
, u64 owner_objectid
,
3734 u64 owner_offset
, int refs_to_drop
,
3735 struct btrfs_delayed_extent_op
*extent_op
)
3737 struct btrfs_key key
;
3738 struct btrfs_path
*path
;
3739 struct btrfs_fs_info
*info
= root
->fs_info
;
3740 struct btrfs_root
*extent_root
= info
->extent_root
;
3741 struct extent_buffer
*leaf
;
3742 struct btrfs_extent_item
*ei
;
3743 struct btrfs_extent_inline_ref
*iref
;
3746 int extent_slot
= 0;
3747 int found_extent
= 0;
3752 path
= btrfs_alloc_path();
3757 path
->leave_spinning
= 1;
3759 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
3760 BUG_ON(!is_data
&& refs_to_drop
!= 1);
3762 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
3763 bytenr
, num_bytes
, parent
,
3764 root_objectid
, owner_objectid
,
3767 extent_slot
= path
->slots
[0];
3768 while (extent_slot
>= 0) {
3769 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3771 if (key
.objectid
!= bytenr
)
3773 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3774 key
.offset
== num_bytes
) {
3778 if (path
->slots
[0] - extent_slot
> 5)
3782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3783 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
3784 if (found_extent
&& item_size
< sizeof(*ei
))
3787 if (!found_extent
) {
3789 ret
= remove_extent_backref(trans
, extent_root
, path
,
3793 btrfs_release_path(extent_root
, path
);
3794 path
->leave_spinning
= 1;
3796 key
.objectid
= bytenr
;
3797 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3798 key
.offset
= num_bytes
;
3800 ret
= btrfs_search_slot(trans
, extent_root
,
3803 printk(KERN_ERR
"umm, got %d back from search"
3804 ", was looking for %llu\n", ret
,
3805 (unsigned long long)bytenr
);
3806 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3809 extent_slot
= path
->slots
[0];
3812 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3814 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
3815 "parent %llu root %llu owner %llu offset %llu\n",
3816 (unsigned long long)bytenr
,
3817 (unsigned long long)parent
,
3818 (unsigned long long)root_objectid
,
3819 (unsigned long long)owner_objectid
,
3820 (unsigned long long)owner_offset
);
3823 leaf
= path
->nodes
[0];
3824 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3826 if (item_size
< sizeof(*ei
)) {
3827 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
3828 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
3832 btrfs_release_path(extent_root
, path
);
3833 path
->leave_spinning
= 1;
3835 key
.objectid
= bytenr
;
3836 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3837 key
.offset
= num_bytes
;
3839 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
3842 printk(KERN_ERR
"umm, got %d back from search"
3843 ", was looking for %llu\n", ret
,
3844 (unsigned long long)bytenr
);
3845 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3848 extent_slot
= path
->slots
[0];
3849 leaf
= path
->nodes
[0];
3850 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3853 BUG_ON(item_size
< sizeof(*ei
));
3854 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3855 struct btrfs_extent_item
);
3856 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
3857 struct btrfs_tree_block_info
*bi
;
3858 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
3859 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3860 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3863 refs
= btrfs_extent_refs(leaf
, ei
);
3864 BUG_ON(refs
< refs_to_drop
);
3865 refs
-= refs_to_drop
;
3869 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3871 * In the case of inline back ref, reference count will
3872 * be updated by remove_extent_backref
3875 BUG_ON(!found_extent
);
3877 btrfs_set_extent_refs(leaf
, ei
, refs
);
3878 btrfs_mark_buffer_dirty(leaf
);
3881 ret
= remove_extent_backref(trans
, extent_root
, path
,
3888 struct extent_buffer
*must_clean
= NULL
;
3891 BUG_ON(is_data
&& refs_to_drop
!=
3892 extent_data_ref_count(root
, path
, iref
));
3894 BUG_ON(path
->slots
[0] != extent_slot
);
3896 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
3897 path
->slots
[0] = extent_slot
;
3902 ret
= pin_down_bytes(trans
, root
, path
, bytenr
,
3903 num_bytes
, is_data
, 0, &must_clean
);
3908 * it is going to be very rare for someone to be waiting
3909 * on the block we're freeing. del_items might need to
3910 * schedule, so rather than get fancy, just force it
3914 btrfs_set_lock_blocking(must_clean
);
3916 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3919 btrfs_release_path(extent_root
, path
);
3922 clean_tree_block(NULL
, root
, must_clean
);
3923 btrfs_tree_unlock(must_clean
);
3924 free_extent_buffer(must_clean
);
3928 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
3931 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
3932 bytenr
>> PAGE_CACHE_SHIFT
,
3933 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
3936 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0,
3940 btrfs_free_path(path
);
3945 * when we free an extent, it is possible (and likely) that we free the last
3946 * delayed ref for that extent as well. This searches the delayed ref tree for
3947 * a given extent, and if there are no other delayed refs to be processed, it
3948 * removes it from the tree.
3950 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3951 struct btrfs_root
*root
, u64 bytenr
)
3953 struct btrfs_delayed_ref_head
*head
;
3954 struct btrfs_delayed_ref_root
*delayed_refs
;
3955 struct btrfs_delayed_ref_node
*ref
;
3956 struct rb_node
*node
;
3959 delayed_refs
= &trans
->transaction
->delayed_refs
;
3960 spin_lock(&delayed_refs
->lock
);
3961 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3965 node
= rb_prev(&head
->node
.rb_node
);
3969 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3971 /* there are still entries for this ref, we can't drop it */
3972 if (ref
->bytenr
== bytenr
)
3975 if (head
->extent_op
) {
3976 if (!head
->must_insert_reserved
)
3978 kfree(head
->extent_op
);
3979 head
->extent_op
= NULL
;
3983 * waiting for the lock here would deadlock. If someone else has it
3984 * locked they are already in the process of dropping it anyway
3986 if (!mutex_trylock(&head
->mutex
))
3990 * at this point we have a head with no other entries. Go
3991 * ahead and process it.
3993 head
->node
.in_tree
= 0;
3994 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
3996 delayed_refs
->num_entries
--;
3999 * we don't take a ref on the node because we're removing it from the
4000 * tree, so we just steal the ref the tree was holding.
4002 delayed_refs
->num_heads
--;
4003 if (list_empty(&head
->cluster
))
4004 delayed_refs
->num_heads_ready
--;
4006 list_del_init(&head
->cluster
);
4007 spin_unlock(&delayed_refs
->lock
);
4009 ret
= run_one_delayed_ref(trans
, root
->fs_info
->tree_root
,
4010 &head
->node
, head
->extent_op
,
4011 head
->must_insert_reserved
);
4013 btrfs_put_delayed_ref(&head
->node
);
4016 spin_unlock(&delayed_refs
->lock
);
4020 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4021 struct btrfs_root
*root
,
4022 u64 bytenr
, u64 num_bytes
, u64 parent
,
4023 u64 root_objectid
, u64 owner
, u64 offset
)
4028 * tree log blocks never actually go into the extent allocation
4029 * tree, just update pinning info and exit early.
4031 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4032 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4033 /* unlocks the pinned mutex */
4034 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4036 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4037 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4038 parent
, root_objectid
, (int)owner
,
4039 BTRFS_DROP_DELAYED_REF
, NULL
);
4041 ret
= check_ref_cleanup(trans
, root
, bytenr
);
4044 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4045 parent
, root_objectid
, owner
,
4046 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4052 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4054 u64 mask
= ((u64
)root
->stripesize
- 1);
4055 u64 ret
= (val
+ mask
) & ~mask
;
4060 * when we wait for progress in the block group caching, its because
4061 * our allocation attempt failed at least once. So, we must sleep
4062 * and let some progress happen before we try again.
4064 * This function will sleep at least once waiting for new free space to
4065 * show up, and then it will check the block group free space numbers
4066 * for our min num_bytes. Another option is to have it go ahead
4067 * and look in the rbtree for a free extent of a given size, but this
4071 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4074 struct btrfs_caching_control
*caching_ctl
;
4077 caching_ctl
= get_caching_control(cache
);
4081 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4082 (cache
->free_space
>= num_bytes
));
4084 put_caching_control(caching_ctl
);
4089 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4091 struct btrfs_caching_control
*caching_ctl
;
4094 caching_ctl
= get_caching_control(cache
);
4098 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4100 put_caching_control(caching_ctl
);
4104 enum btrfs_loop_type
{
4105 LOOP_CACHED_ONLY
= 0,
4106 LOOP_CACHING_NOWAIT
= 1,
4107 LOOP_CACHING_WAIT
= 2,
4108 LOOP_ALLOC_CHUNK
= 3,
4109 LOOP_NO_EMPTY_SIZE
= 4,
4113 * walks the btree of allocated extents and find a hole of a given size.
4114 * The key ins is changed to record the hole:
4115 * ins->objectid == block start
4116 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4117 * ins->offset == number of blocks
4118 * Any available blocks before search_start are skipped.
4120 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4121 struct btrfs_root
*orig_root
,
4122 u64 num_bytes
, u64 empty_size
,
4123 u64 search_start
, u64 search_end
,
4124 u64 hint_byte
, struct btrfs_key
*ins
,
4125 u64 exclude_start
, u64 exclude_nr
,
4129 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4130 struct btrfs_free_cluster
*last_ptr
= NULL
;
4131 struct btrfs_block_group_cache
*block_group
= NULL
;
4132 int empty_cluster
= 2 * 1024 * 1024;
4133 int allowed_chunk_alloc
= 0;
4134 struct btrfs_space_info
*space_info
;
4135 int last_ptr_loop
= 0;
4137 bool found_uncached_bg
= false;
4138 bool failed_cluster_refill
= false;
4139 bool failed_alloc
= false;
4141 WARN_ON(num_bytes
< root
->sectorsize
);
4142 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4146 space_info
= __find_space_info(root
->fs_info
, data
);
4148 if (orig_root
->ref_cows
|| empty_size
)
4149 allowed_chunk_alloc
= 1;
4151 if (data
& BTRFS_BLOCK_GROUP_METADATA
) {
4152 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4153 if (!btrfs_test_opt(root
, SSD
))
4154 empty_cluster
= 64 * 1024;
4157 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && btrfs_test_opt(root
, SSD
)) {
4158 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4162 spin_lock(&last_ptr
->lock
);
4163 if (last_ptr
->block_group
)
4164 hint_byte
= last_ptr
->window_start
;
4165 spin_unlock(&last_ptr
->lock
);
4168 search_start
= max(search_start
, first_logical_byte(root
, 0));
4169 search_start
= max(search_start
, hint_byte
);
4174 if (search_start
== hint_byte
) {
4175 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4178 * we don't want to use the block group if it doesn't match our
4179 * allocation bits, or if its not cached.
4181 if (block_group
&& block_group_bits(block_group
, data
) &&
4182 block_group_cache_done(block_group
)) {
4183 down_read(&space_info
->groups_sem
);
4184 if (list_empty(&block_group
->list
) ||
4187 * someone is removing this block group,
4188 * we can't jump into the have_block_group
4189 * target because our list pointers are not
4192 btrfs_put_block_group(block_group
);
4193 up_read(&space_info
->groups_sem
);
4195 goto have_block_group
;
4196 } else if (block_group
) {
4197 btrfs_put_block_group(block_group
);
4202 down_read(&space_info
->groups_sem
);
4203 list_for_each_entry(block_group
, &space_info
->block_groups
, list
) {
4207 atomic_inc(&block_group
->count
);
4208 search_start
= block_group
->key
.objectid
;
4211 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
4213 * we want to start caching kthreads, but not too many
4214 * right off the bat so we don't overwhelm the system,
4215 * so only start them if there are less than 2 and we're
4216 * in the initial allocation phase.
4218 if (loop
> LOOP_CACHING_NOWAIT
||
4219 atomic_read(&space_info
->caching_threads
) < 2) {
4220 ret
= cache_block_group(block_group
);
4225 cached
= block_group_cache_done(block_group
);
4226 if (unlikely(!cached
)) {
4227 found_uncached_bg
= true;
4229 /* if we only want cached bgs, loop */
4230 if (loop
== LOOP_CACHED_ONLY
)
4234 if (unlikely(block_group
->ro
))
4238 * Ok we want to try and use the cluster allocator, so lets look
4239 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4240 * have tried the cluster allocator plenty of times at this
4241 * point and not have found anything, so we are likely way too
4242 * fragmented for the clustering stuff to find anything, so lets
4243 * just skip it and let the allocator find whatever block it can
4246 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
4248 * the refill lock keeps out other
4249 * people trying to start a new cluster
4251 spin_lock(&last_ptr
->refill_lock
);
4252 if (last_ptr
->block_group
&&
4253 (last_ptr
->block_group
->ro
||
4254 !block_group_bits(last_ptr
->block_group
, data
))) {
4256 goto refill_cluster
;
4259 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
4260 num_bytes
, search_start
);
4262 /* we have a block, we're done */
4263 spin_unlock(&last_ptr
->refill_lock
);
4267 spin_lock(&last_ptr
->lock
);
4269 * whoops, this cluster doesn't actually point to
4270 * this block group. Get a ref on the block
4271 * group is does point to and try again
4273 if (!last_ptr_loop
&& last_ptr
->block_group
&&
4274 last_ptr
->block_group
!= block_group
) {
4276 btrfs_put_block_group(block_group
);
4277 block_group
= last_ptr
->block_group
;
4278 atomic_inc(&block_group
->count
);
4279 spin_unlock(&last_ptr
->lock
);
4280 spin_unlock(&last_ptr
->refill_lock
);
4283 search_start
= block_group
->key
.objectid
;
4285 * we know this block group is properly
4286 * in the list because
4287 * btrfs_remove_block_group, drops the
4288 * cluster before it removes the block
4289 * group from the list
4291 goto have_block_group
;
4293 spin_unlock(&last_ptr
->lock
);
4296 * this cluster didn't work out, free it and
4299 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4303 /* allocate a cluster in this block group */
4304 ret
= btrfs_find_space_cluster(trans
, root
,
4305 block_group
, last_ptr
,
4307 empty_cluster
+ empty_size
);
4310 * now pull our allocation out of this
4313 offset
= btrfs_alloc_from_cluster(block_group
,
4314 last_ptr
, num_bytes
,
4317 /* we found one, proceed */
4318 spin_unlock(&last_ptr
->refill_lock
);
4321 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
4322 && !failed_cluster_refill
) {
4323 spin_unlock(&last_ptr
->refill_lock
);
4325 failed_cluster_refill
= true;
4326 wait_block_group_cache_progress(block_group
,
4327 num_bytes
+ empty_cluster
+ empty_size
);
4328 goto have_block_group
;
4332 * at this point we either didn't find a cluster
4333 * or we weren't able to allocate a block from our
4334 * cluster. Free the cluster we've been trying
4335 * to use, and go to the next block group
4337 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4338 spin_unlock(&last_ptr
->refill_lock
);
4342 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
4343 num_bytes
, empty_size
);
4345 * If we didn't find a chunk, and we haven't failed on this
4346 * block group before, and this block group is in the middle of
4347 * caching and we are ok with waiting, then go ahead and wait
4348 * for progress to be made, and set failed_alloc to true.
4350 * If failed_alloc is true then we've already waited on this
4351 * block group once and should move on to the next block group.
4353 if (!offset
&& !failed_alloc
&& !cached
&&
4354 loop
> LOOP_CACHING_NOWAIT
) {
4355 wait_block_group_cache_progress(block_group
,
4356 num_bytes
+ empty_size
);
4357 failed_alloc
= true;
4358 goto have_block_group
;
4359 } else if (!offset
) {
4363 search_start
= stripe_align(root
, offset
);
4364 /* move on to the next group */
4365 if (search_start
+ num_bytes
>= search_end
) {
4366 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4370 /* move on to the next group */
4371 if (search_start
+ num_bytes
>
4372 block_group
->key
.objectid
+ block_group
->key
.offset
) {
4373 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4377 if (exclude_nr
> 0 &&
4378 (search_start
+ num_bytes
> exclude_start
&&
4379 search_start
< exclude_start
+ exclude_nr
)) {
4380 search_start
= exclude_start
+ exclude_nr
;
4382 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4384 * if search_start is still in this block group
4385 * then we just re-search this block group
4387 if (search_start
>= block_group
->key
.objectid
&&
4388 search_start
< (block_group
->key
.objectid
+
4389 block_group
->key
.offset
))
4390 goto have_block_group
;
4394 ins
->objectid
= search_start
;
4395 ins
->offset
= num_bytes
;
4397 if (offset
< search_start
)
4398 btrfs_add_free_space(block_group
, offset
,
4399 search_start
- offset
);
4400 BUG_ON(offset
> search_start
);
4402 update_reserved_extents(block_group
, num_bytes
, 1);
4404 /* we are all good, lets return */
4407 failed_cluster_refill
= false;
4408 failed_alloc
= false;
4409 btrfs_put_block_group(block_group
);
4411 up_read(&space_info
->groups_sem
);
4413 /* LOOP_CACHED_ONLY, only search fully cached block groups
4414 * LOOP_CACHING_NOWAIT, search partially cached block groups, but
4415 * dont wait foR them to finish caching
4416 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4417 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4418 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4421 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
4422 (found_uncached_bg
|| empty_size
|| empty_cluster
||
4423 allowed_chunk_alloc
)) {
4424 if (found_uncached_bg
) {
4425 found_uncached_bg
= false;
4426 if (loop
< LOOP_CACHING_WAIT
) {
4432 if (loop
== LOOP_ALLOC_CHUNK
) {
4437 if (allowed_chunk_alloc
) {
4438 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
4439 2 * 1024 * 1024, data
, 1);
4440 allowed_chunk_alloc
= 0;
4442 space_info
->force_alloc
= 1;
4445 if (loop
< LOOP_NO_EMPTY_SIZE
) {
4450 } else if (!ins
->objectid
) {
4454 /* we found what we needed */
4455 if (ins
->objectid
) {
4456 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
4457 trans
->block_group
= block_group
->key
.objectid
;
4459 btrfs_put_block_group(block_group
);
4466 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
4467 int dump_block_groups
)
4469 struct btrfs_block_group_cache
*cache
;
4471 spin_lock(&info
->lock
);
4472 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
4473 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
4474 info
->bytes_pinned
- info
->bytes_reserved
-
4476 (info
->full
) ? "" : "not ");
4477 printk(KERN_INFO
"space_info total=%llu, pinned=%llu, delalloc=%llu,"
4478 " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
4480 (unsigned long long)info
->total_bytes
,
4481 (unsigned long long)info
->bytes_pinned
,
4482 (unsigned long long)info
->bytes_delalloc
,
4483 (unsigned long long)info
->bytes_may_use
,
4484 (unsigned long long)info
->bytes_used
,
4485 (unsigned long long)info
->bytes_root
,
4486 (unsigned long long)info
->bytes_super
,
4487 (unsigned long long)info
->bytes_reserved
);
4488 spin_unlock(&info
->lock
);
4490 if (!dump_block_groups
)
4493 down_read(&info
->groups_sem
);
4494 list_for_each_entry(cache
, &info
->block_groups
, list
) {
4495 spin_lock(&cache
->lock
);
4496 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
4497 "%llu pinned %llu reserved\n",
4498 (unsigned long long)cache
->key
.objectid
,
4499 (unsigned long long)cache
->key
.offset
,
4500 (unsigned long long)btrfs_block_group_used(&cache
->item
),
4501 (unsigned long long)cache
->pinned
,
4502 (unsigned long long)cache
->reserved
);
4503 btrfs_dump_free_space(cache
, bytes
);
4504 spin_unlock(&cache
->lock
);
4506 up_read(&info
->groups_sem
);
4509 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
4510 struct btrfs_root
*root
,
4511 u64 num_bytes
, u64 min_alloc_size
,
4512 u64 empty_size
, u64 hint_byte
,
4513 u64 search_end
, struct btrfs_key
*ins
,
4517 u64 search_start
= 0;
4518 struct btrfs_fs_info
*info
= root
->fs_info
;
4520 data
= btrfs_get_alloc_profile(root
, data
);
4523 * the only place that sets empty_size is btrfs_realloc_node, which
4524 * is not called recursively on allocations
4526 if (empty_size
|| root
->ref_cows
) {
4527 if (!(data
& BTRFS_BLOCK_GROUP_METADATA
)) {
4528 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4530 BTRFS_BLOCK_GROUP_METADATA
|
4531 (info
->metadata_alloc_profile
&
4532 info
->avail_metadata_alloc_bits
), 0);
4534 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4535 num_bytes
+ 2 * 1024 * 1024, data
, 0);
4538 WARN_ON(num_bytes
< root
->sectorsize
);
4539 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
4540 search_start
, search_end
, hint_byte
, ins
,
4541 trans
->alloc_exclude_start
,
4542 trans
->alloc_exclude_nr
, data
);
4544 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
4545 num_bytes
= num_bytes
>> 1;
4546 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
4547 num_bytes
= max(num_bytes
, min_alloc_size
);
4548 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4549 num_bytes
, data
, 1);
4552 if (ret
== -ENOSPC
) {
4553 struct btrfs_space_info
*sinfo
;
4555 sinfo
= __find_space_info(root
->fs_info
, data
);
4556 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
4557 "wanted %llu\n", (unsigned long long)data
,
4558 (unsigned long long)num_bytes
);
4559 dump_space_info(sinfo
, num_bytes
, 1);
4565 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
4567 struct btrfs_block_group_cache
*cache
;
4570 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
4572 printk(KERN_ERR
"Unable to find block group for %llu\n",
4573 (unsigned long long)start
);
4577 ret
= btrfs_discard_extent(root
, start
, len
);
4579 btrfs_add_free_space(cache
, start
, len
);
4580 update_reserved_extents(cache
, len
, 0);
4581 btrfs_put_block_group(cache
);
4586 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4587 struct btrfs_root
*root
,
4588 u64 parent
, u64 root_objectid
,
4589 u64 flags
, u64 owner
, u64 offset
,
4590 struct btrfs_key
*ins
, int ref_mod
)
4593 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4594 struct btrfs_extent_item
*extent_item
;
4595 struct btrfs_extent_inline_ref
*iref
;
4596 struct btrfs_path
*path
;
4597 struct extent_buffer
*leaf
;
4602 type
= BTRFS_SHARED_DATA_REF_KEY
;
4604 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4606 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4608 path
= btrfs_alloc_path();
4611 path
->leave_spinning
= 1;
4612 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4616 leaf
= path
->nodes
[0];
4617 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4618 struct btrfs_extent_item
);
4619 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4620 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4621 btrfs_set_extent_flags(leaf
, extent_item
,
4622 flags
| BTRFS_EXTENT_FLAG_DATA
);
4624 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4625 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4627 struct btrfs_shared_data_ref
*ref
;
4628 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4629 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4630 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4632 struct btrfs_extent_data_ref
*ref
;
4633 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4634 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4635 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4636 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4637 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4640 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4641 btrfs_free_path(path
);
4643 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4646 printk(KERN_ERR
"btrfs update block group failed for %llu "
4647 "%llu\n", (unsigned long long)ins
->objectid
,
4648 (unsigned long long)ins
->offset
);
4654 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4655 struct btrfs_root
*root
,
4656 u64 parent
, u64 root_objectid
,
4657 u64 flags
, struct btrfs_disk_key
*key
,
4658 int level
, struct btrfs_key
*ins
)
4661 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4662 struct btrfs_extent_item
*extent_item
;
4663 struct btrfs_tree_block_info
*block_info
;
4664 struct btrfs_extent_inline_ref
*iref
;
4665 struct btrfs_path
*path
;
4666 struct extent_buffer
*leaf
;
4667 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
4669 path
= btrfs_alloc_path();
4672 path
->leave_spinning
= 1;
4673 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4677 leaf
= path
->nodes
[0];
4678 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4679 struct btrfs_extent_item
);
4680 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4681 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4682 btrfs_set_extent_flags(leaf
, extent_item
,
4683 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4684 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4686 btrfs_set_tree_block_key(leaf
, block_info
, key
);
4687 btrfs_set_tree_block_level(leaf
, block_info
, level
);
4689 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4691 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4692 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4693 BTRFS_SHARED_BLOCK_REF_KEY
);
4694 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4696 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4697 BTRFS_TREE_BLOCK_REF_KEY
);
4698 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
4701 btrfs_mark_buffer_dirty(leaf
);
4702 btrfs_free_path(path
);
4704 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4707 printk(KERN_ERR
"btrfs update block group failed for %llu "
4708 "%llu\n", (unsigned long long)ins
->objectid
,
4709 (unsigned long long)ins
->offset
);
4715 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4716 struct btrfs_root
*root
,
4717 u64 root_objectid
, u64 owner
,
4718 u64 offset
, struct btrfs_key
*ins
)
4722 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
4724 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
4725 0, root_objectid
, owner
, offset
,
4726 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
4731 * this is used by the tree logging recovery code. It records that
4732 * an extent has been allocated and makes sure to clear the free
4733 * space cache bits as well
4735 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4736 struct btrfs_root
*root
,
4737 u64 root_objectid
, u64 owner
, u64 offset
,
4738 struct btrfs_key
*ins
)
4741 struct btrfs_block_group_cache
*block_group
;
4742 struct btrfs_caching_control
*caching_ctl
;
4743 u64 start
= ins
->objectid
;
4744 u64 num_bytes
= ins
->offset
;
4746 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
4747 cache_block_group(block_group
);
4748 caching_ctl
= get_caching_control(block_group
);
4751 BUG_ON(!block_group_cache_done(block_group
));
4752 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
4755 mutex_lock(&caching_ctl
->mutex
);
4757 if (start
>= caching_ctl
->progress
) {
4758 ret
= add_excluded_extent(root
, start
, num_bytes
);
4760 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
4761 ret
= btrfs_remove_free_space(block_group
,
4765 num_bytes
= caching_ctl
->progress
- start
;
4766 ret
= btrfs_remove_free_space(block_group
,
4770 start
= caching_ctl
->progress
;
4771 num_bytes
= ins
->objectid
+ ins
->offset
-
4772 caching_ctl
->progress
;
4773 ret
= add_excluded_extent(root
, start
, num_bytes
);
4777 mutex_unlock(&caching_ctl
->mutex
);
4778 put_caching_control(caching_ctl
);
4781 update_reserved_extents(block_group
, ins
->offset
, 1);
4782 btrfs_put_block_group(block_group
);
4783 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
4784 0, owner
, offset
, ins
, 1);
4789 * finds a free extent and does all the dirty work required for allocation
4790 * returns the key for the extent through ins, and a tree buffer for
4791 * the first block of the extent through buf.
4793 * returns 0 if everything worked, non-zero otherwise.
4795 static int alloc_tree_block(struct btrfs_trans_handle
*trans
,
4796 struct btrfs_root
*root
,
4797 u64 num_bytes
, u64 parent
, u64 root_objectid
,
4798 struct btrfs_disk_key
*key
, int level
,
4799 u64 empty_size
, u64 hint_byte
, u64 search_end
,
4800 struct btrfs_key
*ins
)
4805 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, num_bytes
,
4806 empty_size
, hint_byte
, search_end
,
4811 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4813 parent
= ins
->objectid
;
4814 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4818 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4819 struct btrfs_delayed_extent_op
*extent_op
;
4820 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
4823 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4825 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4826 extent_op
->flags_to_set
= flags
;
4827 extent_op
->update_key
= 1;
4828 extent_op
->update_flags
= 1;
4829 extent_op
->is_data
= 0;
4831 ret
= btrfs_add_delayed_tree_ref(trans
, ins
->objectid
,
4832 ins
->offset
, parent
, root_objectid
,
4833 level
, BTRFS_ADD_DELAYED_EXTENT
,
4840 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
4841 struct btrfs_root
*root
,
4842 u64 bytenr
, u32 blocksize
,
4845 struct extent_buffer
*buf
;
4847 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
4849 return ERR_PTR(-ENOMEM
);
4850 btrfs_set_header_generation(buf
, trans
->transid
);
4851 btrfs_set_buffer_lockdep_class(buf
, level
);
4852 btrfs_tree_lock(buf
);
4853 clean_tree_block(trans
, root
, buf
);
4855 btrfs_set_lock_blocking(buf
);
4856 btrfs_set_buffer_uptodate(buf
);
4858 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4859 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4860 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4862 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4863 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4865 trans
->blocks_used
++;
4866 /* this returns a buffer locked for blocking */
4871 * helper function to allocate a block for a given tree
4872 * returns the tree buffer or NULL.
4874 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
4875 struct btrfs_root
*root
, u32 blocksize
,
4876 u64 parent
, u64 root_objectid
,
4877 struct btrfs_disk_key
*key
, int level
,
4878 u64 hint
, u64 empty_size
)
4880 struct btrfs_key ins
;
4882 struct extent_buffer
*buf
;
4884 ret
= alloc_tree_block(trans
, root
, blocksize
, parent
, root_objectid
,
4885 key
, level
, empty_size
, hint
, (u64
)-1, &ins
);
4888 return ERR_PTR(ret
);
4891 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
4896 struct walk_control
{
4897 u64 refs
[BTRFS_MAX_LEVEL
];
4898 u64 flags
[BTRFS_MAX_LEVEL
];
4899 struct btrfs_key update_progress
;
4909 #define DROP_REFERENCE 1
4910 #define UPDATE_BACKREF 2
4912 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
4913 struct btrfs_root
*root
,
4914 struct walk_control
*wc
,
4915 struct btrfs_path
*path
)
4924 struct btrfs_key key
;
4925 struct extent_buffer
*eb
;
4930 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
4931 wc
->reada_count
= wc
->reada_count
* 2 / 3;
4932 wc
->reada_count
= max(wc
->reada_count
, 2);
4934 wc
->reada_count
= wc
->reada_count
* 3 / 2;
4935 wc
->reada_count
= min_t(int, wc
->reada_count
,
4936 BTRFS_NODEPTRS_PER_BLOCK(root
));
4939 eb
= path
->nodes
[wc
->level
];
4940 nritems
= btrfs_header_nritems(eb
);
4941 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
4943 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
4944 if (nread
>= wc
->reada_count
)
4948 bytenr
= btrfs_node_blockptr(eb
, slot
);
4949 generation
= btrfs_node_ptr_generation(eb
, slot
);
4951 if (slot
== path
->slots
[wc
->level
])
4954 if (wc
->stage
== UPDATE_BACKREF
&&
4955 generation
<= root
->root_key
.offset
)
4958 /* We don't lock the tree block, it's OK to be racy here */
4959 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
4964 if (wc
->stage
== DROP_REFERENCE
) {
4968 if (wc
->level
== 1 &&
4969 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4971 if (!wc
->update_ref
||
4972 generation
<= root
->root_key
.offset
)
4974 btrfs_node_key_to_cpu(eb
, &key
, slot
);
4975 ret
= btrfs_comp_cpu_keys(&key
,
4976 &wc
->update_progress
);
4980 if (wc
->level
== 1 &&
4981 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4985 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
4989 last
= bytenr
+ blocksize
;
4992 wc
->reada_slot
= slot
;
4996 * hepler to process tree block while walking down the tree.
4998 * when wc->stage == UPDATE_BACKREF, this function updates
4999 * back refs for pointers in the block.
5001 * NOTE: return value 1 means we should stop walking down.
5003 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5004 struct btrfs_root
*root
,
5005 struct btrfs_path
*path
,
5006 struct walk_control
*wc
, int lookup_info
)
5008 int level
= wc
->level
;
5009 struct extent_buffer
*eb
= path
->nodes
[level
];
5010 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5013 if (wc
->stage
== UPDATE_BACKREF
&&
5014 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5018 * when reference count of tree block is 1, it won't increase
5019 * again. once full backref flag is set, we never clear it.
5022 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5023 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5024 BUG_ON(!path
->locks
[level
]);
5025 ret
= btrfs_lookup_extent_info(trans
, root
,
5030 BUG_ON(wc
->refs
[level
] == 0);
5033 if (wc
->stage
== DROP_REFERENCE
) {
5034 if (wc
->refs
[level
] > 1)
5037 if (path
->locks
[level
] && !wc
->keep_locks
) {
5038 btrfs_tree_unlock(eb
);
5039 path
->locks
[level
] = 0;
5044 /* wc->stage == UPDATE_BACKREF */
5045 if (!(wc
->flags
[level
] & flag
)) {
5046 BUG_ON(!path
->locks
[level
]);
5047 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5049 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5051 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5054 wc
->flags
[level
] |= flag
;
5058 * the block is shared by multiple trees, so it's not good to
5059 * keep the tree lock
5061 if (path
->locks
[level
] && level
> 0) {
5062 btrfs_tree_unlock(eb
);
5063 path
->locks
[level
] = 0;
5069 * hepler to process tree block pointer.
5071 * when wc->stage == DROP_REFERENCE, this function checks
5072 * reference count of the block pointed to. if the block
5073 * is shared and we need update back refs for the subtree
5074 * rooted at the block, this function changes wc->stage to
5075 * UPDATE_BACKREF. if the block is shared and there is no
5076 * need to update back, this function drops the reference
5079 * NOTE: return value 1 means we should stop walking down.
5081 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5082 struct btrfs_root
*root
,
5083 struct btrfs_path
*path
,
5084 struct walk_control
*wc
, int *lookup_info
)
5090 struct btrfs_key key
;
5091 struct extent_buffer
*next
;
5092 int level
= wc
->level
;
5096 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5097 path
->slots
[level
]);
5099 * if the lower level block was created before the snapshot
5100 * was created, we know there is no need to update back refs
5103 if (wc
->stage
== UPDATE_BACKREF
&&
5104 generation
<= root
->root_key
.offset
) {
5109 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5110 blocksize
= btrfs_level_size(root
, level
- 1);
5112 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5114 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5117 btrfs_tree_lock(next
);
5118 btrfs_set_lock_blocking(next
);
5120 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5121 &wc
->refs
[level
- 1],
5122 &wc
->flags
[level
- 1]);
5124 BUG_ON(wc
->refs
[level
- 1] == 0);
5127 if (wc
->stage
== DROP_REFERENCE
) {
5128 if (wc
->refs
[level
- 1] > 1) {
5130 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5133 if (!wc
->update_ref
||
5134 generation
<= root
->root_key
.offset
)
5137 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
5138 path
->slots
[level
]);
5139 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
5143 wc
->stage
= UPDATE_BACKREF
;
5144 wc
->shared_level
= level
- 1;
5148 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5152 if (!btrfs_buffer_uptodate(next
, generation
)) {
5153 btrfs_tree_unlock(next
);
5154 free_extent_buffer(next
);
5160 if (reada
&& level
== 1)
5161 reada_walk_down(trans
, root
, wc
, path
);
5162 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
5163 btrfs_tree_lock(next
);
5164 btrfs_set_lock_blocking(next
);
5168 BUG_ON(level
!= btrfs_header_level(next
));
5169 path
->nodes
[level
] = next
;
5170 path
->slots
[level
] = 0;
5171 path
->locks
[level
] = 1;
5177 wc
->refs
[level
- 1] = 0;
5178 wc
->flags
[level
- 1] = 0;
5179 if (wc
->stage
== DROP_REFERENCE
) {
5180 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
5181 parent
= path
->nodes
[level
]->start
;
5183 BUG_ON(root
->root_key
.objectid
!=
5184 btrfs_header_owner(path
->nodes
[level
]));
5188 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
5189 root
->root_key
.objectid
, level
- 1, 0);
5192 btrfs_tree_unlock(next
);
5193 free_extent_buffer(next
);
5199 * hepler to process tree block while walking up the tree.
5201 * when wc->stage == DROP_REFERENCE, this function drops
5202 * reference count on the block.
5204 * when wc->stage == UPDATE_BACKREF, this function changes
5205 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5206 * to UPDATE_BACKREF previously while processing the block.
5208 * NOTE: return value 1 means we should stop walking up.
5210 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5211 struct btrfs_root
*root
,
5212 struct btrfs_path
*path
,
5213 struct walk_control
*wc
)
5216 int level
= wc
->level
;
5217 struct extent_buffer
*eb
= path
->nodes
[level
];
5220 if (wc
->stage
== UPDATE_BACKREF
) {
5221 BUG_ON(wc
->shared_level
< level
);
5222 if (level
< wc
->shared_level
)
5225 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5229 wc
->stage
= DROP_REFERENCE
;
5230 wc
->shared_level
= -1;
5231 path
->slots
[level
] = 0;
5234 * check reference count again if the block isn't locked.
5235 * we should start walking down the tree again if reference
5238 if (!path
->locks
[level
]) {
5240 btrfs_tree_lock(eb
);
5241 btrfs_set_lock_blocking(eb
);
5242 path
->locks
[level
] = 1;
5244 ret
= btrfs_lookup_extent_info(trans
, root
,
5249 BUG_ON(wc
->refs
[level
] == 0);
5250 if (wc
->refs
[level
] == 1) {
5251 btrfs_tree_unlock(eb
);
5252 path
->locks
[level
] = 0;
5258 /* wc->stage == DROP_REFERENCE */
5259 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5261 if (wc
->refs
[level
] == 1) {
5263 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5264 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5266 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5269 /* make block locked assertion in clean_tree_block happy */
5270 if (!path
->locks
[level
] &&
5271 btrfs_header_generation(eb
) == trans
->transid
) {
5272 btrfs_tree_lock(eb
);
5273 btrfs_set_lock_blocking(eb
);
5274 path
->locks
[level
] = 1;
5276 clean_tree_block(trans
, root
, eb
);
5279 if (eb
== root
->node
) {
5280 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5283 BUG_ON(root
->root_key
.objectid
!=
5284 btrfs_header_owner(eb
));
5286 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5287 parent
= path
->nodes
[level
+ 1]->start
;
5289 BUG_ON(root
->root_key
.objectid
!=
5290 btrfs_header_owner(path
->nodes
[level
+ 1]));
5293 ret
= btrfs_free_extent(trans
, root
, eb
->start
, eb
->len
, parent
,
5294 root
->root_key
.objectid
, level
, 0);
5297 wc
->refs
[level
] = 0;
5298 wc
->flags
[level
] = 0;
5302 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5303 struct btrfs_root
*root
,
5304 struct btrfs_path
*path
,
5305 struct walk_control
*wc
)
5307 int level
= wc
->level
;
5308 int lookup_info
= 1;
5311 while (level
>= 0) {
5312 if (path
->slots
[level
] >=
5313 btrfs_header_nritems(path
->nodes
[level
]))
5316 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5323 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5325 path
->slots
[level
]++;
5333 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5334 struct btrfs_root
*root
,
5335 struct btrfs_path
*path
,
5336 struct walk_control
*wc
, int max_level
)
5338 int level
= wc
->level
;
5341 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5342 while (level
< max_level
&& path
->nodes
[level
]) {
5344 if (path
->slots
[level
] + 1 <
5345 btrfs_header_nritems(path
->nodes
[level
])) {
5346 path
->slots
[level
]++;
5349 ret
= walk_up_proc(trans
, root
, path
, wc
);
5353 if (path
->locks
[level
]) {
5354 btrfs_tree_unlock(path
->nodes
[level
]);
5355 path
->locks
[level
] = 0;
5357 free_extent_buffer(path
->nodes
[level
]);
5358 path
->nodes
[level
] = NULL
;
5366 * drop a subvolume tree.
5368 * this function traverses the tree freeing any blocks that only
5369 * referenced by the tree.
5371 * when a shared tree block is found. this function decreases its
5372 * reference count by one. if update_ref is true, this function
5373 * also make sure backrefs for the shared block and all lower level
5374 * blocks are properly updated.
5376 int btrfs_drop_snapshot(struct btrfs_root
*root
, int update_ref
)
5378 struct btrfs_path
*path
;
5379 struct btrfs_trans_handle
*trans
;
5380 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
5381 struct btrfs_root_item
*root_item
= &root
->root_item
;
5382 struct walk_control
*wc
;
5383 struct btrfs_key key
;
5388 path
= btrfs_alloc_path();
5391 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5394 trans
= btrfs_start_transaction(tree_root
, 1);
5396 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5397 level
= btrfs_header_level(root
->node
);
5398 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5399 btrfs_set_lock_blocking(path
->nodes
[level
]);
5400 path
->slots
[level
] = 0;
5401 path
->locks
[level
] = 1;
5402 memset(&wc
->update_progress
, 0,
5403 sizeof(wc
->update_progress
));
5405 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5406 memcpy(&wc
->update_progress
, &key
,
5407 sizeof(wc
->update_progress
));
5409 level
= root_item
->drop_level
;
5411 path
->lowest_level
= level
;
5412 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5413 path
->lowest_level
= 0;
5421 * unlock our path, this is safe because only this
5422 * function is allowed to delete this snapshot
5424 btrfs_unlock_up_safe(path
, 0);
5426 level
= btrfs_header_level(root
->node
);
5428 btrfs_tree_lock(path
->nodes
[level
]);
5429 btrfs_set_lock_blocking(path
->nodes
[level
]);
5431 ret
= btrfs_lookup_extent_info(trans
, root
,
5432 path
->nodes
[level
]->start
,
5433 path
->nodes
[level
]->len
,
5437 BUG_ON(wc
->refs
[level
] == 0);
5439 if (level
== root_item
->drop_level
)
5442 btrfs_tree_unlock(path
->nodes
[level
]);
5443 WARN_ON(wc
->refs
[level
] != 1);
5449 wc
->shared_level
= -1;
5450 wc
->stage
= DROP_REFERENCE
;
5451 wc
->update_ref
= update_ref
;
5453 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5456 ret
= walk_down_tree(trans
, root
, path
, wc
);
5462 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5469 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5473 if (wc
->stage
== DROP_REFERENCE
) {
5475 btrfs_node_key(path
->nodes
[level
],
5476 &root_item
->drop_progress
,
5477 path
->slots
[level
]);
5478 root_item
->drop_level
= level
;
5481 BUG_ON(wc
->level
== 0);
5482 if (trans
->transaction
->in_commit
||
5483 trans
->transaction
->delayed_refs
.flushing
) {
5484 ret
= btrfs_update_root(trans
, tree_root
,
5489 btrfs_end_transaction(trans
, tree_root
);
5490 trans
= btrfs_start_transaction(tree_root
, 1);
5492 unsigned long update
;
5493 update
= trans
->delayed_ref_updates
;
5494 trans
->delayed_ref_updates
= 0;
5496 btrfs_run_delayed_refs(trans
, tree_root
,
5500 btrfs_release_path(root
, path
);
5503 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
5506 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
5507 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
5511 ret
= btrfs_del_orphan_item(trans
, tree_root
,
5512 root
->root_key
.objectid
);
5517 if (root
->in_radix
) {
5518 btrfs_free_fs_root(tree_root
->fs_info
, root
);
5520 free_extent_buffer(root
->node
);
5521 free_extent_buffer(root
->commit_root
);
5525 btrfs_end_transaction(trans
, tree_root
);
5527 btrfs_free_path(path
);
5532 * drop subtree rooted at tree block 'node'.
5534 * NOTE: this function will unlock and release tree block 'node'
5536 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5537 struct btrfs_root
*root
,
5538 struct extent_buffer
*node
,
5539 struct extent_buffer
*parent
)
5541 struct btrfs_path
*path
;
5542 struct walk_control
*wc
;
5548 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5550 path
= btrfs_alloc_path();
5553 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5556 btrfs_assert_tree_locked(parent
);
5557 parent_level
= btrfs_header_level(parent
);
5558 extent_buffer_get(parent
);
5559 path
->nodes
[parent_level
] = parent
;
5560 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5562 btrfs_assert_tree_locked(node
);
5563 level
= btrfs_header_level(node
);
5564 path
->nodes
[level
] = node
;
5565 path
->slots
[level
] = 0;
5566 path
->locks
[level
] = 1;
5568 wc
->refs
[parent_level
] = 1;
5569 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5571 wc
->shared_level
= -1;
5572 wc
->stage
= DROP_REFERENCE
;
5575 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5578 wret
= walk_down_tree(trans
, root
, path
, wc
);
5584 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5592 btrfs_free_path(path
);
5597 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
5600 return min(last
, start
+ nr
- 1);
5603 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
5608 unsigned long first_index
;
5609 unsigned long last_index
;
5612 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5613 struct file_ra_state
*ra
;
5614 struct btrfs_ordered_extent
*ordered
;
5615 unsigned int total_read
= 0;
5616 unsigned int total_dirty
= 0;
5619 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
5621 mutex_lock(&inode
->i_mutex
);
5622 first_index
= start
>> PAGE_CACHE_SHIFT
;
5623 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
5625 /* make sure the dirty trick played by the caller work */
5626 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5627 first_index
, last_index
);
5631 file_ra_state_init(ra
, inode
->i_mapping
);
5633 for (i
= first_index
; i
<= last_index
; i
++) {
5634 if (total_read
% ra
->ra_pages
== 0) {
5635 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
5636 calc_ra(i
, last_index
, ra
->ra_pages
));
5640 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
5642 page
= grab_cache_page(inode
->i_mapping
, i
);
5647 if (!PageUptodate(page
)) {
5648 btrfs_readpage(NULL
, page
);
5650 if (!PageUptodate(page
)) {
5652 page_cache_release(page
);
5657 wait_on_page_writeback(page
);
5659 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
5660 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
5661 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5663 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
5665 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5667 page_cache_release(page
);
5668 btrfs_start_ordered_extent(inode
, ordered
, 1);
5669 btrfs_put_ordered_extent(ordered
);
5672 set_page_extent_mapped(page
);
5674 if (i
== first_index
)
5675 set_extent_bits(io_tree
, page_start
, page_end
,
5676 EXTENT_BOUNDARY
, GFP_NOFS
);
5677 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
5679 set_page_dirty(page
);
5682 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5684 page_cache_release(page
);
5689 mutex_unlock(&inode
->i_mutex
);
5690 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
5694 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
5695 struct btrfs_key
*extent_key
,
5698 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5699 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
5700 struct extent_map
*em
;
5701 u64 start
= extent_key
->objectid
- offset
;
5702 u64 end
= start
+ extent_key
->offset
- 1;
5704 em
= alloc_extent_map(GFP_NOFS
);
5705 BUG_ON(!em
|| IS_ERR(em
));
5708 em
->len
= extent_key
->offset
;
5709 em
->block_len
= extent_key
->offset
;
5710 em
->block_start
= extent_key
->objectid
;
5711 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5712 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5714 /* setup extent map to cheat btrfs_readpage */
5715 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5718 write_lock(&em_tree
->lock
);
5719 ret
= add_extent_mapping(em_tree
, em
);
5720 write_unlock(&em_tree
->lock
);
5721 if (ret
!= -EEXIST
) {
5722 free_extent_map(em
);
5725 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
5727 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5729 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
5732 struct btrfs_ref_path
{
5734 u64 nodes
[BTRFS_MAX_LEVEL
];
5736 u64 root_generation
;
5743 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
5744 u64 new_nodes
[BTRFS_MAX_LEVEL
];
5747 struct disk_extent
{
5758 static int is_cowonly_root(u64 root_objectid
)
5760 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
5761 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
5762 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
5763 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
5764 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
5765 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
5770 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
5771 struct btrfs_root
*extent_root
,
5772 struct btrfs_ref_path
*ref_path
,
5775 struct extent_buffer
*leaf
;
5776 struct btrfs_path
*path
;
5777 struct btrfs_extent_ref
*ref
;
5778 struct btrfs_key key
;
5779 struct btrfs_key found_key
;
5785 path
= btrfs_alloc_path();
5790 ref_path
->lowest_level
= -1;
5791 ref_path
->current_level
= -1;
5792 ref_path
->shared_level
= -1;
5796 level
= ref_path
->current_level
- 1;
5797 while (level
>= -1) {
5799 if (level
< ref_path
->lowest_level
)
5803 bytenr
= ref_path
->nodes
[level
];
5805 bytenr
= ref_path
->extent_start
;
5806 BUG_ON(bytenr
== 0);
5808 parent
= ref_path
->nodes
[level
+ 1];
5809 ref_path
->nodes
[level
+ 1] = 0;
5810 ref_path
->current_level
= level
;
5811 BUG_ON(parent
== 0);
5813 key
.objectid
= bytenr
;
5814 key
.offset
= parent
+ 1;
5815 key
.type
= BTRFS_EXTENT_REF_KEY
;
5817 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5822 leaf
= path
->nodes
[0];
5823 nritems
= btrfs_header_nritems(leaf
);
5824 if (path
->slots
[0] >= nritems
) {
5825 ret
= btrfs_next_leaf(extent_root
, path
);
5830 leaf
= path
->nodes
[0];
5833 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5834 if (found_key
.objectid
== bytenr
&&
5835 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
5836 if (level
< ref_path
->shared_level
)
5837 ref_path
->shared_level
= level
;
5842 btrfs_release_path(extent_root
, path
);
5845 /* reached lowest level */
5849 level
= ref_path
->current_level
;
5850 while (level
< BTRFS_MAX_LEVEL
- 1) {
5854 bytenr
= ref_path
->nodes
[level
];
5856 bytenr
= ref_path
->extent_start
;
5858 BUG_ON(bytenr
== 0);
5860 key
.objectid
= bytenr
;
5862 key
.type
= BTRFS_EXTENT_REF_KEY
;
5864 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5868 leaf
= path
->nodes
[0];
5869 nritems
= btrfs_header_nritems(leaf
);
5870 if (path
->slots
[0] >= nritems
) {
5871 ret
= btrfs_next_leaf(extent_root
, path
);
5875 /* the extent was freed by someone */
5876 if (ref_path
->lowest_level
== level
)
5878 btrfs_release_path(extent_root
, path
);
5881 leaf
= path
->nodes
[0];
5884 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5885 if (found_key
.objectid
!= bytenr
||
5886 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
5887 /* the extent was freed by someone */
5888 if (ref_path
->lowest_level
== level
) {
5892 btrfs_release_path(extent_root
, path
);
5896 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
5897 struct btrfs_extent_ref
);
5898 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
5899 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
5901 level
= (int)ref_objectid
;
5902 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
5903 ref_path
->lowest_level
= level
;
5904 ref_path
->current_level
= level
;
5905 ref_path
->nodes
[level
] = bytenr
;
5907 WARN_ON(ref_objectid
!= level
);
5910 WARN_ON(level
!= -1);
5914 if (ref_path
->lowest_level
== level
) {
5915 ref_path
->owner_objectid
= ref_objectid
;
5916 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
5920 * the block is tree root or the block isn't in reference
5923 if (found_key
.objectid
== found_key
.offset
||
5924 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
5925 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5926 ref_path
->root_generation
=
5927 btrfs_ref_generation(leaf
, ref
);
5929 /* special reference from the tree log */
5930 ref_path
->nodes
[0] = found_key
.offset
;
5931 ref_path
->current_level
= 0;
5938 BUG_ON(ref_path
->nodes
[level
] != 0);
5939 ref_path
->nodes
[level
] = found_key
.offset
;
5940 ref_path
->current_level
= level
;
5943 * the reference was created in the running transaction,
5944 * no need to continue walking up.
5946 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
5947 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5948 ref_path
->root_generation
=
5949 btrfs_ref_generation(leaf
, ref
);
5954 btrfs_release_path(extent_root
, path
);
5957 /* reached max tree level, but no tree root found. */
5960 btrfs_free_path(path
);
5964 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
5965 struct btrfs_root
*extent_root
,
5966 struct btrfs_ref_path
*ref_path
,
5969 memset(ref_path
, 0, sizeof(*ref_path
));
5970 ref_path
->extent_start
= extent_start
;
5972 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
5975 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
5976 struct btrfs_root
*extent_root
,
5977 struct btrfs_ref_path
*ref_path
)
5979 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
5982 static noinline
int get_new_locations(struct inode
*reloc_inode
,
5983 struct btrfs_key
*extent_key
,
5984 u64 offset
, int no_fragment
,
5985 struct disk_extent
**extents
,
5988 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5989 struct btrfs_path
*path
;
5990 struct btrfs_file_extent_item
*fi
;
5991 struct extent_buffer
*leaf
;
5992 struct disk_extent
*exts
= *extents
;
5993 struct btrfs_key found_key
;
5998 int max
= *nr_extents
;
6001 WARN_ON(!no_fragment
&& *extents
);
6004 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6009 path
= btrfs_alloc_path();
6012 cur_pos
= extent_key
->objectid
- offset
;
6013 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
6014 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
6024 leaf
= path
->nodes
[0];
6025 nritems
= btrfs_header_nritems(leaf
);
6026 if (path
->slots
[0] >= nritems
) {
6027 ret
= btrfs_next_leaf(root
, path
);
6032 leaf
= path
->nodes
[0];
6035 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6036 if (found_key
.offset
!= cur_pos
||
6037 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
6038 found_key
.objectid
!= reloc_inode
->i_ino
)
6041 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6042 struct btrfs_file_extent_item
);
6043 if (btrfs_file_extent_type(leaf
, fi
) !=
6044 BTRFS_FILE_EXTENT_REG
||
6045 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6049 struct disk_extent
*old
= exts
;
6051 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6052 memcpy(exts
, old
, sizeof(*exts
) * nr
);
6053 if (old
!= *extents
)
6057 exts
[nr
].disk_bytenr
=
6058 btrfs_file_extent_disk_bytenr(leaf
, fi
);
6059 exts
[nr
].disk_num_bytes
=
6060 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6061 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
6062 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6063 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6064 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
6065 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
6066 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
6068 BUG_ON(exts
[nr
].offset
> 0);
6069 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
6070 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
6072 cur_pos
+= exts
[nr
].num_bytes
;
6075 if (cur_pos
+ offset
>= last_byte
)
6085 BUG_ON(cur_pos
+ offset
> last_byte
);
6086 if (cur_pos
+ offset
< last_byte
) {
6092 btrfs_free_path(path
);
6094 if (exts
!= *extents
)
6103 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
6104 struct btrfs_root
*root
,
6105 struct btrfs_path
*path
,
6106 struct btrfs_key
*extent_key
,
6107 struct btrfs_key
*leaf_key
,
6108 struct btrfs_ref_path
*ref_path
,
6109 struct disk_extent
*new_extents
,
6112 struct extent_buffer
*leaf
;
6113 struct btrfs_file_extent_item
*fi
;
6114 struct inode
*inode
= NULL
;
6115 struct btrfs_key key
;
6120 u64 search_end
= (u64
)-1;
6123 int extent_locked
= 0;
6127 memcpy(&key
, leaf_key
, sizeof(key
));
6128 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6129 if (key
.objectid
< ref_path
->owner_objectid
||
6130 (key
.objectid
== ref_path
->owner_objectid
&&
6131 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
6132 key
.objectid
= ref_path
->owner_objectid
;
6133 key
.type
= BTRFS_EXTENT_DATA_KEY
;
6139 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
6143 leaf
= path
->nodes
[0];
6144 nritems
= btrfs_header_nritems(leaf
);
6146 if (extent_locked
&& ret
> 0) {
6148 * the file extent item was modified by someone
6149 * before the extent got locked.
6151 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6152 lock_end
, GFP_NOFS
);
6156 if (path
->slots
[0] >= nritems
) {
6157 if (++nr_scaned
> 2)
6160 BUG_ON(extent_locked
);
6161 ret
= btrfs_next_leaf(root
, path
);
6166 leaf
= path
->nodes
[0];
6167 nritems
= btrfs_header_nritems(leaf
);
6170 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
6172 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6173 if ((key
.objectid
> ref_path
->owner_objectid
) ||
6174 (key
.objectid
== ref_path
->owner_objectid
&&
6175 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
6176 key
.offset
>= search_end
)
6180 if (inode
&& key
.objectid
!= inode
->i_ino
) {
6181 BUG_ON(extent_locked
);
6182 btrfs_release_path(root
, path
);
6183 mutex_unlock(&inode
->i_mutex
);
6189 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6194 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6195 struct btrfs_file_extent_item
);
6196 extent_type
= btrfs_file_extent_type(leaf
, fi
);
6197 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
6198 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
6199 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
6200 extent_key
->objectid
)) {
6206 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6207 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
6209 if (search_end
== (u64
)-1) {
6210 search_end
= key
.offset
- ext_offset
+
6211 btrfs_file_extent_ram_bytes(leaf
, fi
);
6214 if (!extent_locked
) {
6215 lock_start
= key
.offset
;
6216 lock_end
= lock_start
+ num_bytes
- 1;
6218 if (lock_start
> key
.offset
||
6219 lock_end
+ 1 < key
.offset
+ num_bytes
) {
6220 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6221 lock_start
, lock_end
, GFP_NOFS
);
6227 btrfs_release_path(root
, path
);
6229 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
6230 key
.objectid
, root
);
6231 if (inode
->i_state
& I_NEW
) {
6232 BTRFS_I(inode
)->root
= root
;
6233 BTRFS_I(inode
)->location
.objectid
=
6235 BTRFS_I(inode
)->location
.type
=
6236 BTRFS_INODE_ITEM_KEY
;
6237 BTRFS_I(inode
)->location
.offset
= 0;
6238 btrfs_read_locked_inode(inode
);
6239 unlock_new_inode(inode
);
6242 * some code call btrfs_commit_transaction while
6243 * holding the i_mutex, so we can't use mutex_lock
6246 if (is_bad_inode(inode
) ||
6247 !mutex_trylock(&inode
->i_mutex
)) {
6250 key
.offset
= (u64
)-1;
6255 if (!extent_locked
) {
6256 struct btrfs_ordered_extent
*ordered
;
6258 btrfs_release_path(root
, path
);
6260 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6261 lock_end
, GFP_NOFS
);
6262 ordered
= btrfs_lookup_first_ordered_extent(inode
,
6265 ordered
->file_offset
<= lock_end
&&
6266 ordered
->file_offset
+ ordered
->len
> lock_start
) {
6267 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6268 lock_start
, lock_end
, GFP_NOFS
);
6269 btrfs_start_ordered_extent(inode
, ordered
, 1);
6270 btrfs_put_ordered_extent(ordered
);
6271 key
.offset
+= num_bytes
;
6275 btrfs_put_ordered_extent(ordered
);
6281 if (nr_extents
== 1) {
6282 /* update extent pointer in place */
6283 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6284 new_extents
[0].disk_bytenr
);
6285 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6286 new_extents
[0].disk_num_bytes
);
6287 btrfs_mark_buffer_dirty(leaf
);
6289 btrfs_drop_extent_cache(inode
, key
.offset
,
6290 key
.offset
+ num_bytes
- 1, 0);
6292 ret
= btrfs_inc_extent_ref(trans
, root
,
6293 new_extents
[0].disk_bytenr
,
6294 new_extents
[0].disk_num_bytes
,
6296 root
->root_key
.objectid
,
6301 ret
= btrfs_free_extent(trans
, root
,
6302 extent_key
->objectid
,
6305 btrfs_header_owner(leaf
),
6306 btrfs_header_generation(leaf
),
6310 btrfs_release_path(root
, path
);
6311 key
.offset
+= num_bytes
;
6319 * drop old extent pointer at first, then insert the
6320 * new pointers one bye one
6322 btrfs_release_path(root
, path
);
6323 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
6324 key
.offset
+ num_bytes
,
6325 key
.offset
, &alloc_hint
);
6328 for (i
= 0; i
< nr_extents
; i
++) {
6329 if (ext_offset
>= new_extents
[i
].num_bytes
) {
6330 ext_offset
-= new_extents
[i
].num_bytes
;
6333 extent_len
= min(new_extents
[i
].num_bytes
-
6334 ext_offset
, num_bytes
);
6336 ret
= btrfs_insert_empty_item(trans
, root
,
6341 leaf
= path
->nodes
[0];
6342 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6343 struct btrfs_file_extent_item
);
6344 btrfs_set_file_extent_generation(leaf
, fi
,
6346 btrfs_set_file_extent_type(leaf
, fi
,
6347 BTRFS_FILE_EXTENT_REG
);
6348 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6349 new_extents
[i
].disk_bytenr
);
6350 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6351 new_extents
[i
].disk_num_bytes
);
6352 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
6353 new_extents
[i
].ram_bytes
);
6355 btrfs_set_file_extent_compression(leaf
, fi
,
6356 new_extents
[i
].compression
);
6357 btrfs_set_file_extent_encryption(leaf
, fi
,
6358 new_extents
[i
].encryption
);
6359 btrfs_set_file_extent_other_encoding(leaf
, fi
,
6360 new_extents
[i
].other_encoding
);
6362 btrfs_set_file_extent_num_bytes(leaf
, fi
,
6364 ext_offset
+= new_extents
[i
].offset
;
6365 btrfs_set_file_extent_offset(leaf
, fi
,
6367 btrfs_mark_buffer_dirty(leaf
);
6369 btrfs_drop_extent_cache(inode
, key
.offset
,
6370 key
.offset
+ extent_len
- 1, 0);
6372 ret
= btrfs_inc_extent_ref(trans
, root
,
6373 new_extents
[i
].disk_bytenr
,
6374 new_extents
[i
].disk_num_bytes
,
6376 root
->root_key
.objectid
,
6377 trans
->transid
, key
.objectid
);
6379 btrfs_release_path(root
, path
);
6381 inode_add_bytes(inode
, extent_len
);
6384 num_bytes
-= extent_len
;
6385 key
.offset
+= extent_len
;
6390 BUG_ON(i
>= nr_extents
);
6394 if (extent_locked
) {
6395 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6396 lock_end
, GFP_NOFS
);
6400 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
6401 key
.offset
>= search_end
)
6408 btrfs_release_path(root
, path
);
6410 mutex_unlock(&inode
->i_mutex
);
6411 if (extent_locked
) {
6412 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6413 lock_end
, GFP_NOFS
);
6420 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
6421 struct btrfs_root
*root
,
6422 struct extent_buffer
*buf
, u64 orig_start
)
6427 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
6428 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6430 level
= btrfs_header_level(buf
);
6432 struct btrfs_leaf_ref
*ref
;
6433 struct btrfs_leaf_ref
*orig_ref
;
6435 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
6439 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
6441 btrfs_free_leaf_ref(root
, orig_ref
);
6445 ref
->nritems
= orig_ref
->nritems
;
6446 memcpy(ref
->extents
, orig_ref
->extents
,
6447 sizeof(ref
->extents
[0]) * ref
->nritems
);
6449 btrfs_free_leaf_ref(root
, orig_ref
);
6451 ref
->root_gen
= trans
->transid
;
6452 ref
->bytenr
= buf
->start
;
6453 ref
->owner
= btrfs_header_owner(buf
);
6454 ref
->generation
= btrfs_header_generation(buf
);
6456 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
6458 btrfs_free_leaf_ref(root
, ref
);
6463 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
6464 struct extent_buffer
*leaf
,
6465 struct btrfs_block_group_cache
*group
,
6466 struct btrfs_root
*target_root
)
6468 struct btrfs_key key
;
6469 struct inode
*inode
= NULL
;
6470 struct btrfs_file_extent_item
*fi
;
6472 u64 skip_objectid
= 0;
6476 nritems
= btrfs_header_nritems(leaf
);
6477 for (i
= 0; i
< nritems
; i
++) {
6478 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6479 if (key
.objectid
== skip_objectid
||
6480 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6482 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6483 if (btrfs_file_extent_type(leaf
, fi
) ==
6484 BTRFS_FILE_EXTENT_INLINE
)
6486 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6488 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
6490 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
6491 key
.objectid
, target_root
, 1);
6494 skip_objectid
= key
.objectid
;
6497 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6499 lock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6500 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6501 btrfs_drop_extent_cache(inode
, key
.offset
,
6502 key
.offset
+ num_bytes
- 1, 1);
6503 unlock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6504 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6511 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
6512 struct btrfs_root
*root
,
6513 struct extent_buffer
*leaf
,
6514 struct btrfs_block_group_cache
*group
,
6515 struct inode
*reloc_inode
)
6517 struct btrfs_key key
;
6518 struct btrfs_key extent_key
;
6519 struct btrfs_file_extent_item
*fi
;
6520 struct btrfs_leaf_ref
*ref
;
6521 struct disk_extent
*new_extent
;
6530 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
6531 BUG_ON(!new_extent
);
6533 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
6537 nritems
= btrfs_header_nritems(leaf
);
6538 for (i
= 0; i
< nritems
; i
++) {
6539 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6540 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
6542 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6543 if (btrfs_file_extent_type(leaf
, fi
) ==
6544 BTRFS_FILE_EXTENT_INLINE
)
6546 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6547 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6552 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
6553 bytenr
+ num_bytes
<= group
->key
.objectid
)
6556 extent_key
.objectid
= bytenr
;
6557 extent_key
.offset
= num_bytes
;
6558 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6560 ret
= get_new_locations(reloc_inode
, &extent_key
,
6561 group
->key
.objectid
, 1,
6562 &new_extent
, &nr_extent
);
6567 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
6568 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
6569 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
6570 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
6572 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6573 new_extent
->disk_bytenr
);
6574 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6575 new_extent
->disk_num_bytes
);
6576 btrfs_mark_buffer_dirty(leaf
);
6578 ret
= btrfs_inc_extent_ref(trans
, root
,
6579 new_extent
->disk_bytenr
,
6580 new_extent
->disk_num_bytes
,
6582 root
->root_key
.objectid
,
6583 trans
->transid
, key
.objectid
);
6586 ret
= btrfs_free_extent(trans
, root
,
6587 bytenr
, num_bytes
, leaf
->start
,
6588 btrfs_header_owner(leaf
),
6589 btrfs_header_generation(leaf
),
6595 BUG_ON(ext_index
+ 1 != ref
->nritems
);
6596 btrfs_free_leaf_ref(root
, ref
);
6600 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
6601 struct btrfs_root
*root
)
6603 struct btrfs_root
*reloc_root
;
6606 if (root
->reloc_root
) {
6607 reloc_root
= root
->reloc_root
;
6608 root
->reloc_root
= NULL
;
6609 list_add(&reloc_root
->dead_list
,
6610 &root
->fs_info
->dead_reloc_roots
);
6612 btrfs_set_root_bytenr(&reloc_root
->root_item
,
6613 reloc_root
->node
->start
);
6614 btrfs_set_root_level(&root
->root_item
,
6615 btrfs_header_level(reloc_root
->node
));
6616 memset(&reloc_root
->root_item
.drop_progress
, 0,
6617 sizeof(struct btrfs_disk_key
));
6618 reloc_root
->root_item
.drop_level
= 0;
6620 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
6621 &reloc_root
->root_key
,
6622 &reloc_root
->root_item
);
6628 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
6630 struct btrfs_trans_handle
*trans
;
6631 struct btrfs_root
*reloc_root
;
6632 struct btrfs_root
*prev_root
= NULL
;
6633 struct list_head dead_roots
;
6637 INIT_LIST_HEAD(&dead_roots
);
6638 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
6640 while (!list_empty(&dead_roots
)) {
6641 reloc_root
= list_entry(dead_roots
.prev
,
6642 struct btrfs_root
, dead_list
);
6643 list_del_init(&reloc_root
->dead_list
);
6645 BUG_ON(reloc_root
->commit_root
!= NULL
);
6647 trans
= btrfs_join_transaction(root
, 1);
6650 mutex_lock(&root
->fs_info
->drop_mutex
);
6651 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
6654 mutex_unlock(&root
->fs_info
->drop_mutex
);
6656 nr
= trans
->blocks_used
;
6657 ret
= btrfs_end_transaction(trans
, root
);
6659 btrfs_btree_balance_dirty(root
, nr
);
6662 free_extent_buffer(reloc_root
->node
);
6664 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
6665 &reloc_root
->root_key
);
6667 mutex_unlock(&root
->fs_info
->drop_mutex
);
6669 nr
= trans
->blocks_used
;
6670 ret
= btrfs_end_transaction(trans
, root
);
6672 btrfs_btree_balance_dirty(root
, nr
);
6675 prev_root
= reloc_root
;
6678 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
6684 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
6686 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
6690 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
6692 struct btrfs_root
*reloc_root
;
6693 struct btrfs_trans_handle
*trans
;
6694 struct btrfs_key location
;
6698 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6699 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
6701 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
6702 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6705 trans
= btrfs_start_transaction(root
, 1);
6707 ret
= btrfs_commit_transaction(trans
, root
);
6711 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
6712 location
.offset
= (u64
)-1;
6713 location
.type
= BTRFS_ROOT_ITEM_KEY
;
6715 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
6716 BUG_ON(!reloc_root
);
6717 btrfs_orphan_cleanup(reloc_root
);
6721 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
6722 struct btrfs_root
*root
)
6724 struct btrfs_root
*reloc_root
;
6725 struct extent_buffer
*eb
;
6726 struct btrfs_root_item
*root_item
;
6727 struct btrfs_key root_key
;
6730 BUG_ON(!root
->ref_cows
);
6731 if (root
->reloc_root
)
6734 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
6737 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
6738 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
6741 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
6742 root_key
.offset
= root
->root_key
.objectid
;
6743 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6745 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
6746 btrfs_set_root_refs(root_item
, 0);
6747 btrfs_set_root_bytenr(root_item
, eb
->start
);
6748 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
6749 btrfs_set_root_generation(root_item
, trans
->transid
);
6751 btrfs_tree_unlock(eb
);
6752 free_extent_buffer(eb
);
6754 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
6755 &root_key
, root_item
);
6759 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
6761 BUG_ON(!reloc_root
);
6762 reloc_root
->last_trans
= trans
->transid
;
6763 reloc_root
->commit_root
= NULL
;
6764 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
6766 root
->reloc_root
= reloc_root
;
6771 * Core function of space balance.
6773 * The idea is using reloc trees to relocate tree blocks in reference
6774 * counted roots. There is one reloc tree for each subvol, and all
6775 * reloc trees share same root key objectid. Reloc trees are snapshots
6776 * of the latest committed roots of subvols (root->commit_root).
6778 * To relocate a tree block referenced by a subvol, there are two steps.
6779 * COW the block through subvol's reloc tree, then update block pointer
6780 * in the subvol to point to the new block. Since all reloc trees share
6781 * same root key objectid, doing special handing for tree blocks owned
6782 * by them is easy. Once a tree block has been COWed in one reloc tree,
6783 * we can use the resulting new block directly when the same block is
6784 * required to COW again through other reloc trees. By this way, relocated
6785 * tree blocks are shared between reloc trees, so they are also shared
6788 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
6789 struct btrfs_root
*root
,
6790 struct btrfs_path
*path
,
6791 struct btrfs_key
*first_key
,
6792 struct btrfs_ref_path
*ref_path
,
6793 struct btrfs_block_group_cache
*group
,
6794 struct inode
*reloc_inode
)
6796 struct btrfs_root
*reloc_root
;
6797 struct extent_buffer
*eb
= NULL
;
6798 struct btrfs_key
*keys
;
6802 int lowest_level
= 0;
6805 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
6806 lowest_level
= ref_path
->owner_objectid
;
6808 if (!root
->ref_cows
) {
6809 path
->lowest_level
= lowest_level
;
6810 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
6812 path
->lowest_level
= 0;
6813 btrfs_release_path(root
, path
);
6817 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6818 ret
= init_reloc_tree(trans
, root
);
6820 reloc_root
= root
->reloc_root
;
6822 shared_level
= ref_path
->shared_level
;
6823 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
6825 keys
= ref_path
->node_keys
;
6826 nodes
= ref_path
->new_nodes
;
6827 memset(&keys
[shared_level
+ 1], 0,
6828 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6829 memset(&nodes
[shared_level
+ 1], 0,
6830 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6832 if (nodes
[lowest_level
] == 0) {
6833 path
->lowest_level
= lowest_level
;
6834 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6837 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
6838 eb
= path
->nodes
[level
];
6839 if (!eb
|| eb
== reloc_root
->node
)
6841 nodes
[level
] = eb
->start
;
6843 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
6845 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
6848 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6849 eb
= path
->nodes
[0];
6850 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
6851 group
, reloc_inode
);
6854 btrfs_release_path(reloc_root
, path
);
6856 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
6862 * replace tree blocks in the fs tree with tree blocks in
6865 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
6868 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6869 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6872 extent_buffer_get(path
->nodes
[0]);
6873 eb
= path
->nodes
[0];
6874 btrfs_release_path(reloc_root
, path
);
6875 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
6877 free_extent_buffer(eb
);
6880 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6881 path
->lowest_level
= 0;
6885 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
6886 struct btrfs_root
*root
,
6887 struct btrfs_path
*path
,
6888 struct btrfs_key
*first_key
,
6889 struct btrfs_ref_path
*ref_path
)
6893 ret
= relocate_one_path(trans
, root
, path
, first_key
,
6894 ref_path
, NULL
, NULL
);
6900 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
6901 struct btrfs_root
*extent_root
,
6902 struct btrfs_path
*path
,
6903 struct btrfs_key
*extent_key
)
6907 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
6910 ret
= btrfs_del_item(trans
, extent_root
, path
);
6912 btrfs_release_path(extent_root
, path
);
6916 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
6917 struct btrfs_ref_path
*ref_path
)
6919 struct btrfs_key root_key
;
6921 root_key
.objectid
= ref_path
->root_objectid
;
6922 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6923 if (is_cowonly_root(ref_path
->root_objectid
))
6924 root_key
.offset
= 0;
6926 root_key
.offset
= (u64
)-1;
6928 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
6931 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
6932 struct btrfs_path
*path
,
6933 struct btrfs_key
*extent_key
,
6934 struct btrfs_block_group_cache
*group
,
6935 struct inode
*reloc_inode
, int pass
)
6937 struct btrfs_trans_handle
*trans
;
6938 struct btrfs_root
*found_root
;
6939 struct btrfs_ref_path
*ref_path
= NULL
;
6940 struct disk_extent
*new_extents
= NULL
;
6945 struct btrfs_key first_key
;
6949 trans
= btrfs_start_transaction(extent_root
, 1);
6952 if (extent_key
->objectid
== 0) {
6953 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
6957 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
6963 for (loops
= 0; ; loops
++) {
6965 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
6966 extent_key
->objectid
);
6968 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
6975 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6976 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
6979 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
6980 BUG_ON(!found_root
);
6982 * for reference counted tree, only process reference paths
6983 * rooted at the latest committed root.
6985 if (found_root
->ref_cows
&&
6986 ref_path
->root_generation
!= found_root
->root_key
.offset
)
6989 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6992 * copy data extents to new locations
6994 u64 group_start
= group
->key
.objectid
;
6995 ret
= relocate_data_extent(reloc_inode
,
7004 level
= ref_path
->owner_objectid
;
7007 if (prev_block
!= ref_path
->nodes
[level
]) {
7008 struct extent_buffer
*eb
;
7009 u64 block_start
= ref_path
->nodes
[level
];
7010 u64 block_size
= btrfs_level_size(found_root
, level
);
7012 eb
= read_tree_block(found_root
, block_start
,
7014 btrfs_tree_lock(eb
);
7015 BUG_ON(level
!= btrfs_header_level(eb
));
7018 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
7020 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
7022 btrfs_tree_unlock(eb
);
7023 free_extent_buffer(eb
);
7024 prev_block
= block_start
;
7027 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
7028 btrfs_record_root_in_trans(found_root
);
7029 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
7030 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7032 * try to update data extent references while
7033 * keeping metadata shared between snapshots.
7036 ret
= relocate_one_path(trans
, found_root
,
7037 path
, &first_key
, ref_path
,
7038 group
, reloc_inode
);
7044 * use fallback method to process the remaining
7048 u64 group_start
= group
->key
.objectid
;
7049 new_extents
= kmalloc(sizeof(*new_extents
),
7052 ret
= get_new_locations(reloc_inode
,
7060 ret
= replace_one_extent(trans
, found_root
,
7062 &first_key
, ref_path
,
7063 new_extents
, nr_extents
);
7065 ret
= relocate_tree_block(trans
, found_root
, path
,
7066 &first_key
, ref_path
);
7073 btrfs_end_transaction(trans
, extent_root
);
7080 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7083 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7084 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7086 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
7087 if (num_devices
== 1) {
7088 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7089 stripped
= flags
& ~stripped
;
7091 /* turn raid0 into single device chunks */
7092 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7095 /* turn mirroring into duplication */
7096 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7097 BTRFS_BLOCK_GROUP_RAID10
))
7098 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7101 /* they already had raid on here, just return */
7102 if (flags
& stripped
)
7105 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7106 stripped
= flags
& ~stripped
;
7108 /* switch duplicated blocks with raid1 */
7109 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7110 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7112 /* turn single device chunks into raid0 */
7113 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
7118 static int __alloc_chunk_for_shrink(struct btrfs_root
*root
,
7119 struct btrfs_block_group_cache
*shrink_block_group
,
7122 struct btrfs_trans_handle
*trans
;
7123 u64 new_alloc_flags
;
7126 spin_lock(&shrink_block_group
->lock
);
7127 if (btrfs_block_group_used(&shrink_block_group
->item
) +
7128 shrink_block_group
->reserved
> 0) {
7129 spin_unlock(&shrink_block_group
->lock
);
7131 trans
= btrfs_start_transaction(root
, 1);
7132 spin_lock(&shrink_block_group
->lock
);
7134 new_alloc_flags
= update_block_group_flags(root
,
7135 shrink_block_group
->flags
);
7136 if (new_alloc_flags
!= shrink_block_group
->flags
) {
7138 btrfs_block_group_used(&shrink_block_group
->item
);
7140 calc
= shrink_block_group
->key
.offset
;
7142 spin_unlock(&shrink_block_group
->lock
);
7144 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
7145 calc
+ 2 * 1024 * 1024, new_alloc_flags
, force
);
7147 btrfs_end_transaction(trans
, root
);
7149 spin_unlock(&shrink_block_group
->lock
);
7154 int btrfs_prepare_block_group_relocation(struct btrfs_root
*root
,
7155 struct btrfs_block_group_cache
*group
)
7158 __alloc_chunk_for_shrink(root
, group
, 1);
7159 set_block_group_readonly(group
);
7164 * checks to see if its even possible to relocate this block group.
7166 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7167 * ok to go ahead and try.
7169 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7171 struct btrfs_block_group_cache
*block_group
;
7172 struct btrfs_space_info
*space_info
;
7173 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7174 struct btrfs_device
*device
;
7178 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7180 /* odd, couldn't find the block group, leave it alone */
7184 /* no bytes used, we're good */
7185 if (!btrfs_block_group_used(&block_group
->item
))
7188 space_info
= block_group
->space_info
;
7189 spin_lock(&space_info
->lock
);
7191 full
= space_info
->full
;
7194 * if this is the last block group we have in this space, we can't
7195 * relocate it unless we're able to allocate a new chunk below.
7197 * Otherwise, we need to make sure we have room in the space to handle
7198 * all of the extents from this block group. If we can, we're good
7200 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7201 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7202 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7203 btrfs_block_group_used(&block_group
->item
) <
7204 space_info
->total_bytes
)) {
7205 spin_unlock(&space_info
->lock
);
7208 spin_unlock(&space_info
->lock
);
7211 * ok we don't have enough space, but maybe we have free space on our
7212 * devices to allocate new chunks for relocation, so loop through our
7213 * alloc devices and guess if we have enough space. However, if we
7214 * were marked as full, then we know there aren't enough chunks, and we
7221 mutex_lock(&root
->fs_info
->chunk_mutex
);
7222 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7223 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
7224 u64 dev_offset
, max_avail
;
7227 * check to make sure we can actually find a chunk with enough
7228 * space to fit our block group in.
7230 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7231 ret
= find_free_dev_extent(NULL
, device
, min_free
,
7232 &dev_offset
, &max_avail
);
7238 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7240 btrfs_put_block_group(block_group
);
7244 static int find_first_block_group(struct btrfs_root
*root
,
7245 struct btrfs_path
*path
, struct btrfs_key
*key
)
7248 struct btrfs_key found_key
;
7249 struct extent_buffer
*leaf
;
7252 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7257 slot
= path
->slots
[0];
7258 leaf
= path
->nodes
[0];
7259 if (slot
>= btrfs_header_nritems(leaf
)) {
7260 ret
= btrfs_next_leaf(root
, path
);
7267 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7269 if (found_key
.objectid
>= key
->objectid
&&
7270 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7281 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7283 struct btrfs_block_group_cache
*block_group
;
7284 struct btrfs_space_info
*space_info
;
7285 struct btrfs_caching_control
*caching_ctl
;
7288 down_write(&info
->extent_commit_sem
);
7289 while (!list_empty(&info
->caching_block_groups
)) {
7290 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7291 struct btrfs_caching_control
, list
);
7292 list_del(&caching_ctl
->list
);
7293 put_caching_control(caching_ctl
);
7295 up_write(&info
->extent_commit_sem
);
7297 spin_lock(&info
->block_group_cache_lock
);
7298 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7299 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7301 rb_erase(&block_group
->cache_node
,
7302 &info
->block_group_cache_tree
);
7303 spin_unlock(&info
->block_group_cache_lock
);
7305 down_write(&block_group
->space_info
->groups_sem
);
7306 list_del(&block_group
->list
);
7307 up_write(&block_group
->space_info
->groups_sem
);
7309 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7310 wait_block_group_cache_done(block_group
);
7312 btrfs_remove_free_space_cache(block_group
);
7314 WARN_ON(atomic_read(&block_group
->count
) != 1);
7317 spin_lock(&info
->block_group_cache_lock
);
7319 spin_unlock(&info
->block_group_cache_lock
);
7321 /* now that all the block groups are freed, go through and
7322 * free all the space_info structs. This is only called during
7323 * the final stages of unmount, and so we know nobody is
7324 * using them. We call synchronize_rcu() once before we start,
7325 * just to be on the safe side.
7329 while(!list_empty(&info
->space_info
)) {
7330 space_info
= list_entry(info
->space_info
.next
,
7331 struct btrfs_space_info
,
7334 list_del(&space_info
->list
);
7340 int btrfs_read_block_groups(struct btrfs_root
*root
)
7342 struct btrfs_path
*path
;
7344 struct btrfs_block_group_cache
*cache
;
7345 struct btrfs_fs_info
*info
= root
->fs_info
;
7346 struct btrfs_space_info
*space_info
;
7347 struct btrfs_key key
;
7348 struct btrfs_key found_key
;
7349 struct extent_buffer
*leaf
;
7351 root
= info
->extent_root
;
7354 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7355 path
= btrfs_alloc_path();
7360 ret
= find_first_block_group(root
, path
, &key
);
7368 leaf
= path
->nodes
[0];
7369 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7370 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7376 atomic_set(&cache
->count
, 1);
7377 spin_lock_init(&cache
->lock
);
7378 spin_lock_init(&cache
->tree_lock
);
7379 cache
->fs_info
= info
;
7380 INIT_LIST_HEAD(&cache
->list
);
7381 INIT_LIST_HEAD(&cache
->cluster_list
);
7384 * we only want to have 32k of ram per block group for keeping
7385 * track of free space, and if we pass 1/2 of that we want to
7386 * start converting things over to using bitmaps
7388 cache
->extents_thresh
= ((1024 * 32) / 2) /
7389 sizeof(struct btrfs_free_space
);
7391 read_extent_buffer(leaf
, &cache
->item
,
7392 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7393 sizeof(cache
->item
));
7394 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7396 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7397 btrfs_release_path(root
, path
);
7398 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7399 cache
->sectorsize
= root
->sectorsize
;
7402 * check for two cases, either we are full, and therefore
7403 * don't need to bother with the caching work since we won't
7404 * find any space, or we are empty, and we can just add all
7405 * the space in and be done with it. This saves us _alot_ of
7406 * time, particularly in the full case.
7408 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7409 exclude_super_stripes(root
, cache
);
7410 cache
->last_byte_to_unpin
= (u64
)-1;
7411 cache
->cached
= BTRFS_CACHE_FINISHED
;
7412 free_excluded_extents(root
, cache
);
7413 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7414 exclude_super_stripes(root
, cache
);
7415 cache
->last_byte_to_unpin
= (u64
)-1;
7416 cache
->cached
= BTRFS_CACHE_FINISHED
;
7417 add_new_free_space(cache
, root
->fs_info
,
7419 found_key
.objectid
+
7421 free_excluded_extents(root
, cache
);
7424 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7425 btrfs_block_group_used(&cache
->item
),
7428 cache
->space_info
= space_info
;
7429 spin_lock(&cache
->space_info
->lock
);
7430 cache
->space_info
->bytes_super
+= cache
->bytes_super
;
7431 spin_unlock(&cache
->space_info
->lock
);
7433 down_write(&space_info
->groups_sem
);
7434 list_add_tail(&cache
->list
, &space_info
->block_groups
);
7435 up_write(&space_info
->groups_sem
);
7437 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7440 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7441 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7442 set_block_group_readonly(cache
);
7446 btrfs_free_path(path
);
7450 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7451 struct btrfs_root
*root
, u64 bytes_used
,
7452 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7456 struct btrfs_root
*extent_root
;
7457 struct btrfs_block_group_cache
*cache
;
7459 extent_root
= root
->fs_info
->extent_root
;
7461 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7463 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7467 cache
->key
.objectid
= chunk_offset
;
7468 cache
->key
.offset
= size
;
7469 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7470 cache
->sectorsize
= root
->sectorsize
;
7473 * we only want to have 32k of ram per block group for keeping track
7474 * of free space, and if we pass 1/2 of that we want to start
7475 * converting things over to using bitmaps
7477 cache
->extents_thresh
= ((1024 * 32) / 2) /
7478 sizeof(struct btrfs_free_space
);
7479 atomic_set(&cache
->count
, 1);
7480 spin_lock_init(&cache
->lock
);
7481 spin_lock_init(&cache
->tree_lock
);
7482 INIT_LIST_HEAD(&cache
->list
);
7483 INIT_LIST_HEAD(&cache
->cluster_list
);
7485 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7486 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7487 cache
->flags
= type
;
7488 btrfs_set_block_group_flags(&cache
->item
, type
);
7490 cache
->last_byte_to_unpin
= (u64
)-1;
7491 cache
->cached
= BTRFS_CACHE_FINISHED
;
7492 exclude_super_stripes(root
, cache
);
7494 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7495 chunk_offset
+ size
);
7497 free_excluded_extents(root
, cache
);
7499 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7500 &cache
->space_info
);
7503 spin_lock(&cache
->space_info
->lock
);
7504 cache
->space_info
->bytes_super
+= cache
->bytes_super
;
7505 spin_unlock(&cache
->space_info
->lock
);
7507 down_write(&cache
->space_info
->groups_sem
);
7508 list_add_tail(&cache
->list
, &cache
->space_info
->block_groups
);
7509 up_write(&cache
->space_info
->groups_sem
);
7511 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7514 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7515 sizeof(cache
->item
));
7518 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7523 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7524 struct btrfs_root
*root
, u64 group_start
)
7526 struct btrfs_path
*path
;
7527 struct btrfs_block_group_cache
*block_group
;
7528 struct btrfs_free_cluster
*cluster
;
7529 struct btrfs_key key
;
7532 root
= root
->fs_info
->extent_root
;
7534 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7535 BUG_ON(!block_group
);
7536 BUG_ON(!block_group
->ro
);
7538 memcpy(&key
, &block_group
->key
, sizeof(key
));
7540 /* make sure this block group isn't part of an allocation cluster */
7541 cluster
= &root
->fs_info
->data_alloc_cluster
;
7542 spin_lock(&cluster
->refill_lock
);
7543 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7544 spin_unlock(&cluster
->refill_lock
);
7547 * make sure this block group isn't part of a metadata
7548 * allocation cluster
7550 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7551 spin_lock(&cluster
->refill_lock
);
7552 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7553 spin_unlock(&cluster
->refill_lock
);
7555 path
= btrfs_alloc_path();
7558 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7559 rb_erase(&block_group
->cache_node
,
7560 &root
->fs_info
->block_group_cache_tree
);
7561 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7563 down_write(&block_group
->space_info
->groups_sem
);
7565 * we must use list_del_init so people can check to see if they
7566 * are still on the list after taking the semaphore
7568 list_del_init(&block_group
->list
);
7569 up_write(&block_group
->space_info
->groups_sem
);
7571 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7572 wait_block_group_cache_done(block_group
);
7574 btrfs_remove_free_space_cache(block_group
);
7576 spin_lock(&block_group
->space_info
->lock
);
7577 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7578 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7579 spin_unlock(&block_group
->space_info
->lock
);
7581 btrfs_clear_space_info_full(root
->fs_info
);
7583 btrfs_put_block_group(block_group
);
7584 btrfs_put_block_group(block_group
);
7586 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7592 ret
= btrfs_del_item(trans
, root
, path
);
7594 btrfs_free_path(path
);