OMAP3: PM: MPU and CORE should stay awake if there is CAM domain ACTIVE
[linux-ginger.git] / fs / btrfs / transaction.c
blobbca82a4ca8e6d8f78bad1bd21b511a433aaed48e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 static noinline void switch_commit_root(struct btrfs_root *root)
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
50 * either allocate a new transaction or hop into the existing one
52 static noinline int join_transaction(struct btrfs_root *root)
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
72 cur_trans->delayed_refs.root.rb_node = NULL;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
93 return 0;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
115 return 0;
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
121 if (!root->ref_cows)
122 return 0;
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
139 static void wait_current_trans(struct btrfs_root *root)
141 struct btrfs_transaction *cur_trans;
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
162 put_transaction(cur_trans);
166 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
167 int num_blocks, int wait)
169 struct btrfs_trans_handle *h =
170 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
171 int ret;
173 mutex_lock(&root->fs_info->trans_mutex);
174 if (!root->fs_info->log_root_recovering &&
175 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
176 wait_current_trans(root);
177 ret = join_transaction(root);
178 BUG_ON(ret);
180 h->transid = root->fs_info->running_transaction->transid;
181 h->transaction = root->fs_info->running_transaction;
182 h->blocks_reserved = num_blocks;
183 h->blocks_used = 0;
184 h->block_group = 0;
185 h->alloc_exclude_nr = 0;
186 h->alloc_exclude_start = 0;
187 h->delayed_ref_updates = 0;
189 if (!current->journal_info)
190 current->journal_info = h;
192 root->fs_info->running_transaction->use_count++;
193 record_root_in_trans(h, root);
194 mutex_unlock(&root->fs_info->trans_mutex);
195 return h;
198 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
199 int num_blocks)
201 return start_transaction(root, num_blocks, 1);
203 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
204 int num_blocks)
206 return start_transaction(root, num_blocks, 0);
209 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
210 int num_blocks)
212 return start_transaction(r, num_blocks, 2);
215 /* wait for a transaction commit to be fully complete */
216 static noinline int wait_for_commit(struct btrfs_root *root,
217 struct btrfs_transaction *commit)
219 DEFINE_WAIT(wait);
220 mutex_lock(&root->fs_info->trans_mutex);
221 while (!commit->commit_done) {
222 prepare_to_wait(&commit->commit_wait, &wait,
223 TASK_UNINTERRUPTIBLE);
224 if (commit->commit_done)
225 break;
226 mutex_unlock(&root->fs_info->trans_mutex);
227 schedule();
228 mutex_lock(&root->fs_info->trans_mutex);
230 mutex_unlock(&root->fs_info->trans_mutex);
231 finish_wait(&commit->commit_wait, &wait);
232 return 0;
235 #if 0
237 * rate limit against the drop_snapshot code. This helps to slow down new
238 * operations if the drop_snapshot code isn't able to keep up.
240 static void throttle_on_drops(struct btrfs_root *root)
242 struct btrfs_fs_info *info = root->fs_info;
243 int harder_count = 0;
245 harder:
246 if (atomic_read(&info->throttles)) {
247 DEFINE_WAIT(wait);
248 int thr;
249 thr = atomic_read(&info->throttle_gen);
251 do {
252 prepare_to_wait(&info->transaction_throttle,
253 &wait, TASK_UNINTERRUPTIBLE);
254 if (!atomic_read(&info->throttles)) {
255 finish_wait(&info->transaction_throttle, &wait);
256 break;
258 schedule();
259 finish_wait(&info->transaction_throttle, &wait);
260 } while (thr == atomic_read(&info->throttle_gen));
261 harder_count++;
263 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
264 harder_count < 2)
265 goto harder;
267 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
268 harder_count < 10)
269 goto harder;
271 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
272 harder_count < 20)
273 goto harder;
276 #endif
278 void btrfs_throttle(struct btrfs_root *root)
280 mutex_lock(&root->fs_info->trans_mutex);
281 if (!root->fs_info->open_ioctl_trans)
282 wait_current_trans(root);
283 mutex_unlock(&root->fs_info->trans_mutex);
286 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
287 struct btrfs_root *root, int throttle)
289 struct btrfs_transaction *cur_trans;
290 struct btrfs_fs_info *info = root->fs_info;
291 int count = 0;
293 while (count < 4) {
294 unsigned long cur = trans->delayed_ref_updates;
295 trans->delayed_ref_updates = 0;
296 if (cur &&
297 trans->transaction->delayed_refs.num_heads_ready > 64) {
298 trans->delayed_ref_updates = 0;
301 * do a full flush if the transaction is trying
302 * to close
304 if (trans->transaction->delayed_refs.flushing)
305 cur = 0;
306 btrfs_run_delayed_refs(trans, root, cur);
307 } else {
308 break;
310 count++;
313 mutex_lock(&info->trans_mutex);
314 cur_trans = info->running_transaction;
315 WARN_ON(cur_trans != trans->transaction);
316 WARN_ON(cur_trans->num_writers < 1);
317 cur_trans->num_writers--;
319 if (waitqueue_active(&cur_trans->writer_wait))
320 wake_up(&cur_trans->writer_wait);
321 put_transaction(cur_trans);
322 mutex_unlock(&info->trans_mutex);
324 if (current->journal_info == trans)
325 current->journal_info = NULL;
326 memset(trans, 0, sizeof(*trans));
327 kmem_cache_free(btrfs_trans_handle_cachep, trans);
329 return 0;
332 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
333 struct btrfs_root *root)
335 return __btrfs_end_transaction(trans, root, 0);
338 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
339 struct btrfs_root *root)
341 return __btrfs_end_transaction(trans, root, 1);
345 * when btree blocks are allocated, they have some corresponding bits set for
346 * them in one of two extent_io trees. This is used to make sure all of
347 * those extents are sent to disk but does not wait on them
349 int btrfs_write_marked_extents(struct btrfs_root *root,
350 struct extent_io_tree *dirty_pages)
352 int ret;
353 int err = 0;
354 int werr = 0;
355 struct page *page;
356 struct inode *btree_inode = root->fs_info->btree_inode;
357 u64 start = 0;
358 u64 end;
359 unsigned long index;
361 while (1) {
362 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
363 EXTENT_DIRTY);
364 if (ret)
365 break;
366 while (start <= end) {
367 cond_resched();
369 index = start >> PAGE_CACHE_SHIFT;
370 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
371 page = find_get_page(btree_inode->i_mapping, index);
372 if (!page)
373 continue;
375 btree_lock_page_hook(page);
376 if (!page->mapping) {
377 unlock_page(page);
378 page_cache_release(page);
379 continue;
382 if (PageWriteback(page)) {
383 if (PageDirty(page))
384 wait_on_page_writeback(page);
385 else {
386 unlock_page(page);
387 page_cache_release(page);
388 continue;
391 err = write_one_page(page, 0);
392 if (err)
393 werr = err;
394 page_cache_release(page);
397 if (err)
398 werr = err;
399 return werr;
403 * when btree blocks are allocated, they have some corresponding bits set for
404 * them in one of two extent_io trees. This is used to make sure all of
405 * those extents are on disk for transaction or log commit. We wait
406 * on all the pages and clear them from the dirty pages state tree
408 int btrfs_wait_marked_extents(struct btrfs_root *root,
409 struct extent_io_tree *dirty_pages)
411 int ret;
412 int err = 0;
413 int werr = 0;
414 struct page *page;
415 struct inode *btree_inode = root->fs_info->btree_inode;
416 u64 start = 0;
417 u64 end;
418 unsigned long index;
420 while (1) {
421 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
422 EXTENT_DIRTY);
423 if (ret)
424 break;
426 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
427 while (start <= end) {
428 index = start >> PAGE_CACHE_SHIFT;
429 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
430 page = find_get_page(btree_inode->i_mapping, index);
431 if (!page)
432 continue;
433 if (PageDirty(page)) {
434 btree_lock_page_hook(page);
435 wait_on_page_writeback(page);
436 err = write_one_page(page, 0);
437 if (err)
438 werr = err;
440 wait_on_page_writeback(page);
441 page_cache_release(page);
442 cond_resched();
445 if (err)
446 werr = err;
447 return werr;
451 * when btree blocks are allocated, they have some corresponding bits set for
452 * them in one of two extent_io trees. This is used to make sure all of
453 * those extents are on disk for transaction or log commit
455 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
456 struct extent_io_tree *dirty_pages)
458 int ret;
459 int ret2;
461 ret = btrfs_write_marked_extents(root, dirty_pages);
462 ret2 = btrfs_wait_marked_extents(root, dirty_pages);
463 return ret || ret2;
466 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
467 struct btrfs_root *root)
469 if (!trans || !trans->transaction) {
470 struct inode *btree_inode;
471 btree_inode = root->fs_info->btree_inode;
472 return filemap_write_and_wait(btree_inode->i_mapping);
474 return btrfs_write_and_wait_marked_extents(root,
475 &trans->transaction->dirty_pages);
479 * this is used to update the root pointer in the tree of tree roots.
481 * But, in the case of the extent allocation tree, updating the root
482 * pointer may allocate blocks which may change the root of the extent
483 * allocation tree.
485 * So, this loops and repeats and makes sure the cowonly root didn't
486 * change while the root pointer was being updated in the metadata.
488 static int update_cowonly_root(struct btrfs_trans_handle *trans,
489 struct btrfs_root *root)
491 int ret;
492 u64 old_root_bytenr;
493 struct btrfs_root *tree_root = root->fs_info->tree_root;
495 btrfs_write_dirty_block_groups(trans, root);
497 while (1) {
498 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
499 if (old_root_bytenr == root->node->start)
500 break;
502 btrfs_set_root_node(&root->root_item, root->node);
503 ret = btrfs_update_root(trans, tree_root,
504 &root->root_key,
505 &root->root_item);
506 BUG_ON(ret);
508 ret = btrfs_write_dirty_block_groups(trans, root);
509 BUG_ON(ret);
512 if (root != root->fs_info->extent_root)
513 switch_commit_root(root);
515 return 0;
519 * update all the cowonly tree roots on disk
521 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root)
524 struct btrfs_fs_info *fs_info = root->fs_info;
525 struct list_head *next;
526 struct extent_buffer *eb;
527 int ret;
529 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
530 BUG_ON(ret);
532 eb = btrfs_lock_root_node(fs_info->tree_root);
533 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
534 btrfs_tree_unlock(eb);
535 free_extent_buffer(eb);
537 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
538 BUG_ON(ret);
540 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
541 next = fs_info->dirty_cowonly_roots.next;
542 list_del_init(next);
543 root = list_entry(next, struct btrfs_root, dirty_list);
545 update_cowonly_root(trans, root);
548 down_write(&fs_info->extent_commit_sem);
549 switch_commit_root(fs_info->extent_root);
550 up_write(&fs_info->extent_commit_sem);
552 return 0;
556 * dead roots are old snapshots that need to be deleted. This allocates
557 * a dirty root struct and adds it into the list of dead roots that need to
558 * be deleted
560 int btrfs_add_dead_root(struct btrfs_root *root)
562 mutex_lock(&root->fs_info->trans_mutex);
563 list_add(&root->root_list, &root->fs_info->dead_roots);
564 mutex_unlock(&root->fs_info->trans_mutex);
565 return 0;
569 * update all the cowonly tree roots on disk
571 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
572 struct btrfs_root *root)
574 struct btrfs_root *gang[8];
575 struct btrfs_fs_info *fs_info = root->fs_info;
576 int i;
577 int ret;
578 int err = 0;
580 while (1) {
581 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
582 (void **)gang, 0,
583 ARRAY_SIZE(gang),
584 BTRFS_ROOT_TRANS_TAG);
585 if (ret == 0)
586 break;
587 for (i = 0; i < ret; i++) {
588 root = gang[i];
589 radix_tree_tag_clear(&fs_info->fs_roots_radix,
590 (unsigned long)root->root_key.objectid,
591 BTRFS_ROOT_TRANS_TAG);
593 btrfs_free_log(trans, root);
594 btrfs_update_reloc_root(trans, root);
596 if (root->commit_root != root->node) {
597 switch_commit_root(root);
598 btrfs_set_root_node(&root->root_item,
599 root->node);
602 err = btrfs_update_root(trans, fs_info->tree_root,
603 &root->root_key,
604 &root->root_item);
605 if (err)
606 break;
609 return err;
613 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
614 * otherwise every leaf in the btree is read and defragged.
616 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
618 struct btrfs_fs_info *info = root->fs_info;
619 int ret;
620 struct btrfs_trans_handle *trans;
621 unsigned long nr;
623 smp_mb();
624 if (root->defrag_running)
625 return 0;
626 trans = btrfs_start_transaction(root, 1);
627 while (1) {
628 root->defrag_running = 1;
629 ret = btrfs_defrag_leaves(trans, root, cacheonly);
630 nr = trans->blocks_used;
631 btrfs_end_transaction(trans, root);
632 btrfs_btree_balance_dirty(info->tree_root, nr);
633 cond_resched();
635 trans = btrfs_start_transaction(root, 1);
636 if (root->fs_info->closing || ret != -EAGAIN)
637 break;
639 root->defrag_running = 0;
640 smp_mb();
641 btrfs_end_transaction(trans, root);
642 return 0;
645 #if 0
647 * when dropping snapshots, we generate a ton of delayed refs, and it makes
648 * sense not to join the transaction while it is trying to flush the current
649 * queue of delayed refs out.
651 * This is used by the drop snapshot code only
653 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
655 DEFINE_WAIT(wait);
657 mutex_lock(&info->trans_mutex);
658 while (info->running_transaction &&
659 info->running_transaction->delayed_refs.flushing) {
660 prepare_to_wait(&info->transaction_wait, &wait,
661 TASK_UNINTERRUPTIBLE);
662 mutex_unlock(&info->trans_mutex);
664 schedule();
666 mutex_lock(&info->trans_mutex);
667 finish_wait(&info->transaction_wait, &wait);
669 mutex_unlock(&info->trans_mutex);
670 return 0;
674 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
675 * all of them
677 int btrfs_drop_dead_root(struct btrfs_root *root)
679 struct btrfs_trans_handle *trans;
680 struct btrfs_root *tree_root = root->fs_info->tree_root;
681 unsigned long nr;
682 int ret;
684 while (1) {
686 * we don't want to jump in and create a bunch of
687 * delayed refs if the transaction is starting to close
689 wait_transaction_pre_flush(tree_root->fs_info);
690 trans = btrfs_start_transaction(tree_root, 1);
693 * we've joined a transaction, make sure it isn't
694 * closing right now
696 if (trans->transaction->delayed_refs.flushing) {
697 btrfs_end_transaction(trans, tree_root);
698 continue;
701 ret = btrfs_drop_snapshot(trans, root);
702 if (ret != -EAGAIN)
703 break;
705 ret = btrfs_update_root(trans, tree_root,
706 &root->root_key,
707 &root->root_item);
708 if (ret)
709 break;
711 nr = trans->blocks_used;
712 ret = btrfs_end_transaction(trans, tree_root);
713 BUG_ON(ret);
715 btrfs_btree_balance_dirty(tree_root, nr);
716 cond_resched();
718 BUG_ON(ret);
720 ret = btrfs_del_root(trans, tree_root, &root->root_key);
721 BUG_ON(ret);
723 nr = trans->blocks_used;
724 ret = btrfs_end_transaction(trans, tree_root);
725 BUG_ON(ret);
727 free_extent_buffer(root->node);
728 free_extent_buffer(root->commit_root);
729 kfree(root);
731 btrfs_btree_balance_dirty(tree_root, nr);
732 return ret;
734 #endif
737 * new snapshots need to be created at a very specific time in the
738 * transaction commit. This does the actual creation
740 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
741 struct btrfs_fs_info *fs_info,
742 struct btrfs_pending_snapshot *pending)
744 struct btrfs_key key;
745 struct btrfs_root_item *new_root_item;
746 struct btrfs_root *tree_root = fs_info->tree_root;
747 struct btrfs_root *root = pending->root;
748 struct extent_buffer *tmp;
749 struct extent_buffer *old;
750 int ret;
751 u64 objectid;
753 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
754 if (!new_root_item) {
755 ret = -ENOMEM;
756 goto fail;
758 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
759 if (ret)
760 goto fail;
762 record_root_in_trans(trans, root);
763 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
764 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
766 key.objectid = objectid;
767 /* record when the snapshot was created in key.offset */
768 key.offset = trans->transid;
769 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
771 old = btrfs_lock_root_node(root);
772 btrfs_cow_block(trans, root, old, NULL, 0, &old);
773 btrfs_set_lock_blocking(old);
775 btrfs_copy_root(trans, root, old, &tmp, objectid);
776 btrfs_tree_unlock(old);
777 free_extent_buffer(old);
779 btrfs_set_root_node(new_root_item, tmp);
780 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
781 new_root_item);
782 btrfs_tree_unlock(tmp);
783 free_extent_buffer(tmp);
784 if (ret)
785 goto fail;
787 key.offset = (u64)-1;
788 memcpy(&pending->root_key, &key, sizeof(key));
789 fail:
790 kfree(new_root_item);
791 btrfs_unreserve_metadata_space(root, 6);
792 return ret;
795 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
796 struct btrfs_pending_snapshot *pending)
798 int ret;
799 int namelen;
800 u64 index = 0;
801 struct btrfs_trans_handle *trans;
802 struct inode *parent_inode;
803 struct inode *inode;
804 struct btrfs_root *parent_root;
806 parent_inode = pending->dentry->d_parent->d_inode;
807 parent_root = BTRFS_I(parent_inode)->root;
808 trans = btrfs_join_transaction(parent_root, 1);
811 * insert the directory item
813 namelen = strlen(pending->name);
814 ret = btrfs_set_inode_index(parent_inode, &index);
815 ret = btrfs_insert_dir_item(trans, parent_root,
816 pending->name, namelen,
817 parent_inode->i_ino,
818 &pending->root_key, BTRFS_FT_DIR, index);
820 if (ret)
821 goto fail;
823 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
824 ret = btrfs_update_inode(trans, parent_root, parent_inode);
825 BUG_ON(ret);
827 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
828 pending->root_key.objectid,
829 parent_root->root_key.objectid,
830 parent_inode->i_ino, index, pending->name,
831 namelen);
833 BUG_ON(ret);
835 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
836 d_instantiate(pending->dentry, inode);
837 fail:
838 btrfs_end_transaction(trans, fs_info->fs_root);
839 return ret;
843 * create all the snapshots we've scheduled for creation
845 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
846 struct btrfs_fs_info *fs_info)
848 struct btrfs_pending_snapshot *pending;
849 struct list_head *head = &trans->transaction->pending_snapshots;
850 int ret;
852 list_for_each_entry(pending, head, list) {
853 ret = create_pending_snapshot(trans, fs_info, pending);
854 BUG_ON(ret);
856 return 0;
859 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
860 struct btrfs_fs_info *fs_info)
862 struct btrfs_pending_snapshot *pending;
863 struct list_head *head = &trans->transaction->pending_snapshots;
864 int ret;
866 while (!list_empty(head)) {
867 pending = list_entry(head->next,
868 struct btrfs_pending_snapshot, list);
869 ret = finish_pending_snapshot(fs_info, pending);
870 BUG_ON(ret);
871 list_del(&pending->list);
872 kfree(pending->name);
873 kfree(pending);
875 return 0;
878 static void update_super_roots(struct btrfs_root *root)
880 struct btrfs_root_item *root_item;
881 struct btrfs_super_block *super;
883 super = &root->fs_info->super_copy;
885 root_item = &root->fs_info->chunk_root->root_item;
886 super->chunk_root = root_item->bytenr;
887 super->chunk_root_generation = root_item->generation;
888 super->chunk_root_level = root_item->level;
890 root_item = &root->fs_info->tree_root->root_item;
891 super->root = root_item->bytenr;
892 super->generation = root_item->generation;
893 super->root_level = root_item->level;
896 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
898 int ret = 0;
899 spin_lock(&info->new_trans_lock);
900 if (info->running_transaction)
901 ret = info->running_transaction->in_commit;
902 spin_unlock(&info->new_trans_lock);
903 return ret;
906 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
907 struct btrfs_root *root)
909 unsigned long joined = 0;
910 unsigned long timeout = 1;
911 struct btrfs_transaction *cur_trans;
912 struct btrfs_transaction *prev_trans = NULL;
913 DEFINE_WAIT(wait);
914 int ret;
915 int should_grow = 0;
916 unsigned long now = get_seconds();
917 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
919 btrfs_run_ordered_operations(root, 0);
921 /* make a pass through all the delayed refs we have so far
922 * any runnings procs may add more while we are here
924 ret = btrfs_run_delayed_refs(trans, root, 0);
925 BUG_ON(ret);
927 cur_trans = trans->transaction;
929 * set the flushing flag so procs in this transaction have to
930 * start sending their work down.
932 cur_trans->delayed_refs.flushing = 1;
934 ret = btrfs_run_delayed_refs(trans, root, 0);
935 BUG_ON(ret);
937 mutex_lock(&root->fs_info->trans_mutex);
938 if (cur_trans->in_commit) {
939 cur_trans->use_count++;
940 mutex_unlock(&root->fs_info->trans_mutex);
941 btrfs_end_transaction(trans, root);
943 ret = wait_for_commit(root, cur_trans);
944 BUG_ON(ret);
946 mutex_lock(&root->fs_info->trans_mutex);
947 put_transaction(cur_trans);
948 mutex_unlock(&root->fs_info->trans_mutex);
950 return 0;
953 trans->transaction->in_commit = 1;
954 trans->transaction->blocked = 1;
955 if (cur_trans->list.prev != &root->fs_info->trans_list) {
956 prev_trans = list_entry(cur_trans->list.prev,
957 struct btrfs_transaction, list);
958 if (!prev_trans->commit_done) {
959 prev_trans->use_count++;
960 mutex_unlock(&root->fs_info->trans_mutex);
962 wait_for_commit(root, prev_trans);
964 mutex_lock(&root->fs_info->trans_mutex);
965 put_transaction(prev_trans);
969 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
970 should_grow = 1;
972 do {
973 int snap_pending = 0;
974 joined = cur_trans->num_joined;
975 if (!list_empty(&trans->transaction->pending_snapshots))
976 snap_pending = 1;
978 WARN_ON(cur_trans != trans->transaction);
979 prepare_to_wait(&cur_trans->writer_wait, &wait,
980 TASK_UNINTERRUPTIBLE);
982 if (cur_trans->num_writers > 1)
983 timeout = MAX_SCHEDULE_TIMEOUT;
984 else if (should_grow)
985 timeout = 1;
987 mutex_unlock(&root->fs_info->trans_mutex);
989 if (flush_on_commit) {
990 btrfs_start_delalloc_inodes(root);
991 ret = btrfs_wait_ordered_extents(root, 0);
992 BUG_ON(ret);
993 } else if (snap_pending) {
994 ret = btrfs_wait_ordered_extents(root, 1);
995 BUG_ON(ret);
999 * rename don't use btrfs_join_transaction, so, once we
1000 * set the transaction to blocked above, we aren't going
1001 * to get any new ordered operations. We can safely run
1002 * it here and no for sure that nothing new will be added
1003 * to the list
1005 btrfs_run_ordered_operations(root, 1);
1007 smp_mb();
1008 if (cur_trans->num_writers > 1 || should_grow)
1009 schedule_timeout(timeout);
1011 mutex_lock(&root->fs_info->trans_mutex);
1012 finish_wait(&cur_trans->writer_wait, &wait);
1013 } while (cur_trans->num_writers > 1 ||
1014 (should_grow && cur_trans->num_joined != joined));
1016 ret = create_pending_snapshots(trans, root->fs_info);
1017 BUG_ON(ret);
1019 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1020 BUG_ON(ret);
1022 WARN_ON(cur_trans != trans->transaction);
1024 /* btrfs_commit_tree_roots is responsible for getting the
1025 * various roots consistent with each other. Every pointer
1026 * in the tree of tree roots has to point to the most up to date
1027 * root for every subvolume and other tree. So, we have to keep
1028 * the tree logging code from jumping in and changing any
1029 * of the trees.
1031 * At this point in the commit, there can't be any tree-log
1032 * writers, but a little lower down we drop the trans mutex
1033 * and let new people in. By holding the tree_log_mutex
1034 * from now until after the super is written, we avoid races
1035 * with the tree-log code.
1037 mutex_lock(&root->fs_info->tree_log_mutex);
1039 ret = commit_fs_roots(trans, root);
1040 BUG_ON(ret);
1042 /* commit_fs_roots gets rid of all the tree log roots, it is now
1043 * safe to free the root of tree log roots
1045 btrfs_free_log_root_tree(trans, root->fs_info);
1047 ret = commit_cowonly_roots(trans, root);
1048 BUG_ON(ret);
1050 btrfs_prepare_extent_commit(trans, root);
1052 cur_trans = root->fs_info->running_transaction;
1053 spin_lock(&root->fs_info->new_trans_lock);
1054 root->fs_info->running_transaction = NULL;
1055 spin_unlock(&root->fs_info->new_trans_lock);
1057 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1058 root->fs_info->tree_root->node);
1059 switch_commit_root(root->fs_info->tree_root);
1061 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1062 root->fs_info->chunk_root->node);
1063 switch_commit_root(root->fs_info->chunk_root);
1065 update_super_roots(root);
1067 if (!root->fs_info->log_root_recovering) {
1068 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1069 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1072 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1073 sizeof(root->fs_info->super_copy));
1075 trans->transaction->blocked = 0;
1077 wake_up(&root->fs_info->transaction_wait);
1079 mutex_unlock(&root->fs_info->trans_mutex);
1080 ret = btrfs_write_and_wait_transaction(trans, root);
1081 BUG_ON(ret);
1082 write_ctree_super(trans, root, 0);
1085 * the super is written, we can safely allow the tree-loggers
1086 * to go about their business
1088 mutex_unlock(&root->fs_info->tree_log_mutex);
1090 btrfs_finish_extent_commit(trans, root);
1092 /* do the directory inserts of any pending snapshot creations */
1093 finish_pending_snapshots(trans, root->fs_info);
1095 mutex_lock(&root->fs_info->trans_mutex);
1097 cur_trans->commit_done = 1;
1099 root->fs_info->last_trans_committed = cur_trans->transid;
1101 wake_up(&cur_trans->commit_wait);
1103 put_transaction(cur_trans);
1104 put_transaction(cur_trans);
1106 mutex_unlock(&root->fs_info->trans_mutex);
1108 if (current->journal_info == trans)
1109 current->journal_info = NULL;
1111 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1112 return ret;
1116 * interface function to delete all the snapshots we have scheduled for deletion
1118 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1120 LIST_HEAD(list);
1121 struct btrfs_fs_info *fs_info = root->fs_info;
1123 mutex_lock(&fs_info->trans_mutex);
1124 list_splice_init(&fs_info->dead_roots, &list);
1125 mutex_unlock(&fs_info->trans_mutex);
1127 while (!list_empty(&list)) {
1128 root = list_entry(list.next, struct btrfs_root, root_list);
1129 list_del(&root->root_list);
1131 if (btrfs_header_backref_rev(root->node) <
1132 BTRFS_MIXED_BACKREF_REV)
1133 btrfs_drop_snapshot(root, 0);
1134 else
1135 btrfs_drop_snapshot(root, 1);
1137 return 0;