2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
26 #include "transaction.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
34 WARN_ON(transaction
->use_count
== 0);
35 transaction
->use_count
--;
36 if (transaction
->use_count
== 0) {
37 list_del_init(&transaction
->list
);
38 memset(transaction
, 0, sizeof(*transaction
));
39 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
43 static noinline
void switch_commit_root(struct btrfs_root
*root
)
45 free_extent_buffer(root
->commit_root
);
46 root
->commit_root
= btrfs_root_node(root
);
50 * either allocate a new transaction or hop into the existing one
52 static noinline
int join_transaction(struct btrfs_root
*root
)
54 struct btrfs_transaction
*cur_trans
;
55 cur_trans
= root
->fs_info
->running_transaction
;
57 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
60 root
->fs_info
->generation
++;
61 cur_trans
->num_writers
= 1;
62 cur_trans
->num_joined
= 0;
63 cur_trans
->transid
= root
->fs_info
->generation
;
64 init_waitqueue_head(&cur_trans
->writer_wait
);
65 init_waitqueue_head(&cur_trans
->commit_wait
);
66 cur_trans
->in_commit
= 0;
67 cur_trans
->blocked
= 0;
68 cur_trans
->use_count
= 1;
69 cur_trans
->commit_done
= 0;
70 cur_trans
->start_time
= get_seconds();
72 cur_trans
->delayed_refs
.root
.rb_node
= NULL
;
73 cur_trans
->delayed_refs
.num_entries
= 0;
74 cur_trans
->delayed_refs
.num_heads_ready
= 0;
75 cur_trans
->delayed_refs
.num_heads
= 0;
76 cur_trans
->delayed_refs
.flushing
= 0;
77 cur_trans
->delayed_refs
.run_delayed_start
= 0;
78 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
80 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
81 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
82 extent_io_tree_init(&cur_trans
->dirty_pages
,
83 root
->fs_info
->btree_inode
->i_mapping
,
85 spin_lock(&root
->fs_info
->new_trans_lock
);
86 root
->fs_info
->running_transaction
= cur_trans
;
87 spin_unlock(&root
->fs_info
->new_trans_lock
);
89 cur_trans
->num_writers
++;
90 cur_trans
->num_joined
++;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
)
105 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
106 WARN_ON(root
== root
->fs_info
->extent_root
);
107 WARN_ON(root
->commit_root
!= root
->node
);
109 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
110 (unsigned long)root
->root_key
.objectid
,
111 BTRFS_ROOT_TRANS_TAG
);
112 root
->last_trans
= trans
->transid
;
113 btrfs_init_reloc_root(trans
, root
);
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
119 struct btrfs_root
*root
)
124 mutex_lock(&root
->fs_info
->trans_mutex
);
125 if (root
->last_trans
== trans
->transid
) {
126 mutex_unlock(&root
->fs_info
->trans_mutex
);
130 record_root_in_trans(trans
, root
);
131 mutex_unlock(&root
->fs_info
->trans_mutex
);
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
139 static void wait_current_trans(struct btrfs_root
*root
)
141 struct btrfs_transaction
*cur_trans
;
143 cur_trans
= root
->fs_info
->running_transaction
;
144 if (cur_trans
&& cur_trans
->blocked
) {
146 cur_trans
->use_count
++;
148 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
149 TASK_UNINTERRUPTIBLE
);
150 if (cur_trans
->blocked
) {
151 mutex_unlock(&root
->fs_info
->trans_mutex
);
153 mutex_lock(&root
->fs_info
->trans_mutex
);
154 finish_wait(&root
->fs_info
->transaction_wait
,
157 finish_wait(&root
->fs_info
->transaction_wait
,
162 put_transaction(cur_trans
);
166 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
167 int num_blocks
, int wait
)
169 struct btrfs_trans_handle
*h
=
170 kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
173 mutex_lock(&root
->fs_info
->trans_mutex
);
174 if (!root
->fs_info
->log_root_recovering
&&
175 ((wait
== 1 && !root
->fs_info
->open_ioctl_trans
) || wait
== 2))
176 wait_current_trans(root
);
177 ret
= join_transaction(root
);
180 h
->transid
= root
->fs_info
->running_transaction
->transid
;
181 h
->transaction
= root
->fs_info
->running_transaction
;
182 h
->blocks_reserved
= num_blocks
;
185 h
->alloc_exclude_nr
= 0;
186 h
->alloc_exclude_start
= 0;
187 h
->delayed_ref_updates
= 0;
189 if (!current
->journal_info
)
190 current
->journal_info
= h
;
192 root
->fs_info
->running_transaction
->use_count
++;
193 record_root_in_trans(h
, root
);
194 mutex_unlock(&root
->fs_info
->trans_mutex
);
198 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
201 return start_transaction(root
, num_blocks
, 1);
203 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
206 return start_transaction(root
, num_blocks
, 0);
209 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
212 return start_transaction(r
, num_blocks
, 2);
215 /* wait for a transaction commit to be fully complete */
216 static noinline
int wait_for_commit(struct btrfs_root
*root
,
217 struct btrfs_transaction
*commit
)
220 mutex_lock(&root
->fs_info
->trans_mutex
);
221 while (!commit
->commit_done
) {
222 prepare_to_wait(&commit
->commit_wait
, &wait
,
223 TASK_UNINTERRUPTIBLE
);
224 if (commit
->commit_done
)
226 mutex_unlock(&root
->fs_info
->trans_mutex
);
228 mutex_lock(&root
->fs_info
->trans_mutex
);
230 mutex_unlock(&root
->fs_info
->trans_mutex
);
231 finish_wait(&commit
->commit_wait
, &wait
);
237 * rate limit against the drop_snapshot code. This helps to slow down new
238 * operations if the drop_snapshot code isn't able to keep up.
240 static void throttle_on_drops(struct btrfs_root
*root
)
242 struct btrfs_fs_info
*info
= root
->fs_info
;
243 int harder_count
= 0;
246 if (atomic_read(&info
->throttles
)) {
249 thr
= atomic_read(&info
->throttle_gen
);
252 prepare_to_wait(&info
->transaction_throttle
,
253 &wait
, TASK_UNINTERRUPTIBLE
);
254 if (!atomic_read(&info
->throttles
)) {
255 finish_wait(&info
->transaction_throttle
, &wait
);
259 finish_wait(&info
->transaction_throttle
, &wait
);
260 } while (thr
== atomic_read(&info
->throttle_gen
));
263 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
267 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
271 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
278 void btrfs_throttle(struct btrfs_root
*root
)
280 mutex_lock(&root
->fs_info
->trans_mutex
);
281 if (!root
->fs_info
->open_ioctl_trans
)
282 wait_current_trans(root
);
283 mutex_unlock(&root
->fs_info
->trans_mutex
);
286 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
287 struct btrfs_root
*root
, int throttle
)
289 struct btrfs_transaction
*cur_trans
;
290 struct btrfs_fs_info
*info
= root
->fs_info
;
294 unsigned long cur
= trans
->delayed_ref_updates
;
295 trans
->delayed_ref_updates
= 0;
297 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
298 trans
->delayed_ref_updates
= 0;
301 * do a full flush if the transaction is trying
304 if (trans
->transaction
->delayed_refs
.flushing
)
306 btrfs_run_delayed_refs(trans
, root
, cur
);
313 mutex_lock(&info
->trans_mutex
);
314 cur_trans
= info
->running_transaction
;
315 WARN_ON(cur_trans
!= trans
->transaction
);
316 WARN_ON(cur_trans
->num_writers
< 1);
317 cur_trans
->num_writers
--;
319 if (waitqueue_active(&cur_trans
->writer_wait
))
320 wake_up(&cur_trans
->writer_wait
);
321 put_transaction(cur_trans
);
322 mutex_unlock(&info
->trans_mutex
);
324 if (current
->journal_info
== trans
)
325 current
->journal_info
= NULL
;
326 memset(trans
, 0, sizeof(*trans
));
327 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
332 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
333 struct btrfs_root
*root
)
335 return __btrfs_end_transaction(trans
, root
, 0);
338 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
339 struct btrfs_root
*root
)
341 return __btrfs_end_transaction(trans
, root
, 1);
345 * when btree blocks are allocated, they have some corresponding bits set for
346 * them in one of two extent_io trees. This is used to make sure all of
347 * those extents are sent to disk but does not wait on them
349 int btrfs_write_marked_extents(struct btrfs_root
*root
,
350 struct extent_io_tree
*dirty_pages
)
356 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
362 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
366 while (start
<= end
) {
369 index
= start
>> PAGE_CACHE_SHIFT
;
370 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
371 page
= find_get_page(btree_inode
->i_mapping
, index
);
375 btree_lock_page_hook(page
);
376 if (!page
->mapping
) {
378 page_cache_release(page
);
382 if (PageWriteback(page
)) {
384 wait_on_page_writeback(page
);
387 page_cache_release(page
);
391 err
= write_one_page(page
, 0);
394 page_cache_release(page
);
403 * when btree blocks are allocated, they have some corresponding bits set for
404 * them in one of two extent_io trees. This is used to make sure all of
405 * those extents are on disk for transaction or log commit. We wait
406 * on all the pages and clear them from the dirty pages state tree
408 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
409 struct extent_io_tree
*dirty_pages
)
415 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
421 ret
= find_first_extent_bit(dirty_pages
, 0, &start
, &end
,
426 clear_extent_dirty(dirty_pages
, start
, end
, GFP_NOFS
);
427 while (start
<= end
) {
428 index
= start
>> PAGE_CACHE_SHIFT
;
429 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
430 page
= find_get_page(btree_inode
->i_mapping
, index
);
433 if (PageDirty(page
)) {
434 btree_lock_page_hook(page
);
435 wait_on_page_writeback(page
);
436 err
= write_one_page(page
, 0);
440 wait_on_page_writeback(page
);
441 page_cache_release(page
);
451 * when btree blocks are allocated, they have some corresponding bits set for
452 * them in one of two extent_io trees. This is used to make sure all of
453 * those extents are on disk for transaction or log commit
455 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
456 struct extent_io_tree
*dirty_pages
)
461 ret
= btrfs_write_marked_extents(root
, dirty_pages
);
462 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
);
466 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
467 struct btrfs_root
*root
)
469 if (!trans
|| !trans
->transaction
) {
470 struct inode
*btree_inode
;
471 btree_inode
= root
->fs_info
->btree_inode
;
472 return filemap_write_and_wait(btree_inode
->i_mapping
);
474 return btrfs_write_and_wait_marked_extents(root
,
475 &trans
->transaction
->dirty_pages
);
479 * this is used to update the root pointer in the tree of tree roots.
481 * But, in the case of the extent allocation tree, updating the root
482 * pointer may allocate blocks which may change the root of the extent
485 * So, this loops and repeats and makes sure the cowonly root didn't
486 * change while the root pointer was being updated in the metadata.
488 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
489 struct btrfs_root
*root
)
493 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
495 btrfs_write_dirty_block_groups(trans
, root
);
498 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
499 if (old_root_bytenr
== root
->node
->start
)
502 btrfs_set_root_node(&root
->root_item
, root
->node
);
503 ret
= btrfs_update_root(trans
, tree_root
,
508 ret
= btrfs_write_dirty_block_groups(trans
, root
);
512 if (root
!= root
->fs_info
->extent_root
)
513 switch_commit_root(root
);
519 * update all the cowonly tree roots on disk
521 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
522 struct btrfs_root
*root
)
524 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
525 struct list_head
*next
;
526 struct extent_buffer
*eb
;
529 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
532 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
533 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
534 btrfs_tree_unlock(eb
);
535 free_extent_buffer(eb
);
537 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
540 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
541 next
= fs_info
->dirty_cowonly_roots
.next
;
543 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
545 update_cowonly_root(trans
, root
);
548 down_write(&fs_info
->extent_commit_sem
);
549 switch_commit_root(fs_info
->extent_root
);
550 up_write(&fs_info
->extent_commit_sem
);
556 * dead roots are old snapshots that need to be deleted. This allocates
557 * a dirty root struct and adds it into the list of dead roots that need to
560 int btrfs_add_dead_root(struct btrfs_root
*root
)
562 mutex_lock(&root
->fs_info
->trans_mutex
);
563 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
564 mutex_unlock(&root
->fs_info
->trans_mutex
);
569 * update all the cowonly tree roots on disk
571 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
572 struct btrfs_root
*root
)
574 struct btrfs_root
*gang
[8];
575 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
581 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
584 BTRFS_ROOT_TRANS_TAG
);
587 for (i
= 0; i
< ret
; i
++) {
589 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
590 (unsigned long)root
->root_key
.objectid
,
591 BTRFS_ROOT_TRANS_TAG
);
593 btrfs_free_log(trans
, root
);
594 btrfs_update_reloc_root(trans
, root
);
596 if (root
->commit_root
!= root
->node
) {
597 switch_commit_root(root
);
598 btrfs_set_root_node(&root
->root_item
,
602 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
613 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
614 * otherwise every leaf in the btree is read and defragged.
616 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
618 struct btrfs_fs_info
*info
= root
->fs_info
;
620 struct btrfs_trans_handle
*trans
;
624 if (root
->defrag_running
)
626 trans
= btrfs_start_transaction(root
, 1);
628 root
->defrag_running
= 1;
629 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
630 nr
= trans
->blocks_used
;
631 btrfs_end_transaction(trans
, root
);
632 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
635 trans
= btrfs_start_transaction(root
, 1);
636 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
639 root
->defrag_running
= 0;
641 btrfs_end_transaction(trans
, root
);
647 * when dropping snapshots, we generate a ton of delayed refs, and it makes
648 * sense not to join the transaction while it is trying to flush the current
649 * queue of delayed refs out.
651 * This is used by the drop snapshot code only
653 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
657 mutex_lock(&info
->trans_mutex
);
658 while (info
->running_transaction
&&
659 info
->running_transaction
->delayed_refs
.flushing
) {
660 prepare_to_wait(&info
->transaction_wait
, &wait
,
661 TASK_UNINTERRUPTIBLE
);
662 mutex_unlock(&info
->trans_mutex
);
666 mutex_lock(&info
->trans_mutex
);
667 finish_wait(&info
->transaction_wait
, &wait
);
669 mutex_unlock(&info
->trans_mutex
);
674 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
677 int btrfs_drop_dead_root(struct btrfs_root
*root
)
679 struct btrfs_trans_handle
*trans
;
680 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
686 * we don't want to jump in and create a bunch of
687 * delayed refs if the transaction is starting to close
689 wait_transaction_pre_flush(tree_root
->fs_info
);
690 trans
= btrfs_start_transaction(tree_root
, 1);
693 * we've joined a transaction, make sure it isn't
696 if (trans
->transaction
->delayed_refs
.flushing
) {
697 btrfs_end_transaction(trans
, tree_root
);
701 ret
= btrfs_drop_snapshot(trans
, root
);
705 ret
= btrfs_update_root(trans
, tree_root
,
711 nr
= trans
->blocks_used
;
712 ret
= btrfs_end_transaction(trans
, tree_root
);
715 btrfs_btree_balance_dirty(tree_root
, nr
);
720 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
723 nr
= trans
->blocks_used
;
724 ret
= btrfs_end_transaction(trans
, tree_root
);
727 free_extent_buffer(root
->node
);
728 free_extent_buffer(root
->commit_root
);
731 btrfs_btree_balance_dirty(tree_root
, nr
);
737 * new snapshots need to be created at a very specific time in the
738 * transaction commit. This does the actual creation
740 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
741 struct btrfs_fs_info
*fs_info
,
742 struct btrfs_pending_snapshot
*pending
)
744 struct btrfs_key key
;
745 struct btrfs_root_item
*new_root_item
;
746 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
747 struct btrfs_root
*root
= pending
->root
;
748 struct extent_buffer
*tmp
;
749 struct extent_buffer
*old
;
753 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
754 if (!new_root_item
) {
758 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
762 record_root_in_trans(trans
, root
);
763 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
764 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
766 key
.objectid
= objectid
;
767 /* record when the snapshot was created in key.offset */
768 key
.offset
= trans
->transid
;
769 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
771 old
= btrfs_lock_root_node(root
);
772 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
773 btrfs_set_lock_blocking(old
);
775 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
776 btrfs_tree_unlock(old
);
777 free_extent_buffer(old
);
779 btrfs_set_root_node(new_root_item
, tmp
);
780 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
782 btrfs_tree_unlock(tmp
);
783 free_extent_buffer(tmp
);
787 key
.offset
= (u64
)-1;
788 memcpy(&pending
->root_key
, &key
, sizeof(key
));
790 kfree(new_root_item
);
791 btrfs_unreserve_metadata_space(root
, 6);
795 static noinline
int finish_pending_snapshot(struct btrfs_fs_info
*fs_info
,
796 struct btrfs_pending_snapshot
*pending
)
801 struct btrfs_trans_handle
*trans
;
802 struct inode
*parent_inode
;
804 struct btrfs_root
*parent_root
;
806 parent_inode
= pending
->dentry
->d_parent
->d_inode
;
807 parent_root
= BTRFS_I(parent_inode
)->root
;
808 trans
= btrfs_join_transaction(parent_root
, 1);
811 * insert the directory item
813 namelen
= strlen(pending
->name
);
814 ret
= btrfs_set_inode_index(parent_inode
, &index
);
815 ret
= btrfs_insert_dir_item(trans
, parent_root
,
816 pending
->name
, namelen
,
818 &pending
->root_key
, BTRFS_FT_DIR
, index
);
823 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+ namelen
* 2);
824 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
827 ret
= btrfs_add_root_ref(trans
, parent_root
->fs_info
->tree_root
,
828 pending
->root_key
.objectid
,
829 parent_root
->root_key
.objectid
,
830 parent_inode
->i_ino
, index
, pending
->name
,
835 inode
= btrfs_lookup_dentry(parent_inode
, pending
->dentry
);
836 d_instantiate(pending
->dentry
, inode
);
838 btrfs_end_transaction(trans
, fs_info
->fs_root
);
843 * create all the snapshots we've scheduled for creation
845 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
846 struct btrfs_fs_info
*fs_info
)
848 struct btrfs_pending_snapshot
*pending
;
849 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
852 list_for_each_entry(pending
, head
, list
) {
853 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
859 static noinline
int finish_pending_snapshots(struct btrfs_trans_handle
*trans
,
860 struct btrfs_fs_info
*fs_info
)
862 struct btrfs_pending_snapshot
*pending
;
863 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
866 while (!list_empty(head
)) {
867 pending
= list_entry(head
->next
,
868 struct btrfs_pending_snapshot
, list
);
869 ret
= finish_pending_snapshot(fs_info
, pending
);
871 list_del(&pending
->list
);
872 kfree(pending
->name
);
878 static void update_super_roots(struct btrfs_root
*root
)
880 struct btrfs_root_item
*root_item
;
881 struct btrfs_super_block
*super
;
883 super
= &root
->fs_info
->super_copy
;
885 root_item
= &root
->fs_info
->chunk_root
->root_item
;
886 super
->chunk_root
= root_item
->bytenr
;
887 super
->chunk_root_generation
= root_item
->generation
;
888 super
->chunk_root_level
= root_item
->level
;
890 root_item
= &root
->fs_info
->tree_root
->root_item
;
891 super
->root
= root_item
->bytenr
;
892 super
->generation
= root_item
->generation
;
893 super
->root_level
= root_item
->level
;
896 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
899 spin_lock(&info
->new_trans_lock
);
900 if (info
->running_transaction
)
901 ret
= info
->running_transaction
->in_commit
;
902 spin_unlock(&info
->new_trans_lock
);
906 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
907 struct btrfs_root
*root
)
909 unsigned long joined
= 0;
910 unsigned long timeout
= 1;
911 struct btrfs_transaction
*cur_trans
;
912 struct btrfs_transaction
*prev_trans
= NULL
;
916 unsigned long now
= get_seconds();
917 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
919 btrfs_run_ordered_operations(root
, 0);
921 /* make a pass through all the delayed refs we have so far
922 * any runnings procs may add more while we are here
924 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
927 cur_trans
= trans
->transaction
;
929 * set the flushing flag so procs in this transaction have to
930 * start sending their work down.
932 cur_trans
->delayed_refs
.flushing
= 1;
934 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
937 mutex_lock(&root
->fs_info
->trans_mutex
);
938 if (cur_trans
->in_commit
) {
939 cur_trans
->use_count
++;
940 mutex_unlock(&root
->fs_info
->trans_mutex
);
941 btrfs_end_transaction(trans
, root
);
943 ret
= wait_for_commit(root
, cur_trans
);
946 mutex_lock(&root
->fs_info
->trans_mutex
);
947 put_transaction(cur_trans
);
948 mutex_unlock(&root
->fs_info
->trans_mutex
);
953 trans
->transaction
->in_commit
= 1;
954 trans
->transaction
->blocked
= 1;
955 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
956 prev_trans
= list_entry(cur_trans
->list
.prev
,
957 struct btrfs_transaction
, list
);
958 if (!prev_trans
->commit_done
) {
959 prev_trans
->use_count
++;
960 mutex_unlock(&root
->fs_info
->trans_mutex
);
962 wait_for_commit(root
, prev_trans
);
964 mutex_lock(&root
->fs_info
->trans_mutex
);
965 put_transaction(prev_trans
);
969 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
973 int snap_pending
= 0;
974 joined
= cur_trans
->num_joined
;
975 if (!list_empty(&trans
->transaction
->pending_snapshots
))
978 WARN_ON(cur_trans
!= trans
->transaction
);
979 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
980 TASK_UNINTERRUPTIBLE
);
982 if (cur_trans
->num_writers
> 1)
983 timeout
= MAX_SCHEDULE_TIMEOUT
;
984 else if (should_grow
)
987 mutex_unlock(&root
->fs_info
->trans_mutex
);
989 if (flush_on_commit
) {
990 btrfs_start_delalloc_inodes(root
);
991 ret
= btrfs_wait_ordered_extents(root
, 0);
993 } else if (snap_pending
) {
994 ret
= btrfs_wait_ordered_extents(root
, 1);
999 * rename don't use btrfs_join_transaction, so, once we
1000 * set the transaction to blocked above, we aren't going
1001 * to get any new ordered operations. We can safely run
1002 * it here and no for sure that nothing new will be added
1005 btrfs_run_ordered_operations(root
, 1);
1008 if (cur_trans
->num_writers
> 1 || should_grow
)
1009 schedule_timeout(timeout
);
1011 mutex_lock(&root
->fs_info
->trans_mutex
);
1012 finish_wait(&cur_trans
->writer_wait
, &wait
);
1013 } while (cur_trans
->num_writers
> 1 ||
1014 (should_grow
&& cur_trans
->num_joined
!= joined
));
1016 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1019 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1022 WARN_ON(cur_trans
!= trans
->transaction
);
1024 /* btrfs_commit_tree_roots is responsible for getting the
1025 * various roots consistent with each other. Every pointer
1026 * in the tree of tree roots has to point to the most up to date
1027 * root for every subvolume and other tree. So, we have to keep
1028 * the tree logging code from jumping in and changing any
1031 * At this point in the commit, there can't be any tree-log
1032 * writers, but a little lower down we drop the trans mutex
1033 * and let new people in. By holding the tree_log_mutex
1034 * from now until after the super is written, we avoid races
1035 * with the tree-log code.
1037 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1039 ret
= commit_fs_roots(trans
, root
);
1042 /* commit_fs_roots gets rid of all the tree log roots, it is now
1043 * safe to free the root of tree log roots
1045 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1047 ret
= commit_cowonly_roots(trans
, root
);
1050 btrfs_prepare_extent_commit(trans
, root
);
1052 cur_trans
= root
->fs_info
->running_transaction
;
1053 spin_lock(&root
->fs_info
->new_trans_lock
);
1054 root
->fs_info
->running_transaction
= NULL
;
1055 spin_unlock(&root
->fs_info
->new_trans_lock
);
1057 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1058 root
->fs_info
->tree_root
->node
);
1059 switch_commit_root(root
->fs_info
->tree_root
);
1061 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1062 root
->fs_info
->chunk_root
->node
);
1063 switch_commit_root(root
->fs_info
->chunk_root
);
1065 update_super_roots(root
);
1067 if (!root
->fs_info
->log_root_recovering
) {
1068 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1069 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1072 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1073 sizeof(root
->fs_info
->super_copy
));
1075 trans
->transaction
->blocked
= 0;
1077 wake_up(&root
->fs_info
->transaction_wait
);
1079 mutex_unlock(&root
->fs_info
->trans_mutex
);
1080 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1082 write_ctree_super(trans
, root
, 0);
1085 * the super is written, we can safely allow the tree-loggers
1086 * to go about their business
1088 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1090 btrfs_finish_extent_commit(trans
, root
);
1092 /* do the directory inserts of any pending snapshot creations */
1093 finish_pending_snapshots(trans
, root
->fs_info
);
1095 mutex_lock(&root
->fs_info
->trans_mutex
);
1097 cur_trans
->commit_done
= 1;
1099 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1101 wake_up(&cur_trans
->commit_wait
);
1103 put_transaction(cur_trans
);
1104 put_transaction(cur_trans
);
1106 mutex_unlock(&root
->fs_info
->trans_mutex
);
1108 if (current
->journal_info
== trans
)
1109 current
->journal_info
= NULL
;
1111 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1116 * interface function to delete all the snapshots we have scheduled for deletion
1118 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1121 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1123 mutex_lock(&fs_info
->trans_mutex
);
1124 list_splice_init(&fs_info
->dead_roots
, &list
);
1125 mutex_unlock(&fs_info
->trans_mutex
);
1127 while (!list_empty(&list
)) {
1128 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1129 list_del(&root
->root_list
);
1131 if (btrfs_header_backref_rev(root
->node
) <
1132 BTRFS_MIXED_BACKREF_REV
)
1133 btrfs_drop_snapshot(root
, 0);
1135 btrfs_drop_snapshot(root
, 1);